JP6581452B2 - Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound - Google Patents

Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound Download PDF

Info

Publication number
JP6581452B2
JP6581452B2 JP2015184053A JP2015184053A JP6581452B2 JP 6581452 B2 JP6581452 B2 JP 6581452B2 JP 2015184053 A JP2015184053 A JP 2015184053A JP 2015184053 A JP2015184053 A JP 2015184053A JP 6581452 B2 JP6581452 B2 JP 6581452B2
Authority
JP
Japan
Prior art keywords
lubricating oil
organic compound
oil composition
containing organic
pag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015184053A
Other languages
Japanese (ja)
Other versions
JP2017057302A (en
Inventor
健司 大原
健司 大原
小林 泉
泉 小林
清志 羽生田
清志 羽生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Lubricants Japan KK
Original Assignee
Shell Lubricants Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015184053A priority Critical patent/JP6581452B2/en
Application filed by Shell Lubricants Japan KK filed Critical Shell Lubricants Japan KK
Priority to RU2018113749A priority patent/RU2018113749A/en
Priority to PCT/EP2016/071887 priority patent/WO2017046276A1/en
Priority to US15/759,730 priority patent/US20180258362A1/en
Priority to EP16766019.0A priority patent/EP3350294A1/en
Priority to CN201680053609.2A priority patent/CN108026472A/en
Priority to BR112018005387A priority patent/BR112018005387A2/en
Publication of JP2017057302A publication Critical patent/JP2017057302A/en
Application granted granted Critical
Publication of JP6581452B2 publication Critical patent/JP6581452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2080/00Special pretreatment of the material to be lubricated, e.g. phosphatising or chromatising of a metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、ポリアルキレングリコール及び酸性の含酸素系有機化合物を用いた潤滑油組成物が存在する低摩擦摺動機構に関する。   The present invention relates to a low friction sliding mechanism in which a lubricating oil composition using a polyalkylene glycol and an acidic oxygen-containing organic compound is present.

機械の潤滑油には、従来よりもさらに高い耐摩耗性と省燃費性が要求されている。特に省燃費性が求められる自動車部品等の機械においては摺動部品にDLC膜を適用する取組が拡大している。そして摩擦低減効果の添加剤として、エステル、脂肪酸、アミン等の油性剤が使用されている(特許文献1)。   Machine lubricants are required to have higher wear resistance and fuel efficiency than ever before. In particular, in machines such as automobile parts that require fuel efficiency, efforts to apply DLC films to sliding parts are expanding. As additives for reducing friction, oily agents such as esters, fatty acids, and amines are used (Patent Document 1).

一方、DLC表面の摩擦による炭化(sp2増加)にともなう表面の軟質化が報告されている(非特許文献2、3)。このため、DLC膜存在下での摩擦低減効果をさらに高める省燃費性が求められる。摩擦係数が低ければ摩擦発熱が減少するので、報告されているDLC表面の摩擦による炭化(sp2増加)にともなう表面の軟質化が抑制され、DLCの耐摩耗性が向上する可能性、また、摩擦抵抗の低減は、DLC内部あるいはDLC部とその下部の部材間の応力が低減することにもなり、DLC被膜が剥離するという問題も低減し、DLCの潤滑システムが長期に維持されることとなる。   On the other hand, softening of the surface due to carbonization (sp2 increase) due to friction on the DLC surface has been reported (Non-Patent Documents 2 and 3). For this reason, the fuel-saving property which further raises the friction reduction effect in DLC film presence is calculated | required. If the friction coefficient is low, the frictional heat generation decreases, so the reported softening of the surface due to carbonization (sp2 increase) due to friction of the DLC surface is suppressed, and the wear resistance of the DLC may be improved. The reduction in resistance also reduces the stress inside the DLC or between the DLC part and its lower member, reduces the problem that the DLC film peels off, and maintains the DLC lubrication system for a long time. .

特開2005−68171号公報JP-A-2005-68171

「Friction induced phase transformation of pulsed laser deposited diamond−like carbon」A.A.Voevodin他、Diamond and Related Materials 5(1996)1264−1269“Friction induced phase transformation of pulsed laser deposited diamond-like carbon” A. Voevodin et al., Diamond and Related Materials 5 (1996) 1264-1269 「Effect of Thermal Annealing on Tribological and Corrosion Properties of DLC Coatings」Linlin Wang, X. Nie, and Xin Hu、Journal of Materials Engineering and Performance Volume 22(10) October 2013 3093−3100“Effect of Thermal Annealing on Tribological and Corrosion Properties of DLC Coatings”, Linlin Wang, X. et al. Nie, and Xin Hu, Journal of Materials Engineering and Performance Volume 22 (10) October 2013 3093-3100

本発明は、このような状況に鑑みて成されたものであり、その目的は更なる摩擦低減によるDLCの潤滑システムの長期的な維持である。   The present invention has been made in view of such circumstances, and its purpose is to maintain the DLC lubrication system for a long period of time by further reducing friction.

前記目的を達成するために鋭意研究を重ねた結果、ポリアルキレングリコール(PAG)を主成分とする高級アルコールを添加することにより、DLC膜と金属間に形成される無灰系摩擦調整剤由来の吸着物がより低摩擦化に有効な物質に変化することによって、PAGと無灰系摩擦調整剤、特に酸性の含酸素系有機化合物との相乗効果が得られることを見出し、本発明を完成させた。   As a result of earnest research to achieve the above object, it is derived from an ashless friction modifier formed between the DLC film and the metal by adding a higher alcohol mainly composed of polyalkylene glycol (PAG). It was found that by changing the adsorbate to a substance effective for lower friction, a synergistic effect of PAG and an ashless friction modifier, particularly an acidic oxygen-containing organic compound was obtained, and the present invention was completed. It was.

