JP6572118B2 - Optical component structure - Google Patents

Optical component structure Download PDF

Info

Publication number
JP6572118B2
JP6572118B2 JP2015237934A JP2015237934A JP6572118B2 JP 6572118 B2 JP6572118 B2 JP 6572118B2 JP 2015237934 A JP2015237934 A JP 2015237934A JP 2015237934 A JP2015237934 A JP 2015237934A JP 6572118 B2 JP6572118 B2 JP 6572118B2
Authority
JP
Japan
Prior art keywords
optical component
substrate
optical
adhesive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015237934A
Other languages
Japanese (ja)
Other versions
JP2017103435A (en
Inventor
史人 中島
史人 中島
圭穂 前田
圭穂 前田
好史 村本
好史 村本
広明 三条
広明 三条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015237934A priority Critical patent/JP6572118B2/en
Publication of JP2017103435A publication Critical patent/JP2017103435A/en
Application granted granted Critical
Publication of JP6572118B2 publication Critical patent/JP6572118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Description

本発明は、光通信用の光部品に関し、より詳細には、例えばフォトダイオード(PD)などの光半導体素子が設けられた半導体基板と、レンズなどの光学部品が設けられた光学部品基板とを接合した光部品構造に関する。   The present invention relates to an optical component for optical communication. More specifically, for example, a semiconductor substrate provided with an optical semiconductor element such as a photodiode (PD) and an optical component substrate provided with an optical component such as a lens are provided. The present invention relates to a bonded optical component structure.

従来、例えば光通信用受信モジュールにおいては、光−電気変換のための光半導体素子としてフォトダイオード(PD:Photo Diode)が使われているが、近年の通信容量の増大に対応して高速な応答特性が求められている。   Conventionally, for example, in a receiver module for optical communication, a photodiode (PD: Photo Diode) is used as an optical semiconductor element for optical-electrical conversion, but a high-speed response corresponding to an increase in communication capacity in recent years. Characteristics are required.

高速応答に対応するための手段の一つとして、PDの接合面積を縮小して接合容量を低減化する手法が一般的に用いられる。   As one of means for dealing with the high-speed response, a technique of reducing the junction capacitance by reducing the junction area of the PD is generally used.

しかし、接合面積はPDとして光を吸収できる面積(受光面積)と同義のため、接合面積を縮小することは、信号光とPDの光結合の効率の低下や、受信モジュールとして実装する場合の実装トレランス(部品の実装位置や方向などの許容誤差範囲)の低下につながるという問題があった。   However, since the junction area is synonymous with the area that can absorb light as a PD (light-receiving area), reducing the junction area is a reduction in the efficiency of optical coupling between the signal light and the PD, and mounting when mounted as a receiving module. There has been a problem that tolerance (allowable error range such as component mounting position and direction) is reduced.

この問題を解決するために、表面にPDの構成されたPD基板(半導体基板)の裏面に、光学部品として例えばレンズを集積して、PD基板裏面から信号光を集光することで、PDの接合面積が小さくても結合感度低下やトレランス低下を低減できる光部品の構造が実現されている(非特許文献1を参照)。   In order to solve this problem, by integrating, for example, lenses as optical components on the back surface of a PD substrate (semiconductor substrate) having a PD formed on the front surface, and condensing signal light from the back surface of the PD substrate, An optical component structure has been realized that can reduce the reduction in coupling sensitivity and tolerance even when the junction area is small (see Non-Patent Document 1).

(従来例1)
図1に従来例1として、このような光部品の断面構造を示す。
図1において、半導体基板であるPD基板1の表面(上面)には、n型半導体層2、i型半導体で形成された光吸収層3、p型半導体層4の積層構造により光半導体素子としてのフォトダイオード(PD)が構成されている。n型半導体層2の左右端部、およびp型半導体層4の上にはそれぞれコンタクト電極を介して配線電極5,6が形成されて、PD基板1の裏面(下面)側より入射した入射光7を光電変換した電気信号が取り出される。
(Conventional example 1)
FIG. 1 shows a cross-sectional structure of such an optical component as Conventional Example 1.
In FIG. 1, an optical semiconductor element is formed on the surface (upper surface) of a PD substrate 1 which is a semiconductor substrate by a laminated structure of an n-type semiconductor layer 2, a light absorption layer 3 formed of an i-type semiconductor, and a p-type semiconductor layer 4. This photodiode (PD) is configured. Wiring electrodes 5 and 6 are formed on the left and right ends of the n-type semiconductor layer 2 and on the p-type semiconductor layer 4 via contact electrodes, respectively, and incident light incident from the back surface (lower surface) side of the PD substrate 1. An electrical signal obtained by photoelectrically converting 7 is taken out.

