JP6843666B2 - Durability improver for concrete, and concrete - Google Patents

Durability improver for concrete, and concrete Download PDF

Info

Publication number
JP6843666B2
JP6843666B2 JP2017058698A JP2017058698A JP6843666B2 JP 6843666 B2 JP6843666 B2 JP 6843666B2 JP 2017058698 A JP2017058698 A JP 2017058698A JP 2017058698 A JP2017058698 A JP 2017058698A JP 6843666 B2 JP6843666 B2 JP 6843666B2
Authority
JP
Japan
Prior art keywords
concrete
nitrite
mass
paraffin
freeze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058698A
Other languages
Japanese (ja)
Other versions
JP2018162171A (en
Inventor
彦次 兵頭
彦次 兵頭
貴泰 樋口
貴泰 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017058698A priority Critical patent/JP6843666B2/en
Publication of JP2018162171A publication Critical patent/JP2018162171A/en
Application granted granted Critical
Publication of JP6843666B2 publication Critical patent/JP6843666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、膨張材を含んでいても、コンクリートの凍結融解抵抗性の低下を抑制でき、かつ収縮低減効果の高いコンクリート用耐久性改善剤等に関する。なお、本明細書において、コンクリートにはモルタルも含まれる。 The present invention relates to a durability improving agent for concrete, which can suppress a decrease in freeze-thaw resistance of concrete even if it contains an expansion material and has a high shrinkage reducing effect. In this specification, concrete also includes mortar.

従来、コンクリート用膨張材(以下「膨張材」という。)は、生石灰系とカルシウムサルホアルミネート系の2種類があり、それぞれ、水和により生成した消石灰やエトリンガイトの膨張によって、コンクリートの乾燥収縮や自己収縮を減らして、ひび割れを抑制する効果がある。しかし、一方で、膨張材を添加したコンクリートは、凍結融解抵抗性が低下して、表面の劣化が増大する例が報告されている(非特許文献1、2)。 Conventionally, there are two types of concrete expansion materials (hereinafter referred to as "expansion materials"), quicklime-based and calcium sulfoluminate-based, respectively, which cause drying shrinkage of concrete due to expansion of slaked lime and ettringite produced by hydration, respectively. It has the effect of reducing self-shrinkage and suppressing cracks. However, on the other hand, it has been reported that concrete to which an expansion material is added has a reduced freeze-thaw resistance and an increased surface deterioration (Non-Patent Documents 1 and 2).

この凍結融解抵抗性の低下を避けるためには、膨張材の添加量を減らさざるを得ないが、それでは、目標とする収縮低減効果を得ることは難しい。コンクリートの凍結融解抵抗性が特に要求される寒冷地では、コンクリートのひび割れを抑制する手段として、膨張材を選択する余地が狭まるため、特に構造物などの拘束されたコンクリートのひび割れの低減が不十分になり易い。その結果、ひび割れが発生したコンクリートは、ひび割れに起因して凍害による劣化がさらに進むという悪循環に陥るおそれがある。 In order to avoid this decrease in freeze-thaw resistance, the amount of the expansion material added must be reduced, but it is difficult to obtain the target shrinkage reduction effect. In cold regions where freeze-thaw resistance of concrete is particularly required, the choice of expansion material is narrowed as a means of suppressing cracks in concrete, so reduction of cracks in restrained concrete such as structures is insufficient. It is easy to become. As a result, the cracked concrete may fall into a vicious cycle in which the deterioration due to frost damage due to the cracks further progresses.

