JP6572912B2 - Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
JP6572912B2
JP6572912B2 JP2016566467A JP2016566467A JP6572912B2 JP 6572912 B2 JP6572912 B2 JP 6572912B2 JP 2016566467 A JP2016566467 A JP 2016566467A JP 2016566467 A JP2016566467 A JP 2016566467A JP 6572912 B2 JP6572912 B2 JP 6572912B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
diamine
component
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016566467A
Other languages
Japanese (ja)
Other versions
JPWO2016104636A1 (en
Inventor
徳俊 三木
徳俊 三木
里枝 軍司
里枝 軍司
橋本 淳
淳 橋本
暁子 若林
暁子 若林
保坂 和義
和義 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2016104636A1 publication Critical patent/JPWO2016104636A1/en
Application granted granted Critical
Publication of JP6572912B2 publication Critical patent/JP6572912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜及び該液晶配向膜を使用した液晶表示素子に関する。   The present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.

液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在、広く使用されている。通常、この液晶表示素子には、液晶の配向状態を決定づけるために液晶配向膜が使用されている。
液晶配向膜に求められる特性の一つとして、基板面に対する液晶分子の配向傾斜角を任意の値に保つ、いわゆる液晶のプレチルト角の制御がある。このプレチルト角の大きさは、液晶配向膜を構成しているポリイミドの構造を選択することで変更できることが知られている。ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミン化合物をポリイミド原料の一部として用いる方法は、このジアミン化合物の使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角を得ることが比較的容易であり、プレチルト角を大きくする手段として有用である(特許文献1を参照)。また、このように液晶のプレチルト角を大きくするためのジアミン化合物は、プレチルト角の安定性やプロセス依存性を改善するための構造検討もされており、ここで用いられる側鎖構造としては、フェニル基やシクロヘキシル基等の環構造を含むものが提案されている(特許文献2を参照)。
Liquid crystal display elements are now widely used as display devices that are thin and light. Usually, in this liquid crystal display element, a liquid crystal alignment film is used to determine the alignment state of the liquid crystal.
One of the characteristics required for the liquid crystal alignment film is the control of the so-called pretilt angle of the liquid crystal, which maintains the alignment tilt angle of the liquid crystal molecules with respect to the substrate surface at an arbitrary value. It is known that the magnitude of the pretilt angle can be changed by selecting the structure of the polyimide constituting the liquid crystal alignment film. Among the techniques for controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine compound having a side chain as a part of the polyimide raw material can control the pretilt angle according to the proportion of the diamine compound used. Is relatively easy and is useful as means for increasing the pretilt angle (see Patent Document 1). In addition, the diamine compound for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle, and the side chain structure used here is phenyl. Those containing a ring structure such as a group or a cyclohexyl group have been proposed (see Patent Document 2).

液晶表示素子の作製には、液晶配向膜が形成された基板2枚の間(セルギャップ)に、液晶を充填する工程が必要である。これまで、液晶充填には大気圧と真空の圧力差を利用して、2枚の基板間に液晶を充填する真空注入方式が一般的であった。しかし、この方式の場合、液晶注入口が基板の片側だけに設けられるため、液晶を充填するために長い時間が必要となり、液晶表示素子の製造工程の簡略化が難しかった。このことは、特に、近年実用化されている液晶TVや大型モニタの製造においては大きな問題となっていた。   In order to manufacture a liquid crystal display element, a step of filling liquid crystal between two substrates (cell gaps) on which a liquid crystal alignment film is formed is necessary. Until now, liquid crystal filling has been generally performed by a vacuum injection method in which a liquid crystal is filled between two substrates using a pressure difference between atmospheric pressure and vacuum. However, in this method, since the liquid crystal injection port is provided only on one side of the substrate, it takes a long time to fill the liquid crystal, and it is difficult to simplify the manufacturing process of the liquid crystal display element. This has been a big problem particularly in the production of liquid crystal TVs and large monitors that have been put into practical use in recent years.

そこで、上述の真空注入方式における問題点を解決するために、液晶滴下方式(ODF(One Drop Filling)方式)が開発された。この方式は液晶配向膜が形成された基板上に液晶を滴下し、真空中でもう片方の基板と張り合わせた後、シール材をUV硬化させることにより、液晶を充填する方式である。他方、液晶表示素子の高精細化が深化するにつれて、表示ムラを抑制することが必要となってきている。液晶滴下方式においては、液晶の滴下量低減や張り合わせ時の真空度向上等の、吸着水や不純物の影響を軽減するような製造工程の最適化により解決されてきた。しかし、液晶表示素子製造ラインが大型化するに伴い、これまでの製造工程の最適化では表示ムラを抑制できなくなってきており、従来よりも配向ムラが軽減できる液晶配向膜が求められている。   Therefore, in order to solve the problems in the above-described vacuum injection method, a liquid crystal dropping method (ODF (One Drop Filling) method) has been developed. In this method, a liquid crystal is dropped on a substrate on which a liquid crystal alignment film is formed, bonded to the other substrate in a vacuum, and then the sealing material is UV cured to fill the liquid crystal. On the other hand, as the definition of liquid crystal display elements becomes higher, it is necessary to suppress display unevenness. The liquid crystal dropping method has been solved by optimizing the manufacturing process so as to reduce the influence of adsorbed water and impurities, such as reducing the dropping amount of liquid crystal and improving the degree of vacuum at the time of bonding. However, as the liquid crystal display element production line becomes larger, it is no longer possible to suppress display unevenness by optimizing the manufacturing process so far, and a liquid crystal alignment film that can reduce alignment unevenness more than before has been demanded.

加えて、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった観点から、そこに使用される液晶配向膜においても電圧保持率が高いことや、直流電圧を印加した際の蓄積電荷が少ない、又は直流電圧により蓄積した電荷の緩和が早いといった特性が次第に重要となっていた。
ポリイミド系の液晶配向膜において、直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やイミド基含有ポリアミド酸に加えて、特定構造の3級アミンを含有する液晶配向処理剤を使用したもの(例えば特許文献3参照)や、ピリジン骨格等を有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向処理剤を使用したもの(特許文献4参照)等が知られている。
In addition, as liquid crystal display elements have become higher in definition, the liquid crystal alignment film used there also has a high voltage holding ratio and a direct current voltage, from the viewpoint of suppressing the reduction in contrast of the liquid crystal display elements and reducing the afterimage phenomenon. The characteristic that the accumulated charge at the time of applying a small amount of charge or that the charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
In a polyimide-based liquid crystal alignment film, a liquid crystal alignment treatment agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid is assumed to have a short time until an afterimage generated by a DC voltage disappears. Those used (for example, see Patent Document 3), those using a liquid crystal alignment treatment agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton or the like as a raw material (see Patent Document 4), and the like are known. .

また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短いものとして、ポリアミド酸やそのイミド化重合体等に加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物から選ばれる化合物を極少量含有する液晶配向処理剤を使用したもの(特許文献5参照)が知られている。   In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal alignment treatment agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amino group in the molecule (patent Document 5) is known.

特開平2−282726号公報JP-A-2-282726 特開平9−278724号公報JP-A-9-278724 特開平9−316200号公報JP 9-316200 A 特開平10−104633号公報JP-A-10-104633 特開平8−76128号公報JP-A-8-76128

液晶配向膜は、基板に対する液晶の角度、すなわち液晶のプレチルト角の制御を行うためにも用いられている。特に、VAモードやPSAモード等では、液晶を垂直に配向させる必要があるため、液晶配向膜には、液晶を垂直に配向させる能力(垂直配向性や高いプレチルト角ともいう)が求められる。更に、液晶配向膜には、高い垂直配向性だけではなく、その安定性に対しても重要となってきている。特に、高輝度を得るために発熱量が大きく、光の照射量が多いバックライトを使用している液晶表示素子、例えば、カーナビゲーションシステムや大型テレビでは、長時間高温及び光の照射に曝された環境下で使用あるいは放置される場合がある。そのような過酷条件において、垂直配向性が低下した場合、初期の表示特性が得られない、あるいは、表示にムラが発生する等の問題が起こる。   The liquid crystal alignment film is also used for controlling the angle of the liquid crystal with respect to the substrate, that is, the pretilt angle of the liquid crystal. In particular, in the VA mode, the PSA mode, and the like, since the liquid crystal needs to be aligned vertically, the liquid crystal alignment film is required to have an ability to align the liquid crystal vertically (also referred to as a vertical alignment property or a high pretilt angle). Furthermore, the liquid crystal alignment film has become important not only for high vertical alignment but also for its stability. In particular, a liquid crystal display element using a backlight that generates a large amount of heat and has a large amount of light to obtain high brightness, such as a car navigation system or a large television, is exposed to high temperature and light irradiation for a long time. There are cases where it is used or left in a dark environment. Under such severe conditions, when the vertical alignment property is lowered, problems such as failure to obtain initial display characteristics or occurrence of unevenness in display occur.

また、ODF方式では、液晶を直接配向膜上に滴下するため、液晶滴下時に配向膜に物理的なストレスがかかることや、パネル全域に液晶を充填する必要上、液晶の滴下点を増やす必要がある。そのため、液晶滴下部や液晶の液滴が隣接する液滴と接する部分に、滴下跡や格子ムラといった、いわゆる配向ムラが発生し、これを液晶表示素子とした場合に、配向ムラ起因の表示ムラが発生する問題があった。この配向ムラは基板上に形成された液晶配向膜表面に付着した吸着水や不純物が、ODF工程において滴下された液晶により掃き寄せられることで、液晶滴下部や液晶の液滴同士が接する部分で吸着水や不純物の量が異なることにより、発生すると考えられる。   In addition, in the ODF method, since the liquid crystal is dropped directly on the alignment film, physical stress is applied to the alignment film when the liquid crystal is dropped, and it is necessary to fill the entire panel with liquid crystal, and it is necessary to increase the dropping point of the liquid crystal. is there. Therefore, so-called alignment unevenness such as dripping traces and lattice unevenness occurs in the liquid crystal dropping portion or the portion where the liquid crystal droplets are in contact with the adjacent liquid droplets. When this is used as a liquid crystal display element, display unevenness due to alignment unevenness occurs. There was a problem that occurred. This alignment unevenness is caused by the adsorbed water and impurities adhering to the surface of the liquid crystal alignment film formed on the substrate being swept away by the liquid crystal dropped in the ODF process, so that the liquid crystal dropping part and the liquid crystal droplets are in contact with each other. It is thought to be generated due to the difference in the amount of adsorbed water and impurities.

更に、液晶表示素子の電気特性の1つである電圧保持率に関しても、上記のような過酷条件下での高い安定性も求められている。すなわち、電圧保持率が、バックライトからの光照射によって低下してしまうと、液晶表示素子の表示不良の1つである焼き付き不良(線焼き付きともいわれる)が発生しやすくなってしまい、信頼性の高い液晶表示素子を得ることができない。したがって、液晶配向膜においては、初期特性が良好なことに加え、例えば、長時間、光の照射に曝された後であっても、電圧保持率が低下しにくいことが求められている。更に、もう1つの焼き付き不良である面焼付きに対しても、バックライトからの光照射によって、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜が求められている。   Furthermore, regarding the voltage holding ratio which is one of the electrical characteristics of the liquid crystal display element, high stability under the above severe conditions is also required. That is, if the voltage holding ratio is reduced by light irradiation from the backlight, a burn-in defect (also referred to as line burn-in), which is one of display defects of the liquid crystal display element, is likely to occur. A high liquid crystal display element cannot be obtained. Therefore, in the liquid crystal alignment film, in addition to good initial characteristics, for example, it is required that the voltage holding ratio does not easily decrease even after being exposed to light irradiation for a long time. Furthermore, there is a need for a liquid crystal alignment film that can quickly relieve residual charges accumulated by a direct current voltage by light irradiation from a backlight, even for another surface burn-in, which is another burn-in defect.

そこで、本発明は、長時間、高温及び光の照射に曝された後でも、安定な垂直安定性を示し、電圧保持率の低下を抑制し、かつ、直流電圧により蓄積する残留電荷の緩和が早く、また、ODF方式で発生する液晶配向ムラを軽減できる液晶配向膜を提供することを目的とする。加えて、上記の液晶配向膜を得るための液晶配向処理剤、及び上記の液晶配向膜を備えた液晶表示素子を提供することにある。   Therefore, the present invention exhibits stable vertical stability even after being exposed to high temperature and light irradiation for a long time, suppresses a decrease in voltage holding ratio, and reduces the residual charge accumulated by a DC voltage. An object of the present invention is to provide a liquid crystal alignment film that can reduce liquid crystal alignment unevenness generated by the ODF method quickly. In addition, it is providing the liquid crystal aligning agent for obtaining said liquid crystal aligning film, and a liquid crystal display element provided with said liquid crystal aligning film.

本発明者は、鋭意研究を行った結果、特定構造を有する3つの重合体を含む液晶配向処理剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。即ち、本発明は以下の要旨を有する。
(1)下記(A)成分、(B)成分及び(C)成分を含有する液晶配向処理剤。
(A)成分:下記式[1]の構造を有するジアミン、及び下記式[2]の構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。
(B)成分:下記式[2]の構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。
(C):カルボキシ基(COOH基)及びヒドロキシ基(OH基)からなる群から選ばれる少なくとも1種の置換基を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。

Figure 0006572912
(Xは単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Xは単結合又は−(CH−(bは1〜15の整数である)を示す。X3は単結合、−(CH2−(cは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。nは0〜4の整数を示す。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006572912
(Wは−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−CHO−、−OCO−、−CON(CH)−及び−N(CH)CO−からなる群から選ばれる少なくとも1種の結合基を示す。Wは単結合、炭素数1〜20のアルキレン基、非芳香族環及び芳香族環からなる群から選ばれる少なくとも1種を示す。Wは単結合、−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−COO−、−OCO−、−CON(CH)−、−N(CH)CO−及び−O(CH−(mは1〜5の整数を示す)からなる群から選ばれる少なくとも1種を示す。Wは窒素有芳香族複素環を示す。As a result of intensive studies, the present inventor has found that a liquid crystal aligning agent containing three polymers having a specific structure is extremely effective for achieving the above object, and completes the present invention. It came. That is, the present invention has the following gist.
(1) Liquid crystal aligning agent containing the following (A) component, (B) component, and (C) component.
Component (A): a polyimide precursor obtained by reaction of a diamine having a structure of the following formula [1] and a diamine component having a structure of the following formula [2] with a tetracarboxylic acid component or the polyimide Polyimide with imidized precursor.
(B) Component: A polyimide precursor obtained by reaction of a diamine component containing a diamine having the structure of the following formula [2] and a tetracarboxylic acid component or a polyimide obtained by imidizing the polyimide precursor.
(C): a polyimide obtained by reaction of a diamine component containing a diamine having at least one substituent selected from the group consisting of a carboxy group (COOH group) and a hydroxy group (OH group) with a tetracarboxylic acid component The polyimide which imidized the precursor or this polyimide precursor.
Figure 0006572912
(X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ). —, —N (CH 3 ) CO—, —COO—, and —OCO— represent at least one linking group selected from the group consisting of X 2 is a single bond or — (CH 2 ) b — (b is 1 X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— and —. X 4 represents at least one selected from the group consisting of OCO-, and X 4 has at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a carbon number of 17 to 17 having a steroid skeleton. 51 represents a divalent organic group, and an arbitrary hydrogen atom on the cyclic group has 1 to 3 carbon atoms. An alkyl group, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom, X 5 may be a benzene ring, And at least one cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom, n is an integer of 0 to 4. X 6 is 1 to 18 carbon atoms. Selected from the group consisting of an alkyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Even without showing one.)
Figure 0006572912
(W 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and —N (CH 3 ) at least one linking group selected from the group consisting of CO-, wherein W 2 is at least one selected from the group consisting of a single bond, an alkylene group having 1 to 20 carbon atoms, a non-aromatic ring and an aromatic ring. W 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, At least one selected from the group consisting of —N (CH 3 ) CO— and —O (CH 2 ) m — (m represents an integer of 1 to 5), W 4 represents a nitrogen-containing aromatic heterocyclic ring; Show.

(2)前記式[1]の構造を有するジアミンが、前記(A)成分におけるジアミン成分にのみ用いられる上記(1)に記載の液晶配向処理剤。
(3)前記(A)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)を1.0にした際、前記(B)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)が、0.01〜0.8の比率である上記(1)に記載の液晶配向処理剤。
(4)前記(A)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)を1.0にした際、前記(C)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)が、0.01〜0.3の比率である上記(1)又は(3)に記載の液晶配向処理剤。
(5)前記カルボキシ基(COOH基)及びヒドロキシ基(OH基)からなる群から選ばれる少なくとも1種の置換基を有するジアミンが、前記(C)成分におけるジアミン成分にのみ用いられる上記(1)〜(4)のいずれかに記載の液晶配向処理剤。
(6)前記式[1]の構造を有するジアミンが、下記式[1a]で示される上記(1)〜(5)のいずれかに記載の液晶配向処理剤。