すなわち、本発明(1)は、
DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面に、潤滑油組成物が存在する低摩擦摺動機構であって、
前記DLCコーティング摺動部材(A)は、基材に水素含有量が10原子%以下のダイヤモンドライクカーボンを被覆して成り、
前記摺動部材(B)は、金属材料、非金属材料及びこれらの表面に薄膜を被覆したコーティング材料からなる群より選ばれた少なくとも1種の材料から成り、
前記潤滑油組成物は、基油(C)と、PAG(D)と、酸価が1mgKOH/gを超える酸性の含酸素系有機化合物(E)と、を含有することを特徴とする低摩擦摺動機構である。
本発明(2)は、
前記水素含有量が0.5原子%以下であることを特徴とする、発明1に記載の低摩擦摺動機構である。
本発明(3)は、
DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面に、潤滑油組成物が存在する低摩擦摺動機構であって、
前記DLCコーティング摺動部材(A)は、基材に水素を含まないa−C系のダイヤモンドライクカーボンを被覆して成り、
前記摺動部材(B)は、金属材料、非金属材料及びこれらの表面に薄膜を被覆したコーティング材料からなる群より選ばれた少なくとも1種の材料から成り、
前記潤滑油組成物は、基油(C)と、PAG(D)と、酸価が1mgKOH/gを超える酸性の含酸素系有機化合物(E)と、を含有することを特徴とする低摩擦摺動機構である。
本発明(4)は、
前記摺動部材(B)において、前記金属材料が、鉄系材料、アルミニウム合金材料及び
マグネシウム合金系材料からなる群より選ばれた少なくとも1種の材料であり、
前記コーティング材料が、DLC、セラミックからなる群より選ばれた少なくとも1種の材料の薄膜を被覆して成ることを特徴とする、発明1〜3のいずれかに記載の低摩擦摺動機構である。
本発明(5)は、
前記PAG(D)が、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールからなる群より選ばれた少なくとも1種のものであって、
前記PAG(D)の重量平均分子量が200〜10,000であることを特徴とする、発明1〜4のいずれかに記載の低摩擦摺動機構である。
本発明(6)は、
前記PAG(D)が、潤滑油組成物全量基準で0.1〜20.0%含有されることを特徴とする、発明1〜5のいずれかに記載の低摩擦摺動機構である。
本発明(7)は、
前記酸性の含酸素系有機化合物(E)が、炭素数8〜1,000の含酸素系有機化合物であることを特徴とする、発明1〜6のいずれかに記載の低摩擦摺動機構である。
本発明(8)は、
前記酸性の含酸素系有機化合物(E)の酸価が1.2mgKOH/g以上であることを特徴とする、発明1〜7のいずれかに記載の低摩擦摺動機構である。
本発明(9)は、
前記潤滑油組成物が、酸性の含酸素系有機化合物(E)を、潤滑油組成物全量基準で0.05〜5.0%含有し、
前記酸性の含酸素系有機化合物(E)が、アルコール類、エステル類、エーテル類、ケトン類、アルデヒド類、カーボネート類及びこれらの誘導体からなる群より選ばれた少なくとも1種のものを含有することを特徴とする、発明1〜7のいずれかに記載の低摩擦摺動機構である。
本発明(10)は、
発明1〜9のいずれか1つの項に記載の低摩擦摺動機構を用いたことを特徴とする潤滑システムである。
That is, the present invention (1)
A low friction sliding mechanism in which a lubricating oil composition is present on the sliding surface formed by the DLC-coated sliding member (A) and the sliding member (B),
The DLC coating sliding member (A) is formed by coating a base material with diamond-like carbon having a hydrogen content of 10 atomic% or less,
The sliding member (B) is composed of at least one material selected from the group consisting of a metallic material, a non-metallic material, and a coating material in which a thin film is coated on the surface thereof,
The lubricating oil composition contains a base oil (C), a PAG (D), and an acidic oxygen-containing organic compound (E) having an acid value of more than 1 mgKOH / g. It is a sliding mechanism.
The present invention (2)
2. The low friction sliding mechanism according to invention 1, wherein the hydrogen content is 0.5 atomic% or less.
The present invention (3)
A low friction sliding mechanism in which a lubricating oil composition is present on the sliding surface formed by the DLC-coated sliding member (A) and the sliding member (B),
The DLC-coated sliding member (A) is formed by coating a base material with aC-based diamond-like carbon not containing hydrogen,
The sliding member (B) is composed of at least one material selected from the group consisting of a metallic material, a non-metallic material, and a coating material in which a thin film is coated on the surface thereof,
The lubricating oil composition contains a base oil (C), a PAG (D), and an acidic oxygen-containing organic compound (E) having an acid value of more than 1 mgKOH / g. It is a sliding mechanism.
The present invention (4)
In the sliding member (B), the metal material is at least one material selected from the group consisting of iron-based materials, aluminum alloy materials, and magnesium alloy-based materials,
The low-friction sliding mechanism according to any one of inventions 1 to 3, wherein the coating material is formed by coating a thin film of at least one material selected from the group consisting of DLC and ceramic. .
The present invention (5)
The PAG (D) is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, polybutylene glycol,
5. The low friction sliding mechanism according to any one of inventions 1 to 4, wherein the PAG (D) has a weight average molecular weight of 200 to 10,000.
The present invention (6)
The low friction sliding mechanism according to any one of inventions 1 to 5, wherein the PAG (D) is contained in an amount of 0.1 to 20.0% based on the total amount of the lubricating oil composition.
The present invention (7)
The low-friction sliding mechanism according to any one of inventions 1 to 6, wherein the acidic oxygen-containing organic compound (E) is an oxygen-containing organic compound having 8 to 1,000 carbon atoms. is there.
The present invention (8)
The low friction sliding mechanism according to any one of inventions 1 to 7, wherein the acid value of the acidic oxygen-containing organic compound (E) is 1.2 mgKOH / g or more.
The present invention (9)
The lubricating oil composition contains 0.05 to 5.0% of an acidic oxygen-containing organic compound (E) based on the total amount of the lubricating oil composition,
The acidic oxygen-containing organic compound (E) contains at least one selected from the group consisting of alcohols, esters, ethers, ketones, aldehydes, carbonates and derivatives thereof. The low-friction sliding mechanism according to any one of inventions 1 to 7,
The present invention (10)
A lubrication system using the low friction sliding mechanism according to any one of inventions 1 to 9.

本発明は、PAGを基油に添加した系において酸性の含酸素系有機化合物を加えることによってDLCの摩擦低減機能をより高めることができる。   In the present invention, the friction reducing function of DLC can be further enhanced by adding an acidic oxygen-containing organic compound in a system in which PAG is added to the base oil.

本形態に係る低摩擦摺動機構は、DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面に、潤滑油組成物が存在する低摩擦摺動機構である。以下、本形態に係る低摩擦摺動機構に関して詳細に説明するが、本発明はこれらに何ら限定されない。   The low-friction sliding mechanism according to this embodiment is a low-friction sliding mechanism in which a lubricating oil composition is present on the sliding surface formed by the DLC-coated sliding member (A) and the sliding member (B). Hereinafter, although the low friction sliding mechanism according to the present embodiment will be described in detail, the present invention is not limited to these.

≪本発明の構成≫
<DLCコーティング摺動部材(A)>
DLCコーティング摺動部材(A)とは、基材にDLC(ダイヤモンドライクカーボン)をコーティングした摺動部材である。
<< Configuration of the Present Invention >>
<DLC coating sliding member (A)>
The DLC-coated sliding member (A) is a sliding member obtained by coating a base material with DLC (diamond-like carbon).

(基材)
DLCコーティング摺動部材(A)に用いられる基材としては、特に限定されないが、例えば浸炭鋼、焼入鋼、アルミニウム等の非鉄金属などを好適に使用できる。
(Base material)
Although it does not specifically limit as a base material used for a DLC coating sliding member (A), For example, non-ferrous metals, such as carburized steel, hardened steel, aluminum, etc. can be used conveniently.