前述の様に、入射光7が入射するPD基板1の裏面(下面)側の、PDに光軸が対応する位置には、光学部品としてレンズ8が形成されており、少なくともレンズ8の表面(下面)には、入射光(信号光)の界面に於ける反射を防止するため、誘電体多層膜などで構成された反射防止膜(AR膜:Anti−Reflection)9が設けられている。   As described above, the lens 8 is formed as an optical component at a position corresponding to the optical axis of the PD on the back surface (lower surface) side of the PD substrate 1 on which the incident light 7 is incident, and at least the surface of the lens 8 ( In order to prevent reflection at the interface of incident light (signal light), an antireflection film (AR film: Anti-Reflection) 9 made of a dielectric multilayer film or the like is provided on the lower surface.

このようなレンズ8は、下記非特許文献1にあるようにPD基板1のエッチングなどにより形成することができる。   Such a lens 8 can be formed by etching the PD substrate 1 as described in Non-Patent Document 1 below.

しかし、このPDの半導体基板裏面に直接レンズを集積する方法では、半導体基板裏面の加工のために、エッチング条件の制御や、そのレンズ形状の面内厚み分布にあわせたエッチング量の制御などに高い精度が必要であるという問題があった。   However, this method of directly integrating the lens on the back surface of the semiconductor substrate of the PD is high in controlling the etching conditions and controlling the etching amount according to the in-plane thickness distribution of the lens shape for processing the back surface of the semiconductor substrate. There was a problem that accuracy was required.

また、レンズ以外にミラー、プリズムなどのような光学部品を同時に形成するには、半導体基板をレンズとは異なる形状に加工する必要があるため、レンズ形成とは異なるエッチング条件(加工条件)が必要になり、更に工程が複雑化するという問題もあった。   In addition to forming the optical components such as mirrors and prisms in addition to the lens, it is necessary to process the semiconductor substrate into a shape different from that of the lens, so etching conditions (processing conditions) different from lens formation are required. Further, there is a problem that the process becomes more complicated.

これらの問題に対応するために、PDなどの光半導体素子を形成する半導体ウエハ(半導体基板)と、レンズやミラー、プリズムなどの光学部品を形成したウエハ(光学部品基板)を別々に作製し、それぞれをウエハ接合して複合的な機能を有する光部品を作製する形態が考えられる。   In order to cope with these problems, a semiconductor wafer (semiconductor substrate) on which an optical semiconductor element such as PD is formed and a wafer (optical component substrate) on which optical components such as lenses, mirrors, and prisms are formed are manufactured separately. It is conceivable to form an optical component having a composite function by bonding the wafers to each other.

(従来例2)
図2に示す従来例2において、図1と同じ構成要素は同じ番号で示すが、基本的な相違点は、図2ではPDが構成された半導体基板であるPD基板1とは別の光学部品基板21の下面(裏面)側に、レンズ8が形成されている点である。光学部品基板21の材料は、入射光7(信号光)に対して透明であれば半導体である必要は無く、例えばガラスや透明なプラスチックとすることができる。
(Conventional example 2)
In the conventional example 2 shown in FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, but the fundamental difference is that in FIG. 2, the optical component different from the PD substrate 1 which is a semiconductor substrate on which the PD is configured. The lens 8 is formed on the lower surface (back surface) side of the substrate 21. The material of the optical component substrate 21 is not required to be a semiconductor as long as it is transparent to the incident light 7 (signal light). For example, it can be glass or transparent plastic.