Figure 0006572912
(Xは前記式[1]の構造を示す。n1は1〜4の整数を示す。)
(7)前記式[2]の構造を有するジアミンが、下記式[2a]で示される上記(1)〜上記(6)のいずれかに記載の液晶配向処理剤。
Figure 0006572912
(Wは前記式[2]の構造を示す。p1は1〜4の整数を示す。)
(8)前記カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の置換基を有するジアミンが、下記式[3a]で示される上記(1)〜(7)のいずれかに記載の液晶配向処理剤。
Figure 0006572912
(Yは下記式[3−1]又は式[3−2]の構造を示す。m1は1〜4の整数を示す。)
Figure 0006572912
(a及びbはそれぞれ、0〜4の整数を示す。)
(9)前記(A)成分、(B)成分及び(C)成分におけるテトラカルボン酸成分が、下記の式[4]のテトラカルボン酸二無水物を含む上記(1)〜(8)のいずれかに記載の液晶配向処理剤。
Figure 0006572912
(Zは下記式[4a]〜式[4k]の構造からなる群から選ばれる少なくとも1種の構造を示す。)
Figure 0006572912
(Z〜Zはそれぞれ独立して、水素原子、メチル基、塩素原子及びベンゼン環からなる群から選ばれる少なくとも1種を示す。Z及びZはそれぞれ独立して、水素原子又はメチル基を示す。)
(10)N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種の溶媒を含有する上記(1)〜(9)のいずれかに記載の液晶配向処理剤。
(11)1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル及び下記式[D1]〜式[D3]の溶媒からなる群から選ばれる少なくとも1種の溶媒を含有する上記(1)〜(10)のいずれかに記載の液晶配向処理剤。
Figure 0006572912
(Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
(12)前記液晶配向処理剤が、エポキシ基、イソシアネート基、オキセタン基及びシクロカーボネート基からなる群から選ばれる架橋性化合物、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群から選ばれる架橋性化合物、又は重合性不飽和結合基を有する架橋性化合物を含有する上記(1)〜上記(11)のいずれかに記載の液晶配向処理剤。
(13)上記(1)〜(12)のいずれかに記載の液晶配向処理剤から得られる液晶配向膜。
(14)上記(1)〜(12)のいずれかに記載の液晶配向処理剤をインクジェット法により塗布して得られる液晶配向膜。
(15)上記(13)又は(14)に記載の液晶配向膜を有する液晶表示素子。
(16)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる上記(13)又は(14)に記載の液晶配向膜。
(17)上記(16)に記載の液晶配向膜を有する液晶表示素子。
(18)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる上記(13)又は(14)に記載の液晶配向膜。
(19)上記(18)に記載の液晶配向膜を有する液晶表示素子。(2) The liquid-crystal aligning agent as described in said (1) in which the diamine which has the structure of said Formula [1] is used only for the diamine component in the said (A) component.
(3) When the use ratio (mol%) of the diamine having the structure represented by the formula [1] in the component (A) to the entire diamine component is 1.0, the formula [1 in the component (B) ] The liquid-crystal aligning agent as described in said (1) whose usage-ratio (mol%) with respect to the whole diamine component of the diamine which has a structure shown by is a ratio of 0.01-0.8.
(4) When the usage ratio (mol%) of the diamine having the structure represented by the formula [1] in the component (A) to the entire diamine component is 1.0, the formula [1 in the component (C) ] The liquid-crystal aligning agent as described in said (1) or (3) whose usage rate (mol%) with respect to the whole diamine component of the diamine which has a structure shown by is a ratio of 0.01-0.3.
(5) The above (1), wherein a diamine having at least one substituent selected from the group consisting of the carboxy group (COOH group) and the hydroxy group (OH group) is used only as a diamine component in the component (C). Liquid crystal aligning agent in any one of-(4).
(6) The liquid-crystal aligning agent in any one of said (1)-(5) by which the diamine which has the structure of said Formula [1] is shown by following formula [1a].
Figure 0006572912
(X shows the structure of said Formula [1]. N1 shows the integer of 1-4.)
(7) The liquid crystal aligning agent according to any one of (1) to (6), wherein the diamine having the structure of the formula [2] is represented by the following formula [2a].
Figure 0006572912
(W represents the structure of the formula [2]. P1 represents an integer of 1 to 4.)
(8) The liquid crystal alignment according to any one of the above (1) to (7), wherein the diamine having at least one substituent selected from the group consisting of the carboxy group and the hydroxy group is represented by the following formula [3a]. Processing agent.
Figure 0006572912
(Y represents the structure of the following formula [3-1] or [3-2]. M1 represents an integer of 1 to 4.)
Figure 0006572912
(A and b each represent an integer of 0 to 4)
(9) Any of the above (1) to (8), wherein the tetracarboxylic acid component in the (A) component, the (B) component, and the (C) component contains a tetracarboxylic dianhydride of the following formula [4] A liquid crystal alignment treatment agent according to claim 1.
Figure 0006572912
(Z represents at least one structure selected from the group consisting of the structures of the following formulas [4a] to [4k].)
Figure 0006572912
(Z 1 to Z 4 each independently represents at least one selected from the group consisting of a hydrogen atom, a methyl group, a chlorine atom and a benzene ring. Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group. Group.)
(10) The system according to any one of (1) to (9) above, which contains at least one solvent selected from the group consisting of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone. Liquid crystal aligning agent.
(11) 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether and the following formulas [D1] to [D3] The liquid-crystal aligning agent in any one of said (1)-(10) containing the at least 1 sort (s) of solvent chosen from the group which consists of a solvent.
Figure 0006572912
(D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms.)
(12) The liquid crystal aligning agent is a crosslinkable compound selected from the group consisting of an epoxy group, an isocyanate group, an oxetane group and a cyclocarbonate group, a crosslink selected from the group consisting of a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group. Liquid crystal aligning agent in any one of said (1)-(11) containing the crosslinkable compound which has a crystalline compound or a polymerizable unsaturated bond group.
(13) A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of (1) to (12).
(14) A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of (1) to (12) by an ink jet method.
(15) A liquid crystal display device having the liquid crystal alignment film according to (13) or (14).
(16) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (13) or (14), which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(17) A liquid crystal display device having the liquid crystal alignment film according to (16).
(18) A liquid crystal alignment film having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable group that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to the above (13) or (14), which is used for a liquid crystal display device produced through a step of polymerizing the polymerizable group while applying a voltage between the electrodes.
(19) A liquid crystal display device having the liquid crystal alignment film according to (18).

本発明の液晶配向処理剤は、長時間高温及び光の照射に曝された後でも、安定な垂直配向性を示す液晶配向膜を得ることができる。また、ODF方式で発生する液晶配向ムラを軽減できる液晶配向膜を得ることができる。更に、長時間光の照射に曝された後でも、電圧保持率の低下を抑制し、かつ、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる。   The liquid crystal aligning agent of this invention can obtain the liquid crystal aligning film which shows the stable vertical alignment property, even after being exposed to high temperature and light irradiation for a long time. In addition, it is possible to obtain a liquid crystal alignment film that can reduce liquid crystal alignment unevenness generated by the ODF method. Furthermore, even after being exposed to light irradiation for a long time, it is possible to obtain a liquid crystal alignment film that suppresses the decrease in the voltage holding ratio and quickly relaxes the residual charges accumulated by the DC voltage.

本発明により何故に上記の優れた特性を有する液晶表示素子が得られるのかは、必ずしも明らかではないが、ほぼ次のように推定される。
特定重合体(A)における特定構造(1)は、ベンゼン環、シクロヘキサン環、複素環又はステロイド骨格を有する炭素数17〜51の2価の有機基を有する。これら環及び有機基の側鎖構造は、液晶を垂直に配向させる従来技術である長鎖アルキル基に比べて剛直で、紫外線等の光に対して安定な構造である。そのため、特定構造(1)を有する液晶配向処理剤から得られる液晶配向膜は、従来技術に比べて、高い垂直配向性を示し、更に、長時間光の照射に曝されても、垂直配向性の変化を抑制することができる。加えて、光の照射に曝されても、電圧保持率を低下させ、かつ直流電圧により残留電荷を蓄積させる側鎖成分の分解物を抑制できる。
The reason why the liquid crystal display device having the above excellent characteristics can be obtained by the present invention is not necessarily clear, but is estimated as follows.
The specific structure (1) in the specific polymer (A) has a C 17-51 divalent organic group having a benzene ring, a cyclohexane ring, a heterocyclic ring, or a steroid skeleton. The side chain structure of these rings and organic groups is a structure that is more rigid than a long-chain alkyl group that is a conventional technique for vertically aligning liquid crystals and is stable to light such as ultraviolet rays. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent having the specific structure (1) exhibits higher vertical alignment than the prior art, and further, even when exposed to light irradiation for a long time, the vertical alignment Can be suppressed. In addition, even when exposed to light irradiation, it is possible to reduce the voltage holding ratio and to suppress the decomposition products of side chain components that accumulate residual charges due to a direct current voltage.

また、特定構造(1)は、疎水性が高い構造であるため、液晶表示素子作製工程において発生する吸着水や不純物が、液晶配向膜表面に付着することを抑制することができる。そのため、ODF方式で発生する液晶配向ムラを低減できる。
加えて、特定重合体(A)及び(B)における特定構造(2)が有する窒素含有複素環は、特定重合体(C)におけるカルボキシ基やヒドロキシ基と、塩形成や水素結合といった静電的相互作用で結ばれることで、窒素含有芳香族複素環と、カルボキシ基又はヒドロキシ基との間で、電荷の移動が起こりやすくなる。それにより、移動した電荷が効率的にポリイミド系重合体の分子内及び分子間を移動することができ、直流電圧により蓄積する残留電荷の緩和を早くできる。かくして、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなる。
Moreover, since the specific structure (1) is a highly hydrophobic structure, it is possible to suppress adsorbed water and impurities generated in the liquid crystal display element manufacturing process from adhering to the surface of the liquid crystal alignment film. Therefore, liquid crystal alignment unevenness generated by the ODF method can be reduced.
In addition, the nitrogen-containing heterocycle of the specific structure (2) in the specific polymers (A) and (B) is an electrostatic such as salt formation or hydrogen bonding with the carboxy group or hydroxy group in the specific polymer (C). By being linked by the interaction, charge transfer easily occurs between the nitrogen-containing aromatic heterocycle and the carboxy group or the hydroxy group. Thereby, the transferred electric charge can efficiently move in and between the molecules of the polyimide polymer, and the residual charge accumulated by the DC voltage can be relaxed quickly. Thus, the liquid crystal display element having the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability.

本発明書において、「部」、「%」は、特に断りのない限り、それぞれ、「質量部」、「質量%」を意味する。
<特定構造(1)・特定ジアミン(1)>
本発明における特定ジアミン(1)は、下記式[1]の特定構造(1)を有する。

Figure 0006572912
、X、X、X、X、X及びnは、上記に定義した通りであるが、Xは、原料の入手性や合成の容易さの点から、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましいのは、単結合、−(CH−(aは1〜10の整数である)、−O−、−CHO−又は−COO−である。
は、単結合又は−(CH−(bは1〜10の整数である)が好ましい。
は、合成の容易さの点から、単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましいのは、単結合、−(CH−(cは1〜10の整数である)、−O−、−CHO−又は−COO−である。
は、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17〜51の有機基が好ましい。
は、ベンゼン環又はシクロへキサン環が好ましい。
は、炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜10のフッ素含有アルキル基、炭素数1〜18のアルコキシ基又は炭素数1〜10のフッ素含有アルコキシ基が好ましい。より好ましくは、炭素数1〜12のアルキル基、炭素数2〜18のアルケニル基又は炭素数1〜12のアルコキシ基である。特に好ましくは、炭素数1〜9のアルキル基、炭素数2〜12のアルケニル基又は炭素数1〜9のアルコキシ基である。
nは、原料の入手性や合成の容易さの点から、0〜3が好ましい。より好ましいのは、0〜2である。In the present invention, “part” and “%” mean “part by mass” and “% by mass”, respectively, unless otherwise specified.
<Specific structure (1) / Specific diamine (1)>
The specific diamine (1) in this invention has the specific structure (1) of following formula [1].
Figure 0006572912
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n are as defined above, but X 1 is a single bond, from the viewpoint of availability of raw materials and ease of synthesis, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— is preferable. More preferred is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
X 2 is preferably a single bond or — (CH 2 ) b — (b is an integer of 1 to 10).
X 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or —COO— from the viewpoint of ease of synthesis. More preferred is a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
X 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
X 5 is preferably a benzene ring or a cyclohexane ring.
X 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or a fluorine containing group having 1 to 10 carbon atoms. Alkoxy groups are preferred. More preferably, they are a C1-C12 alkyl group, a C2-C18 alkenyl group, or a C1-C12 alkoxy group. Particularly preferred are an alkyl group having 1 to 9 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, or an alkoxy group having 1 to 9 carbon atoms.
n is preferably 0 to 3 in view of availability of raw materials and ease of synthesis. More preferably, it is 0-2.

、X、X、X、X、X及びnの好ましい組み合わせは、国際公開公報WO2011/132751(2011.10.27公開)の13頁〜34頁の表6〜表47に掲載される(2−1)〜(2−629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるX〜Xが、Y1〜Y6として示されているが、Y1〜Y6は、X〜Xと読み替えるものとする。また、国際公開公報の各表に掲載される(2−605)〜(2−629)では、本発明におけるステロイド骨格を有する炭素数17〜51の有機基が、ステロイド骨格を有する炭素数12〜25の有機基と示されているが、ステロイド骨格を有する炭素数12〜25の有機基は、ステロイド骨格を有する炭素数17〜51の有機基と読み替えるものとする。Preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 and n are listed in Tables 6 to 47 on pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.20). (2-1) to (2-629) listed in (1). In each table of International Publication, X 1 to X 6 in the present invention is shown as Y1 to Y6, Y1 to Y6, shall read X 1 to X 6. Moreover, in (2-605)-(2-629) published in each table | surface of international publication gazette, the C17-C51 organic group which has a steroid skeleton in this invention has 12-12 carbon atoms which have a steroid skeleton. An organic group having 25 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.

なかでも、(2−25)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−268)〜(2−315)、(2−364)〜(2−387)、(2−436)〜(2−483)又は(2−603)〜(2−615)の組み合わせが好ましい。特に好ましい組み合わせは、(2−49)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−603)〜(2−606)、(2−607)〜(2−609)、(2−611)、(2−612)又は(2−624)である。   Among them, (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred. Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).

特定ジアミン(1)には、特に下記式[1a]のジアミンを用いることが好ましい。

Figure 0006572912
Xは、前記式[1]の構造を示す。また、式[1a]中のX、X、X、X、X、X、及びnの詳細、及び好ましい組み合せは、前記式[1]に記載される通りである。
n1は、1〜4の整数を示す。なかでも、1の整数が好ましい。As the specific diamine (1), it is particularly preferable to use a diamine of the following formula [1a].
Figure 0006572912
X represents the structure of the formula [1]. The details and preferred combinations of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , and n in the formula [1a] are as described in the formula [1].
n1 shows the integer of 1-4. Among these, an integer of 1 is preferable.

具体的には、国際公開公報WO2013/125595(2013.8.29公開)の15頁〜19頁に記載される式[2−1]〜式[2−6]、式[2−9]〜式[2−31]のジアミンが挙げられる。なお、国際公開公報WO2013/125595の記載において、式[2−1]〜式[2−3]中のR及び式[2−4]〜式[2−6]中のRは、炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。また、式[2−13]中のAは、炭素数3〜18の直鎖状又は分岐状アルキル基を示す。加えて、式[2−4]〜式[2−6]中のRは、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す。
なかでも、好ましいジアミンは、安定なプレチルト角が発現でき、ODF方式で発生する液晶配向ムラを軽減でき、長時間光の照射に曝された後での電圧保持率の低下を抑制する効果が高い点から、国際公開公報WO2013/125595に記載される式[2−1]〜式[2−6]、式[2−9]〜式[2−13]又は式[2−22]〜式[2−31]のジアミンである。
Specifically, the formula [2-1] to the formula [2-6] and the formula [2-9] to be described on pages 15 to 19 of International Publication No. WO2013 / 125595 (published 2013.8.29) Examples include diamines of the formula [2-31]. In the description of International Publication WO2013 / 125595, R 4 in the formula [2-1] R 2 and wherein in ~ formula [2-3] [2-4] to the formula [2-6], the carbon It shows at least one selected from the group consisting of an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Moreover, A 4 in the formula [2-13] is a straight or branched alkyl group having 3 to 18 carbon atoms. In addition, R 3 in the formulas [2-4] to [2-6] represents at least one selected from the group consisting of —O—, —CH 2 O—, —COO—, and —OCO—. .
Among these, preferred diamines can exhibit a stable pretilt angle, can reduce liquid crystal alignment unevenness generated by the ODF method, and have a high effect of suppressing a decrease in voltage holding ratio after being exposed to light irradiation for a long time. From the point, the formula [2-1] to the formula [2-6], the formula [2-9] to the formula [2-13], or the formula [2-22] to the formula [2] described in the international publication WO2013 / 125595 2-31].

特定ジアミン(1)の使用割合は、上記の点から、特定重合体(A)においては、ジアミン成分全体に対して、10〜70モル%が好ましい。より好ましいのは、15〜70モル%であり、特に好ましいのは、20〜60モル%である。特定重合体(B)においては、ジアミン成分全体に対して、0〜40モル%が好ましい。より好ましいのは、0〜30モル%であり、特に好ましいのは、0〜25モル%である。特定重合体(C)においては、0〜20モル%が好ましい。より好ましいのは、0〜10モル%である。
また、特定ジアミン(1)は、ポリイミド系重合体の溶媒への溶解性、液晶配向膜にした際の液晶配向性、更には、液晶表示素子の光学特性等の特性に応じて、1種又は2種以上を混合して使用することができる。
From the above point, the specific diamine (1) is preferably used in an amount of 10 to 70 mol% based on the entire diamine component in the specific polymer (A). More preferred is 15 to 70 mol%, and particularly preferred is 20 to 60 mol%. In a specific polymer (B), 0-40 mol% is preferable with respect to the whole diamine component. More preferred is 0 to 30 mol%, and particularly preferred is 0 to 25 mol%. In the specific polymer (C), 0 to 20 mol% is preferable. More preferably, it is 0-10 mol%.
Moreover, specific diamine (1) is 1 type or depending on characteristics, such as the solubility to the solvent of a polyimide-type polymer, the liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, and the optical characteristic of a liquid crystal display element. Two or more kinds can be mixed and used.

<特定構造(2)・特定ジアミン(2)>
本発明の特定ジアミン(2)は、下記式[2]の特定構造を有する。

Figure 0006572912
<Specific structure (2) / Specific diamine (2)>
The specific diamine (2) of the present invention has a specific structure represented by the following formula [2].
Figure 0006572912

、W、W及びWは、上記に定義した通りであるが、なかでも、それぞれ、以下のものが好ましい。
は、−O−、−NH−、−CONH−、−NHCO−、−CHO−、−OCO−、−CON(CH)−又は−N(CH)CO−が好ましい。より好ましいのは、合成の容易さの点から、−O−、−NH−、−CONH−、−NHCO−、−CHO−、−OCO−又は−CON(CH)−である。特に好ましいのは、−O−、−CONH−又は−CHO−である。
は、単結合、炭素数1〜20のアルキレン基、非芳香族環及び芳香族環からなる群から選ばれる少なくとも1種を示す。炭素数1〜20のアルキレン基は、直鎖状でも良いし、分岐していても良い。また、不飽和結合を有していても良い。なかでも、合成の容易さの点から、炭素数1〜10のアルキレン基が好ましい。
W 1 , W 2 , W 3 and W 4 are as defined above. Among these, the following are preferable.
W 1 is preferably —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — or —N (CH 3 ) CO—. More preferable is —O—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCO— or —CON (CH 3 ) — from the viewpoint of ease of synthesis. Particularly preferred is —O—, —CONH— or —CH 2 O—.
W 2 represents at least one selected from the group consisting of a single bond, an alkylene group having 1 to 20 carbon atoms, a non-aromatic ring and an aromatic ring. The alkylene group having 1 to 20 carbon atoms may be linear or branched. Moreover, you may have an unsaturated bond. Among these, an alkylene group having 1 to 10 carbon atoms is preferable from the viewpoint of ease of synthesis.

非芳香族環の具体例としては、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環、シクロウンデカン環、シクロドデカン環、シクロトリデカン環、シクロテトラデカン環、シクロペンタデカン環、シクロヘキサデカン環、シクロヘプタデカン環、シクロオクタデカン環、シクロノナデカン環、シクロイコサン環、トリシクロエイコサン環、トリシクロデコサン環、ビシクロヘプタン環、デカヒドロナフタレン環、ノルボルネン環及びアダマンタン環等が挙げられる。なかでも、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環又はアダマンタン環が好ましい。   Specific examples of the non-aromatic ring include a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, a cyclodecane ring, a cycloundecane ring, a cyclododecane ring, and a cyclotridecane ring. , Cyclotetradecane ring, cyclopentadecane ring, cyclohexadecane ring, cycloheptadecane ring, cyclooctadecane ring, cyclononadecane ring, cycloicosane ring, tricycloeicosan ring, tricyclodecosan ring, bicycloheptane ring, decahydronaphthalene ring, norbornene A ring, an adamantane ring, etc. are mentioned. Among these, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, or an adamantane ring is preferable.

芳香族環の具体例としては、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、アズレン環、インデン環、フルオレン環、アントラセン環、フェナントレン環及びフェナレン環等が挙げられる。なかでも、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環又はアントラセン環が好ましい。
としては、単結合、炭素数1〜10のアルキレン基、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、ノルボルネン環、アダマンタン環、ベンゼン環、ナフタレン環、テトラヒドロナフタレン環、フルオレン環又はアントラセン環が好ましい。なかでも、合成の容易さの点及び長時間光の照射に曝された後での直流電圧により蓄積する残留電荷の緩和が早くなる点から、単結合、炭素数1〜5のアルキレン基、シクロヘキサン環又はベンゼン環が好ましい。
Specific examples of the aromatic ring include benzene ring, naphthalene ring, tetrahydronaphthalene ring, azulene ring, indene ring, fluorene ring, anthracene ring, phenanthrene ring and phenalene ring. Of these, a benzene ring, naphthalene ring, tetrahydronaphthalene ring, fluorene ring or anthracene ring is preferred.
W 2 includes a single bond, an alkylene group having 1 to 10 carbon atoms, a cyclopropane ring, a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a norbornene ring, an adamantane ring, a benzene ring, a naphthalene ring, and a tetrahydronaphthalene ring. , A fluorene ring or an anthracene ring is preferred. Among them, a single bond, an alkylene group having 1 to 5 carbon atoms, cyclohexane, because of the ease of synthesis and the quickening of the residual charge accumulated by direct current voltage after exposure to light irradiation for a long time. A ring or a benzene ring is preferred.