(DLC)
DLCコーティング摺動部材(A)に用いられるDLCは、炭素元素を主として構成された非晶質であり、炭素同士の結合形態がダイヤモンド構造(SP3結合)とグラファイト結合(SP2結合)の両方から成る。具体的には、炭素元素だけから成るa−C(アモルファスカーボン)、水素を含有するa−C:H(水素アモルファスカーボン)、及びチタン(Ti)やモリブデン(Mo)等の金属元素を一部に含むMeCが挙げられる。
(DLC)
The DLC used for the DLC coating sliding member (A) is amorphous mainly composed of carbon element, and the bonding form between carbons consists of both a diamond structure (SP3 bond) and a graphite bond (SP2 bond). . Specifically, aC (amorphous carbon) consisting only of carbon elements, aC: H (hydrogen amorphous carbon) containing hydrogen, and some metal elements such as titanium (Ti) and molybdenum (Mo). MeC included in

低摩擦摺動機構では、DLCは大幅な摩擦低減効果の発揮の面から、水素を含まないa−C系材料から成ることが好ましい。また、DLCは、水素含有量が増加すると摩擦係数が増すことから、水素含有量が10原子%以下であることが好ましい。更に、潤滑油組成物中での摺動時の摩擦係数を十分に低下させ、さらに安定した摺動特性を確保するためには、5原子%以下であることがより好ましく、0.5原子%以下であることがさらに好ましい。   In the low friction sliding mechanism, the DLC is preferably made of an aC-based material that does not contain hydrogen from the standpoint of exerting a significant friction reducing effect. Further, DLC preferably has a hydrogen content of 10 atomic% or less because the coefficient of friction increases as the hydrogen content increases. Furthermore, in order to sufficiently reduce the friction coefficient at the time of sliding in the lubricating oil composition and to secure more stable sliding characteristics, it is more preferably 5 atomic% or less, and 0.5 atomic%. More preferably, it is as follows.

このような水素含有量の低いDLC材は、例えばスパッタリング法やイオンプレーティング法など、水素や水素含有化合物を実質的に使用しないPVD法によって成膜することによって得られる。この場合、成膜時に水素を含まないガスを用いるだけでなく、反応容器や基材保持具のベーキングや、基材表面のクリーニングを十分に行ったうえで成膜することが被膜中の水素量を減らすために望ましい。   Such a DLC material having a low hydrogen content can be obtained by forming a film by a PVD method that substantially does not use hydrogen or a hydrogen-containing compound, such as a sputtering method or an ion plating method. In this case, the amount of hydrogen in the coating is not only to use a gas that does not contain hydrogen during film formation, but also to perform film formation after sufficiently baking the reaction vessel and base material holder and cleaning the surface of the base material. Desirable to reduce.

<摺動部材(B)>
摺動部材(B)の構成材料としては、特に制限はなく、例えば、鉄系材料、アルミニウム系材料、マグネシウム系材料、チタン系材料等の金属材料、樹脂、プラスティック及びカーボン等の非金属材料、これら金属材料や非金属材料に各種の薄膜コーティングを施した材料等が挙げられる。特に、鉄系材料、アルミニウム系材料及びマグネシウム系材料は、既存の機械・装置等の摺動部に適用しやすいために好ましい。
<Sliding member (B)>
The constituent material of the sliding member (B) is not particularly limited, and examples thereof include metal materials such as iron-based materials, aluminum-based materials, magnesium-based materials, and titanium-based materials, non-metallic materials such as resins, plastics, and carbon, Examples include materials obtained by applying various thin film coatings to these metal materials and non-metal materials. In particular, iron-based materials, aluminum-based materials, and magnesium-based materials are preferable because they can be easily applied to sliding parts of existing machines and devices.

<摺動面>
DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面とは、2つの摺動部材の表面が接触する摺動面である。
<Sliding surface>
The sliding surface formed by the DLC coating sliding member (A) and the sliding member (B) is a sliding surface where the surfaces of the two sliding members are in contact.

<潤滑油組成物>
潤滑油組成物は、基油(C)と、PAG(D)と、酸性の含酸素系有機化合物(E)と、を含有することを特徴とする。ポリアルキレングリコール(PAG)を主成分とする高級アルコールを添加することにより、DLC膜と金属間に形成される無灰系摩擦調整剤由来の吸着物がより低摩擦化に有効な物質に変化することによって、PAGと無灰系摩擦調整剤、特に酸性の含酸素系有機化合物との相乗効果が得られる。
<Lubricating oil composition>
The lubricating oil composition contains a base oil (C), PAG (D), and an acidic oxygen-containing organic compound (E). By adding a higher alcohol mainly composed of polyalkylene glycol (PAG), the adsorbate derived from the ashless friction modifier formed between the DLC film and the metal is changed to a substance effective for lower friction. Thus, a synergistic effect between the PAG and the ashless friction modifier, particularly an acidic oxygen-containing organic compound can be obtained.

(基油(C))
基油(C)は、特に限定されない。例えば、通常の潤滑油およびグリース組成物に使用される鉱油、合成油、動植物油、これらの混合油を適宜使用することができる。具体例としては、API(アメリカ石油協会、American Petroleum Institute)の基油カテゴリーでグループ1〜5のものを挙げることができる。ここで、APIの基油カテゴリーとは、潤滑油基油の指針を作成するためにアメリカ石油協会によって定義された基油材料の広範な分類である。酸化安定性に優れることから、グループ3に属する基油が好ましい。
(Base oil (C))
The base oil (C) is not particularly limited. For example, mineral oils, synthetic oils, animal and vegetable oils, and mixed oils thereof used in ordinary lubricating oils and grease compositions can be used as appropriate. Specific examples include those in groups 1 to 5 in the base oil category of API (American Petroleum Institute). Here, the API base oil category is a broad class of base oil materials defined by the American Petroleum Institute to create lubricant base oil guidelines. Base oils belonging to Group 3 are preferred because of their excellent oxidation stability.

基油の動粘度は、特に制限されないが、摩耗防止と省燃費性能を考慮した実用性から、100℃における動粘度が2〜32mm/sであることが好ましく、3〜8mm/sであることがより好ましい。 The kinematic viscosity of the base oil is not particularly limited, a practical considering antiwear and fuel saving performance, preferably a kinematic viscosity at 100 ° C. is 2~32mm 2 / s, at a 3 to 8 mm 2 / s More preferably.

基油の粘度指数は、特に制限されないが、摩耗防止と省燃費性能を考慮した実用性から、10〜200であることが好ましく、100〜200であることがより好ましい。   The viscosity index of the base oil is not particularly limited, but is preferably 10 to 200, and more preferably 100 to 200, from the practicality considering wear prevention and fuel saving performance.