天谷公彦ほか、「膨張材を使用したコンクリートの拘束度と凍結融解抵抗性に関する実験的研究」、土木学会第65回年次学術講演会(平成22年9月)、863〜864頁Kimihiko Amaya et al., "Experimental research on the degree of restraint and freeze-thaw resistance of concrete using expansive materials", 65th Annual Scientific Lecture Meeting of the Japan Society of Civil Engineers (September 2010), pp. 863-864 國府勝郎、「膨張コンクリートの凍結融解抵抗性に関する基礎研究」、土木学会論文報告集、第334号、1983年8月、145〜154頁Katsuro Kokufu, "Basic Research on Freezing and Thaw Resistance of Expanded Concrete", JSCE Proceedings, No. 334, August 1983, pp. 145-154

そこで、本発明は、膨張材を含んでいても、コンクリートの凍結融解抵抗性の低下、特に表面の劣化(ひび割れや剥離)を抑制でき、かつ収縮低減効果の高いコンクリート用耐久性改善剤等を提供することを目的とする。 Therefore, the present invention provides a durability improver for concrete, which can suppress a decrease in freeze-thaw resistance of concrete, particularly surface deterioration (cracking and peeling), and has a high shrinkage reduction effect even if it contains an expansion material. The purpose is to provide.

本発明者は、前記目的を達成するために鋭意検討した結果、少なくとも、膨張材、パラフィン、および亜硝酸塩からなる混和剤は、前記目的を達成できることを見い出し、本発明を完成した。すなわち、本発明は、以下の構成を有するコンクリート用耐久性改善剤等である。 As a result of diligent studies to achieve the above-mentioned object, the present inventor has found that at least an admixture composed of a swelling material, paraffin, and nitrite can achieve the above-mentioned object, and completed the present invention. That is, the present invention is a durability improving agent for concrete having the following constitution.

[1]少なくとも、膨張材、パラフィン、および亜硝酸塩からなる、コンクリート用耐久性改善剤。
[2]前記膨張材は粉体であり、前記亜硝酸塩は水溶液であり、前記パラフィンは水に分散した固形パラフィンの分散液である、前記[1]に記載のコンクリート用耐久性改善剤。
[3]前記[1]または[2]に記載のコンクリート用耐久性改善剤を含む、コンクリート。
[1] A durability improver for concrete, which comprises at least an expansive material, paraffin, and nitrite.
[2] The durability improving agent for concrete according to the above [1], wherein the expanding material is a powder, the nitrite is an aqueous solution, and the paraffin is a dispersion liquid of solid paraffin dispersed in water.
[3] Concrete containing the durability improving agent for concrete according to the above [1] or [2].

本発明のコンクリート用耐久性改善剤は、膨張材を含んでいても、コンクリートの凍結融解抵抗性の低下を抑制でき、かつ収縮低減効果が高い。 The durability improving agent for concrete of the present invention can suppress a decrease in freeze-thaw resistance of concrete even if it contains an expansion material, and has a high shrinkage reducing effect.

凍結融解サイクル数と相対動弾性係数の関係を示す図であり、(A)は実施例1、2、比較例1、2、および参考例1の図で、(B)は実施例3、4、比較例3、4、および参考例2の図である。It is a figure which shows the relationship between the number of freeze-thaw cycles and a relative dynamic elastic modulus, (A) is a figure of Examples 1 and 2, Comparative Examples 1 and 2, and Reference Example 1, and (B) is a figure of Examples 3 and 4. , Comparative Examples 3 and 4, and Reference Example 2. 凍結融解サイクル数と質量減少率の関係を示す図であり、(A)は実施例1、2、比較例1、2、および参考例1の図で、(B)は実施例3、4、比較例3、4、および参考例2の図である。It is a figure which shows the relationship between the number of freeze-thaw cycles and the mass reduction rate, (A) is a figure of Example 1, 2, Comparative Example 1, 2, and Reference Example 1, (B) is a figure of Example 3, 4, It is a figure of Comparative Examples 3 and 4, and Reference Example 2.

本発明は、前記のとおり、少なくとも、膨張材、パラフィン、および亜硝酸塩からなるコンクリート用耐久性改善剤等である。以下、コンクリート用耐久性改善剤と、該改善剤を含むコンクリートについて詳細に説明する。 As described above, the present invention is at least a durability improver for concrete composed of an expansive material, paraffin, and nitrite. Hereinafter, the durability improving agent for concrete and the concrete containing the improving agent will be described in detail.