図1と同様に、光学部品基板21の下面側の少なくともレンズ8の表面には反射防止膜(AR膜)9が設けられている。また図2の光学部品基板21では、その上面側にもPD基板1との接合部における反射防止のため反射防止膜(AR膜)22が設けられており、接着剤などを硬化させて形成した接合層23を介してPD基板1の下面に接合されている。   As in FIG. 1, an antireflection film (AR film) 9 is provided on at least the surface of the lens 8 on the lower surface side of the optical component substrate 21. 2 is also provided with an antireflection film (AR film) 22 for preventing reflection at the joint with the PD substrate 1 on the upper surface side, and is formed by curing an adhesive or the like. It is bonded to the lower surface of the PD substrate 1 through the bonding layer 23.

このように、光学部品基板を半導体ウエハと切り離して作成できると、その光学部品の加工のためにモールド技術を使えるなど、受光部品に対して安価に光学部品機能を追加できるというメリットもある。   Thus, if the optical component substrate can be formed separately from the semiconductor wafer, there is an advantage that the optical component function can be added to the light receiving component at a low cost, such as using a molding technique for processing the optical component.

なお、このような形態の場合、信号光を図2の下側から入射して上部のフォトダイオードの光吸収部で吸収させるには、接合層23の少なくとも入射光の通過する経路部分(光路)は信号光に対して透明である必要があり、信号光の波長に対して硬化時に透過率の高い接着剤を使う必要がある。   In the case of such a configuration, in order to make the signal light incident from the lower side of FIG. 2 and absorbed by the light absorbing portion of the upper photodiode, at least a path portion (optical path) through which the incident light passes through the bonding layer 23. Needs to be transparent to the signal light, and it is necessary to use an adhesive having a high transmittance at the time of curing with respect to the wavelength of the signal light.

S.R.Cho et al, Enhanced Optical Coupling Performance in an InGaAs Photodiode Integrated With Wet-Etched Microlens, IEEE PTL(2002) Vol.14, No.3, p.378S.R.Cho et al, Enhanced Optical Coupling Performance in an InGaAs Photodiode Integrated With Wet-Etched Microlens, IEEE PTL (2002) Vol.14, No.3, p.378

上記図2のような接合型の光部品の構造においては、上述の様にウエハ接合に接着剤を用いる方法が一般的であるが、接着剤によるウエハ接合では、ウエハ接合面に接着剤を塗布後、圧着、硬化することにより接合層を形成するため、ウエハ接着の界面に空気によるボイド(泡)が形成される可能性がある、という課題がある。   In the structure of the joining type optical component as shown in FIG. 2, the method of using an adhesive for wafer joining is generally used as described above. However, in the wafer joining using an adhesive, the adhesive is applied to the wafer joining surface. Then, since a bonding layer is formed by pressure bonding and curing, there is a problem that voids (bubbles) due to air may be formed at the wafer bonding interface.

このような接合部のボイドの発生、その密度、形状、発生位置については、製造時の微妙な条件が関与するため、これらを完全に制御することは困難である。   The generation of voids at such joints, their density, shape, and generation position are involved in delicate conditions during manufacturing, and it is difficult to completely control them.

しかしながら、光半導体素子と光部品を結ぶ信号光の、基板間接合部を渡る光路上にボイドが形成されると、その形状や発生位置に応じて光が屈折し、例えばPDへの光結合効率が低下するという不具合が生じる。   However, if a void is formed on the optical path of the signal light that connects the optical semiconductor element and the optical component across the inter-substrate junction, the light is refracted according to its shape and position, for example, optical coupling efficiency to PD This causes a problem of lowering.

PDの光結合効率の変動は光通信用受信モジュールの性能の変動に直結するため、チップの段階で検査・選別し、不具合のあるものは除外しておくことが望ましい。   Since fluctuations in the optical coupling efficiency of the PD are directly related to fluctuations in the performance of the optical communication receiver module, it is desirable to inspect and sort at the chip stage and exclude defective ones.