は、単結合、−O−、−COO−、−OCO−又は−O(CH−(mは1〜5の整数を示す)が好ましい。より好ましいのは、合成の容易さの点から、単結合、−O−、−OCO−又は−O(CH−(mは1〜5)である。
は、窒素含有芳香族複素環を示し、下記式[a]、式[b]及び式[c]からなる群から選ばれる少なくとも1個の構造を含有する。

Figure 0006572912
(Zは炭素数1〜5のアルキル基を示す。)W 3 is preferably a single bond, —O—, —COO—, —OCO—, or —O (CH 2 ) m — (m represents an integer of 1 to 5). More preferable is a single bond, —O—, —OCO— or —O (CH 2 ) m — (m is 1 to 5) from the viewpoint of ease of synthesis.
W 4 represents a nitrogen-containing aromatic heterocycle and contains at least one structure selected from the group consisting of the following formula [a], formula [b] and formula [c].
Figure 0006572912
(Z represents an alkyl group having 1 to 5 carbon atoms.)

より具体的には、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、ピラゾリン環、イソキノリン環、カルバゾール環、プリン環、チアジアゾール環、ピリダジン環、ピラゾリン環、トリアジン環、ピラゾリジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環、シンノリン環、フェナントロリン環、インドール環、キノキサリン環、ベンゾチアゾール環、フェノチアジン環、オキサジアゾール環及びアクリジン環等を挙げることができる。なかでも、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環又はベンゾイミダゾール環が好ましい。より好ましいのは、長時間光の照射に曝された後での直流電圧により蓄積する残留電荷の緩和が早くなる点から、ピロール環、イミダゾール環、ピラゾール環、ピリジン環又はピリミジン環である。特に好ましいのは、イミダゾール環又はピリジン環である。また、式[2]におけるWは、Wに含まれる式[a]、式[b]及び式[c]と隣り合わない置換基と結合していることが好ましい。
好ましいW、W、W、及びWの組み合わせを表1〜表31に示す。
More specifically, pyrrole ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, pyridine ring, pyrimidine ring, quinoline ring, pyrazoline ring, isoquinoline ring, carbazole ring, purine ring, thiadiazole ring, pyridazine ring, pyrazoline ring , Triazine ring, pyrazolidine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring, cinnoline ring, phenanthroline ring, indole ring, quinoxaline ring, benzothiazole ring, phenothiazine ring, oxadiazole ring and acridine ring be able to. Among these, a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a triazine ring, a triazole ring, a pyrazine ring, a benzimidazole ring, or a benzimidazole ring is preferable. More preferable is a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring or a pyrimidine ring from the viewpoint that relaxation of residual charges accumulated by direct current voltage after being exposed to light irradiation for a long time is accelerated. Particularly preferred is an imidazole ring or a pyridine ring. Further, W 3 in Formula [2] is preferably bonded to a substituent that is not adjacent to Formula [a], Formula [b], and Formula [c] included in W 4 .
Tables 1 to 31 show preferable combinations of W 1 , W 2 , W 3 , and W 4 .

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912
Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

なかでも、(a−43)〜(a−49)、(a−57)〜(a−63)、(a−218)〜(a−224)、(a−232)〜(a−238)、(a−323)〜(a−329)、(a−337)〜(a−343)、(a−428)〜(a−434)又は(a−442)〜(a−448)の組み合わせが好ましい。より好ましいのは、長時間光の照射に曝された後での直流電圧により蓄積する残留電荷の緩和が早くなる点から、(a−44)、(a−45)、(a−58)又は(a−59)の組み合わせである。   Among them, (a-43) to (a-49), (a-57) to (a-63), (a-218) to (a-224), (a-232) to (a-238) , (A-323) to (a-329), (a-337) to (a-343), (a-428) to (a-434) or (a-442) to (a-448) Is preferred. More preferably, (a-44), (a-45), (a-58) or (A-59) combination.

特定ジアミン(2)は、特に下記式[2a]のジアミンを用いることが好ましい。

Figure 0006572912
Wは、前記式[2]の構造を示す。W、W、W、及びWの詳細、及び好ましい組み合せは、前記式[2]に記載される通りである。p1は、1〜4の整数を示す。なかでも、合成の容易さの点から1が好ましい。As the specific diamine (2), it is particularly preferable to use a diamine of the following formula [2a].
Figure 0006572912
W represents the structure of the formula [2]. Details and preferred combinations of W 1 , W 2 , W 3 , and W 4 are as described in the above formula [2]. p1 represents an integer of 1 to 4. Among these, 1 is preferable from the viewpoint of ease of synthesis.

特定ジアミン(2)の使用割合は、上記の点から、下記の使用割合が好ましい。特定重合体(A)においては、ジアミン成分全体に対して、1〜60モル%が好ましい。より好ましいのは、5〜50モル%であり、特に好ましいのは、10〜50モル%である。特定重合体(B)においては、ジアミン成分全体に対して、5〜100モル%が好ましい。より好ましいのは、10〜95モル%であり、特に好ましいのは、15〜95モル%である。特定重合体(C)においては、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、0モル%である。
また、特定ジアミン(2)は、ポリイミド系重合体の溶媒への溶解性、液晶配向膜にした際の液晶配向性、更には、液晶表示素子の光学特性等の特性に応じて、1種又は2種以上を混合して使用することができる。
From the above points, the use ratio of the specific diamine (2) is preferably the following use ratio. In a specific polymer (A), 1-60 mol% is preferable with respect to the whole diamine component. More preferred is 5 to 50 mol%, and particularly preferred is 10 to 50 mol%. In a specific polymer (B), 5-100 mol% is preferable with respect to the whole diamine component. More preferred is 10 to 95 mol%, and particularly preferred is 15 to 95 mol%. In the specific polymer (C), 0 to 20 mol% is preferable. More preferred is 0 to 10 mol%, and particularly preferred is 0 mol%.
Moreover, specific diamine (2) is 1 type or according to characteristics, such as the solubility to the solvent of a polyimide-type polymer, the liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, and the optical characteristic of a liquid crystal display element. Two or more kinds can be mixed and used.

<特定ジアミン(3)>
本発明における特定ジアミン(3)は、カルボキシ基(COOH基)及びヒドロキシ基(OH基)からなる群から選ばれる少なくとも1種の置換基を有する。
<Specific diamine (3)>
The specific diamine (3) in the present invention has at least one substituent selected from the group consisting of a carboxy group (COOH group) and a hydroxy group (OH group).

具体的には、下記式[3a]のジアミンを用いることが好ましい。

Figure 0006572912
Yは、下記式[3−1]又は式[3−2]の構造を示す。
m1は、1〜4の整数を示す。
Figure 0006572912
aは、0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。Specifically, it is preferable to use a diamine of the following formula [3a].
Figure 0006572912
Y represents the structure of the following formula [3-1] or [3-2].
m1 shows the integer of 1-4.
Figure 0006572912
a represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.

式[3−2]中、bは、0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。
より具体的には、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸又は3,5−ジアミノ安息香酸等が挙げられる。
なかでも、長時間光の照射に曝された後での電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早くなる点から、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール又は3,5−ジアミノ安息香酸が好ましい。
In formula [3-2], b represents an integer of 0 to 4. Especially, the integer of 0 or 1 is preferable from the point of the availability of a raw material or the ease of a synthesis | combination.
More specifically, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diaminobenzoic acid 2,5-diaminobenzoic acid or 3,5-diaminobenzoic acid.
Among these, 2,4-diaminophenol, 3,5 is preferable because it suppresses a decrease in the voltage holding ratio after being exposed to light irradiation for a long time and accelerates the relaxation of residual charges accumulated by a DC voltage. -Diaminophenol, 3,5-diaminobenzyl alcohol or 3,5-diaminobenzoic acid are preferred.

特定ジアミン(3)の使用割合は、上記の点から、下記の使用割合が好ましい。特定重合体(A)においては、ジアミン成分全体に対して、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、0モル%である。特定重合体(B)においては、ジアミン成分全体に対して、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、0モル%である。特定重合体(C)においては、40〜100モル%が好ましい。より好ましいのは、50〜100モル%であり、特に好ましいのは、60〜100モル%である。
また、特定ジアミン(3)は、ポリイミド系重合体の溶媒への溶解性、液晶配向膜にした際の液晶配向性、更には、液晶表示素子の光学特性等の特性に応じて、1種又は2種以上を混合して使用することができる。
From the above point, the use ratio of the specific diamine (3) is preferably the following use ratio. In a specific polymer (A), 0-20 mol% is preferable with respect to the whole diamine component. More preferred is 0 to 10 mol%, and particularly preferred is 0 mol%. In a specific polymer (B), 0-20 mol% is preferable with respect to the whole diamine component. More preferred is 0 to 10 mol%, and particularly preferred is 0 mol%. In a specific polymer (C), 40-100 mol% is preferable. More preferred is 50 to 100 mol%, and particularly preferred is 60 to 100 mol%.
Moreover, specific diamine (3) is 1 type or depending on characteristics, such as the solubility to the solvent of a polyimide-type polymer, the liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, and the optical characteristic of a liquid crystal display element. Two or more kinds can be mixed and used.

<特定重合体(A)〜特定重合体(C)>
本発明における特定重合体(A)、(B)及び(C)は、それぞれ上記した(A)成分、(B)成分及び(C)成分を意味し、ポリイミド前駆体又はポリイミド(総称してポリイミド系重合体ともいう)である。それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はポリイミドであることが好ましい。
ポリイミド前駆体は、下記式[A]の構造を有する。

Figure 0006572912
(Rは4価の有機基を示す。Rは2価の有機基を示す。A及びAはそれぞれ独立して、水素原子又は炭素数1〜8のアルキル基を示す。A及びAはそれぞれ独立して、水素原子、炭素数1〜5のアルキル基又はアセチル基を示す。nAは正の整数を示す。)<Specific polymer (A) to specific polymer (C)>
The specific polymers (A), (B) and (C) in the present invention mean the components (A), (B) and (C), respectively, and are polyimide precursors or polyimides (collectively polyimides). Also referred to as a polymer). They are preferably a polyimide precursor or polyimide obtained by reacting a diamine component and a tetracarboxylic acid component.
The polyimide precursor has a structure of the following formula [A].
Figure 0006572912
(R 1 represents a tetravalent organic group. R 2 represents a divalent organic group. A 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. A 3 And A 4 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an acetyl group, and nA represents a positive integer.)

前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミンが挙げられる。テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。   Examples of the diamine component include diamines having two primary or secondary amino groups in the molecule. Examples of the tetracarboxylic acid component include tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic acid dihalide compounds, tetracarboxylic acid dialkyl ester compounds, and tetracarboxylic acid dialkyl ester dihalide compounds.

ポリイミド系重合体は、下記式[B]のテトラカルボン酸二無水物と下記式[C]のジアミンとを原料とすることで、比較的簡便に得られるという理由から、下記式[D]の繰り返し単位の構造式から成るポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。なかでも、液晶配向膜の物理的及び化学的安定性の点から、ポリイミドであることが好ましい。

Figure 0006572912
(R及びRは、式[A]で定義したものと同義である。)The polyimide-based polymer is obtained by using the tetracarboxylic dianhydride represented by the following formula [B] and the diamine represented by the following formula [C] as raw materials. Polyamic acid composed of a structural formula of repeating units or polyimide obtained by imidizing the polyamic acid is preferable. Especially, it is preferable that it is a polyimide from the point of the physical and chemical stability of a liquid crystal aligning film.
Figure 0006572912
(R 1 and R 2 have the same meaning as defined in formula [A].)

Figure 0006572912
(R、R及びnAは、前記式[A]で定義したものと同義である。)
また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]中のA及びAの炭素数1〜8のアルキル基、及び式[A]中のA及びAの炭素数1〜5のアルキル基又はアセチル基を導入することもできる。
Figure 0006572912
(R 1 , R 2 and nA are as defined in the formula [A].)
Further, in the polymer of the formula [D] obtained above by a general synthesis method, the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 in the formula [A], and the polymer in the formula [A] It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .

本発明における特定重合体(A)、(B)及び(C)には、前記の特定ジアミン以外に、本発明の効果を損なわない限りにおいて、その他のジアミン(その他ジアミンともいう)を用いることもできる。
具体的には、下記の式[D1]〜式[D6]で示されるジアミンが挙げられる。

Figure 0006572912
For the specific polymers (A), (B) and (C) in the present invention, other diamines (also referred to as other diamines) may be used in addition to the specific diamines as long as the effects of the present invention are not impaired. it can.
Specifically, the diamine shown by the following formula [D1]-a formula [D6] is mentioned.
Figure 0006572912

Figure 0006572912
更に、国際公開公報WO2013/125595(2013.8.29公開)の19頁〜23頁に記載されるその他のジアミン、同公報の23頁〜24頁に記載される式[DA1]〜式[DA12]及び式[DA15]〜式[DA20]で示されるジアミン、及び同公報の26頁に記載される式[DA27]及び式[DA28]で示されるジアミンが挙げられる。
Figure 0006572912
Furthermore, other diamines described on pages 19 to 23 of International Publication No. WO2013 / 125595 (published on 2013.8.29), formulas [DA1] to [DA12] described on pages 23 to 24 of the publication. And diamines represented by formula [DA15] to [DA20], and diamines represented by formula [DA27] and [DA28] described on page 26 of the publication.

その他のジアミンは、特定重合体(A)、(B)及び(C)のいずれの特定重合体のジアミン成分に用いても良く、これら全ての特定重合体のジアミン成分、或いはいずれかの特定重合体のジアミン成分に使用できる。
また、その他ジアミンは、ポリイミド系重合体の溶媒への溶解性、液晶配向膜にした際の液晶配向性、更には、液晶表示素子の光学特性等の特性に応じて、1種又は2種以上を混合して使用することができる。
Other diamines may be used for the diamine component of any one of the specific polymers (A), (B) and (C). It can be used for the diamine component of the coalescence.
In addition, other diamines may be used alone or in combination of two or more depending on the solubility of the polyimide polymer in the solvent, the liquid crystal alignment when the liquid crystal alignment film is formed, and the optical characteristics of the liquid crystal display element. Can be used in combination.

特定重合体(A)、(B)及び(C)の少なくともいずれかの重合体におけるテトラカルボン酸成分には、下記式[4]のテトラカルボン酸二無水物(特定テトラカルボン酸成分ともいう)を用いることが好ましい。より好ましくは、全ての特定重合体に、特定テトラカルボン酸成分を用いることである。

Figure 0006572912
Zは、前記式[4a]〜式[4k]の構造からなる群から選ばれる少なくとも1種の構造を示す。Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]、式[4d]、式[4e]、式[4f]、式[4g]又は式[4k]が好ましい。より好ましいのは、式[4a]、式[4e]、式[4f]、式[4g]又は式[4k]である。特に好ましいのは、式[4e]、式[4f]、式[4g]又は式[4k]である。The tetracarboxylic acid component in at least one of the specific polymers (A), (B), and (C) includes a tetracarboxylic dianhydride represented by the following formula [4] (also referred to as a specific tetracarboxylic acid component). Is preferably used. More preferably, a specific tetracarboxylic acid component is used for all the specific polymers.
Figure 0006572912
Z represents at least one structure selected from the group consisting of the structures of the formulas [4a] to [4k]. Z represents the formula [4a], the formula [4c], the formula [4d], the formula [4e], the formula [4f], the formula from the viewpoint of the ease of synthesis and the ease of polymerization reactivity when producing the polymer. [4g] or formula [4k] is preferred. More preferable is the formula [4a], the formula [4e], the formula [4f], the formula [4g], or the formula [4k]. Particularly preferable is the formula [4e], the formula [4f], the formula [4g], or the formula [4k].

特定テトラカルボン酸成分の使用割合は、全テトラカルボン酸成分に対して1モル%以上であることが好ましい。より好ましいのは、5モル%以である。特に好ましいのは、10モル%以上であり、最も好ましいのは、長時間光の照射に曝された後での電圧保持率の低下を抑制できる点から、10〜90モル%である。
また、前記式[4e]、式[4f]、式[4g]又は式[4k]の構造のテトラカルボン酸成分を用いる場合、その使用量を、テトラカルボン酸成分全体の20モル%以上とすることで、所望の効果が得られる。好ましくは、30モル%以上である。更に、テトラカルボン酸成分の全てが、式[4e]、式[4f]、式[4g]又は式[4k]の構造のテトラカルボン酸成分であってもよい。
The use ratio of the specific tetracarboxylic acid component is preferably 1 mol% or more with respect to the total tetracarboxylic acid component. More preferably, it is 5 mol% or less. Particularly preferred is 10 mol% or more, and most preferred is 10 to 90 mol% from the viewpoint of suppressing a decrease in voltage holding ratio after being exposed to light irradiation for a long time.
Moreover, when using the tetracarboxylic-acid component of the structure of said Formula [4e], Formula [4f], Formula [4g], or Formula [4k], the usage-amount shall be 20 mol% or more of the whole tetracarboxylic-acid component. Thus, a desired effect can be obtained. Preferably, it is 30 mol% or more. Further, all of the tetracarboxylic acid component may be a tetracarboxylic acid component having a structure of the formula [4e], the formula [4f], the formula [4g], or the formula [4k].

全ての特定重合体において、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることができる。
具体的には、国際公開公報WO2013/125595(2013.8.29公開)の27頁〜28頁に記載されるその他のテトラカルボン酸成分が挙げられる。 また、特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、各特性に応じて、1種又は2種以上を混合して使用することができる。
In all the specific polymers, other tetracarboxylic acid components other than the specific tetracarboxylic acid component can be used as long as the effects of the present invention are not impaired.
Specific examples include other tetracarboxylic acid components described on pages 27 to 28 of International Publication No. WO2013 / 125595 (2013.8.29 publication). Moreover, the specific tetracarboxylic acid component and other tetracarboxylic acid components can be used alone or in combination of two or more according to the respective characteristics.

特定重合体(A)は、特定ジアミン(1)及び特定ジアミン(2)を含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである。
その際、特定ジアミン(1)及び特定ジアミンの使用割合は、下記の通りである。即ち、特定ジアミン(1)は、ジアミン成分全体に対して、10〜70モル%が好ましい。より好ましいのは、15〜70モル%であり、特に好ましいのは、20〜60モル%である。また、特定ジアミン(2)は、ジアミン成分全体に対して、1〜60モル%が好ましい。より好ましいのは、5〜50モル%であり、特に好ましいのは、10〜50モル%である。加えて、特定ジアミン(3)においては、ODF方式で発生する液晶配向ムラを軽減できる点から、特定ジアミン(3)は、ジアミン成分全体に対して、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、0モル%、すなわち、特定ジアミン(3)を用いないことである。
The specific polymer (A) is a polyimide precursor obtained by a reaction between a diamine component containing the specific diamine (1) and the specific diamine (2) and a tetracarboxylic acid component or a polyimide obtained by imidizing the polyimide precursor. is there.
In that case, the use ratio of specific diamine (1) and specific diamine is as follows. That is, 10-70 mol% of specific diamine (1) is preferable with respect to the whole diamine component. More preferred is 15 to 70 mol%, and particularly preferred is 20 to 60 mol%. Moreover, 1-60 mol% of specific diamine (2) is preferable with respect to the whole diamine component. More preferred is 5 to 50 mol%, and particularly preferred is 10 to 50 mol%. In addition, in the specific diamine (3), the specific diamine (3) is preferably 0 to 20 mol% with respect to the entire diamine component, because liquid crystal alignment unevenness generated by the ODF method can be reduced. More preferably, it is 0-10 mol%, and especially preferable is 0 mol%, ie, not using specific diamine (3).