(PAG(D))
ポリアルキレングリコール(PAG)とはアルキレングリコールが複数重合した化合物であり、一般式HO−(CnHmO)s−H、あるいは、HO−(CnHmO)s−OHで表されるが特に限定されない。油溶性が低い材料であることから、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールからなる群より選ばれた少なくとも1種のものであることが好ましく、重量平均分子量が200〜10,000であることが好ましい。重量平均分子量が200〜6,000であることがより好ましく、200〜4,000であることがさらに好ましい。なお、重量平均分子量が200以下では、オイルへの溶解性が向上するが、蒸発性が悪化し、一方では10,000を越えるとオイルへの溶解性が悪くなる。
(PAG (D))
Polyalkylene glycol (PAG) is a compound in which a plurality of alkylene glycols are polymerized, and is represented by the general formula HO— (CnHmO) s—H or HO— (CnHmO) s—OH, but is not particularly limited. Since it is a material with low oil solubility, it is preferably at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, and polybutylene glycol, and the weight average molecular weight is preferably 200 to 10,000. preferable. The weight average molecular weight is more preferably 200 to 6,000, and further preferably 200 to 4,000. When the weight average molecular weight is 200 or less, the solubility in oil is improved, but the evaporation property is deteriorated. On the other hand, when it exceeds 10,000, the solubility in oil is deteriorated.

PAGは、油溶性が低い材料であることから、潤滑油組成物全量基準で0.1〜20.0%含有されることが好ましく、0.1〜10.0%含有されることがより好ましく、0.1〜5.0%含有されることがさらに好ましい。   Since PAG is a material having low oil solubility, it is preferably contained in an amount of 0.1 to 20.0%, more preferably 0.1 to 10.0% based on the total amount of the lubricating oil composition. More preferably, the content is 0.1 to 5.0%.

(酸性の含酸素系有機化合物(E))
酸性の含酸素系有機化合物(E)とは、炭化水素直鎖を有する酸価が1mgKOH/gを超える酸性化合物であり、特に限定されない。酸価が1mgKOH/gを超えるところに閾値が存在すると考えられ、酸価は、1.0mgKOH/gより大きいものであることが好ましく、1.1mgKOH/g以上であることがより好ましく、1.2mgKOH/g以上であることがさらに好ましい。酸価は、JIS K 0070に準拠した方法で測定することができる。
(Acid oxygen-containing organic compound (E))
The acidic oxygen-containing organic compound (E) is an acidic compound having a hydrocarbon straight chain with an acid value exceeding 1 mgKOH / g, and is not particularly limited. A threshold value is considered to exist where the acid value exceeds 1 mgKOH / g, and the acid value is preferably greater than 1.0 mgKOH / g, more preferably 1.1 mgKOH / g or more. More preferably, it is 2 mgKOH / g or more. The acid value can be measured by a method based on JIS K 0070.

また、油溶性が低い材料であることから、炭素数が8以上であることが好ましく、表1に示すようにPAG(D)との相乗効果により低摩擦係数を得るためには8〜1000であることがより好ましく、8〜18であることがさらに好ましい。なお、炭素数が8以下では、油性が悪いため所定の摩擦低減効果が得られず、1,000を越えるとオイルへの溶解性が低下したり、熱酸化安定性が低下するので好ましくない。さらに、酸性の含酸素系有機化合物(E)が、エステル、カプリル酸、ラウリン酸、ステアリン酸、オレイン酸からなる群より選ばれた少なくとも1種のものであることが好ましい。   Moreover, since it is a material with low oil solubility, it is preferable that carbon number is 8 or more, and in order to obtain a low friction coefficient by a synergistic effect with PAG (D) as shown in Table 1, it is 8-1000. More preferably, it is more preferably 8-18. If the number of carbon atoms is 8 or less, the predetermined friction reduction effect cannot be obtained because of poor oiliness, and if it exceeds 1,000, the solubility in oil decreases and the thermal oxidation stability decreases, which is not preferable. Furthermore, the acidic oxygen-containing organic compound (E) is preferably at least one selected from the group consisting of esters, caprylic acid, lauric acid, stearic acid, and oleic acid.

本発明に係る潤滑油組成物は、酸性の含酸素系有機化合物(E)が、摩擦係数低減効果を十分得るために、潤滑油組成物全量基準で0.1%以上であることが好ましく、0.3%以上であることがより好ましい。また、上限は特に定めないが油溶性が低い材料であることから、5.0%以下であることが好ましい。   In the lubricating oil composition according to the present invention, the acidic oxygen-containing organic compound (E) is preferably 0.1% or more based on the total amount of the lubricating oil composition in order to obtain a sufficient friction coefficient reducing effect, More preferably, it is 0.3% or more. Moreover, although there is no particular upper limit, it is preferably 5.0% or less because it is a material with low oil solubility.

(他の成分)
潤滑油組成物には、他に、無灰分散剤、摩耗防止剤、極圧剤、金属系清浄剤、酸化防止剤、粘度指数向上剤、摩擦調整剤、防錆剤、非イオン系界面活性剤、抗乳化剤、金属不活性化剤、及び消泡剤等の各種添加剤を単独で又は複数種を組合せて配合してもよい。
(Other ingredients)
Other lubricant compositions include ashless dispersants, antiwear agents, extreme pressure agents, metal detergents, antioxidants, viscosity index improvers, friction modifiers, rust inhibitors, nonionic surfactants. Various additives such as a demulsifier, a metal deactivator, and an antifoaming agent may be used alone or in combination.

≪本発明の効果≫
本発明は、PAGを基油に添加した系において酸価が1mgKOH/gを超える酸性の含酸素系有機化合物を加えることによってDLCの摩擦低減機能をより高めることができる。
<< Effect of the present invention >>
The present invention can further enhance the friction reducing function of DLC by adding an acidic oxygen-containing organic compound having an acid value exceeding 1 mgKOH / g in a system in which PAG is added to the base oil.

摩擦低減機能は、摩擦試験を行うことによって確認することができる。Cylinder on diskのSRV摩擦試験機(ASTM D6425)を用い、摩擦係数を測定する。条件は、温度:80℃、周波数:50Hz、荷重:100Nである。   The friction reducing function can be confirmed by performing a friction test. The coefficient of friction is measured using a Cylinder on disk SRV friction tester (ASTM D6425). The conditions are: temperature: 80 ° C., frequency: 50 Hz, load: 100N.

本発明に係る低摩擦摺動機構を用いて潤滑システムとすることができる。具体的には、例えば、内燃機関、動力伝達部、各種機械における摺動部等に用いることができる。   The low friction sliding mechanism according to the present invention can be used as a lubrication system. Specifically, it can be used for, for example, an internal combustion engine, a power transmission unit, a sliding unit in various machines, and the like.

次に、本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these examples.

≪原料≫
実施例1〜7、比較例1〜8で用いた原料は以下である。
<基油>
フィッシャートロプッシュ法により合成されたGTL(ガストゥリキッド)で、グループ3に属するものであり、100℃動粘度が7.58mm/s、粘度指数が141のものである。
≪Raw material≫
The raw materials used in Examples 1 to 7 and Comparative Examples 1 to 8 are as follows.
<Base oil>
GTL (Gas Liquid) synthesized by the Fischer-Tropsch method, belonging to Group 3, having a 100 ° C. kinematic viscosity of 7.58 mm 2 / s and a viscosity index of 141.