しかし、ボイドの有無を検査して不具合のあるものを選別・除外するためには、完成した光部品の受光感度などを試験・評価する必要があり、検査・選別のための製造コストが増加するという課題がある。   However, in order to inspect the presence or absence of voids and to sort out and eliminate defective ones, it is necessary to test and evaluate the light receiving sensitivity of the completed optical component, which increases the manufacturing cost for inspection and sorting There is a problem.

このような、接合部光路上におけるボイド発生の問題は、PDとレンズの接合された受光部品に限らず、接着剤による基板接合部を有する接合型の光部品であれば共通して発生する課題であり、受光素子としてのPD以外にも、例えばLED,レーザのような発光素子、デバイスの設けられた半導体基板と、レンズ以外にも例えばミラー、プリズムなどの光学部品を有する光学部品基板を接合した光部品構造であっても同様である。   The problem of void generation on the optical path of the joint is not limited to the light receiving part in which the PD and the lens are joined, but is a problem that occurs in common if it is a joint type optical part having a substrate joint with an adhesive. In addition to a PD as a light receiving element, a light emitting element such as an LED or a laser, a semiconductor substrate provided with a device, and an optical component substrate having an optical component such as a mirror or a prism other than a lens are bonded. The same applies to the optical component structure.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、接合型の光部品において、接着剤による接合部光路上のボイド発生の可能性をなくして、低コストで安定した性能の光部品構造を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to eliminate the possibility of void generation on the joint optical path due to the adhesive in the joint type optical component, and at a low cost. The object is to provide an optical component structure with stable performance.

本発明は、このような目的を達成するために、以下のような構成を備えることを特徴とする。   In order to achieve such an object, the present invention is characterized by having the following configuration.

(発明の構成1)
表面に光半導体素子が設けられた半導体基板と、裏面に光学部品が設けられた光学部品基板とからなり、前記半導体基板の裏面と前記光学部品基板の表面を接着剤を用いて接合した光部品構造において、
前記半導体基板と前記光学部品基板間の接合部の前記光半導体素子と前記光学部品を結ぶ信号光の光路にあたる部分には接着剤がなく、
前記接合部の前記信号光の光路にあたる部分を少なくとも部分的に囲む堰体構造が形成されて光路上に接着剤が流入しないように構成されており、
前記堰体構造は、
前記光学部品基板または前記半導体基板の前記接合部の側の面上に、前記信号光の光路にあたる部分に形成された反射防止膜とは離隔して形成された別の反射防止膜からなる堰体膜から形成されている
ことを特徴とする光部品構造。
(Structure 1 of the invention)
An optical component comprising a semiconductor substrate provided with an optical semiconductor element on the front surface and an optical component substrate provided with an optical component on the back surface, wherein the back surface of the semiconductor substrate and the surface of the optical component substrate are bonded using an adhesive. In structure
The semiconductor substrate and the adhesive on the portion corresponding to the optical path between the optical semiconductor element of the joint the signal light forming an optical component between optical component substrate rather name
A weir body structure is formed so as to at least partially surround a portion corresponding to the optical path of the signal light of the joint portion, and the adhesive does not flow into the optical path;
The weir structure is
A weir body comprising another antireflection film formed on the surface of the optical component substrate or the semiconductor substrate on the side of the bonding portion and separated from the antireflection film formed in the portion corresponding to the optical path of the signal light An optical component structure formed from a film .

(発明の構成
発明の構成1に記載の光部品構造において、
前記光半導体素子はフォトダイオード(PD)、LED,レーザのいずれか一つまたは複数であり、
前記光学部品はレンズ、ミラー、プリズム、光導波路、回折格子(グレーティング)のいずれか一つまたは複数である
ことを特徴とする光部品構造。
(Structure 2 of the invention)
In the optical component structure according to Configuration 1 of the invention,
The optical semiconductor element is one or more of a photodiode (PD), an LED, and a laser,
The optical component structure is one or more of a lens, a mirror, a prism, an optical waveguide, and a diffraction grating (grating).