1.コンクリート用耐久性改善剤
(1)膨張材
本発明で用いる膨張材は、石灰系やカルシウムサルホアルミネート系の膨張材が挙げられる。これらの市販品として、石灰系は太平洋エクスパン(登録商標、太平洋マテリアル社製)等があり、カルシウムサルホアルミネート系はデンカCSA(デンカ社製)等がある。
コンクリート中の膨張材の単位量は、好ましくは10〜50kg/m、より好ましくは15〜45kg/m、さらに好ましくは20〜40kg/mである。該単位量が10kg/m未満では、膨張量が少ないためコンクリートの収縮が大きくなるおそれがあり、50kg/mを超えるとコンクリートの凍結融解抵抗性が低下し、表面の劣化が増大するおそれがある。
また、膨張材のブレーン比表面積の下限は、好ましくは2000cm/g、より好ましくは3000cm/gであり、その上限は、好ましくは6000cm/gである。ブレーン比表面積の下限値が2000cm/g未満では、コンクリート中で膨張材がポップアウトして強度が低下するおそれがあり、6000cm/gを超えるとコスト高になる。
1. 1. Durability improver for concrete (1) Expansion material Examples of the expansion material used in the present invention include lime-based and calcium sulfate-based expansion materials. As these commercially available products, lime-based products include Pacific Expand (registered trademark, manufactured by Pacific Materials Co., Ltd.), and calcium sulfoluminate-based products include Denka CSA (manufactured by Denka Co., Ltd.).
The unit amount of the expanding material in the concrete is preferably 10 to 50 kg / m 3 , more preferably 15 to 45 kg / m 3 , and further preferably 20 to 40 kg / m 3 . If the unit amount is less than 10 kg / m 3 , the shrinkage of the concrete may be large because the expansion amount is small, and if it exceeds 50 kg / m 3 , the freeze-thaw resistance of the concrete may decrease and the surface deterioration may increase. There is.
The lower limit of the Blaine specific surface area of the expanding material is preferably 2000 cm 2 / g, more preferably 3000 cm 2 / g, the upper limit is preferably 6000 cm 2 / g. Is less than the lower limit value of 2000 cm 2 / g in Blaine specific surface area, there is a risk that the expansion member in the concrete decreases the strength pops out, high cost exceeds 6000 cm 2 / g.

(2)パラフィン
本発明で用いるパラフィンは、固形パラフィン、流動パラフィン、および塩素化パラフィンから選ばれる1種以上が挙げられる。これらの中でも、固形パラフィンが水に分散したパラフィン分散液は、コンクリートへの添加や、コンクリート中の分散が容易なため好ましい。パラフィンの粒径は、凍結融解抵抗性の低下を抑制する観点から、好ましくは5μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下である。
パラフィン分散液中のパラフィンの含有率は固形分換算で、好ましくは10〜50質量%、より好ましくは15〜45質量%、さらに好ましくは20〜40質量%である。
また、コンクリート中のパラフィンの配合量は固形分換算で、コンクリート中のセメント100質量部に対し、好ましくは0.05〜5.0質量部、より好ましくは0.1〜3.5質量部、さらに好ましくは0.15〜2.5質量部、特に好ましくは0.2〜2.0質量部である。パラフィンの配合量がコンクリート中のセメント100質量部に対し0.05質量部未満では、コンクリートの凍結融解抵抗性が低下し、特に表面の劣化が大きくなるおそれがあり、5.0質量部を超えても、凍結融解抵抗性の低下を抑制する効果は飽和し、またコスト高になる。
(2) Paraffin The paraffin used in the present invention may be one or more selected from solid paraffin, liquid paraffin, and chlorinated paraffin. Among these, a paraffin dispersion in which solid paraffin is dispersed in water is preferable because it can be easily added to concrete and dispersed in concrete. The particle size of paraffin is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less, from the viewpoint of suppressing a decrease in freeze-thaw resistance.
The content of paraffin in the paraffin dispersion is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and further preferably 20 to 40% by mass in terms of solid content.
The amount of paraffin in the concrete is preferably 0.05 to 5.0 parts by mass, more preferably 0.1 to 3.5 parts by mass, based on 100 parts by mass of the cement in the concrete in terms of solid content. It is more preferably 0.15 to 2.5 parts by mass, and particularly preferably 0.2 to 2.0 parts by mass. If the amount of paraffin compounded is less than 0.05 parts by mass with respect to 100 parts by mass of cement in concrete, the freeze-thaw resistance of concrete may decrease, and the surface deterioration may be particularly large, exceeding 5.0 parts by mass. However, the effect of suppressing the decrease in freeze-thaw resistance is saturated and the cost is high.