特定重合体(B)は、特定ジアミン(2)を含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである。その際、特定ジアミン(2)の使用割合は、下記の通りである。すなわち、特定ジアミン(2)は、ジアミン成分全体に対して、5〜100モル%が好ましい。より好ましいのは、10〜95モル%であり、特に好ましいのは、15〜95モル%である。また、特定ジアミン(1)においては、ジアミン成分全体に対して、0〜40モル%が好ましい。より好ましいのは、0〜30モル%であり、特に好ましいのは、0〜25モル%である。
但し、特定重合体(B)における特定ジアミン(1)のジアミン成分全体に対する使用割合(モル%)は、特定重合体(A)における特定ジアミン(1)の使用割合(モル%)を1.0にした際に、その比率が1.0未満となる使用割合(モル%)である。その際、その比率が0である場合、即ち、特定重合体(B)のジアミン成分に、特定ジアミン(1)を用いない場合は、長時間光の照射に曝された後での電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早くなる点で好ましい。また、特定重合体(B)に特定ジアミン(1)を用いる場合は、前記比率が、0.01〜0.9が好ましい。より好ましいのは、0.01〜0.8であり、特に好ましいのは、0.05〜0.7である。
加えて、特定ジアミン(3)においては、ジアミン成分全体に対して、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、ODF方式で発生する液晶配向ムラを軽減できる点から、0モル%、すなわち、特定重合体(B)のジアミン成分に特定ジアミン(3)を用いないことである。
The specific polymer (B) is a polyimide precursor obtained by a reaction between a diamine component containing the specific diamine (2) and a tetracarboxylic acid component or a polyimide obtained by imidizing the polyimide precursor. In that case, the usage-amount of specific diamine (2) is as follows. That is, 5-100 mol% of specific diamine (2) is preferable with respect to the whole diamine component. More preferred is 10 to 95 mol%, and particularly preferred is 15 to 95 mol%. Moreover, in specific diamine (1), 0-40 mol% is preferable with respect to the whole diamine component. More preferred is 0 to 30 mol%, and particularly preferred is 0 to 25 mol%.
However, the usage ratio (mol%) of the specific diamine (1) in the specific polymer (B) to the entire diamine component is 1.0% of the usage ratio (mol%) of the specific diamine (1) in the specific polymer (A). When used, the use ratio (mol%) is such that the ratio is less than 1.0. At that time, when the ratio is 0, that is, when the specific diamine (1) is not used for the diamine component of the specific polymer (B), the voltage holding ratio after being exposed to light irradiation for a long time. This is preferable in that the decrease of the residual charge is suppressed and the relaxation of the residual charge accumulated by the DC voltage is accelerated. Moreover, when using specific diamine (1) for a specific polymer (B), the said ratio has preferable 0.01-0.9. More preferred is 0.01 to 0.8, and particularly preferred is 0.05 to 0.7.
In addition, in specific diamine (3), 0-20 mol% is preferable with respect to the whole diamine component. More preferably, it is 0 to 10 mol%, and particularly preferable is 0 mol%, that is, the specific diamine is added to the diamine component of the specific polymer (B) from the viewpoint that liquid crystal alignment unevenness generated by the ODF method can be reduced. (3) is not used.

特定重合体(C)は、特定ジアミン(3)を含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドである。その際、特定ジアミン(3)の使用割合は、下記の通りである。すなわち、特定ジアミン(3)は、ジアミン成分全体に対して、40〜100モル%が好ましい。より好ましいのは、50〜100モル%であり、特に好ましいのは、60〜100モル%である。また、特定ジアミン(1)においては、ジアミン成分全体に対して、0〜20モル%であることが好ましい。より好ましいのは、0〜10モル%である。但し、特定重合体(C)における特定ジアミン(1)のジアミン成分全体に対する使用割合(モル%)は、特定重合体(A)における特定ジアミン(1)の使用割合(モル%)を1.0にした際に、その比率が1.0未満となる使用割合(モル%)である。その際、その比率が0である場合、即ち、特定重合体(C)のジアミン成分に、特定ジアミン(1)を用いない場合は、長時間光の照射に曝された後での電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早くなる点で好ましい。また、特定重合体(C)に、特定ジアミン(1)を用いる場合は、前記比率が、0.01〜0.4が好ましい。より好ましいのは、0.01〜0.3であり、特に好ましいのは、0.01〜0.2である。
更に、特定ジアミン(3)は、ジアミン成分全体に対して、0〜20モル%が好ましい。より好ましいのは、0〜10モル%であり、特に好ましいのは、長時間光の照射に曝された後での電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早くなる点から、0モル%、即ち、特定重合体(C)のジアミン成分に特定ジアミン(3)を用いないことである。
The specific polymer (C) is a polyimide precursor obtained by a reaction of a diamine component containing the specific diamine (3) and a tetracarboxylic acid component or a polyimide obtained by imidizing the polyimide precursor. In that case, the usage-amount of specific diamine (3) is as follows. That is, 40-100 mol% of specific diamine (3) is preferable with respect to the whole diamine component. More preferred is 50 to 100 mol%, and particularly preferred is 60 to 100 mol%. Moreover, in specific diamine (1), it is preferable that it is 0-20 mol% with respect to the whole diamine component. More preferably, it is 0-10 mol%. However, the usage ratio (mol%) of the specific diamine (1) in the specific polymer (C) to the entire diamine component is 1.0% of the usage ratio (mol%) of the specific diamine (1) in the specific polymer (A). When used, the use ratio (mol%) is such that the ratio is less than 1.0. At that time, when the ratio is 0, that is, when the specific diamine (1) is not used for the diamine component of the specific polymer (C), the voltage holding ratio after being exposed to light irradiation for a long time. This is preferable in that the decrease of the residual charge is suppressed and the relaxation of the residual charge accumulated by the DC voltage is accelerated. Moreover, when using specific diamine (1) for specific polymer (C), the said ratio has preferable 0.01-0.4. More preferred is 0.01 to 0.3, and particularly preferred is 0.01 to 0.2.
Furthermore, 0-20 mol% of specific diamine (3) is preferable with respect to the whole diamine component. More preferably, it is 0 to 10 mol%, and particularly preferable is that the decrease in the voltage holding ratio after being exposed to light irradiation for a long time is suppressed, and the residual charge accumulated by the DC voltage is alleviated. From the point of speed, it is 0 mol%, that is, the specific diamine (3) is not used for the diamine component of the specific polymer (C).

本発明において、全ての特定重合体、すなわち、これらのポリイミド系重合体を作製するための方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と1種又は複数種のジアミンからなるジアミン成分とを反応させて、ポリアミド酸を得る方法が挙げられる。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミンとを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミンとを脱水重縮合反応させてポリアミド酸を得る方法、又はテトラカルボン酸ジハライドと1級又は2級のジアミンとを反応させてポリアミド酸を得る方法が用いられる。   In the present invention, the method for producing all the specific polymers, that is, these polyimide polymers is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Generally, by reacting at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic dianhydride and its derivative, a diamine component consisting of one or more diamines, The method of obtaining a polyamic acid is mentioned. Specifically, tetracarboxylic dianhydride and primary or secondary diamine are polycondensed to obtain polyamic acid, tetracarboxylic acid and primary or secondary diamine are subjected to dehydration polycondensation reaction. A method of obtaining a polyamic acid or a method of obtaining a polyamic acid by reacting a tetracarboxylic acid dihalide with a primary or secondary diamine is used.

ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミンとを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドと1級又は2級のジアミンとを反応させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。
ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。
To obtain the polyamic acid alkyl ester, a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group and a primary or secondary diamine, a tetracarboxylic acid dihalide obtained by dialkyl esterifying a carboxylic acid group, and a primary Alternatively, a method of reacting with a secondary diamine or a method of converting a carboxy group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent with the diamine component and the tetracarboxylic acid component. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples.

例えば、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド又は1,3−ジメチル−イミダゾリジノン等が挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン又は下記式[D−1]〜式[D−3]の溶媒を用いることができる。   For example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone Can be mentioned. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or a solvent represented by the following formula [D-1] to formula [D-3] Can be used.

Figure 0006572912
(Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、更には生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
Figure 0006572912
(D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms.)
These may be used alone or in combination. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the above solvent as long as the generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.

ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま添加する、又は有機溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分及びテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は−20℃〜150℃の任意の温度を選択することができるが、好ましくは−5℃〜100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1〜50%、より好ましくは5〜30%である。重合反応の初期は高濃度で行い、その後、有機溶媒を追加することもできる。
ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8〜1.2であることが好ましい。通常の重合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is added as it is, or dispersed in the organic solvent or Examples include a method of adding by dissolving, a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, and a method of adding a diamine component and a tetracarboxylic acid component alternately. Any of these methods may be used. Moreover, when making it react using multiple types of diamine component and tetracarboxylic acid component, respectively, you may make it react in the state mixed beforehand, you may make it react separately one by one, and it is further made to react individually. May be mixed and reacted to form a polymer. Although the polymerization temperature in that case can select the arbitrary temperature of -20 degreeC-150 degreeC, Preferably it is the range of -5 degreeC-100 degreeC. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50%, more preferably 5 to 30%. The initial stage of the polymerization reaction can be carried out at a high concentration, and then an organic solvent can be added.
In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component and the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to the normal polymerization reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyimide precursor produced.

ポリイミドは、前記のポリイミド前駆体を閉環させて得られるポリイミドであり、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。なかでも、本発明において、全ての特定重合体は、ポリイミド前駆体をイミド化したポリイミドであることが好ましい。その際のイミド化率は、下記の通りであることが好ましい。すなわち、特定重合体(A)は、50〜90%が好ましい。より好ましいのは、55〜90%であり、特に好ましいのは、60〜90%である。特定重合体(B)は、50〜95%が好ましい。より好ましいのは、55〜95%であり、特に好ましいのは、60〜95%である。特定重合体(C)は、50〜90%が好ましい。より好ましいのは、60〜90%であり、特に好ましいのは、60〜80%である。   Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and the ring closure rate (also referred to as imidation rate) of the amic acid group does not necessarily need to be 100%, and can be arbitrarily adjusted according to the application and purpose. can do. Especially, in this invention, it is preferable that all the specific polymers are the polyimides which imidated the polyimide precursor. It is preferable that the imidation ratio in that case is as follows. That is, the specific polymer (A) is preferably 50 to 90%. More preferred is 55 to 90%, and particularly preferred is 60 to 90%. The specific polymer (B) is preferably 50 to 95%. More preferred is 55 to 95%, and particularly preferred is 60 to 95%. The specific polymer (C) is preferably 50 to 90%. 60 to 90% is more preferable, and 60 to 80% is particularly preferable.

ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃〜400℃、好ましくは120℃〜250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量はアミド酸基の1〜50モル倍、好ましくは3〜30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン又はトリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸又は無水ピロメリット酸等を挙げることができる。なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度及び反応時間を調節することにより制御することができる。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, or catalytic imidization in which a catalyst is added to the polyimide precursor solution. The temperature at which the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably performed while removing water generated by the imidization reaction from the system.
The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Of these, pyridine is preferable because it has a basicity suitable for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidation ratio by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature and reaction time.

ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン又は水等を挙げることができる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させて再沈殿回収する操作を2〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒としては、例えば、アルコール類、ケトン類又は炭化水素等が挙げられ、これらから選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。   When recovering the produced polyimide precursor or polyimide from the polyimide precursor or polyimide reaction solution, the reaction solution may be poured into a solvent and precipitated. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer precipitated in the solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. Moreover, when the operation of re-dissolving the precipitated and recovered polymer in an organic solvent and re-precipitation and recovery is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.

ポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000〜1,000,000であることが好ましい。なかでも、10,000〜150,000が好ましい。
前記の通り、本発明における全ての特定重合体は、長時間高温及び光の照射に曝された後でも、安定な垂直安定性を示し、長時間光の照射に曝された後でも、電圧保持率の低下を抑制することができる点から、上述したポリイミド前駆体を触媒イミド化したポリイミドであることが好ましい。その際のイミド化率は、上述した範囲であることが好ましい。
The molecular weight of the polyimide-based polymer is the weight average molecular weight measured by GPC (Gel Permeation Chromatography) when considering the strength of the liquid crystal alignment film obtained therefrom, the workability at the time of forming the liquid crystal alignment film, and the coating properties. It is preferably 5,000 to 1,000,000. Especially, 10,000-150,000 are preferable.
As described above, all the specific polymers in the present invention exhibit stable vertical stability even after being exposed to high temperature and light irradiation for a long time, and maintain voltage even after being exposed to light irradiation for a long time. It is preferable that it is the polyimide which carried out the catalyst imidation of the polyimide precursor mentioned above from the point which can suppress the fall of a rate. The imidation ratio at that time is preferably in the above-described range.

<液晶配向処理剤>
液晶配向処理剤における特定重合体(A)、(B)及び(C)の使用割合は、特定重合体(A)100部に対して、特定重合体(B)は、30〜300部、特定重合体(C)は、60〜500部が好ましい。より好ましいのは、特定重合体(B)は、50〜250部、特定重合体(C)は、100〜350部であり、特に好ましいのは、特定重合体(B)は、50〜200部、特定重合体(C)は、100〜300部である。
<Liquid crystal alignment agent>
The use ratio of the specific polymers (A), (B) and (C) in the liquid crystal aligning agent is 30 to 300 parts of the specific polymer (B) relative to 100 parts of the specific polymer (A). The polymer (C) is preferably 60 to 500 parts. More preferably, the specific polymer (B) is 50 to 250 parts, the specific polymer (C) is 100 to 350 parts, and particularly preferably, the specific polymer (B) is 50 to 200 parts. The specific polymer (C) is 100 to 300 parts.

液晶配向処理剤における全ての重合体成分は、全てが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、全ての特定重合体100部に対して、0.5〜15部が好ましい。より好ましいのは、1〜10部である。それ以外の他の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド又はポリシロキサン等が挙げられる。
液晶配向処理剤中の溶媒は、塗布により均一な液晶配向膜を形成するという点から、液晶配向処理剤中の溶媒の含有量が70〜99.9%が好ましい。この含有量は、目的とする液晶配向膜の膜厚によって適宜変更できる。
All of the polymer components in the liquid crystal aligning agent may be specific polymers, or other polymers may be mixed. At that time, the content of the other polymer is preferably 0.5 to 15 parts with respect to 100 parts of all the specific polymers. More preferred is 1 to 10 parts. Examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrenes, polyamides, and polysiloxanes.
As for the solvent in a liquid-crystal aligning agent, 70-99.9% of content of the solvent in a liquid-crystal aligning agent is preferable from the point that a uniform liquid crystal aligning film is formed by application | coating. This content can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.

本発明の液晶配向処理剤に用いる溶媒は、全ての特定重合体を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に良溶媒の具体例を挙げるが、これらに限定されるものではない。
例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4−ヒドロキシ−4−メチル−2−ペンタノン等が挙げられる。
なかでも、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンを用いることが好ましい。
The solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) which dissolves all the specific polymers. Although the specific example of a good solvent is given to the following, it is not limited to these.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone.
Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferably used.

更に、特定重合体の溶媒への溶解性が高い場合は、前記式[D−1]〜式[D−3]の溶媒を用いることが好ましい。
液晶配向処理剤における良溶媒は、液晶配向処理剤に含まれる溶媒全体の10〜100%であることが好ましい。より好ましいのは、20〜90%である。特に好ましいのは、30〜80%である。
液晶配向処理剤には、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。下記に貧溶媒の具体例を挙げるが、これらに限定されるものではない。
Furthermore, when the solubility of the specific polymer in the solvent is high, it is preferable to use the solvent of the formula [D-1] to the formula [D-3].
The good solvent in the liquid crystal aligning agent is preferably 10 to 100% of the total solvent contained in the liquid crystal aligning agent. More preferably, it is 20 to 90%. Particularly preferred is 30 to 80%.
As long as the effects of the present invention are not impaired, a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied is used as the liquid crystal alignment treatment agent. it can. Although the specific example of a poor solvent is given to the following, it is not limited to these.

具体的には、国際公開公報WO2013/125595(2013.8.29公開)の35頁〜37頁に記載される貧溶媒が挙げられる。   Specifically, the poor solvent described in pages 35 to 37 of International Publication No. WO2013 / 125595 (published 2013.8.29) can be mentioned.

なかでも、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル又は前記式[D−1]〜式[D−3]の溶媒を用いることが好ましい。
これら貧溶媒は、液晶配向処理剤に含まれる溶媒全体の1〜70%であることが好ましい。より好ましいのは、1〜60%である。特に好ましいのは、5〜60%である。
Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, or the above formula [D-1] to formula [D -3] is preferably used.
These poor solvents are preferably 1 to 70% of the total solvent contained in the liquid crystal aligning agent. More preferably, it is 1 to 60%. Particularly preferred is 5 to 60%.

液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基及びシクロカーボネート基からなる群から選ばれる架橋性化合物、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群から選ばれる架橋性化合物、又は重合性不飽和結合基を有する架橋性化合物(総称して特定架橋性化合物ともいう)を導入することが好ましい。その際、これらの基は、化合物中に2個以上有する必要がある。   As long as the effects of the present invention are not impaired, the liquid crystal aligning agent includes a crosslinkable compound selected from the group consisting of an epoxy group, an isocyanate group, an oxetane group and a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound selected from the group consisting of the above or a crosslinkable compound having a polymerizable unsaturated bond group (also collectively referred to as a specific crosslinkable compound). In that case, it is necessary to have two or more of these groups in the compound.

エポキシ基又はイソシアネート基を有する架橋性化合物の例としては、具体的には、国際公開公報WO2013/125595(2013.8.29公開)の37頁〜38頁に記載されるエポキシ基又はイソシアネート基を有する架橋性化合物が挙げられる。   As an example of the crosslinkable compound having an epoxy group or an isocyanate group, specifically, an epoxy group or an isocyanate group described on pages 37 to 38 of International Publication No. WO2013 / 125595 (published 2013.8.29) is used. The crosslinkable compound which has.

オキセタン基を有する架橋性化合物としては、具体的には、国際公開公報WO2011/132751の58頁〜59頁に掲載される式[4a]〜式[4k]で示される架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having an oxetane group include crosslinkable compounds represented by the formulas [4a] to [4k] described on pages 58 to 59 of International Publication WO2011 / 132751.

シクロカーボネート基を有する架橋性化合物としては、具体的には、国際公開公報WO2012/014898の76頁〜82頁に掲載される式[5−1]〜式[5−42]で示される架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having a cyclocarbonate group include the crosslinkability represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication WO2012 / 014898. Compounds.

ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の基を有する架橋性化合物としては、具体的には、国際公開公報2013/125595(2013.8.29公開)の39頁〜40頁に記載されるメラミン誘導体又はベンゾグアナミン誘導体、及び、国際公開公報WO2011/132751(2011.10.27公開)の62頁〜66頁に掲載される、式[6−1]〜式[6−48]で示される架橋性化合物が挙げられる。   As the crosslinkable compound having at least one group selected from the group consisting of a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group, specifically, International Publication No. 2013/125595 (published 2013.8.29) Melamine derivatives or benzoguanamine derivatives described on pages 39 to 40, and formulas [6-1] to formulas published on pages 62 to 66 of International Publication WO2011 / 132751 (published 2011.10.20) And a crosslinkable compound represented by [6-48].

重合性不飽和結合を有する架橋性化合物としては、具体的には、国際公開公報WO2013/125595(2013.8.29公開)の40頁〜41頁に記載される重合性不飽和結合を有する架橋性化合物が挙げられる。   Specific examples of the crosslinkable compound having a polymerizable unsaturated bond include crosslinks having a polymerizable unsaturated bond described on pages 40 to 41 of International Publication WO2013 / 125595 (published 2013.8.29). Compound.