(発明の構成
半導体基板の表面に光半導体素子を形成するステップと、
光学部品基板の裏面に光学部品を形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、反射防止膜を形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、前記光学部品と前記光半導体素子を結ぶ信号光の光路にあたる部分を少なくとも部分的に囲み、基板接合用の接着剤の光路への流入を防ぐ堰体構造を、前記反射防止膜とは離隔して形成された別の反射防止膜として形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、前記堰体構造から離隔して接着剤パターンを形成するステップと、
前記光学部品基板と前記半導体基板を圧着接合し、接着剤を硬化して基板接合部を形成するステップと
からなる光部品構造の製造方法。
(Structure 3 of the invention)
Forming an optical semiconductor element on a surface of a semiconductor substrate;
Forming an optical component on the back surface of the optical component substrate;
Forming an antireflection film on the front surface of the optical component substrate or the back surface of the semiconductor substrate;
The surface of the optical component substrate or the back surface of the semiconductor substrate is at least partially surrounded by a portion corresponding to the optical path of the signal light connecting the optical component and the optical semiconductor element to prevent the adhesive for bonding the substrate from flowing into the optical path. a step that form the Sekitai structure, wherein the anti-reflection film as a separate anti-reflection film that is spaced apart from,
Forming an adhesive pattern on the front surface of the optical component substrate or the back surface of the semiconductor substrate, spaced from the weir structure;
A method of manufacturing an optical component structure comprising the steps of pressure bonding the optical component substrate and the semiconductor substrate, and curing the adhesive to form a substrate bonded portion.

以上記載した本発明によれば、接合型の光部品において、接合部光路上のボイド発生の可能性をなくして、低コストで安定した性能の光部品構造をを提供することが可能となる。   According to the present invention described above, it is possible to provide an optical component structure with stable performance at low cost by eliminating the possibility of voids on the optical path of the junction in the junction type optical component.

従来例1の光部品の断面構造を示す図である。It is a figure which shows the cross-section of the optical component of the prior art example 1. 従来例2の光部品の断面構造を示す図である。It is a figure which shows the cross-section of the optical component of the prior art example 2. 本発明の実施例1の光部品のウエハ接合前後の断面構造を示す図である。It is a figure which shows the cross-sectional structure before and behind wafer joining of the optical component of Example 1 of this invention. 本発明の実施例1の光部品のPD基板(表面)を示す図である。It is a figure which shows PD board | substrate (surface) of the optical component of Example 1 of this invention. 本発明の実施例1の光部品の光学部品基板(表面=接合面)を示す図である。It is a figure which shows the optical component board | substrate (surface = joining surface) of the optical component of Example 1 of this invention. 本発明の実施例2の光部品のウエハ接合前後の断面構造を示す図である。It is a figure which shows the cross-sectional structure before and behind wafer joining of the optical component of Example 2 of this invention. 本発明の実施例2の光部品の光学部品基板(表面=接合面)を示す図である。It is a figure which shows the optical component board | substrate (surface = joining surface) of the optical component of Example 2 of this invention. 本発明の実施例2の光部品の光学部品基板(表面=接合面)の別の例を示す図である。It is a figure which shows another example of the optical component board | substrate (surface = joining surface) of the optical component of Example 2 of this invention.

(概要)
前述の様に、ウエハ接合を用いた光部品では、基板間の接合部の光路上に接着剤のボイドが発生して光結合効率が低下する、という課題があった。
(Overview)
As described above, the optical component using wafer bonding has a problem that the void of the adhesive is generated on the optical path of the bonding portion between the substrates and the optical coupling efficiency is lowered.

ウエハ接合のためには接着剤を用いる必要があるが、接着剤のボイドが光路上になければ本課題は発生しないことから、接合部の光路上に接着剤がない構造とすればよい。   Although it is necessary to use an adhesive for wafer bonding, this problem does not occur unless the void of the adhesive is on the optical path. Therefore, a structure in which there is no adhesive on the optical path of the bonded portion may be adopted.

したがって、接着剤をフォトリソグラフィーなどによりパターニングして、光路部分をはずして接着剤を塗布して、接合後の基板接合部の光路にあたる部分には接着剤がないようにする。   Therefore, the adhesive is patterned by photolithography or the like, and the optical path portion is removed and the adhesive is applied so that the portion corresponding to the optical path of the bonded substrate joint has no adhesive.