(3)亜硝酸塩
本発明で用いる亜硝酸塩は、亜硝酸カルシウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸マグネシウム、亜硝酸バリウム、亜硝酸ベリリウム、亜硝酸亜鉛、および亜硝酸ストロンチウムから選ばれる1種以上が挙げられ、これらの中でも、入手の容易性やコストの観点から、好ましくは、亜硝酸カルシウム、または亜硝酸リチウムであり、より好ましくは亜硝酸カルシウムである。本発明において亜硝酸塩は、コンクリートへの添加の利便性から、好ましくは水に溶解して用いる。亜硝酸塩水溶液中の亜硝酸塩の濃度は、好ましくは10〜60質量%、より好ましくは15〜55質量%、さらに好ましくは20〜50質量%である。
また、コンクリート中の前記亜硝酸塩の配合量は、コンクリート中のセメント100質量部に対し、好ましくは0.05〜5.0質量部、より好ましくは0.1〜3.5質量部、さらに好ましくは0.15〜2.5質量部、特に好ましくは0.2〜2.0質量部である。亜硝酸塩の配合量がコンクリート中のセメント100質量部に対し0.05質量部未満では、コンクリートの凍結融解抵抗性が低下し、特に表面の劣化が大きくなるおそれがあり、5.0質量部を超えても、凍結融解抵抗性の低下を抑制する効果は飽和し、またコスト高になる。
(3) Nitrite The nitrite used in the present invention is selected from calcium nitrite, lithium nitrite, sodium nitrite, potassium nitrite, magnesium nitrite, barium nitrite, beryllium nitrite, zinc nitrite, and strontium nitrite. Among these, calcium nitrite or lithium nitrite is preferable, and calcium nitrite is more preferable, from the viewpoint of availability and cost. In the present invention, nitrite is preferably dissolved in water for convenience of addition to concrete. The concentration of nitrite in the aqueous nitrite solution is preferably 10 to 60% by mass, more preferably 15 to 55% by mass, and even more preferably 20 to 50% by mass.
The amount of the nitrite blended in the concrete is preferably 0.05 to 5.0 parts by mass, more preferably 0.1 to 3.5 parts by mass, still more preferably, with respect to 100 parts by mass of the cement in the concrete. Is 0.15 to 2.5 parts by mass, particularly preferably 0.2 to 2.0 parts by mass. If the blending amount of nitrite is less than 0.05 parts by mass with respect to 100 parts by mass of cement in concrete, the freeze-thaw resistance of concrete may decrease, and the surface deterioration may be particularly large. Even if it exceeds the limit, the effect of suppressing the decrease in freeze-thaw resistance is saturated and the cost increases.