液晶配向処理剤における特定架橋性化合物の含有量は、全ての重合体成分100部に対して、0.1〜100部であることが好ましい。より好ましいのは、架橋反応が進行し目的の効果を発現させるため、0.1〜50部である。特に好ましいのは、1〜30部である。
本発明の液晶配向処理剤には、液晶配向膜中の電荷移動を促進し、素子の電荷抜けを促進させるため、国際公開公報WO2011/132751(2011.10.27公開)の69頁〜73頁に掲載される、式[M1]〜式[M156]の窒素含有複素環アミンを添加できる。このアミンは、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度が0.1〜10%、好ましくは1〜7%の溶液にしてから添加することが好ましい。この溶媒としては、特定重合体を溶解させる有機溶媒であれば特に限定されない。
The content of the specific crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 100 parts with respect to 100 parts of all polymer components. More preferably, the amount is 0.1 to 50 parts because the crosslinking reaction proceeds and the desired effect is exhibited. Particularly preferred is 1 to 30 parts.
In the liquid crystal alignment treatment agent of the present invention, in order to promote charge transfer in the liquid crystal alignment film and promote charge release of the element, pages 69 to 73 of International Publication No. WO2011 / 132751 (2011.10.27 published). The nitrogen-containing heterocyclic amine of the formula [M1] to the formula [M156] described in the above can be added. The amine may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine after forming a solution with a suitable solvent in a concentration of 0.1 to 10%, preferably 1 to 7%. The solvent is not particularly limited as long as it is an organic solvent that dissolves the specific polymer.

液晶配向処理剤には、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を使用できる。更に、液晶配向膜と基板との密着性を向上させる化合物等を使用でできる。
液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。具体的には、国際公開公報WO2013/125595(2013.8.29公開)の42頁〜43頁に記載される界面活性剤が挙げられる。
これら界面活性剤の使用量は、液晶配向処理剤に含有される全ての重合体成分100質量部に対して、0.01〜2質量部が好ましく、より好ましいのは、0.01〜1質量部である。
As long as the effects of the present invention are not impaired, a compound that improves the uniformity of the thickness of the liquid crystal alignment film and the surface smoothness when the liquid crystal alignment treatment agent is applied can be used as the liquid crystal alignment treatment agent. Furthermore, a compound that improves the adhesion between the liquid crystal alignment film and the substrate can be used.
Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. Specific examples include surfactants described on pages 42 to 43 of International Publication No. WO2013 / 125595 (published 2013.8.29).
The amount of these surfactants used is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of all polymer components contained in the liquid crystal alignment treatment agent. Part.

液晶配向膜と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。具体的には、国際公開公報WO2013/125595(2013.8.29公開)の43頁〜44頁に記載される化合物が挙げられる。   Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound. Specific examples include compounds described on pages 43 to 44 of International Publication No. WO2013 / 125595 (published 2013.8.29).

これらの基板との密着させる化合物の使用割合は、液晶配向処理剤に含有される全ての重合体成分100部に対して、0.1〜30部であることが好ましく、より好ましくは1〜20部である。0.1部未満であると密着性向上の効果は期待できず、30部よりも多くなると液晶配向処理剤の保存安定性が悪くなる場合がある。
液晶配向処理剤には、上記以外の化合物の他に、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
The use ratio of the compound to be in close contact with these substrates is preferably 0.1 to 30 parts, more preferably 1 to 20 with respect to 100 parts of all polymer components contained in the liquid crystal aligning agent. Part. If it is less than 0.1 part, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts, the storage stability of the liquid crystal aligning agent may be deteriorated.
In addition to the compounds other than the above, the liquid crystal aligning agent includes a dielectric or conductive material for changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. Substances may be added.

<液晶配向膜・液晶表示素子>
本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射等で配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途等の場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板等のプラスチック基板等も用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極等が形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハ等の不透明な基板も使用でき、この場合の電極としてはアルミ等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film by applying and baking on a substrate and then performing alignment treatment by rubbing treatment, light irradiation or the like. Further, in the case of vertical alignment use etc., it can be used as a liquid crystal alignment film without alignment treatment. The substrate used at this time is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.

液晶配向処理剤の塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法等で行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法等があり、目的に応じてこれらを用いてもよい。
液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブン等の加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30〜300℃、好ましくは30〜250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5〜300nm、より好ましくは10〜100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング又は偏光紫外線照射等で処理する。
A method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method of screen printing, offset printing, flexographic printing, an inkjet method, or the like is generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
After applying the liquid crystal alignment treatment agent on the substrate, it is preferably 30 to 300 ° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven. Can evaporate the solvent at a temperature of 30 to 250 ° C. to obtain a liquid crystal alignment film. If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally aligned or tilted, the fired liquid crystal alignment film is treated by rubbing or irradiation with polarized ultraviolet rays.

本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
液晶セルの作製方法としては、例えば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又はスペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法(ODF方式)等が例示できる。
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
As a method for producing a liquid crystal cell, for example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside, There is a method of pasting the other substrate and injecting liquid crystal under reduced pressure, or a method in which the substrate is pasted after the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed (ODF method), etc. It can be illustrated.

本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300〜400nm、好ましくは310〜360nmである。加熱による重合の場合、加熱温度は40〜120℃、好ましくは60〜80℃である。また、紫外線と加熱を同時に行ってもよい。
上記の液晶表示素子は、PSA方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線等を照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界等を制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。すなわち、本発明の液晶表示素子は、上記した手法により液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御するものとすることができる。
The liquid-crystal aligning agent of this invention has a liquid-crystal layer between a pair of board | substrates provided with the electrode, The liquid crystal containing the polymeric compound superposed | polymerized by at least one of an active energy ray and a heat | fever between a pair of board | substrates. The composition is also preferably used for a liquid crystal display device produced through a step of polymerizing a polymerizable compound by at least one of irradiation with active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray. The ultraviolet light has a wavelength of 300 to 400 nm, preferably 310 to 360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.
The liquid crystal display element controls the pretilt of liquid crystal molecules by the PSA method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method does not require a rubbing process and is suitable for forming a vertical alignment type liquid crystal layer in which it is difficult to control the pretilt by the rubbing process. That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating. Thus, the alignment of liquid crystal molecules can be controlled.

PSA方式の液晶セル作製の一例を挙げるならば、例えば次の通りである。すなわち、上述した作製方法にて液晶セルを作製する。その際の液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基やメタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100部に対して0.01〜10部であることが好ましく、より好ましいのは0.1〜5部である。重合性化合物が0.01部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。   An example of production of a PSA type liquid crystal cell is as follows. That is, a liquid crystal cell is manufactured by the manufacturing method described above. In the liquid crystal at that time, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, it is preferable that a polymeric compound is 0.01-10 parts with respect to 100 parts of a liquid-crystal component, More preferably, it is 0.1-5 parts. When the polymerizable compound is less than 0.01 part, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. When the polymerizable compound is more than 10 parts, the amount of unreacted polymerizable compound increases and the liquid crystal display element is burned. Characteristics are degraded. After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.

更に、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、すなわち、SC−PVAモードにも用いることもできる。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300〜400nm、より好ましいのは310〜360nmである。加熱による重合の場合、加熱温度は40〜120℃、より好ましいのは60〜80℃である。また、紫外線と加熱を同時に行ってもよい。   Furthermore, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. It can also be used for a liquid crystal display element manufactured through a process of disposing a liquid crystal alignment film containing and applying a voltage between the electrodes, that is, the SC-PVA mode. Here, ultraviolet rays are suitable as the active energy ray. As an ultraviolet-ray, a wavelength is 300-400 nm, More preferably, it is 310-360 nm. In the case of polymerization by heating, the heating temperature is 40 to 120 ° C, more preferably 60 to 80 ° C. Moreover, you may perform an ultraviolet-ray and a heating simultaneously.

活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。
SC−PVAモードの液晶セル作製の一例を挙げるならば、例えば次の通りである。すなわち、上述した作製方法にて液晶セルを作製する。その後、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
In order to obtain a liquid crystal alignment film containing a polymerizable group that polymerizes from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, A method using a coalescing component may be mentioned.
An example of the production of the SC-PVA mode liquid crystal cell is as follows. That is, a liquid crystal cell is manufactured by the manufacturing method described above. Thereafter, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.

以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明は、これらに限定して解釈されるものではない。以下で用いる略語は次のとおりである。
(特定ジアミン(1))
A1:1,3−ジアミノ−4−〔4−(トランス−4−n−ヘプチルシクロへキシル)フェノキシ〕ベンゼン
A2:1,3−ジアミノ−5−〔4−(トランス−4−n−ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
A3:1,3−ジアミノ−4−{4−〔トランス−4−(トランス−4−n−ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
A4:下記式[A4]のジアミン
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto. Abbreviations used below are as follows.
(Specific diamine (1))
A1: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene A2: 1,3-diamino-5- [4- (trans-4-n-heptylcyclo) Hexyl) phenoxymethyl] benzene A3: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene A4: the following formula [A4 ] Of diamine

Figure 0006572912
Figure 0006572912

(特定ジアミン(2))

Figure 0006572912
(特定ジアミン(3))
Figure 0006572912
(Specific diamine (2))
Figure 0006572912
(Specific diamine (3))
Figure 0006572912

(その他ジアミン)
D1:p−フェニレンジアミン、 D2:m−フェニレンジアミン
D3:1,3−ジアミノ−4−オクタデシルオキシベンゼン

Figure 0006572912
(Other diamines)
D1: p-phenylenediamine, D2: m-phenylenediamine D3: 1,3-diamino-4-octadecyloxybenzene
Figure 0006572912

(特定テトラカルボン酸二無水物)
E1:1,2,3,4−シクロブタンテトラカルボン酸二無水物
E2:ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物
E3:下記式[E3]のテトラカルボン酸二無水物
E4:下記式[E4]のテトラカルボン酸二無水物
E5:下記式[E5]のテトラカルボン酸二無水物

Figure 0006572912
(Specific tetracarboxylic dianhydride)
E1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride E2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride E3: the following formula [E3] E4: tetracarboxylic dianhydride of the following formula [E4] E5: tetracarboxylic dianhydride of the following formula [E5]
Figure 0006572912

(架橋性化合物)

Figure 0006572912
(Crosslinkable compound)
Figure 0006572912

(溶媒)
NMP:N−メチル−2−ピロリドン、NEP:N−エチル−2−ピロリドン
γ−BL:γ−ブチロラクトン、 BCS:エチレングリコールモノブチルエーテル、PB:プロピレングリコールモノブチルエーテル、DME:ジプロピレングリコールジメチルエーテル、DPM:ジプロピレングリコールモノメチルエーテル
「ポリイミド系重合体の分子量測定」
常温ゲル浸透クロマトグラフィー(GPC)装置(GPC−101、昭和電工社製)、カラム(KD−803,KD−805、Shodex社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000、東ソー社製)及びポリエチレングリコール(分子量:約12,000、4,000及び1,000、ポリマーラボラトリー社製)。
(solvent)
NMP: N-methyl-2-pyrrolidone, NEP: N-ethyl-2-pyrrolidone γ-BL: γ-butyrolactone, BCS: ethylene glycol monobutyl ether, PB: propylene glycol monobutyl ether, DME: dipropylene glycol dimethyl ether, DPM: Dipropylene glycol monomethyl ether "Molecular weight measurement of polyimide polymer"
It measured as follows using the normal temperature gel permeation chromatography (GPC) apparatus (GPC-101, the Showa Denko company make) and column (KD-803, KD-805, the Shodex company make).
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000 and 30,000, manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: about 12 , 4,000, 4,000 and 1,000, manufactured by Polymer Laboratories).

「ポリイミド系重合体のイミド化率の測定」
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO−d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW−ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm〜10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1−α・x/y)×100
(xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
「ポリイミド系重合体の合成」
"Measurement of imidization rate of polyimide polymer"
Add 20 mg of polyimide powder to an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)) and mix with deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane)) Product) (0.53 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring machine (JNW-ECA500, manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidation ratio (%) = (1−α · x / y) × 100
(X is the accumulated proton peak value derived from NH group of amic acid, y is the accumulated peak value of reference proton, α is the reference proton for one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) The number ratio.
"Synthesis of polyimide polymers"

<合成例1>
E2(2.17g,8.67mmol)、A1(2.67g,7.02mmol)、B1(1.28g,5.28mmol)及びD1(0.57g,5.27mmol)をNMP(16.8g)中で混合し、80℃で5時間反応させた後、E1(1.70g,8.67mmol)及びNMP(8.39g)を加え、40℃で6時間反応させ、濃度(樹脂固形分濃度を示す。以下の例でも同じ)が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(1)を得た。このポリイミドのイミド化率は80%であり、数平均分子量(Mn)は17,400、重量平均分子量(Mw)は47,500であった。
<Synthesis Example 1>
E2 (2.17 g, 8.67 mmol), A1 (2.67 g, 7.02 mmol), B1 (1.28 g, 5.28 mmol) and D1 (0.57 g, 5.27 mmol) were added to NMP (16.8 g). After mixing at 80 ° C. for 5 hours, E1 (1.70 g, 8.67 mmol) and NMP (8.39 g) were added and reacted at 40 ° C. for 6 hours to adjust the concentration (resin solid content concentration). A 25% polyamic acid solution was obtained in the following examples.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 4 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (1). The imidation ratio of this polyimide was 80%, the number average molecular weight (Mn) was 17,400, and the weight average molecular weight (Mw) was 47,500.

<合成例2>
E2(0.89g,3.56mmol)、A3(2.35g,5.43mmol)、B1(1.75g,7.22mmol)及びD1(0.59g,5.46mmol)をNMP(16.8g)中で混合し、80℃で5時間反応させた後、E1(2.80g,14.3mmol)及びNMP(8.38g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(2)を得た。このポリイミドのイミド化率は75%であり、Mnは16,100、Mwは44,400であった。
<Synthesis Example 2>
E2 (0.89 g, 3.56 mmol), A3 (2.35 g, 5.43 mmol), B1 (1.75 g, 7.22 mmol) and D1 (0.59 g, 5.46 mmol) NMP (16.8 g) After mixing at 80 ° C. for 5 hours, E1 (2.80 g, 14.3 mmol) and NMP (8.38 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (2). The imidation ratio of this polyimide was 75%, Mn was 16,100, and Mw was 44,400.

<合成例3>
E2(3.06g,12.2mmol)、A2(2.61g,6.61mmol)、B1(1.20g,4.95mmol)及びD1(0.54g,4.99mmol)をNEP(16.4g)中で混合し、80℃で5時間反応させた後、E1(0.80g,4.08mmol)及びNEP(8.21g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NEPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は70%であり、Mnは17,800、Mwは47,600であった。
<Synthesis Example 3>
E2 (3.06 g, 12.2 mmol), A2 (2.61 g, 6.61 mmol), B1 (1.20 g, 4.95 mmol) and D1 (0.54 g, 4.99 mmol) NEP (16.4 g) After mixing at 80 ° C. for 5 hours, E1 (0.80 g, 4.08 mmol) and NEP (8.21 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NEP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (3). The imidation ratio of this polyimide was 70%, Mn was 17,800, and Mw was 47,600.

<合成例4>
E2(2.17g,8.67mmol)、A4(2.16g,4.38mmol)、B1(1.91g,7.88mmol)及びD1(0.57g,5.27mmol)をNMP(17.0g)中で混合し、80℃で5時間反応させた後、E1(1.70g,8.67mmol)及びNMP(8.52g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は65%であり、Mnは15,300、Mwは42,100であった。
<Synthesis Example 4>
E2 (2.17 g, 8.67 mmol), A4 (2.16 g, 4.38 mmol), B1 (1.91 g, 7.88 mmol) and D1 (0.57 g, 5.27 mmol) to NMP (17.0 g) After mixing at 80 ° C. for 5 hours, E1 (1.70 g, 8.67 mmol) and NMP (8.52 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 2.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (4). The imidation ratio of this polyimide was 65%, Mn was 15,300, and Mw was 42,100.

<合成例5>
E3(3.80g,17.0mmol)、A2(2.03g,5.14mmol)、B1(1.66g,6.85mmol)及びD2(0.56g,5.18mmol)をNEP(24.2g)中で混合し、40℃で8時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NEPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は70%であり、Mnは18,600、Mwは48,800であった。
<Synthesis Example 5>
E3 (3.80 g, 17.0 mmol), A2 (2.03 g, 5.14 mmol), B1 (1.66 g, 6.85 mmol) and D2 (0.56 g, 5.18 mmol) NEP (24.2 g) And mixed at 40 ° C. for 8 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NEP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (5). The imidation ratio of this polyimide was 70%, Mn was 18,600, and Mw was 48,800.

<合成例6>
E4(2.60g,8.66mmol)、A2(2.08g,5.27mmol)、B1(1.70g,7.02mmol)及びD1(0.57g,5.27mmol)をNMP(17.3g)中で混合し、80℃で5時間反応させた後、E1(1.70g,8.67mmol)及びNMP(8.65g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は80%であり、Mnは16,300、Mwは45,400であった。
<Synthesis Example 6>
E4 (2.60 g, 8.66 mmol), A2 (2.08 g, 5.27 mmol), B1 (1.70 g, 7.02 mmol) and D1 (0.57 g, 5.27 mmol) were added to NMP (17.3 g). After mixing at 80 ° C. for 5 hours, E1 (1.70 g, 8.67 mmol) and NMP (8.65 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 4 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (6). The imidation ratio of this polyimide was 80%, Mn was 16,300, and Mw was 45,400.

<合成例7>
E2(0.89g,3.56mmol)、A1(2.75g,7.23mmol)、B1(1.31g,5.41mmol)及びD2(0.59g,5.46mmol)をNMP(16.7g)中で混合し、80℃で5時間反応させた後、E1(2.80g,14.3mmol)及びNMP(8.35g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は70%であり、Mnは17,100、Mwは45,900であった。
<Synthesis Example 7>
E2 (0.89 g, 3.56 mmol), A1 (2.75 g, 7.23 mmol), B1 (1.31 g, 5.41 mmol) and D2 (0.59 g, 5.46 mmol) NMP (16.7 g) After mixing at 80 ° C. for 5 hours, E1 (2.80 g, 14.3 mmol) and NMP (8.35 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was performed at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (7). The imidation ratio of this polyimide was 70%, Mn was 17,100, and Mw was 45,900.

<合成例8>
E2(3.06g,12.2mmol)、A1(3.15g,8.28mmol)、B2(0.64g,2.47mmol)及びD2(0.63g,5.83mmol)をNEP(16.6g)中で混合し、80℃で5時間反応させた後、E1(0.80g,4.08mmol)及びNEP(8.28g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NEPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は70%であり、Mnは15,800、Mwは42,100であった。
<Synthesis Example 8>
E2 (3.06 g, 12.2 mmol), A1 (3.15 g, 8.28 mmol), B2 (0.64 g, 2.47 mmol) and D2 (0.63 g, 5.83 mmol) NEP (16.6 g) After mixing at 80 ° C. for 5 hours, E1 (0.80 g, 4.08 mmol) and NEP (8.28 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NEP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (8). The imidation ratio of this polyimide was 70%, Mn was 15,800, and Mw was 42,100.

<合成例9>
E2(0.89g,3.56mmol)、B1(1.75g,7.22mmol)、D1(0.59g,5.46mmol)及びD3(2.04g,5.42mmol)をNMP(16.2g)中で混合し、80℃で5時間反応させた後、E1(2.80g,14.3mmol)及びNMP(8.28g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は75%であり、Mnは16,500、Mwは43,300であった。
<Synthesis Example 9>
E2 (0.89 g, 3.56 mmol), B1 (1.75 g, 7.22 mmol), D1 (0.59 g, 5.46 mmol) and D3 (2.04 g, 5.42 mmol) were added to NMP (16.2 g). After mixing at 80 ° C. for 5 hours, E1 (2.80 g, 14.3 mmol) and NMP (8.28 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (9). The imidation ratio of this polyimide was 75%, Mn was 16,500, and Mw was 43,300.