また、単に塗布時に接着剤がないようにするだけでは、接合時の基板押圧操作などにより、光路部分に接着剤がはみ出してくる恐れもあるので、接合時にウエハ接合面の光路上に接着剤が流入しないように、接合部の光路周辺への接着剤のはみ出しを堰き止める構造(堰体構造)を形成する。   In addition, if there is no adhesive at the time of application, the adhesive may protrude from the optical path part due to a substrate pressing operation at the time of bonding. In order not to flow in, a structure (weir structure) is formed that blocks the sticking out of the adhesive around the optical path of the joint.

このような堰体構造として例えば、光学部品を設けた光学部品基板または半導体基板のウエハ接合面に凹凸加工を施して、光路に接着剤がはみ出すことを防ぐ光部品構造を実現することができる。   As such a dam body structure, for example, an optical component structure that prevents the adhesive from protruding into the optical path can be realized by performing uneven processing on the wafer bonding surface of the optical component substrate or the semiconductor substrate provided with the optical component.

このような凹凸加工としては、基板そのものに直接、凹凸加工を施して堰体構造とすることもできるが、基板の接合部側の面には通常、接合面における信号光の反射損失を低減するために反射防止(AR)膜が設けられるので、これを利用して堰体構造を構成することもできる。   As such concavo-convex processing, the concavo-convex processing can be performed directly on the substrate itself to form a weir body structure, but the surface on the bonding portion side of the substrate usually reduces the reflection loss of signal light at the bonding surface. Therefore, since an antireflection (AR) film is provided, the weir structure can be configured using this.

以下、光路に接着剤がはみ出すことを防ぐ堰体構造として、反射防止(AR)膜をパターニングして堰体膜とする実施例と、AR膜上にパターニングされた金属などの堰体膜を形成する実施例を示す。   Hereinafter, as a dam structure that prevents the adhesive from protruding into the optical path, an antireflection (AR) film is patterned to form a dam body film, and a dam body film such as a metal patterned on the AR film is formed. An embodiment is shown.

(実施例1)
図3に、本発明の実施例1の光部品のウエハ接合前後の断面構造を示す。
図3(a)はウエハ接合前の状態であり、図3(b)は上下に押圧して接合したウエハ接合後の状態である。PD基板1については、InP系の半導体を用いたPDを例に挙げる。このPDは、次に示す方法で形成できる。
Example 1
FIG. 3 shows a cross-sectional structure of the optical component of Example 1 of the present invention before and after wafer bonding.
FIG. 3A shows a state before wafer bonding, and FIG. 3B shows a state after wafer bonding in which the wafer is pressed up and down. As for the PD substrate 1, a PD using an InP-based semiconductor is taken as an example. This PD can be formed by the following method.

まず、高抵抗なInPからなるInP基板1の表面上に、例えば有機金属気相成長(MOVPE)法などのエピタキシャル成長法を利用し、n型InP層2、ノンドープ(i型)InGaAs層3、p型InGaAs層4を形成する。   First, an n-type InP layer 2, a non-doped (i-type) InGaAs layer 3, and a p are formed on the surface of an InP substrate 1 made of high-resistance InP by using an epitaxial growth method such as metal organic chemical vapor deposition (MOVPE). A type InGaAs layer 4 is formed.

次に、公知のフォトリソグラフィーおよびエッチング技術により、上述したp型InGaAs4、ノンドープInGaAs3,n型InP層2をメサ型に加工し、次いで、n型InP層2およびp型InGaAs層4に、各々オーミック接触するコンタクト電極を形成する。   Next, the p-type InGaAs 4, the non-doped InGaAs 3, and the n-type InP layer 2 are processed into a mesa type by a known photolithography and etching technique, and then the n-type InP layer 2 and the p-type InGaAs layer 4 are respectively ohmic-processed. A contact electrode is formed in contact.

さらに図4に示すように、PDの形成されたPD基板1の表面上に、Auなどからなるメタル板で構成された配線電極5,6を、フォトリソグラフィーとリフトオフ技術、真空蒸着技術などにより形成する。   Further, as shown in FIG. 4, wiring electrodes 5 and 6 made of a metal plate made of Au or the like are formed on the surface of the PD substrate 1 on which PD is formed by photolithography, lift-off technology, vacuum deposition technology, or the like. To do.