2.コンクリート用耐久性改善剤を含むコンクリート
(1)コンクリートの構成材料
該コンクリートに用いるセメントは、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、低熱ポルトランドセメント、中庸熱ポルトランドセメント、エコセメント、高炉セメント、フライアッシュセメント、シリカセメント、および、前記各種セメントに、高炉スラグ粉末、フライアッシュ、珪石粉末、シリカフューム、または石灰石粉末等を混合してなるセメントから選ばれる1種以上が挙げられる。
また、該コンクリートに用いる骨材は、通常のコンクリートに用いる骨材が使用でき、例えば、川砂、海砂、砕砂、人工細骨材、スラグ細骨材、再生骨材、珪砂、川砂利、陸砂利、砕石、人工粗骨材、スラグ粗骨材、および再生粗骨材から選ばれる1種以上が挙げられる。
該コンクリートに用いる減水剤は、リグニン系減水剤、ナフタレンスルホン酸系減水剤、メラミン系減水剤、ポリカルボン酸系減水剤、AE減水剤、高性能減水剤、および高性能AE減水剤から選ばれる1種以上が挙げられる。
また、該コンクリートに用いる水は、水道水等が使用できる。
なお、これらの材料以外にも、必要に応じて、収縮低減剤、空気量調整剤、凝結遅延剤、強度促進材、再乳化粉末樹脂、発泡剤、起泡剤、防水剤、防錆剤、増粘剤、保水剤、顔料、繊維、撥水剤、および白華防止剤等を使用することができる。
2. Concrete containing durability improver for concrete (1) Concrete constituent materials The cement used for the concrete is ordinary Portorand cement, early-strength Portland cement, ultra-early-strength Portland cement, low-heat Portland cement, moderate-heat Portland cement, eco-cement, etc. Examples thereof include one or more selected from blast furnace cement, fly ash cement, silica cement, and cement obtained by mixing blast furnace slag powder, fly ash, silica stone powder, silica fume, limestone powder, and the like with the various cements.
Further, as the aggregate used for the concrete, the aggregate used for ordinary concrete can be used, for example, river sand, sea sand, crushed sand, artificial fine aggregate, slag fine aggregate, recycled aggregate, silica sand, river gravel, land. One or more selected from gravel, crushed stone, artificial coarse aggregate, slag coarse aggregate, and regenerated coarse aggregate can be mentioned.
The water reducing agent used for the concrete is selected from a lignin-based water reducing agent, a naphthalene sulfonic acid-based water reducing agent, a melamine-based water reducing agent, a polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, and a high-performance AE water reducing agent. One or more types can be mentioned.
Further, as the water used for the concrete, tap water or the like can be used.
In addition to these materials, if necessary, shrinkage reducing agents, air volume adjusting agents, setting retarders, strength promoters, re-emulsifying powder resins, foaming agents, foaming agents, waterproofing agents, rust preventives, etc. Thickeners, water retention agents, pigments, fibers, water repellents, anti-whitening agents and the like can be used.

(2)コンクリートの配合
本発明のコンクリートの配合において、
(i)水/(セメント+膨張材)の質量比は、好ましくは0.25〜0.65、より好ましくは0.27〜0.63である。ただし、本発明において、水/(セメント+膨張材)における水の量とは、混練水と、パラフィン分散液および亜硝酸塩水溶液に含まれる水の合計の量である。
(ii)単位セメント量は、好ましくは200〜650kg/m、より好ましくは250〜600kg/mである。
(iii)細骨材率は、好ましくは35〜60%、より好ましくは40〜56%である。
(iv)空気量は、好ましくは1.0〜6.0%、より好ましくは1.5〜5.5%である。
(v)減水剤は、セメントと膨張材の合計100質量部に対して、好ましくは0.1〜2.0質量部、より好ましくは0.3〜1.8質量部、さらに好ましくは0.5〜1.5質量部である。
前記配合を満たす本発明のコンクリートは、膨張材を含んでいても、コンクリートの凍結融解抵抗性の低下、特に表面の劣化を抑制でき、かつ収縮低減効果が高くひび割れの発生を防止することができる。
(2) Concrete formulation In the concrete formulation of the present invention,
(i) The mass ratio of water / (cement + expansive material) is preferably 0.25 to 0.65, more preferably 0.27 to 0.63. However, in the present invention, the amount of water in water / (cement + swelling material) is the total amount of kneaded water and water contained in the paraffin dispersion and the nitrite aqueous solution.
(ii) The unit cement amount is preferably 200 to 650 kg / m 3 , more preferably 250 to 600 kg / m 3 .
(iii) The fine aggregate ratio is preferably 35 to 60%, more preferably 40 to 56%.
(iv) The amount of air is preferably 1.0 to 6.0%, more preferably 1.5 to 5.5%.
(v) The water reducing agent is preferably 0.1 to 2.0 parts by mass, more preferably 0.3 to 1.8 parts by mass, and further preferably 0. It is 5 to 1.5 parts by mass.
Even if the concrete of the present invention satisfying the above composition contains an expansion material, it is possible to suppress a decrease in freeze-thaw resistance of the concrete, particularly deterioration of the surface, and a high shrinkage reduction effect to prevent the occurrence of cracks. ..