<合成例10>
E2(0.89g,3.56mmol)、A1(1.38g,3.63mmol)及びB1(3.50g,14.4mmol)をNMP(17.2g)中で混合し、80℃で5時間反応させた後、E1(2.80g,14.3mmol)及びNMP(8.57g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(10)を得た。このポリイミドのイミド化率は90%であり、Mnは17,800、Mwは46,900であった。
<Synthesis Example 10>
E2 (0.89 g, 3.56 mmol), A1 (1.38 g, 3.63 mmol) and B1 (3.50 g, 14.4 mmol) were mixed in NMP (17.2 g) and reacted at 80 ° C. for 5 hours. After that, E1 (2.80 g, 14.3 mmol) and NMP (8.57 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 5 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (10). The imidation ratio of this polyimide was 90%, Mn was 17,800, and Mw was 46,900.

<合成例11>
E2(0.96g,3.84mmol)、A1(1.47g,3.86mmol)、B1(1.88g,7.76mmol)及びD1(0.84g,7.77mmol)をNMP(16.3g)中で混合し、80℃で5時間反応させた後、E1(3.00g,15.3mmol)及びNMP(8.15g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は75%であり、Mnは18,600、Mwは48,300であった。
<Synthesis Example 11>
E2 (0.96 g, 3.84 mmol), A1 (1.47 g, 3.86 mmol), B1 (1.88 g, 7.76 mmol) and D1 (0.84 g, 7.77 mmol) were added to NMP (16.3 g). After mixing at 80 ° C. for 5 hours, E1 (3.00 g, 15.3 mmol) and NMP (8.15 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (11). The imidation ratio of this polyimide was 75%, Mn was 18,600, and Mw was 48,300.

<合成例12>
E2(2.30g,9.19mmol)、B1(4.05g,16.7mmol)及びD2(0.20g,1.85mmol)をNMP(16.7g)中で混合し、80℃で5時間反応させた後、E1(1.80g,9.18mmol)及びNMP(8.35g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で2.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(12)を得た。このポリイミドのイミド化率は65%であり、Mnは22,100、Mwは53,400であった。
<Synthesis Example 12>
E2 (2.30 g, 9.19 mmol), B1 (4.05 g, 16.7 mmol) and D2 (0.20 g, 1.85 mmol) were mixed in NMP (16.7 g) and reacted at 80 ° C. for 5 hours. After that, E1 (1.80 g, 9.18 mmol) and NMP (8.35 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 2.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (12). The imidation ratio of this polyimide was 65%, Mn was 22,100, and Mw was 53,400.

<合成例13>
E2(2.55g,10.2mmol)、A1(1.57g,4.13mmol)、B1(1.07g,4.13mmol)及びD2(1.34g,12.4mmol)をNMP(17.1g)中で混合し、80℃で5時間反応させた後、E1(2.00g,10.2mmol)及びNMP(8.54g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(13)を得た。このポリイミドのイミド化率は75%であり、Mnは17,900、Mwは46,500であった。
<Synthesis Example 13>
E2 (2.55 g, 10.2 mmol), A1 (1.57 g, 4.13 mmol), B1 (1.07 g, 4.13 mmol) and D2 (1.34 g, 12.4 mmol) NMP (17.1 g) After mixing at 80 ° C. for 5 hours, E1 (2.00 g, 10.2 mmol) and NMP (8.54 g) were added, and the mixture was reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (13). The imidation ratio of this polyimide was 75%, Mn was 17,900, and Mw was 46,500.

<合成例14>
E2(2.81g,11.2mmol)及びC1(3.46g,22.7mmol)をNMP(16.9g)中で混合し、80℃で5時間反応させた後、E1(2.20g,11.2mmol)及びNMP(8.46g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(14)を得た。このポリイミドのイミド化率は75%であり、Mnは21,800、Mwは52,100であった。
<Synthesis Example 14>
E2 (2.81 g, 11.2 mmol) and C1 (3.46 g, 22.7 mmol) were mixed in NMP (16.9 g), reacted at 80 ° C. for 5 hours, and then E1 (2.20 g, 11 0.2 mmol) and NMP (8.46 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as an imidization catalyst, and 3.5% at 80 ° C. Reacted for hours. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (14). The imidation ratio of this polyimide was 75%, Mn was 21,800, and Mw was 52,100.

<合成例15>
E2(2.81g,11.2mmol)、C1(2.94g,19.3mmol)及びD2(0.37g,3.42mmol)をNMP(16.6g)中で混合し、80℃で5時間反応させた後、E1(2.20g,11.2mmol)及びNMP(8.31g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(15)を得た。このポリイミドのイミド化率は70%であり、Mnは23,200、Mwは54,200であった。
<Synthesis Example 15>
E2 (2.81 g, 11.2 mmol), C1 (2.94 g, 19.3 mmol) and D2 (0.37 g, 3.42 mmol) were mixed in NMP (16.6 g) and reacted at 80 ° C. for 5 hours. After that, E1 (2.20 g, 11.2 mmol) and NMP (8.31 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was performed at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (15). The imidation ratio of this polyimide was 70%, Mn was 23,200, and Mw was 54,200.

<合成例16>
E5(2.30g,10.8mmol)、C1(2.84g,18.7mmol)及びD2(0.36g,3.33mmol)をNEP(16.4g)中で混合し、80℃で5時間反応させた後、E1(2.30g,10.8mmol)及びNEP(8.21g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NEPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(16)を得た。このポリイミドのイミド化率は70%であり、Mnは20,500、Mwは51,800であった。
<Synthesis Example 16>
E5 (2.30 g, 10.8 mmol), C1 (2.84 g, 18.7 mmol) and D2 (0.36 g, 3.33 mmol) were mixed in NEP (16.4 g) and reacted at 80 ° C. for 5 hours. After that, E1 (2.30 g, 10.8 mmol) and NEP (8.21 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution having a concentration of 25%.
After adding NEP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 3 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (16). The imidation ratio of this polyimide was 70%, Mn was 20,500, and Mw was 51,800.

<合成例17>
E2(2.17g,8.67mmol)、A1(2.67g,7.02mmol)、B1(1.28g,5.28mmol)及びC1(0.80g,5.26mmol)をNMP(17.2g)中で混合し、80℃で5時間反応させた後、E1(1.70g,8.67mmol)及びNMP(8.62g)を加え、40℃で6時間反応させ、濃度が25%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6%に希釈した後、イミド化触媒として無水酢酸(4.50g)及びピリジン(3.30g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(17)を得た。このポリイミドのイミド化率は80%であり、Mnは16,300、Mwは46,300であった。
各合成例で得られたポリイミド系重合体の仔細を表32、表33に纏めて示す。
<Synthesis Example 17>
E2 (2.17 g, 8.67 mmol), A1 (2.67 g, 7.02 mmol), B1 (1.28 g, 5.28 mmol) and C1 (0.80 g, 5.26 mmol) NMP (17.2 g) After mixing at 80 ° C. for 5 hours, E1 (1.70 g, 8.67 mmol) and NMP (8.62 g) were added and reacted at 40 ° C. for 6 hours. A solution was obtained.
After adding NMP to the obtained polyamic acid solution (30.0 g) and diluting to 6%, acetic anhydride (4.50 g) and pyridine (3.30 g) were added as imidization catalysts, and the reaction was carried out at 80 ° C. for 4 hours. I let you. This reaction solution was put into methanol (460 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (17). The imidation ratio of this polyimide was 80%, Mn was 16,300, and Mw was 46,300.
Tables 32 and 33 summarize the details of the polyimide-based polymer obtained in each synthesis example.

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

「液晶配向処理剤のインクジェット塗布性の評価」
後記する実施例3及び実施例8で得られた液晶配向処理剤を用いて、インクジェット塗布性の評価を行った。具体的には、これら液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPA(イソプロピルアルコール)にて洗浄を行ったITO(酸化インジウムスズ)電極付き基板(縦100mm×横100mm,厚さ0.7mm)のITO面に、塗布面積が70×70mm、ノズルピッチが0.423mm、スキャンピッチが0.5mm、塗布速度が40mm/秒の条件で塗布を行った。その際、インクジェット塗布機には、HIS−200(日立プラントテクノロジー社製)を用いた。また、塗布から仮乾燥までの時間は60秒であり、仮乾燥はホットプレート上にて70℃で5分間の条件で行った。
塗布性の評価は、上記で得られた液晶配向膜付き基板の塗膜面を目視観察することで行った。具体的には、塗膜面をナトリウムランプの下で目視観察し、ピンホールの有無を確認した。その結果、いずれの実施例で得られた液晶配向膜とも、塗膜面上にピンホールは見られず、塗膜性に優れた液晶配向膜が得られた。
"Evaluation of inkjet coating properties of liquid crystal alignment treatment agents"
Using the liquid crystal aligning agent obtained in Example 3 and Example 8 which will be described later, the inkjet coating property was evaluated. Specifically, a substrate with an ITO (indium tin oxide) electrode (length: 100 mm) obtained by pressure-filtering these liquid crystal alignment treatment agents with a membrane filter having a pore diameter of 1 μm and washing with pure water and IPA (isopropyl alcohol). The coating was performed on an ITO surface having a width of 100 mm and a thickness of 0.7 mm under the conditions of a coating area of 70 × 70 mm, a nozzle pitch of 0.423 mm, a scan pitch of 0.5 mm, and a coating speed of 40 mm / second. At that time, HIS-200 (manufactured by Hitachi Plant Technology) was used as an inkjet coating machine. The time from application to temporary drying was 60 seconds, and the temporary drying was performed on a hot plate at 70 ° C. for 5 minutes.
The applicability was evaluated by visually observing the coating surface of the substrate with a liquid crystal alignment film obtained above. Specifically, the coating film surface was visually observed under a sodium lamp to confirm the presence or absence of pinholes. As a result, in any of the liquid crystal alignment films obtained in any of the examples, no pinhole was observed on the coating film surface, and a liquid crystal alignment film having excellent coating properties was obtained.

「液晶セルの作製及びプレチルト角の評価(通常セル)」
後記する実施例及び比較例で得られた液晶配向処理剤を用いて、液晶セルの作製及びプレチルト角の評価を行った。具体的には、これら液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPAにて洗浄を行ったITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。なお、実施例3及び実施例8の液晶配向処理剤は、上記の「液晶配向処理剤のインクジェット塗布性の評価」と同様の条件で基板を作製し、その後、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板とした。
"Production of liquid crystal cell and evaluation of pretilt angle (normal cell)"
A liquid crystal cell was prepared and the pretilt angle was evaluated using the liquid crystal aligning agents obtained in Examples and Comparative Examples described later. Specifically, these liquid crystal aligning agents were pressure filtered through a membrane filter having a pore diameter of 1 μm, and washed with pure water and IPA (40 mm long × 30 mm wide, 0.7 mm thick). The ITO substrate is spin-coated on the ITO surface and heated at 100 ° C. for 5 minutes on a hot plate, and at 230 ° C. for 30 minutes in a heat-circulating clean oven. Got. In addition, the liquid crystal aligning agent of Example 3 and Example 8 produced a board | substrate on the conditions similar to said "evaluation of the inkjet applicability | paintability of a liquid crystal aligning agent", and then 230 in a heat circulation type clean oven A heat treatment was carried out at 30 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.

次に、この基板の塗膜面をロール径が120mmのラビング装置で、レーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
その後、ラビング処理後の基板を2枚用意し、塗膜面を内側にして6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、MLC−6608(メルク・ジャパン製)を注入し、注入口を封止して液晶セルを得た。
Next, the coating surface of the substrate is rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. did.
Thereafter, two substrates after the rubbing treatment were prepared, combined with a 6 μm spacer sandwiched with the coating surface on the inside, and the periphery was adhered with a sealing agent to produce an empty cell. MLC-6608 (manufactured by Merck Japan) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.

得られた液晶セルを用いて、プレチルト角の測定を行った。具体的には、液晶のアイソトロピック処理(95℃で5分間加熱処理)を行った後の液晶セル、及びそれを加熱処理(120℃で5時間加熱処理)した後の液晶セルで測定した。
更に、上記と同様の条件で作製した液晶セルを、アイソトロピック処理を行い、その後、365nm換算で10J/cmの紫外線を照射した後の液晶セルも測定した。なお、プレチルト角は、PAS−301(ELSICON製)を用いて室温で測定した。更に、紫外線の照射は、卓上型UV硬化装置(HCT3B28HEX−1)(センライト製)を用いて行った。
評価は、液晶のアイソトロピック処理した後(初期ともいう。)のプレチルト角に対して、加熱処理した後(高温処理後ともいう。)及び紫外線を照射した後(紫外線照射後ともいう。)のプレチルト角の変化が小さいものほど、本評価に優れるとした。表37〜表39中に、各プレチルト角の値を示す。
Using the obtained liquid crystal cell, the pretilt angle was measured. Specifically, the measurement was performed with a liquid crystal cell after performing an isotropic treatment of liquid crystal (heat treatment at 95 ° C. for 5 minutes) and a liquid crystal cell after heat treatment (heat treatment at 120 ° C. for 5 hours).
Further, a liquid crystal cell produced under the same conditions as described above was subjected to isotropic treatment, and then the liquid crystal cell after irradiation with 10 J / cm 2 of ultraviolet rays in terms of 365 nm was also measured. The pretilt angle was measured at room temperature using PAS-301 (manufactured by ELSICON). Furthermore, ultraviolet irradiation was performed using a desktop UV curing device (HCT3B28HEX-1) (manufactured by Senlite).
Evaluation is performed after heat treatment (also referred to after high temperature treatment) and after irradiation with ultraviolet rays (also referred to after ultraviolet irradiation) with respect to the pretilt angle after liquid crystal isotropic treatment (also referred to as initial). The smaller the change in the pretilt angle, the better the evaluation. Tables 37 to 39 show the values of the respective pretilt angles.

「ODF方式で発生する液晶配向ムラの評価」
後記する実施例及び比較例で得られた液晶配向処理剤を用いて、ODF方式で発生する液晶配向ムラの評価を行った。具体的には、これら液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPAにて洗浄を行ったITO電極付き基板(縦100mm×横100mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。なお、実施例3及び実施例8の液晶配向処理剤は、上記の「液晶配向処理剤のインクジェット塗布性の評価」と同様の条件で基板を作製し、その後、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板とした。
"Evaluation of liquid crystal alignment unevenness generated by ODF method"
The liquid crystal alignment unevenness generated by the ODF method was evaluated using the liquid crystal aligning agents obtained in Examples and Comparative Examples described later. Specifically, these liquid crystal aligning agents were pressure filtered through a membrane filter having a pore diameter of 1 μm and washed with pure water and IPA (100 mm long × 100 mm wide, 0.7 mm thick). The ITO substrate is spin-coated on the ITO surface and heated at 100 ° C. for 5 minutes on a hot plate, and at 230 ° C. for 30 minutes in a heat-circulating clean oven. Got. In addition, the liquid crystal aligning agent of Example 3 and Example 8 produced a board | substrate on the conditions similar to said "evaluation of the inkjet applicability | paintability of a liquid crystal aligning agent", and then 230 in a heat circulation type clean oven A heat treatment was carried out at 30 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm.

次に、この基板の塗膜面をロール径が120mmのラビング装置で、レーヨン布を用いて、ロール回転数が1000rpm、ロール進行速度が50mm/sec、押し込み量が0.1mmの条件でラビング処理した。
その後、上記のラビング処理をした基板と処理をしていない基板の2枚用意し、処理をしていない基板の塗膜面に、6μmのスペーサーを散布した。その後、この基板の周囲に紫外線硬化型のシール剤を描画して、ODF法にて、ネマチック液晶(MLC−6608、メルク・ジャパン社製)を、シール剤の内側の塗膜面に、6点滴下し(縦2点×横3点とし、各点の間隔は、上下左右10mmとした)、ラビング処理をした基板を貼り合せて液晶セルを得た。その後、シール剤の硬化のため、液晶セルに、照度60mWのメタルハライドランプを用いて、310nm以下の波長をカットし、365nm換算で5J/cmの紫外線を照射し、更に、熱循環型クリーンオーブン中にて120℃で60分間加熱処理をして、液晶セルを得た。
得られた液晶セルを用いて、液晶滴下痕ムラ、すなわち、液晶配向ムラの確認を行った。具体的には、液晶セルに、AC(交流駆動)5Vの電圧を印加し、偏光板とバックライトを用いて、上記の液晶を滴下した領域の液晶配向ムラの有無を、目視観察にて確認した。
本評価においては、上記において、液晶配向ムラが見られていないものを、本評価に優れるとした(表37〜表39中の良好表示)。
Next, the coating surface of the substrate is rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.1 mm. did.
Thereafter, two substrates, the substrate subjected to the rubbing treatment and the substrate not treated, were prepared, and a 6 μm spacer was sprayed on the coating surface of the substrate not treated. Thereafter, an ultraviolet curable sealant is drawn around the substrate, and nematic liquid crystal (MLC-6608, manufactured by Merck Japan Ltd.) is applied to the surface of the coating on the inner side of the sealant by the ODF method. (2 vertical points × 3 horizontal points, and the interval between each point was 10 mm in the vertical and horizontal directions), and the rubbed substrate was bonded to obtain a liquid crystal cell. Then, in order to cure the sealant, the liquid crystal cell was cut using a metal halide lamp with an illuminance of 60 mW, the wavelength of 310 nm or less was cut, and ultraviolet rays of 5 J / cm 2 were converted in terms of 365 nm. A liquid crystal cell was obtained by heating at 120 ° C. for 60 minutes.
Using the obtained liquid crystal cell, liquid crystal dropping mark unevenness, that is, liquid crystal alignment unevenness was confirmed. Specifically, a voltage of AC (AC drive) 5 V is applied to the liquid crystal cell, and the presence or absence of liquid crystal alignment unevenness in the region where the liquid crystal is dropped is confirmed by visual observation using a polarizing plate and a backlight. did.
In this evaluation, in the above, the liquid crystal alignment unevenness was not observed, and this evaluation was excellent (good display in Tables 37 to 39).

「電圧保持率の評価(通常セル)」
前記の「液晶セルの作製及びプレチルト角の評価(通常セル)」と同様の条件で作製した液晶セルを用いて、電圧保持率の評価を行った。具体的には、上記の手法で得られた液晶セルに、80℃の温度下で1Vの電圧を60μs印加し、50ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR−1、東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:50msの設定で行った。
"Evaluation of voltage holding ratio (normal cell)"
The voltage holding ratio was evaluated using a liquid crystal cell manufactured under the same conditions as those described above for “Preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”. Specifically, a voltage of 1 V is applied to the liquid crystal cell obtained by the above method at a temperature of 80 ° C. for 60 μs, the voltage after 50 ms is measured, and the voltage holding ratio ( (Also referred to as VHR). The measurement was performed using a voltage holding ratio measuring device (VHR-1, manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ± 1 V, Pulse Width: 60 μs, and Flame Period: 50 ms.

更に、上記の液晶セル作製直後の電圧保持率の測定が終わった液晶セルに、卓上型UV硬化装置(HCT3B28HEX−1、センライト社製)を用いて、365nm換算で50J/cmの紫外線を照射し、上記と同様の条件で電圧保持率の測定を行った。
本評価においては、液晶セル作製直後の電圧保持率の値が高く、更に、液晶セル作製直後の電圧保持率の値(初期ともいう)に対して、紫外線照射後の値(紫外線照射後ともいう)の低下が小さいものほど、本評価に優れるとした。表40〜表42中に、各VHRの値を示す。
Further, the liquid crystal cell whose voltage holding ratio was measured immediately after the liquid crystal cell was manufactured was irradiated with ultraviolet rays of 50 J / cm 2 in terms of 365 nm using a desktop UV curing device (HCT3B28HEX-1, manufactured by Senlite). The voltage holding ratio was measured under the same conditions as described above.
In this evaluation, the value of the voltage holding ratio immediately after the production of the liquid crystal cell is high, and further, the value after the ultraviolet irradiation (also called after the ultraviolet irradiation) with respect to the value of the voltage holding ratio immediately after the production of the liquid crystal cell (also referred to as the initial). ), The smaller the decrease, the better the evaluation. In Table 40 to Table 42, the value of each VHR is shown.