<添加剤>
(PAG)
一般式HO−(CnHmO)s−Hで表されるポリアルキレングリコールを用いた。100℃動粘度が2.1mm/s、粘度指数が49、重量平均分子量が200のものである。モノマーとしてエチレンとプロピレンのケミカルミックスで構成される。
(酸性の含酸素系有機化合物)
・カプリル酸
組成(%)は、C6が0.5、C8が99、C10が0.5である。
・ラウリン酸
組成(%)は、C10が0.5、C12が99、C14が0.5である。
・ステアリン酸
組成(%)は、C14が3、C16が50、C18が47である。
・オレイン酸
組成は、C18H34O2である。
・高分子型含酸素系有機化合物
Perfad 3006 (CRODA)を用いた。高分子型摩擦調整剤の含酸素系有機化合物で、平均分子量が10,000となる化合物を用いた。
(グリセリンモノオレート)
下記化学式1で示される。

Figure 0006581452
R:一価の不飽和のC18のアルキル基
(グリセリンモノイソステアレート)
下記化学式2で示される。
Figure 0006581452
R:分岐鎖を持つC18のアルキル基 <Additives>
(PAG)
A polyalkylene glycol represented by the general formula HO— (CnHmO) s—H was used. It has a 100 ° C. kinematic viscosity of 2.1 mm 2 / s, a viscosity index of 49, and a weight average molecular weight of 200. Consists of a chemical mix of ethylene and propylene as monomers.
(Acid oxygen-containing organic compounds)
-Caprylic acid The composition (%) is 0.5 for C6, 99 for C8, and 0.5 for C10.
-Lauric acid The composition (%) is 0.5 for C10, 99 for C12, and 0.5 for C14.
-Stearic acid The composition (%) is C14 is 3, C16 is 50, and C18 is 47.
-Oleic acid The composition is C18H34O2.
-Polymer type oxygen-containing organic compound Perfad 3006 (CRODA) was used. A compound having an average molecular weight of 10,000, which is an oxygen-containing organic compound as a polymer friction modifier, was used.
(Glycerol monooleate)
It is represented by the following chemical formula 1.
Figure 0006581452
R: monovalent unsaturated C18 alkyl group (glycerin monoisostearate)
It is represented by the following chemical formula 2.
Figure 0006581452
R: C18 alkyl group having a branched chain

≪製造方法≫
(実施例1)
基油、PAG、高分子型含酸素系有機化合物の合計量が100%になるように表1記載の割合にて配合・調整し、潤滑油組成物を得た。
(実施例2、3)
基油、PAG、酸性の含酸素系有機化合物としてカプリル酸の合計量が100%になるように表1記載の割合にて配合・調整し、潤滑油組成物を得た。カプリル酸には酸価が425mgKOH/gのものを用いた。
(実施例4)
酸性の含酸素系有機化合物としてラウリン酸を用いて、表1記載の割合にて、実施例1と同様に配合・調整し、潤滑油組成物を得た。ラウリル酸には酸価が280mgKOH/gのものを用いた。
(実施例5)
酸性の含酸素系有機化合物としてステアリン酸を用いて、表1記載の割合にて、実施例1と同様に配合・調整し、潤滑油組成物を得た。ステアリン酸には酸価が200mgKOH/gのものを用いた。
(実施例6、7)
酸性の含酸素系有機化合物としてオレイン酸を用いて、表1記載の割合にて、実施例1と同様に配合・調整し、潤滑油組成物を得た。オレイン酸には酸価が200mgKOH/gのものを用いた。
≪Manufacturing method≫
Example 1
A lubricating oil composition was obtained by blending and adjusting the base oil, PAG, and polymer-type oxygen-containing organic compound at a ratio shown in Table 1 so that the total amount was 100%.
(Examples 2 and 3)
A lubricating oil composition was obtained by blending and adjusting the base oil, PAG, and acidic oxygen-containing organic compound at a ratio shown in Table 1 so that the total amount of caprylic acid was 100%. Caprylic acid having an acid value of 425 mg KOH / g was used.
Example 4
Using lauric acid as the acidic oxygen-containing organic compound, blending and adjusting were carried out in the same manner as in Example 1 in the proportions shown in Table 1 to obtain a lubricating oil composition. Lauric acid having an acid value of 280 mgKOH / g was used.
(Example 5)
Using a stearic acid as an acidic oxygen-containing organic compound, the composition shown in Table 1 was blended and adjusted in the same manner as in Example 1 to obtain a lubricating oil composition. A stearic acid having an acid value of 200 mgKOH / g was used.
(Examples 6 and 7)
Using oleic acid as the acidic oxygen-containing organic compound, the composition shown in Table 1 was formulated and adjusted in the same manner as in Example 1 to obtain a lubricating oil composition. Oleic acid having an acid value of 200 mgKOH / g was used.

(比較例1、2)
基油、PAG、及び、グリセリンモノオレート、グリセリンモノイソステアレートの合計量が100%になるように表2記載の割合にて配合・調整し、潤滑油組成物を得た。グリセリンモノオレートおよびグリセリンモノイソステアレートには酸価が1mgKOH/gのものを用いた。
(比較例3)
基油、及び、高分子型含酸素系有機化合物の合計量が100%になるように表2記載の割合にて配合・調整し、潤滑油組成物を得た。高分子型含酸素系有機化合物には酸価が1.2mgKOH/gのものを用いた。
(比較例4、7)
基油、オレイン酸の合計量が100%になるように表2記載の割合にて配合・調整し、潤滑油組成物を得た。オレイン酸には酸価が200mgKOH/gのものを用いた。
(比較例5、6)
基油、PAG、グリセリンモノオレート、グリセリンステアレートの合計量が100%になるように表2記載の割合にて配合・調整し、潤滑油組成物を得た。グリセリンモノオレートおよびグリセリンモノイソステアレートには酸価が1mgKOH/gのものを用いた。
(比較例8)
基油、PAGの合計量が100g%になるように表2記載の割合にて配合・調整し、潤滑油組成物を得た。
(Comparative Examples 1 and 2)
A lubricating oil composition was obtained by blending and adjusting the base oil, PAG, glycerol monooleate, and glycerol monoisostearate at a ratio shown in Table 2 so that the total amount was 100%. Glycerol monooleate and glycerol monoisostearate having an acid value of 1 mgKOH / g were used.
(Comparative Example 3)
A lubricating oil composition was obtained by blending and adjusting the base oil and the polymer-type oxygen-containing organic compound at a ratio shown in Table 2 so that the total amount was 100%. A high molecular oxygen-containing organic compound having an acid value of 1.2 mgKOH / g was used.
(Comparative Examples 4 and 7)
A lubricating oil composition was obtained by blending and adjusting the base oil and oleic acid at a ratio shown in Table 2 so that the total amount of the base oil and oleic acid was 100%. Oleic acid having an acid value of 200 mgKOH / g was used.
(Comparative Examples 5 and 6)
A lubricating oil composition was obtained by blending and adjusting the base oil, PAG, glycerin monooleate and glyceryl stearate at a ratio shown in Table 2 so that the total amount was 100%. Glycerol monooleate and glycerol monoisostearate having an acid value of 1 mgKOH / g were used.
(Comparative Example 8)
A lubricating oil composition was obtained by blending and adjusting the base oil and the PAG at a ratio shown in Table 2 so that the total amount of the base oil and PAG was 100 g%.