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
[使用材料]
(1)普通ポルトランドセメント(略号:C)
密度:3.16g/cm(太平洋セメント社製)
(2)膨張材(略号:E)
石灰系膨張材(商品名「太平洋ハイパーエクスパンK」、登録商標、太平洋マテリアル社製)
(3)パラフィン(略号:P)
粒径0.2〜1μmの固形パラフィンが水に分散した分散液である。ただし、固形分濃度は40質量%である。
(4)亜硝酸塩(略号:N)
濃度40質量%の亜硝酸カルシウム水溶液である。
(5)細骨材(略号:S)
砕砂、表乾密度:2.62g/cm(茨城県桜川産)
(6)粗骨材(略号:G)
砕石2005、表乾密度:2.64g/cm(茨城県桜川産)
(7)減水剤(略号:S
商品名「マスターポリヒード15L」(BASFジャパン社製)
(8)水(略号:W)
水道水
(9)空気量調整剤A(略号:A
商品名「マイクロエア404」(BASFジャパン社製)
(10)空気量調整剤B(略号:A
商品名「マイクロエア303」(BASFジャパン社製)
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
[Material used]
(1) Ordinary Portland cement (abbreviation: C)
Density: 3.16 g / cm 3 (manufactured by Taiheiyo Cement)
(2) Expansion material (abbreviation: E)
Lime-based expansion material (trade name "Pacific Hyper Expand K", registered trademark, manufactured by Pacific Materials Co., Ltd.)
(3) Paraffin (abbreviation: P)
A dispersion in which solid paraffin having a particle size of 0.2 to 1 μm is dispersed in water. However, the solid content concentration is 40% by mass.
(4) Nitrite (abbreviation: N)
It is an aqueous solution of calcium nitrite having a concentration of 40% by mass.
(5) Fine aggregate (abbreviation: S)
Crushed sand, surface dry density: 2.62 g / cm 3 (produced in Sakuragawa, Ibaraki Prefecture)
(6) Coarse aggregate (abbreviation: G)
Crushed stone 2005, surface dry density: 2.64 g / cm 3 (produced in Sakuragawa, Ibaraki Prefecture)
(7) water reducing agent (abbreviation: S P)
Product name "Master Polyheed 15L" (manufactured by BASF Japan Ltd.)
(8) Water (abbreviation: W)
Tap water (9) Air volume adjuster A (abbreviation: A A )
Product name "Micro Air 404" (manufactured by BASF Japan Ltd.)
(10) Air volume adjuster B (abbreviation: AB )
Product name "Micro Air 303" (manufactured by BASF Japan Ltd.)

1.コンクリートの作製
20℃、相対湿度が80%の恒温室内において、容量が0.055mのパン型ミキサを用いて、前記材料を表1に示す配合に従い混練してコンクリートを作製した。
具体的には、実施例1〜4では、普通ポルトランドセメント、細骨材、粗骨材、および膨張材をミキサに投入して、30秒間空練りした後、水、パラフィン分散液、亜硝酸カルシウム水溶液、減水剤、および空気量調整剤をミキサに投入して、90秒間混練してコンクリートを作製した。
また、比較例1〜4では、前記実施例のコンクリートの作製において、パラフィン分散液および亜硝酸カルシウム水溶液を添加しなかったこと以外は、前記実施例と同様にしてコンクリートを作製した。
また、参考例1、2では、膨張材、パラフィン分散液および亜硝酸カルシウム水溶液を添加しなかったこと以外は、前記実施例と同様にしてコンクリートを作製した。
1. 1. Preparation 20 ° C. of the concrete, in a constant temperature chamber at a relative humidity of 80%, capacity using a pan type mixer of 0.055 m 3, and the material to prepare a concrete kneading accordance formulations shown in Table 1.
Specifically, in Examples 1 to 4, ordinary Portland cement, fine aggregate, coarse aggregate, and expansion material were put into a mixer, kneaded for 30 seconds, and then water, a paraffin dispersion, and calcium nitrite were added. An aqueous solution, a water reducing agent, and an air amount adjusting agent were added to the mixer and kneaded for 90 seconds to prepare concrete.
Further, in Comparative Examples 1 to 4, concrete was prepared in the same manner as in the above-mentioned Example except that the paraffin dispersion liquid and the calcium nitrite aqueous solution were not added in the preparation of the concrete of the above-mentioned example.
Further, in Reference Examples 1 and 2, concrete was produced in the same manner as in the above Examples except that the expansion material, the paraffin dispersion, and the calcium nitrite aqueous solution were not added.