「残留電荷の緩和の評価(通常セル)」
前記の「液晶セルの作製及びプレチルト角の評価(通常セル)」と同様の条件で作製した液晶セルを用いて、残留電荷の緩和の評価を行った。具体的には、液晶セルに、直流電圧10Vを30分印加し、1秒間短絡させた後、液晶セル内に発生している電位を1800秒間測定した。そのなかで、50秒後の残留電荷の値を用いて、残留電荷の緩和の評価とした。なお、測定は、6254型液晶物性評価装置(東陽テクニカ社製)を用いた。
更に、上記の液晶セル作製直後の残留電荷の測定が終わった液晶セルに、卓上型UV硬化装置(HCT3B28HEX−1、センライト社製)を用いて、365nm換算で30J/cmの紫外線を照射し、上記と同様の条件で残留電荷の測定を行った。
本評価では、液晶セル作製直後の値(初期ともいう)及び紫外線照射後の残留電荷の値(紫外線照射後ともいう)が小さいものほど、本評価に優れるとした。表40〜表42中に、各残留電荷の値を示す。
"Evaluation of residual charge relaxation (normal cell)"
Evaluation of relaxation of residual charges was performed using a liquid crystal cell manufactured under the same conditions as those described above for “preparation of liquid crystal cell and evaluation of pretilt angle (normal cell)”. Specifically, a DC voltage of 10 V was applied to the liquid crystal cell for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds. Among them, the value of the residual charge after 50 seconds was used to evaluate the relaxation of the residual charge. In addition, the measurement used the 6254 type liquid crystal physical-property evaluation apparatus (Toyo Technica company make).
Furthermore, 30 J / cm 2 of ultraviolet rays in terms of 365 nm were irradiated to the liquid crystal cell for which the residual charge measurement was completed immediately after the liquid crystal cell was manufactured, using a tabletop UV curing device (HCT3B28HEX-1, manufactured by Senlite). The residual charge was measured under the same conditions as described above.
In this evaluation, the smaller the value immediately after the production of the liquid crystal cell (also referred to as initial) and the value of the residual charge after ultraviolet irradiation (also referred to after ultraviolet irradiation), the better the evaluation. Tables 40 to 42 show the values of the residual charges.

「液晶セルの作製及び液晶配向性の評価(PSAセル)」
後記する実施例3及び実施例9で得られた液晶配向処理剤を用いて、液晶セルの作製及び液晶配向性の評価(PSAセル)を行った。具体的には、これら液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPAにて洗浄した中心に10×10mmのパターン間隔20μmのITOが付いたITO付き電極付き基板(縦40mm×横30mm、厚さ0.7mm)と中心に10×40mmのITOが付いたITO付き電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面に、それぞれスピンコートし、ホットプレート上にて100℃で5分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。なお、実施例3の液晶配向処理剤は、上記の「液晶配向処理剤のインクジェット塗布性の評価」と同様の条件で基板を作製し、その後、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板とした。
"Production of liquid crystal cell and evaluation of liquid crystal alignment (PSA cell)"
Using the liquid crystal aligning agent obtained in Example 3 and Example 9 to be described later, production of a liquid crystal cell and evaluation of liquid crystal alignment (PSA cell) were performed. Specifically, these liquid crystal aligning agents are pressure filtered through a membrane filter having a pore size of 1 μm, and washed with pure water and IPA, and an electrode with ITO with an ITO of 10 × 10 mm and a pattern spacing of 20 μm is attached to the center. Spin on each of the ITO surfaces of the substrate (40 mm long x 30 mm wide, 0.7 mm thick) and the electrode-attached substrate (40 mm long x 30 mm wide, 0.7 mm thick) with 10 x 40 mm ITO in the center. Coating was carried out on a hot plate at 100 ° C. for 5 minutes and in a heat circulation clean oven at 230 ° C. for 30 minutes to obtain an ITO substrate with a liquid crystal alignment film having a film thickness of 100 nm. In addition, the liquid crystal aligning agent of Example 3 produced a board | substrate on the conditions similar to said "evaluation of the inkjet applicability | paintability of a liquid crystal aligning agent", and then 30 minutes at 230 degreeC in a heat circulation type clean oven. Heat treatment was performed to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 100 nm.

次に、この2枚の基板を、塗膜面を内側にして、6μmのスペーサー挟んで組み合わせ、シール剤で周囲を接着して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC−6608、メルク・ジャパン社製)に、下記の式の重合性化合物(1)を、ネマティック液晶の100%に対して重合性化合物(1)を0.3%混合した液晶を注入し、その後、注入口を封止して液晶セルを得た。

Figure 0006572912
Next, the two substrates were combined with a 6 μm spacer sandwiched with the coating surface facing inward, and the periphery was adhered with a sealant to produce an empty cell. A polymerizable compound (1) of the following formula is added to a nematic liquid crystal (MLC-6608, manufactured by Merck Japan Ltd.) by vacuum injection into this empty cell, and the polymerizable compound (1) is added to 100% of the nematic liquid crystal. A liquid crystal cell was obtained by injecting 0.3% mixed liquid crystal and then sealing the injection port.
Figure 0006572912

得られた液晶セルに、AC5Vの電圧を印加しながら、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で20J/cmの紫外線照射を行い、液晶の配向方向が制御された液晶セルを得た。液晶セルに紫外線を照射している際の照射装置内の温度は、50℃であった。
その後、この液晶セルの紫外線照射前と紫外線照射後の液晶の応答速度を測定した。応答速度は透過率90%から透過率10%までのT90→T10を測定した。
いずれの実施例で得られた液晶セルは、紫外線照射前の液晶セルに比べて、紫外線照射後の液晶セルの応答速度が早くなったことから、液晶の配向方向が制御されたことを確認した。また、いずれの液晶セルとも、偏光顕微鏡(ECLIPSE E600WPOL、ニコン社製)での観察により、液晶は均一に配向していることを確認した。
While applying a voltage of AC 5 V to the obtained liquid crystal cell, using a metal halide lamp with an illuminance of 60 mW, the wavelength of 350 nm or less was cut, and ultraviolet irradiation of 20 J / cm 2 in terms of 365 nm was performed. A controlled liquid crystal cell was obtained. The temperature in the irradiation apparatus when the liquid crystal cell was irradiated with ultraviolet rays was 50 ° C.
Thereafter, the response speed of the liquid crystal cell before and after ultraviolet irradiation was measured. The response speed was measured as T90 → T10 from 90% transmittance to 10% transmittance.
The liquid crystal cell obtained in any of the examples confirmed that the alignment direction of the liquid crystal was controlled because the response speed of the liquid crystal cell after ultraviolet irradiation was higher than that of the liquid crystal cell before ultraviolet irradiation. . Further, in any liquid crystal cell, it was confirmed by observation with a polarizing microscope (ECLIPSE E600WPOL, manufactured by Nikon Corp.) that the liquid crystal was uniformly aligned.

<実施例1>
合成例1で得られたポリイミド粉末(1)(0.50g)に、NEP(3.92g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.92g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.75g)に、NEP(5.88g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.88g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(9.79g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(9.79g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 1>
NEP (3.92 g) was added to the polyimide powder (1) (0.50 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.92 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (5.88 g) was added to the polyimide powder (10) (0.75 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.88 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NEP (9.79 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (9.79 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (1). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例2>
合成例2で得られたポリイミド粉末(2)(0.50g)に、NEP(3.92g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.35g)及びPB(1.57g)を加え、40℃で4時間攪拌して溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.75g)に、NEP(5.88g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.53g)及びPB(2.35g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(9.79g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.88g)及びPB(3.92g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 2>
NEP (3.92 g) was added to the polyimide powder (2) (0.50 g) obtained in Synthesis Example 2, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.35 g) and PB (1.57 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (5.88 g) was added to the polyimide powder (10) (0.75 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.53 g) and PB (2.35 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NEP (9.79 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.88 g) and PB (3.92 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (2). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例3>
合成例3で得られたポリイミド粉末(3)(0.30g)、合成例10で得られたポリイミド粉末(10)(0.45g)及び合成例14で得られたポリイミド粉末(14)(0.75g)に、NEP(16.5g)及びγ−BL(4.18g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(8.27g)、PB(8.27g)及びDME(4.14g)を加え、40℃で4時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 3>
Polyimide powder (3) (0.30 g) obtained in Synthesis Example 3, polyimide powder (10) (0.45 g) obtained in Synthesis Example 10, and polyimide powder (14) obtained in Synthesis Example 14 (0) NEP (16.5 g) and γ-BL (4.18 g) were added to .75 g) and dissolved by stirring at 70 ° C. for 24 hours. BCS (8.27g), PB (8.27g) and DME (4.14g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (3). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例4>
合成例4で得られたポリイミド粉末(4)(0.80g)に、NMP(6.27g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.02g)及びDME(1.25g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例12で得られたポリイミド粉末(12)(0.80g)に、NMP(6.27g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.02g)及びDME(1.25g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.07g)に、NMP(8.36g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(6.68g)及びDME(1.67g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 4>
NMP (6.27 g) was added to the polyimide powder (4) (0.80 g) obtained in Synthesis Example 4, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.02 g) and DME (1.25 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NMP (6.27 g) was added to the polyimide powder (12) (0.80 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.02 g) and DME (1.25 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NMP (8.36 g) was added to the polyimide powder (14) (1.07 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (6.68 g) and DME (1.67 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (4). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例5>
合成例5で得られたポリイミド粉末(5)(0.80g)に、NEP(7.52g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)及びPB(2.51g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.80g)に、NEP(7.52g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)及びPB(2.51g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.07g)に、NEP(10.0g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.34g)及びPB(3.34g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 5>
NEP (7.52 g) was added to the polyimide powder (5) (0.80 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.51 g) and PB (2.51 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (7.52 g) was added to the polyimide powder (10) (0.80 g) obtained in Synthesis Example 10 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.51 g) and PB (2.51 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NEP (10.0 g) was added to the polyimide powder (14) (1.07 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.34 g) and PB (3.34 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (5). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例6>
合成例6で得られたポリイミド粉末(6)(0.50g)、合成例10で得られたポリイミド粉末(10)(0.75g)及び合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(21.5g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(17.6g)を加え、40℃で4時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 6>
Polyimide powder (6) (0.50 g) obtained in Synthesis Example 6, polyimide powder (10) (0.75 g) obtained in Synthesis Example 10, and polyimide powder (14) (1) obtained in Synthesis Example 14 (1 NEP (21.5 g) was added to 25 g) and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (17.6 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (6). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例7>
合成例7で得られたポリイミド粉末(7)(0.80g)に、NMP(3.76g)及びNEP(3.76g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)及びPB(2.51g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.80g)に、NMP(3.76g)及びNEP(3.76g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)及びPB(2.51g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.07g)に、NMP(5.02g)及びNEP(5.02g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.34g)及びPB(3.34g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 7>
NMP (3.76 g) and NEP (3.76 g) were added to the polyimide powder (7) (0.80 g) obtained in Synthesis Example 7, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.51 g) and PB (2.51 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NMP (3.76 g) and NEP (3.76 g) were added to the polyimide powder (10) (0.80 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.51 g) and PB (2.51 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NMP (5.02 g) and NEP (5.02 g) were added to the polyimide powder (14) (1.07 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.34 g) and PB (3.34 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (7). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例8>
合成例8で得られたポリイミド粉末(8)(0.30g)、合成例10で得られたポリイミド粉末(10)(0.45g)及び合成例14で得られたポリイミド粉末(14)(0.75g)に、NEP(12.4g)及びγ−BL(6.21g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(8.27g)及びPB(14.5g)を加え、40℃で4時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 8>
Polyimide powder (8) (0.30 g) obtained in Synthesis Example 8, polyimide powder (10) (0.45 g) obtained in Synthesis Example 10, and polyimide powder (14) obtained in Synthesis Example 14 (0) NEP (12.4 g) and γ-BL (6.21 g) were added to .75 g) and dissolved by stirring at 70 ° C. for 24 hours. BCS (8.27g) and PB (14.5g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (8). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例9>
合成例1で得られたポリイミド粉末(1)(0.50g)に、NEP(5.09g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.18g)及びPB(1.57g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例11で得られたポリイミド粉末(11)(0.75g)に、NEP(7.64g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.76g)及びPB(2.35g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(12.7g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.94g)及びPB(3.92g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 9>
NEP (5.09 g) was added to the polyimide powder (1) (0.50 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.18 g) and PB (1.57 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (7.64 g) was added to the polyimide powder (11) (0.75 g) obtained in Synthesis Example 11, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.76 g) and PB (2.35 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NEP (12.7 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.94 g) and PB (3.92 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (9). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例10>
合成例5で得られたポリイミド粉末(5)(0.50g)に、NEP(4.70g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(3.13g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例12で得られたポリイミド粉末(12)(0.75g)に、NEP(7.05g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(4.70g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(11.8g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(7.83g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 10>
NEP (4.70 g) was added to the polyimide powder (5) (0.50 g) obtained in Synthesis Example 5, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (3.13 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (7.05 g) was added to the polyimide powder (12) (0.75 g) obtained in Synthesis Example 12, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (4.70 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
Furthermore, NEP (11.8 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (7.83 g) was added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (10). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例11>
合成例1で得られたポリイミド粉末(1)(0.50g)に、NEP(4.70g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(0.78g)及びPB(2.35g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例13で得られたポリイミド粉末(13)(0.75g)に、NEP(7.05g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.18g)及びPB(3.53g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(11.8g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.96g)及びPB(5.88g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 11>
NEP (4.70 g) was added to the polyimide powder (1) (0.50 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. BCS (0.78g) and PB (2.35g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
On the other hand, NEP (7.05 g) was added to the polyimide powder (13) (0.75 g) obtained in Synthesis Example 13 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.18 g) and PB (3.53 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Furthermore, NEP (11.8 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.96 g) and PB (5.88 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (11). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例12>
合成例1で得られたポリイミド粉末(1)(0.80g)に、NMP(6.27g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.51g)及びPB(3.76g)を加え、40℃で4時間攪拌して、溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.53g)に、NMP(4.18g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(1.67g)及びPB(2.51g)を加え、40℃で4時間攪拌して、溶液を得た。
更に、合成例15で得られたポリイミド粉末(15)(1.33g)に、NMP(10.4g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(4.18g)及びPB(6.27g)を加え、40℃で4時間攪拌して、溶液を得た。
上記で得られた3つの溶液を混合し、更に、M1(0.19g)を加え、40℃で6時間攪拌して、液晶配配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 12>
NMP (6.27 g) was added to the polyimide powder (1) (0.80 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.51 g) and PB (3.76 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NMP (4.18 g) was added to the polyimide powder (10) obtained in Synthesis Example 10 (0.53 g) and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (1.67 g) and PB (2.51 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Furthermore, NMP (10.4 g) was added to the polyimide powder (15) obtained in Synthesis Example 15 (1.33 g), and the mixture was dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (4.18 g) and PB (6.27 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed, M1 (0.19 g) was further added, and the mixture was stirred at 40 ° C. for 6 hours to obtain a liquid crystal alignment treatment agent (12). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例13>
合成例1で得られたポリイミド粉末(1)(0.80g)、合成例10で得られたポリイミド粉末(10)(0.80g)及び合成例16で得られたポリイミド粉末(16)(1.07g)に、NEP(20.9g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(8.36g)及びPB(12.5g)を加え、40℃で4時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 13>
Polyimide powder (1) (0.80 g) obtained in Synthesis Example 1, polyimide powder (10) (0.80 g) obtained in Synthesis Example 10, and polyimide powder (16) obtained in Synthesis Example 16 (1) 0.07 g) was added NEP (20.9 g) and dissolved by stirring at 70 ° C. for 24 hours. BCS (8.36g) and PB (12.5g) were added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the liquid-crystal aligning agent (13). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<実施例14>
合成例1で得られたポリイミド粉末(1)(0.80g)、合成例10で得られたポリイミド粉末(10)(0.80g)及び合成例16で得られたポリイミド粉末(16)(1.07g)に、NEP(20.9g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、PB(12.5g)及びDPM(8.36g)を加え、40℃で4時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Example 14>
Polyimide powder (1) (0.80 g) obtained in Synthesis Example 1, polyimide powder (10) (0.80 g) obtained in Synthesis Example 10, and polyimide powder (16) obtained in Synthesis Example 16 (1) 0.07 g) was added NEP (20.9 g) and dissolved by stirring at 70 ° C. for 24 hours. To this solution, PB (12.5 g) and DPM (8.36 g) were added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (22). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例1>
合成例1で得られたポリイミド粉末(1)(2.50g)に、NEP(19.6g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(19.6g)を加え、40℃で4時間攪拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
NEP (19.6 g) was added to the polyimide powder (1) (2.50 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (19.6 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (14). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例2>
合成例10で得られたポリイミド粉末(10)(2.50g)に、NEP(19.6g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(19.6g)を加え、40℃で4時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative example 2>
NEP (19.6 g) was added to the polyimide powder (10) (2.50 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (19.6 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (15). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例3>
合成例14で得られたポリイミド粉末(14)(2.50g)に、NEP(19.6g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(19.6g)を加え、40℃で4時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 3>
NEP (19.6 g) was added to the polyimide powder (14) (2.50 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (19.6 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (16). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例4>
合成例1で得られたポリイミド粉末(1)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
上記で得られた2つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative example 4>
NEP (10.2 g) was added to the polyimide powder (1) (1.30 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
On the other hand, NEP (10.2 g) was added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
The two solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (17). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例5>
合成例1で得られたポリイミド粉末(1)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
一方、合成例14で得られたポリイミド粉末(14)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
上記で得られた2つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 5>
NEP (10.2 g) was added to the polyimide powder (1) (1.30 g) obtained in Synthesis Example 1, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
On the other hand, NEP (10.2 g) was added to the polyimide powder (14) (1.30 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
The two solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (18). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例6>
合成例10で得られたポリイミド粉末(10)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
一方、合成例14で得られたポリイミド粉末(14)(1.30g)に、NEP(10.2g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(10.2g)を加え、40℃で4時間攪拌して溶液を得た。
上記で得られた2つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 6>
NEP (10.2 g) was added to the polyimide powder (10) (1.30 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
On the other hand, NEP (10.2 g) was added to the polyimide powder (14) (1.30 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. BCS (10.2g) was added to this solution, and it stirred at 40 degreeC for 4 hours, and obtained the solution.
The two solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (19). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例7>
合成例9で得られたポリイミド粉末(9)(0.50g)に、NEP(3.92g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(2.35g)及びPB(1.57g)を加え、40℃で4時間攪拌して溶液を得た。
一方、合成例10で得られたポリイミド粉末(10)(0.75g)に、NEP(5.88g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(3.53g)及びPB(2.35g)を加え、40℃で4時間攪拌して溶液を得た。
更に、合成例14で得られたポリイミド粉末(14)(1.25g)に、NEP(9.79g)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(5.88g)及びPB(3.92g)を加え、40℃で4時間攪拌して溶液を得た。
上記で得られた3つの溶液を混合し、40℃で4時間攪拌して、液晶配配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 7>
NEP (3.92 g) was added to the polyimide powder (9) (0.50 g) obtained in Synthesis Example 9 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (2.35 g) and PB (1.57 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
On the other hand, NEP (5.88 g) was added to the polyimide powder (10) (0.75 g) obtained in Synthesis Example 10, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (3.53 g) and PB (2.35 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
Further, NEP (9.79 g) was added to the polyimide powder (14) (1.25 g) obtained in Synthesis Example 14, and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (5.88 g) and PB (3.92 g) were added and stirred at 40 ° C. for 4 hours to obtain a solution.
The three solutions obtained above were mixed and stirred at 40 ° C. for 4 hours to obtain a liquid crystal alignment treatment agent (20). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

<比較例8>
合成例17で得られたポリイミド粉末(17)(2.50g)に、NEP(19.6)を加え、70℃で24時間攪拌して溶解させた。この溶液に、BCS(19.6g)を加え、40℃で4時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出等の異常は見られず、均一な溶液であることが確認された。
<Comparative Example 8>
NEP (19.6) was added to the polyimide powder (17) (2.50 g) obtained in Synthesis Example 17 and dissolved by stirring at 70 ° C. for 24 hours. To this solution, BCS (19.6 g) was added and stirred at 40 ° C. for 4 hours to obtain a liquid crystal aligning agent (21). This liquid crystal alignment treatment agent was confirmed to be a uniform solution without any abnormalities such as turbidity and precipitation.