最後に、PD基板の裏面を研磨して所望の厚みになるように調整し、PD基板1は完成する。   Finally, the back surface of the PD substrate is polished and adjusted to a desired thickness, and the PD substrate 1 is completed.

一方、光学部品基板21については、例えば、公知のガラスモールド技術等を用いて、ガラス基板の裏面(下面)を所望の形状(図3ではレンズ8の形状)に加工することで光学部品が作製される。   On the other hand, for the optical component substrate 21, for example, an optical component is manufactured by processing the back surface (lower surface) of the glass substrate into a desired shape (the shape of the lens 8 in FIG. 3) using a known glass mold technique or the like. Is done.

ガラスモールド技術とは、金属等で作製された金型に、ガラス材料(プリフォーム)を入れ、加熱して軟化させた後、プレスをすることで、任意の形状にガラス材料を加工する技術である。光学部品基板21の材料がプラスチックであれば、より加工は容易である。   Glass mold technology is a technology for processing glass materials into arbitrary shapes by putting glass materials (preforms) into molds made of metal, etc., softening them by heating, and then pressing them. is there. If the material of the optical component substrate 21 is plastic, processing is easier.

このようにして形成された光学部品基板21の、接合面とは反対側の面(裏面、下面)には、従来と同様に信号光が入射されるときに、なるべく反射が発生しないように、少なくともレンズ8の表面を含む部分に反射防止(AR)膜9を形成することが望ましい。   In the optical component substrate 21 formed in this way, the surface opposite to the bonding surface (back surface, bottom surface) is prevented from being reflected as much as possible when signal light is incident as in the conventional case. It is desirable to form an antireflection (AR) film 9 on at least a portion including the surface of the lens 8.

また、本実施例1においては、PD基板1の材料であるInPと、光学部品基板21の材料であるガラスが接着された場合に、接合面においてもなるべく反射が発生しないように、光学部品基板21の上面(表面、接合面)にもAR膜39(工程上、図示せず)を形成しておく。   In the first embodiment, when the InP, which is the material of the PD substrate 1, and the glass, which is the material of the optical component substrate 21, are bonded, the optical component substrate is designed so that reflection is not generated as much as possible on the bonding surface. An AR film 39 (on the process, not shown) is also formed on the upper surface (surface, bonding surface) of 21.

AR膜39は、周知の方法により例えば、誘電体多層膜をスパッタ装置を用いてスパッタリングすることにより形成することができる。   The AR film 39 can be formed by a known method, for example, by sputtering a dielectric multilayer film using a sputtering apparatus.

さらに本実施例1では、上記で形成した光学部品基板21の上面(表面、接合面)のAR膜39を、公知のフォトリソグラフィーとエッチングにより図5で示すように、レンズ光軸を中心に円形に形成された反射防止のためのAR膜39aと、その外側に離隔して円環状に形成された堰体構造としての堰体膜であるAR膜39bとにパターン加工する。   Further, in the first embodiment, the AR film 39 on the upper surface (surface, bonding surface) of the optical component substrate 21 formed as described above is circularly formed around the lens optical axis as shown in FIG. 5 by known photolithography and etching. The anti-reflection AR film 39a formed on the substrate and the AR film 39b which is a weir body film as a weir body structure formed in an annular shape spaced apart from the outside are patterned.

この様にパターン加工することによって、図3(b)のウエハ接合後の状態に示すように、PD直下の光路上の円形AR膜39aの外側に、円環状に空気層30が設けられ、さらにその外側に堰体膜として円環状にAR膜39bが残されて堰体構造を形成することができる。   By patterning in this way, an air layer 30 is provided in an annular shape outside the circular AR film 39a on the optical path directly under the PD, as shown in the state after wafer bonding in FIG. The AR film 39b is left in an annular shape as a weir body film on the outside, and a weir body structure can be formed.