≪試験≫
水素含有量が0.5原子%以下のダイヤモンドライクカーボンを被覆して成るDLCコーティング摺動部材と、SUJ2材料から成る摺動部材とがなす摺動面に、実施例1〜7、比較例1〜8の各潤滑油組成物が存在する低摩擦摺動機構を作製し、摩擦試験を行った。Cylinder on diskのSRV摩擦試験機(ASTM D6425)を用い、摩擦係数を測定した。条件は、温度:80℃、周波数:50Hz、荷重:100Nである。結果を表1、2に示す。
≪Test≫
Examples 1 to 7 and Comparative Example 1 were formed on the sliding surface formed by the DLC-coated sliding member coated with diamond-like carbon having a hydrogen content of 0.5 atomic% or less and the sliding member made of SUJ2 material. A low friction sliding mechanism in which each of the lubricating oil compositions of ˜8 was present was prepared and subjected to a friction test. The coefficient of friction was measured using a Cylinder on disk SRV friction tester (ASTM D6425). The conditions are: temperature: 80 ° C., frequency: 50 Hz, load: 100N. The results are shown in Tables 1 and 2.

また、DLCを被覆しないSUJ2の摺動部材と、SUJ2材料から成る摺動部材とがなす摺動面に、比較例7の各潤滑油組成物が存在する低摩擦摺動機構を作製し、同様の摩擦試験を行った。結果を表2に示す。   Further, a low friction sliding mechanism in which each lubricating oil composition of Comparative Example 7 exists on the sliding surface formed by the sliding member made of SUJ2 that does not cover DLC and the sliding member made of the SUJ2 material was similarly manufactured. A friction test was conducted. The results are shown in Table 2.

DLC内部に含まれる不対炭素原子が形成するダングリングボンドには摩擦摺動機構内に含まれる極性の高い物質を吸着する効果が高い。特にダングリングボンドは正に帯電しているため、電気陰性度の高い物質を吸着させやすい。従来酸素分子を化合物内に含む有機物は電気陰性度の高いため、DLC上の摩擦においては摩擦係数を低減させやすいと考えられてきた。これらは比較例1〜4に示すように単に分子内に酸素を含む材料において摩擦係数0.06程度を発現する。   A dangling bond formed by unpaired carbon atoms contained in the DLC has a high effect of adsorbing a highly polar substance contained in the frictional sliding mechanism. In particular, since dangling bonds are positively charged, substances having high electronegativity are easily adsorbed. Conventionally, organic substances containing oxygen molecules in a compound have a high electronegativity, and thus it has been considered that the friction coefficient is easily reduced in friction on DLC. As shown in Comparative Examples 1 to 4, these merely express a friction coefficient of about 0.06 in a material containing oxygen in the molecule.

この摩擦係数0.06程度の水準に対し、実施例で示すようにPAGを酸性の含酸素系有機化合物と組み合わせて使用することで更に低い摩擦係数0.01〜0.05を発現するという相乗効果を得ることが分かる。この理由は、PAGは極性が高いため、油溶性に限界があり圧力が高い接触下では潤滑油組成物内から析出しやすい。特にPAGは摩擦により活性が高くなった表面に析出しやすい。PAGは同様に極性が高いため、電気陰性度の高い酸性の含酸素系有機化合物を溶解させやすく、摩擦表面上にはPAGに溶解した酸性の含酸素系有機化合物の濃度が通常の潤滑剤内に比べ高くなる。この効果によりPAGを使用すると、使用しない場合の比較例1〜4に比べ酸性の含酸素系有機化合物の持つ低摩擦効果をさらに高めることができる。   In contrast to this level of friction coefficient of about 0.06, as shown in the examples, PAG is used in combination with an acidic oxygen-containing organic compound to produce a lower friction coefficient of 0.01 to 0.05. It turns out that an effect is acquired. This is because PAG has a high polarity and therefore has a limit in oil solubility and is likely to precipitate from within the lubricating oil composition under high pressure contact. In particular, PAG is likely to be deposited on a surface whose activity is increased by friction. Since PAG is also highly polar, it is easy to dissolve acidic oxygen-containing organic compounds with high electronegativity, and the concentration of acidic oxygen-containing organic compounds dissolved in PAG on the friction surface is within a normal lubricant. Higher than When PAG is used due to this effect, the low friction effect of the acidic oxygen-containing organic compound can be further enhanced as compared with Comparative Examples 1 to 4 when not used.

しかしながら、この相乗効果は比較例5、6に示す通りJIS K 2501による酸価が1以下では発現しない。酸性の含酸素系有機化合物の酸価は1mgKOH/gより大でなければならない。この理由は、DLC上では上記のように、酸性の含酸素系有機化合物が電気陰性度の高いDLC表面に吸着しやすく低摩擦効果が高いが、PAG自体には比較例8に示すようにDLC上での著しい低摩擦効果は発現せず、PAGよりもDLCに対する吸着力が劣る化合物は競争吸着により表面から排除されるため低摩擦を発現できない。酸性の含酸素系有機化合物は酸価が高い程、電気陰性度が高くなる傾向があり、その閾値として実施例1〜7に示すように酸価が1より大でなければならない。   However, this synergistic effect does not appear when the acid value according to JIS K 2501 is 1 or less as shown in Comparative Examples 5 and 6. The acid value of the acidic oxygenated organic compound must be greater than 1 mg KOH / g. The reason for this is that, as described above, the acidic oxygen-containing organic compound is easily adsorbed on the DLC surface having a high electronegativity on the DLC, and the low friction effect is high, but the PAG itself has a DLC as shown in Comparative Example 8. The remarkably low friction effect on the above is not expressed, and a compound having a lower adsorbing power to DLC than PAG is excluded from the surface by competitive adsorption, so that low friction cannot be expressed. As the acid value of an acidic oxygen-containing organic compound increases, the electronegativity tends to increase, and the acid value must be larger than 1 as shown in Examples 1 to 7 as a threshold value.