Figure 0006843666
Figure 0006843666

2.スランプ、スランプフロー、空気量、および圧縮強度の測定
コンクリートのスランプ、スランプフロー、並びに、空気量および材齢28日における圧縮強度は、それぞれ、JIS A 1101「コンクリートのスランプ試験方法」、JIS A 1150「コンクリートのスランプフロー試験方法」、およびJIS A 5308「レディーミクストコンクリート」に準拠して測定した。その結果を表1に示す。
2. Measurement of slump, slump flow, air volume, and compressive strength Concrete slump, slump flow, and compressive strength at air volume and age 28 days are JIS A 1101 “Concrete slump test method”, JIS A 1150, respectively. Measurements were made in accordance with "Concrete Slump Flow Test Method" and JIS A 5308 "Ready Mixed Concrete". The results are shown in Table 1.

3.凍結融解抵抗性の評価
(i)実施例1と3および比較例1と3
「JIS A 6202 附属書B(膨張コンクリートの拘束膨張及び収縮試験方法)A法」に準拠して供試体を作成し、JIS A 1148「コンクリートの凍結融解試験方法」に準拠して、相対動弾性係と質量減少率を測定し、コンクリートの凍結融解抵抗性を評価した。
(ii)実施例2と4、比較例2と4および参考例1と2
JIS A 1148「コンクリートの凍結融解試験方法」に準拠して、相対動弾性係と質量減少率を測定して、コンクリートの凍結融解抵抗性を評価した。
図1に凍結融解サイクル数と相対動弾性係数の関係を示し、図2に凍結融解サイクル数と質量減少率の関係を示す。
3. 3. Evaluation of freeze-thaw resistance (i) Examples 1 and 3 and Comparative Examples 1 and 3
Specimens were prepared in accordance with "JIS A 6202 Annex B (Concrete Expansion and Shrinkage Test Method for Expanded Concrete) A Method", and relative dynamic elasticity was prepared in accordance with JIS A 1148 "Freezing and Thawing Test Method for Concrete". The relationship and mass loss rate were measured, and the freeze-thaw resistance of concrete was evaluated.
(Ii) Examples 2 and 4, Comparative Examples 2 and 4 and Reference Examples 1 and 2
The freeze-thaw resistance of concrete was evaluated by measuring the relative dynamic elasticity and the mass reduction rate in accordance with JIS A 1148 “Concrete freeze-thaw test method”.
FIG. 1 shows the relationship between the number of freeze-thaw cycles and the relative dynamic elastic modulus, and FIG. 2 shows the relationship between the number of freeze-thaw cycles and the mass reduction rate.

4.評価の結果
図1、2に示すように相対動弾性係数の低下や質量減少率の増加は、比較例や参考例に比べ実施例はいずれも小さい。また、相対動弾性係数を300サイクルまで測定した際に、コンクリートの表面劣化(ひび割れや剥離等)の発生状況を観察したところ、すべての実施例において表面劣化は認められなかった。したがって、実施例のコンクリートの凍結融解抵抗性は高いことが分かる。
以上から、本発明のコンクリート用耐久性改善剤は、スランプ、空気量、および圧縮強度等のコンクリートの物性に悪影響を与えることはなく、膨張材を含んでいても、コンクリートの凍結融解抵抗性の低下を抑制することができる。