上記の実施例及び比較例で得られた各液晶配向処理剤のまとめを表34〜表36に示す。また、これらの液晶配向処理剤を使用した液晶表示素子評価の結果を、表表37〜表42に示す。
なお、表中、*1:全ての重合体100部に対する特定重合体(A)の導入量(部)を示す。
*2は全ての重合体100部に対する特定重合体(B)の導入量(部)、*3は全ての重合体100部に対する特定重合体(C)の導入量(部)、*4は全ての重合体100部に対するその他重合体の導入量(部)、*5は液晶配向処理剤中の全ての重合体の占める含有割合(固形分濃度)を示す。
The summary of each liquid-crystal aligning agent obtained by said Example and comparative example is shown in Table 34-Table 36. In addition, Tables 37 to 42 show the results of liquid crystal display element evaluation using these liquid crystal alignment treatment agents.
In the table, * 1: An introduction amount (parts) of the specific polymer (A) with respect to 100 parts of all polymers is shown.
* 2 is the introduction amount (parts) of the specific polymer (B) to 100 parts of all polymers, * 3 is the introduction amount (parts) of the specific polymer (C) to 100 parts of all polymers, and * 4 is all The amount (parts) of the other polymer introduced relative to 100 parts of the polymer, * 5 indicates the content ratio (solid content concentration) of all the polymers in the liquid crystal aligning agent.

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
*1:液晶を滴下した領域に、丸状の配向ムラが見られた。
Figure 0006572912
* 1: Round alignment unevenness was observed in the region where the liquid crystal was dropped.

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

Figure 0006572912
Figure 0006572912

上記の結果からわかるように、実施例の液晶配向処理剤は、比較例の液晶配向処理剤に比べて、液晶セルに、高温処理及び紫外線照射を行っても、安定なプレチルト角を示した。また、ODF方式で発生する液晶配向ムラを軽減することができた。更には、液晶セルに紫外線照射を行っても、電圧保持率の低下を抑制し、かつ直流電圧により蓄積する残留電荷の緩和が早い結果となった。   As can be seen from the above results, the liquid crystal aligning agent of the example showed a stable pretilt angle even when the liquid crystal cell was subjected to high temperature treatment and ultraviolet irradiation, as compared with the liquid crystal aligning agent of the comparative example. Further, liquid crystal alignment unevenness generated by the ODF method could be reduced. Furthermore, even when the liquid crystal cell was irradiated with ultraviolet light, the decrease in the voltage holding ratio was suppressed, and the residual charge accumulated by the DC voltage was quickly relaxed.

即ち、特定重合体(A)、(B)及び(C)の3種を用いた液晶配向処理剤の実施例と、それらの1種しか用いていない比較例との比較において、比較例では、本発明の全ての効果を満たすことができなかった。具体的には、実施例1と、比較例1、2又3との比較、また、実施例1と、比較例4、5又は6との比較に示される。   That is, in the comparison example of the liquid crystal alignment treatment agent using three kinds of specific polymers (A), (B) and (C) and a comparative example using only one of them, in the comparative example, All the effects of the present invention could not be satisfied. Specifically, it is shown in the comparison between Example 1 and Comparative Examples 1, 2, or 3, and the comparison between Example 1 and Comparative Examples 4, 5, or 6.

更に、特定ジアミン(1)を用いた実施例2と、従来のアルキル基型の側鎖構造を有するジアミンを用いた比較例との比較において、比較例7の液晶配向処理剤では、本発明の全ての効果を満たすことができなかった。
また、実施例1と、特定ジアミン(1)、(2)及び(3)を全てを用いた比較例8との比較において、比較例8では、本発明の全ての効果、特に、ODF方式で発生する液晶配向ムラの発生と、長時間光の照射に曝された後での電圧保持率の低下に対して、劣る結果が得られた。
Furthermore, in the comparison between Example 2 using the specific diamine (1) and the comparative example using the conventional diamine having an alkyl group-type side chain structure, the liquid crystal aligning agent of Comparative Example 7 is All the effects could not be satisfied.
Further, in comparison between Example 1 and Comparative Example 8 using all of the specific diamines (1), (2) and (3), Comparative Example 8 shows all the effects of the present invention, in particular, the ODF method. Inferior results were obtained with respect to the occurrence of uneven liquid crystal alignment and a decrease in voltage holding ratio after exposure to light irradiation for a long time.

本発明の液晶配向処理剤は、VAモード、PSAモード及びSC−PVAモードを用いた液晶表示素子、特に、TN素子、STN素子、TFT液晶素子、特に垂直配向型の液晶表示素子に有用である。本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、大画面で高精細の液晶テレビ、中小型のカーナビゲーションシステム、スマートフォン等に好適に利用できる。   The liquid crystal aligning agent of the present invention is useful for liquid crystal display elements using VA mode, PSA mode and SC-PVA mode, particularly TN elements, STN elements, TFT liquid crystal elements, particularly vertical alignment type liquid crystal display elements. . A liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can be suitably used for a large-screen, high-definition liquid crystal television, a small-sized car navigation system, a smartphone, and the like.

なお、2014年12月25日に出願された日本特許出願2014−262605号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。   The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2014-262605 filed on December 25, 2014 are cited herein as disclosure of the specification of the present invention. Incorporate.

Claims (19)

下記の(A)成分、(B)成分及び(C)成分を含有する液晶配向処理剤。
(A)成分:下記式[1]の構造を有するジアミン、及び下記式[2]の構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。
(B)成分:下記式[2]の構造を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。
(C):カルボキシ基(COOH基)及びヒドロキシ基(OH基)からなる群から選ばれる少なくとも1種の置換基を有するジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミド。
Figure 0006572912
(Xは単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Xは単結合又は−(CH−(bは1〜15の整数である)を示す。X3は単結合、−(CH2−(cは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種を示す。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。Xはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を示し、これらの環状基上の任意の水素原子が、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。nは0〜4の整数を示す。Xは炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシ基及び炭素数1〜18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006572912
(Wは−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−CHO−、−OCO−、−CON(CH)−及び−N(CH)CO−からなる群から選ばれる少なくとも1種の結合基を示す。Wは単結合、炭素数1〜20のアルキレン基、非芳香族環及び芳香族環からなる群から選ばれる少なくとも1種を示す。Wは単結合、−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−COO−、−OCO−、−CON(CH)−、−N(CH)CO−及び−O(CH−(mは1〜5の整数を示す)からなる群から選ばれる少なくとも1種を示す。Wは窒素含有芳香族複素環を示す。)
Liquid crystal aligning agent containing the following (A) component, (B) component, and (C) component.
Component (A): a polyimide precursor obtained by reaction of a diamine having a structure of the following formula [1] and a diamine component having a structure of the following formula [2] with a tetracarboxylic acid component or the polyimide Polyimide with imidized precursor.
(B) Component: A polyimide precursor obtained by reaction of a diamine component containing a diamine having the structure of the following formula [2] and a tetracarboxylic acid component or a polyimide obtained by imidizing the polyimide precursor.
(C): a polyimide obtained by reaction of a diamine component containing a diamine having at least one substituent selected from the group consisting of a carboxy group (COOH group) and a hydroxy group (OH group) with a tetracarboxylic acid component The polyimide which imidized the precursor or this polyimide precursor.
Figure 0006572912
(X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ). —, —N (CH 3 ) CO—, —COO—, and —OCO— represent at least one linking group selected from the group consisting of X 2 is a single bond or — (CH 2 ) b — (b is 1 X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— and —. X 4 represents at least one selected from the group consisting of OCO-, and X 4 has at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring, or a carbon number of 17 to 17 having a steroid skeleton. 51 represents a divalent organic group, and an arbitrary hydrogen atom on the cyclic group has 1 to 3 carbon atoms. An alkyl group, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom, X 5 may be a benzene ring, And at least one cyclic group selected from the group consisting of a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, It may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxy group having 1 to 3 carbon atoms, or a fluorine atom, n is an integer of 0 to 4. X 6 is 1 to 18 carbon atoms. Selected from the group consisting of an alkyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, and a fluorine-containing alkoxy group having 1 to 18 carbon atoms. Even without showing one.)
Figure 0006572912
(W 1 is —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCO—, —CON (CH 3 ) — and —N (CH 3 ) at least one linking group selected from the group consisting of CO-, wherein W 2 is at least one selected from the group consisting of a single bond, an alkylene group having 1 to 20 carbon atoms, a non-aromatic ring and an aromatic ring. W 3 represents a single bond, —O—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, —OCO—, —CON (CH 3 ) —, At least one selected from the group consisting of —N (CH 3 ) CO— and —O (CH 2 ) m — (m represents an integer of 1 to 5), W 4 represents a nitrogen-containing aromatic heterocyclic ring; Show.)
前記式[1]の構造を有するジアミンが、前記(A)成分におけるジアミン成分にのみ用いられる請求項1に記載の液晶配向処理剤。   The liquid crystal aligning agent of Claim 1 in which the diamine which has the structure of said Formula [1] is used only for the diamine component in the said (A) component. 前記(A)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)を1.0にした際、前記(B)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)が、0.01〜0.8の比率である請求項1に記載の液晶配向処理剤。   When the use ratio (mol%) of the diamine having the structure represented by the formula [1] in the component (A) to the diamine component is 1.0, the formula [1] in the component (B) is used. The liquid-crystal aligning agent of Claim 1 whose usage-amount (mol%) with respect to the whole diamine component of the diamine which has a structure is 0.01-0.8. 前記(A)成分における前記式[1]で示される構造を有するジアミンの、ジアミン成分全体に対する使用割合(モル%)を1.0にした際、前記(C)成分における前記式[1]で示される構造を有するジアミンのジアミン成分全体に対する使用割合(モル%)が、0.01〜0.3の比率である請求項1又は3に記載の液晶配向処理剤。   When the usage ratio (mol%) of the diamine having the structure represented by the formula [1] in the component (A) to the diamine component is 1.0, the formula [1] in the component (C) The liquid-crystal aligning agent of Claim 1 or 3 whose usage-amount (mol%) with respect to the whole diamine component of the diamine which has a structure shown is a ratio of 0.01-0.3. 前記カルボキシ基(COOH基)及びヒドロキシ基(OH基)からなる群から選ばれる少なくとも1種の置換基を有するジアミンが、前記(C)成分におけるジアミン成分にのみ用いられる請求項1〜4のいずれか一項に記載の液晶配向処理剤。   The diamine having at least one substituent selected from the group consisting of the carboxy group (COOH group) and the hydroxy group (OH group) is used only for the diamine component in the component (C). The liquid crystal aligning agent according to claim 1. 前記式[1]の構造を有するジアミンが、下記式[1a]で示される請求項1〜5のいずれか一項に記載の液晶配向処理剤。
Figure 0006572912
(Xは前記式[1]の構造を示す。n1は1〜4の整数を示す。)
The liquid-crystal aligning agent as described in any one of Claims 1-5 by which the diamine which has the structure of said Formula [1] is shown by following formula [1a].
Figure 0006572912
(X shows the structure of said Formula [1]. N1 shows the integer of 1-4.)
前記式[2]の構造を有するジアミンが、下記式[2a]で示される請求項1〜6のいずれか一項に記載の液晶配向処理剤。
Figure 0006572912
(Wは前記式[2]の構造を示す。p1は1〜4の整数を示す。)
The liquid-crystal aligning agent as described in any one of Claims 1-6 by which the diamine which has the structure of the said Formula [2] is shown by following formula [2a].
Figure 0006572912
(W represents the structure of the formula [2]. P1 represents an integer of 1 to 4.)
前記カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の置換基を有するジアミンが、下記の式[3a]で示される請求項1〜7のいずれか一項に記載の液晶配向処理剤。
Figure 0006572912
(Yは下記式[3−1]又は式[3−2]の構造を示す。m1は1〜4の整数を示す。)
Figure 0006572912
(a及びbはそれぞれ、0〜4の整数を示す。)
The liquid crystal aligning agent according to any one of claims 1 to 7, wherein the diamine having at least one substituent selected from the group consisting of the carboxy group and the hydroxy group is represented by the following formula [3a].
Figure 0006572912
(Y represents the structure of the following formula [3-1] or [3-2]. M1 represents an integer of 1 to 4.)
Figure 0006572912
(A and b each represent an integer of 0 to 4)
前記(A)成分、(B)成分及び(C)成分におけるテトラカルボン酸成分が、下記式[4]のテトラカルボン酸二無水物を含む請求項1〜8のいずれか一項に記載の液晶配向処理剤。
Figure 0006572912
(Zは下記式[4a]〜式[4k]からなる群から選ばれる少なくとも1種の構造を示す。)
Figure 0006572912
(Z〜Zはそれぞれ独立して、水素原子、メチル基、塩素原子及びベンゼン環からなる群から選ばれる少なくとも1種を示す。Z及びZはそれぞれ独立して、水素原子又はメチル基を示す。)
The liquid crystal as described in any one of Claims 1-8 in which the tetracarboxylic acid component in the said (A) component, (B) component, and (C) component contains the tetracarboxylic dianhydride of following formula [4]. Alignment treatment agent.
Figure 0006572912
(Z represents at least one structure selected from the group consisting of the following formulas [4a] to [4k].)
Figure 0006572912
(Z 1 to Z 4 each independently represents at least one selected from the group consisting of a hydrogen atom, a methyl group, a chlorine atom and a benzene ring. Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group. Group.)
N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンからなる群から選ばれる少なくとも1種の溶媒を含有する請求項1〜9のいずれか一項に記載の液晶配向処理剤。   The liquid-crystal aligning agent as described in any one of Claims 1-9 containing the at least 1 sort (s) of solvent chosen from the group which consists of N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and (gamma) -butyrolactone. . 1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル及び下記式[D1]〜式[D3]からなる群から選ばれる少なくとも1種の溶媒を含有する請求項1〜10のいずれか一項に記載の液晶配向処理剤。
Figure 0006572912
(Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, and the group consisting of the following formulas [D1] to [D3] The liquid-crystal aligning agent as described in any one of Claims 1-10 containing the at least 1 sort (s) of solvent chosen.
Figure 0006572912
(D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents an alkyl group having 1 to 4 carbon atoms.)
エポキシ基、イソシアネート基、オキセタン基及びシクロカーボネート基からなる群から選ばれる少なくとも1種の基を有する架橋性化合物、ヒドロキシ基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群から選ばれる少なくとも1種の基を有する架橋性化合物、又は重合性不飽和結合基を有する架橋性化合物を含有する請求項1〜11のいずれか一項に記載の液晶配向処理剤。   A crosslinkable compound having at least one group selected from the group consisting of an epoxy group, an isocyanate group, an oxetane group and a cyclocarbonate group, at least one selected from the group consisting of a hydroxy group, a hydroxyalkyl group and a lower alkoxyalkyl group The liquid crystal aligning agent as described in any one of Claims 1-11 containing the crosslinkable compound which has a group, or the crosslinkable compound which has a polymerizable unsaturated bond group. 請求項1〜12のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。   The liquid crystal aligning film obtained from the liquid-crystal aligning agent as described in any one of Claims 1-12. 請求項1〜12のいずれか一項に記載の液晶配向処理剤をインクジェット法により塗布して得られる液晶配向膜。   The liquid crystal aligning film obtained by apply | coating the liquid-crystal aligning agent as described in any one of Claims 1-12 by the inkjet method. 請求項13又は14に記載の液晶配向膜を有する液晶表示素子。   The liquid crystal display element which has a liquid crystal aligning film of Claim 13 or 14. 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられる請求項13又は14に記載の液晶配向膜。   A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes The liquid crystal aligning film of Claim 13 or 14 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric compound, applying a voltage in between. 請求項16に記載の液晶配向膜を有する液晶表示素子。   The liquid crystal display element which has a liquid crystal aligning film of Claim 16. 電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、前記電極間に電圧を印加しつつ前記重合性基を重合させる工程を経て製造される液晶表示素子に用いられる請求項13又は14に記載の液晶配向膜。   A liquid crystal layer between a pair of substrates provided with electrodes, and a liquid crystal alignment film containing a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates; The liquid crystal aligning film of Claim 13 or 14 used for the liquid crystal display element manufactured through the process of superposing | polymerizing the said polymeric group, applying a voltage in between. 請求項18に記載の液晶配向膜を有する液晶表示素子。   The liquid crystal display element which has a liquid crystal aligning film of Claim 18.
JP2016566467A 2014-12-25 2015-12-24 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element Active JP6572912B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014262605 2014-12-25
JP2014262605 2014-12-25
PCT/JP2015/086082 WO2016104636A1 (en) 2014-12-25 2015-12-24 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Publications (2)

Publication Number Publication Date
JPWO2016104636A1 JPWO2016104636A1 (en) 2017-11-02
JP6572912B2 true JP6572912B2 (en) 2019-09-11

Family

ID=56150649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016566467A Active JP6572912B2 (en) 2014-12-25 2015-12-24 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6572912B2 (en)
KR (1) KR102478707B1 (en)
CN (1) CN107407839B (en)
TW (1) TWI681986B (en)
WO (1) WO2016104636A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103042A1 (en) * 2017-11-21 2019-05-31 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, manufacturing method of liquid crystal alignment film, and liquid crystal display element
WO2019198671A1 (en) * 2018-04-09 2019-10-17 日産化学株式会社 Liquid-crystal alignment agent, liquid-crystal alignment film, and liquid-crystal display element including same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762551B2 (en) 1989-04-25 1998-06-04 東レ株式会社 Liquid crystal alignment film and liquid crystal display device
JP3201172B2 (en) 1994-09-08 2001-08-20 ジェイエスアール株式会社 Liquid crystal alignment agent
JP4085206B2 (en) 1996-02-15 2008-05-14 日産化学工業株式会社 Diaminobenzene derivative, polyimide and liquid crystal alignment film using the same
JP3613421B2 (en) 1996-05-31 2005-01-26 Jsr株式会社 Liquid crystal alignment agent
JP3650982B2 (en) 1996-10-02 2005-05-25 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
KR101589322B1 (en) * 2008-01-25 2016-01-27 닛산 가가쿠 고교 가부시키 가이샤 Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
WO2010035719A1 (en) * 2008-09-24 2010-04-01 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same
JP5516863B2 (en) * 2009-03-18 2014-06-11 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
CN103119509B (en) * 2010-07-26 2015-08-19 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
WO2013047693A1 (en) * 2011-09-30 2013-04-04 日産化学工業株式会社 Liquid crystal orientation treatment agent, liquid crystal orientation membrane, and liquid crystal display element
JP6497520B2 (en) * 2013-05-23 2019-04-10 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR102234876B1 (en) * 2013-09-03 2021-03-31 닛산 가가쿠 가부시키가이샤 Liquid-crystal orientation treatment agent, liquid-crystal orientation film, and liquid-crystal display element

Also Published As

Publication number Publication date
CN107407839B (en) 2020-09-18
KR20170099995A (en) 2017-09-01
CN107407839A (en) 2017-11-28
JPWO2016104636A1 (en) 2017-11-02
WO2016104636A1 (en) 2016-06-30
TWI681986B (en) 2020-01-11
KR102478707B1 (en) 2022-12-16
TW201630979A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP5003682B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP6561834B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5382351B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JP6497520B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5229236B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JPWO2010074269A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6668754B2 (en) Composition, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JPWO2015046374A1 (en) Liquid crystal aligning agent and liquid crystal display device using the same
KR102012060B1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6572911B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6572912B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6575770B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7318826B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2018051923A1 (en) Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device
CN116731726A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
JPWO2016076412A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151