表1、2より、潤滑油組成物は、PAGを基油に添加した系において酸価としては(JIS K 2501)により酸価を評価した各酸性の含酸素系有機化合物のうち酸価が1mgKOH/gより大となる酸性の含酸素系有機化合物を加えることによってDLCの摩擦低減機能をより高めることができることがわかる。本特許は、従来の無灰系摩擦調整剤の効果を、PAGと酸性の含酸素系有機化合物を組み合わせることで著しく上回る配合技術である。   From Tables 1 and 2, the lubricating oil composition has an acid value of 1 mgKOH among the acidic oxygen-containing organic compounds whose acid value was evaluated according to (JIS K 2501) as the acid value in the system in which PAG was added to the base oil. It can be seen that the friction reducing function of DLC can be further enhanced by adding an acidic oxygen-containing organic compound that is greater than / g. This patent is a blending technique that significantly exceeds the effects of conventional ashless friction modifiers by combining PAG and acidic oxygenated organic compounds.

Figure 0006581452
Figure 0006581452

Figure 0006581452
Figure 0006581452

Claims (9)

DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面に、潤滑油組成物が存在する低摩擦摺動機構であって、
前記DLCコーティング摺動部材(A)は、基材に水素含有量が10原子%以下のダイヤモンドライクカーボンを被覆して成り、
前記摺動部材(B)は、金属材料、非金属材料及びこれらの表面に薄膜を被覆したコーティング材料からなる群より選ばれた少なくとも1種の材料から成り、
前記潤滑油組成物は、基油(C)と、PAG(D)と、酸価が1mgKOH/gを超える酸性の含酸素系有機化合物(E)と、を含有し、
前記潤滑油組成物が、前記含酸素系有機化合物(E)を、潤滑油組成物全量基準で0.05〜5.0%含有し、
前記潤滑油組成物が、前記PAG(D)を、潤滑油組成物全量基準で0.1〜20.0%含有し、且つ
前記基油(C)と前記PAG(D)と前記酸性の含酸素系有機化合物(E)は、相互に相違する成分であることを特徴とする低摩擦摺動機構。
A low friction sliding mechanism in which a lubricating oil composition is present on the sliding surface formed by the DLC-coated sliding member (A) and the sliding member (B),
The DLC coating sliding member (A) is formed by coating a base material with diamond-like carbon having a hydrogen content of 10 atomic% or less,
The sliding member (B) is composed of at least one material selected from the group consisting of a metallic material, a non-metallic material, and a coating material in which a thin film is coated on the surface thereof,
The lubricating oil composition contains a base oil (C), PAG (D), and an acidic oxygen-containing organic compound (E) having an acid value exceeding 1 mgKOH / g ,
The lubricating oil composition contains the oxygen-containing organic compound (E) in an amount of 0.05 to 5.0% based on the total amount of the lubricating oil composition,
The lubricating oil composition contains the PAG (D) in an amount of 0.1 to 20.0% based on the total amount of the lubricating oil composition, and
The low-friction sliding mechanism characterized in that the base oil (C), the PAG (D), and the acidic oxygen-containing organic compound (E) are mutually different components .
前記水素含有量が0.5原子%以下であることを特徴とする、請求項1に記載の低摩擦摺動機構。   The low-friction sliding mechanism according to claim 1, wherein the hydrogen content is 0.5 atomic% or less. DLCコーティング摺動部材(A)と摺動部材(B)とがなす摺動面に、潤滑油組成物が存在する低摩擦摺動機構であって、
前記DLCコーティング摺動部材(A)は、基材に水素を含まないa−C系のダイヤモンドライクカーボンを被覆して成り、
前記摺動部材(B)は、金属材料、非金属材料及びこれらの表面に薄膜を被覆したコーティング材料からなる群より選ばれた少なくとも1種の材料から成り、
前記潤滑油組成物は、基油(C)と、PAG(D)と、酸価が1mgKOH/gを超える酸性の含酸素系有機化合物(E)と、を含有し、
前記潤滑油組成物が、前記含酸素系有機化合物(E)を、潤滑油組成物全量基準で0.05〜5.0%含有し、
前記潤滑油組成物が、前記PAG(D)を、潤滑油組成物全量基準で0.1〜20.0%含有し、且つ
前記基油(C)と前記PAG(D)と前記酸性の含酸素系有機化合物(E)は、相互に相違する成分であることを特徴とする低摩擦摺動機構。
A low friction sliding mechanism in which a lubricating oil composition is present on the sliding surface formed by the DLC-coated sliding member (A) and the sliding member (B),
The DLC-coated sliding member (A) is formed by coating a base material with aC-based diamond-like carbon not containing hydrogen,
The sliding member (B) is composed of at least one material selected from the group consisting of a metallic material, a non-metallic material, and a coating material in which a thin film is coated on the surface thereof,
The lubricating oil composition contains a base oil (C), PAG (D), and an acidic oxygen-containing organic compound (E) having an acid value exceeding 1 mgKOH / g ,
The lubricating oil composition contains the oxygen-containing organic compound (E) in an amount of 0.05 to 5.0% based on the total amount of the lubricating oil composition,
The lubricating oil composition contains the PAG (D) in an amount of 0.1 to 20.0% based on the total amount of the lubricating oil composition, and
The low-friction sliding mechanism characterized in that the base oil (C), the PAG (D), and the acidic oxygen-containing organic compound (E) are mutually different components .
前記摺動部材(B)において、前記金属材料が、鉄系材料、アルミニウム合金材料及び
マグネシウム合金系材料からなる群より選ばれた少なくとも1種の材料であり、
前記コーティング材料が、DLC、セラミックからなる群より選ばれた少なくとも1種の材料の薄膜を被覆して成ることを特徴とする、請求項1〜3のいずれか1つの項に記載の低摩擦摺動機構。
In the sliding member (B), the metal material is at least one material selected from the group consisting of iron-based materials, aluminum alloy materials, and magnesium alloy-based materials,
The low-friction sliding material according to any one of claims 1 to 3, wherein the coating material is formed by coating a thin film of at least one material selected from the group consisting of DLC and ceramic. Moving mechanism.
前記PAG(D)が、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールからなる群より選ばれた少なくとも1種のものであって、
前記PAG(D)の重量平均分子量が200〜10,000であることを特徴とする、請求項1〜4のいずれか1つの項に記載の低摩擦摺動機構。
The PAG (D) is at least one selected from the group consisting of polyethylene glycol, polypropylene glycol, polybutylene glycol,
The low friction sliding mechanism according to any one of claims 1 to 4, wherein the weight average molecular weight of the PAG (D) is 200 to 10,000.
前記酸性の含酸素系有機化合物(E)が、炭素数8〜1,000の含酸素系有機化合物であることを特徴とする、請求項1〜のいずれか1つの項に記載の低摩擦摺動機構。 The low friction according to any one of claims 1 to 5 , wherein the acidic oxygen-containing organic compound (E) is an oxygen-containing organic compound having 8 to 1,000 carbon atoms. Sliding mechanism. 前記酸性の含酸素系有機化合物(E)の酸価が1.2mgKOH/g以上であることを特徴とする、請求項1〜のいずれか1つの項に記載の低摩擦摺動機構。 The low friction sliding mechanism according to any one of claims 1 to 6 , wherein the acid value of the acidic oxygen-containing organic compound (E) is 1.2 mgKOH / g or more. 前記酸性の含酸素系有機化合物(E)が、アルコール類、エステル類、エーテル類、ケトン類、アルデヒド類、カーボネート類及びこれらの誘導体からなる群より選ばれた少なくとも1種のものを含有することを特徴とする、請求項1〜7のいずれか1つの項に記載の低摩擦摺動機構。   The acidic oxygen-containing organic compound (E) contains at least one selected from the group consisting of alcohols, esters, ethers, ketones, aldehydes, carbonates and derivatives thereof. The low friction sliding mechanism according to any one of claims 1 to 7, wherein 請求項1〜のいずれか1つの項に記載の低摩擦摺動機構を用いたことを特徴とする潤滑システム。 A lubrication system using the low friction sliding mechanism according to any one of claims 1 to 8 .
JP2015184053A 2015-09-17 2015-09-17 Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound Active JP6581452B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015184053A JP6581452B2 (en) 2015-09-17 2015-09-17 Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound
PCT/EP2016/071887 WO2017046276A1 (en) 2015-09-17 2016-09-15 Low-friction sliding mechanism including lubricant composition
US15/759,730 US20180258362A1 (en) 2015-09-17 2016-09-15 Low-friction sliding mechanism including lubricant composition
EP16766019.0A EP3350294A1 (en) 2015-09-17 2016-09-15 Low-friction sliding mechanism including lubricant composition
RU2018113749A RU2018113749A (en) 2015-09-17 2016-09-15 SMALL FRICTION SLIDING MECHANISM, INCLUDING LUBRICANT COMPOSITION
CN201680053609.2A CN108026472A (en) 2015-09-17 2016-09-15 Low-friction sliding mechanism including lubricant compositions
BR112018005387A BR112018005387A2 (en) 2015-09-17 2016-09-15 low friction sliding mechanism including lubricant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015184053A JP6581452B2 (en) 2015-09-17 2015-09-17 Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound

Publications (2)

Publication Number Publication Date
JP2017057302A JP2017057302A (en) 2017-03-23
JP6581452B2 true JP6581452B2 (en) 2019-09-25

Family

ID=56926222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184053A Active JP6581452B2 (en) 2015-09-17 2015-09-17 Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound

Country Status (7)

Country Link
US (1) US20180258362A1 (en)
EP (1) EP3350294A1 (en)
JP (1) JP6581452B2 (en)
CN (1) CN108026472A (en)
BR (1) BR112018005387A2 (en)
RU (1) RU2018113749A (en)
WO (1) WO2017046276A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772504B2 (en) * 2003-08-01 2011-09-14 Jx日鉱日石エネルギー株式会社 Refrigerator oil composition
CN100447224C (en) * 2003-08-06 2008-12-31 新日本石油株式会社 System having DLC contacting faces, method for lubricating the system and lubricating oil for the system
EP1666573B1 (en) * 2003-08-06 2019-05-15 Nissan Motor Company Limited Low-friction sliding mechanism and method of friction reduction
JP4539205B2 (en) * 2003-08-21 2010-09-08 日産自動車株式会社 Refrigerant compressor
JP4973973B2 (en) * 2003-08-22 2012-07-11 日産自動車株式会社 Low friction sliding member for automatic transmission and automatic transmission oil composition used therefor
JP4973972B2 (en) * 2003-08-22 2012-07-11 日産自動車株式会社 Low friction sliding member for continuously variable transmission and continuously variable transmission oil composition used therefor
JP4976645B2 (en) * 2004-07-23 2012-07-18 出光興産株式会社 Lubricating oil composition for sliding part of internal combustion engine and sliding method
CN1730962A (en) * 2004-08-06 2006-02-08 日产自动车株式会社 The method of low-friction sliding mechanism, low friction reagent composition and reduction friction
JP2008308610A (en) * 2007-06-15 2008-12-25 Idemitsu Kosan Co Ltd Refrigerator oil composition
JP5731306B2 (en) * 2011-07-21 2015-06-10 昭和シェル石油株式会社 Two-phase lubricating oil composition
FR2990213B1 (en) * 2012-05-04 2015-04-24 Total Raffinage Marketing LUBRICATING COMPOSITION FOR ENGINE
JP6055320B2 (en) * 2013-01-23 2016-12-27 コスモ石油ルブリカンツ株式会社 Hydraulic fluid composition

Also Published As

Publication number Publication date
EP3350294A1 (en) 2018-07-25
CN108026472A (en) 2018-05-11
BR112018005387A2 (en) 2018-10-09
RU2018113749A (en) 2019-10-18
US20180258362A1 (en) 2018-09-13
WO2017046276A1 (en) 2017-03-23
JP2017057302A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5943252B2 (en) Lubricating oil composition for internal combustion engines
KR101003865B1 (en) Low-Friction Sliding Mechanism, Low-Friction Agent Composition and Method of Friction Reduction
WO2007088649A1 (en) Nanoparticle-containing lubricating oil compositions
JP4614427B2 (en) Low friction sliding mechanism, manual transmission and final reduction gear
WO2016114401A1 (en) Lubricating oil composition
CN100447224C (en) System having DLC contacting faces, method for lubricating the system and lubricating oil for the system
JPWO2005014760A1 (en) System having DLC contact surface, method of lubricating the system, and lubricating oil for the system
Xia et al. Leaf-surface wax of desert plants as a potential lubricant additive
JP6581452B2 (en) Low friction sliding mechanism with lubricating oil composition using polyalkylene glycol and acidic oxygenated organic compound
JP6072605B2 (en) Lubricating oil composition for internal combustion engines
JP4973972B2 (en) Low friction sliding member for continuously variable transmission and continuously variable transmission oil composition used therefor
JP4973973B2 (en) Low friction sliding member for automatic transmission and automatic transmission oil composition used therefor
JP2017165912A (en) Fatty acid ester-based lubricant composition
JP6605948B2 (en) Lubricating oil composition for internal combustion engines
JP5356886B2 (en) Rolling oil
JP2006306938A (en) Low friction slide member
JP2019189715A (en) Friction adjustment auxiliary agent and lubricant composition containing friction adjustment auxiliary agent
WO2023190238A1 (en) Lubricant
JP5561546B2 (en) Sliding mechanism
US11466227B2 (en) Synergy and enhanced performance retention with organic and molybdenum based friction modifier combination
JP7460445B2 (en) Lubricating Oil Composition
JP2018080246A (en) Base oil for lubricant oil and lubricant oil
JP2018062632A (en) Base oil for lubricant and lubricant
JP2019147933A (en) Lubricant composition for stern tube
Jamaluddin et al. Experimental analysis of tribological performance of modified Jatropha oil enriched with nanoparticle additives for machining application

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190830

R150 Certificate of patent or registration of utility model

Ref document number: 6581452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250