4. Evaluation Results As shown in FIGS. 1 and 2, the decrease in the relative dynamic elastic modulus and the increase in the mass reduction rate are smaller in all the examples than in the comparative example and the reference example. Further, when the relative dynamic elastic modulus was measured up to 300 cycles, the occurrence state of surface deterioration (cracking, peeling, etc.) of concrete was observed, and no surface deterioration was observed in all the examples. Therefore, it can be seen that the concrete of the examples has high freeze-thaw resistance.
From the above, the durability improving agent for concrete of the present invention does not adversely affect the physical properties of concrete such as slump, air volume, and compressive strength, and even if it contains an expansion material, it has resistance to freezing and thawing of concrete. The decrease can be suppressed.

Claims (3)

少なくとも、膨張材、パラフィン、および亜硝酸塩からなる、コンクリート用耐久性改善剤。 Durability improver for concrete, consisting of at least expansive material, paraffin, and nitrite. 前記膨張材は粉体であり、前記亜硝酸塩は水溶液であり、前記パラフィンは水に分散した固形パラフィンの分散液である、請求項1に記載のコンクリート用耐久性改善剤。 The durability improving agent for concrete according to claim 1, wherein the expanding material is a powder, the nitrite is an aqueous solution, and the paraffin is a dispersion liquid of solid paraffin dispersed in water. 請求項1または2に記載のコンクリート用耐久性改善剤を含む、コンクリート。 Concrete comprising the durability improving agent for concrete according to claim 1 or 2.
JP2017058698A 2017-03-24 2017-03-24 Durability improver for concrete, and concrete Active JP6843666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058698A JP6843666B2 (en) 2017-03-24 2017-03-24 Durability improver for concrete, and concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058698A JP6843666B2 (en) 2017-03-24 2017-03-24 Durability improver for concrete, and concrete

Publications (2)

Publication Number Publication Date
JP2018162171A JP2018162171A (en) 2018-10-18
JP6843666B2 true JP6843666B2 (en) 2021-03-17

Family

ID=63859636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058698A Active JP6843666B2 (en) 2017-03-24 2017-03-24 Durability improver for concrete, and concrete

Country Status (1)

Country Link
JP (1) JP6843666B2 (en)

Also Published As

Publication number Publication date
JP2018162171A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
Sezer et al. Usage of steel slag in concrete as fine and/or coarse aggregate
CA2985958C (en) Concrete composition with very low shrinkage
Jin et al. Engineering characteristics of concrete made of desert sand from Maowusu Sandy Land
JP6830826B2 (en) Self-smooth mortar
JP5748271B2 (en) Non-shrink AE concrete composition
JP5136829B2 (en) Hydraulic composition and cured product thereof
JP7022959B2 (en) Concrete composition and method for manufacturing concrete composition
KR20030036392A (en) Crack retardant mixture made from flyash and its application to concrete
JP6964415B2 (en) Freezing damage inhibitor for concrete, and concrete
JP6968637B2 (en) How to make concrete
JP6843666B2 (en) Durability improver for concrete, and concrete
Zaichenko et al. Effect of expansive agent and shrinkage reducing admixture in shrinkage-compensating concrete under hot-dry curing environment
JP6783118B2 (en) Cement composition and its manufacturing method
JP6320878B2 (en) Cement composition for low temperature environment
JP5332105B2 (en) Method for reducing drying shrinkage of concrete with high water absorption recycled aggregate
JP5955623B2 (en) concrete
JP6896578B2 (en) Hydraulic powder composition
JP6959000B2 (en) Cement composition
JP6983522B2 (en) Cement composition
JP6626363B2 (en) Non-shrink grout composition
RU2552565C1 (en) Complex additive
JP2022079921A (en) Admixture for concrete and expansive concrete
JP6378925B2 (en) Alkali-silica reaction inhibitor comprising a three-component mixed binder and concrete using the inhibitor
JPH02167847A (en) Production of improved powdery cement composition
JP2019123646A (en) Mortar composition and mortar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6843666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250