こうすることで接合時に仮に、最外郭の円環状AR膜39bを越えて接着剤23aが流入しても、空気層30が緩衝帯となり、信号光の光路である中心の円形AR膜39a部分にまで接着剤が流入することを防ぐことが可能な堰体構造を実現でき、接着剤によるボイドが基板接合部の光路上に発生しないようにできる。   In this way, even if the adhesive 23a flows over the outermost annular AR film 39b at the time of joining, the air layer 30 becomes a buffer zone, and the central circular AR film 39a that is the optical path of the signal light is formed. It is possible to realize a dam structure that can prevent the adhesive from flowing in, and to prevent voids due to the adhesive from being generated on the optical path of the substrate bonding portion.

さらに、図5で示すように、接合前の光学部品基板21の上面(表面、接合面)上には、感光性ポリイミド等のフォトリソグラフィーによりパターニングが可能な樹脂(接着剤23a)を、パターニングしておく。このとき、光路であるPD直下の部分には、接着剤がないようにパターンを設ける。   Further, as shown in FIG. 5, a resin (adhesive 23a) that can be patterned by photolithography such as photosensitive polyimide is patterned on the upper surface (surface, bonding surface) of the optical component substrate 21 before bonding. Keep it. At this time, a pattern is provided in the portion directly under the PD which is the optical path so that there is no adhesive.

図3(a)および図5で示すように、接着剤23aのパターンは光路部分を囲むものの、接合操作によるはみ出しを考慮して、円環状のAR膜39b(堰体膜)の外周には達しないように、間隔を空けて離隔してパターニングし、その分量も調節しておくのが望ましい。   As shown in FIGS. 3A and 5, the pattern of the adhesive 23 a surrounds the optical path portion, but reaches the outer periphery of the annular AR film 39 b (weir body film) in consideration of the protrusion due to the joining operation. In order to avoid this, it is desirable to perform patterning at intervals and to adjust the amount.

信号光ビームの通過する接合層の光路部分には接着剤は存在しないから、従来のような硬化後の接着剤の透明性に関する制約も無く、硬化後の接着剤の透明度が低くても使用可能であり、使用し得る接着剤の自由度も大きい。   Since there is no adhesive in the optical path part of the bonding layer through which the signal light beam passes, there is no restriction on the transparency of the adhesive after curing as before, and it can be used even if the transparency of the adhesive after curing is low The degree of freedom of the adhesive that can be used is also great.

また、基板接合部における信号光7の光路の断面形状は円形である前提で、反射防止膜(AR膜)の形状は、図にあわせて円形、円環状と表現したが、光路の光ビームの断面形状は必ずしも円形であるとは限らないから、AR膜39a、AR膜39bの形状も、光路の光ビームの断面形状に合わせたものであってよいことは明らかである。   Further, on the premise that the cross-sectional shape of the optical path of the signal light 7 at the substrate bonding portion is circular, the shape of the antireflection film (AR film) is expressed as circular or annular according to the figure, but the light beam of the optical path Since the cross-sectional shape is not necessarily circular, it is obvious that the shapes of the AR film 39a and the AR film 39b may be adapted to the cross-sectional shape of the light beam in the optical path.

さらには、上記堰体構造としての堰体膜は、光路部分への接着剤の流入を防げればよいのであるから、信号光の光路部分を完全に囲む環状であることも必要ではなく、接着剤のパターンなどを考慮して光路部分への接着剤の流入を防げる程度に、少なくとも部分的に光路部分を囲む1ないし複数の部分からなる堰体膜で形成された堰体構造であっても良い。   Furthermore, since the weir body film as the weir body structure only needs to prevent the inflow of the adhesive to the optical path portion, it is not necessary to have an annular shape completely surrounding the optical path portion of the signal light. Even if it is a weir body structure formed of a weir body film composed of one or a plurality of parts that at least partially surround the optical path part to such an extent that an adhesive can be prevented from flowing into the optical path part in consideration of the agent pattern, etc. good.

このように形成されたPD基板1と、光学部品基板21を、公知のウエハ接合技術により接着剤をパターニングして塗布後、圧着、硬化させて接合層23を形成し一体化させる(図3(b))。   The PD substrate 1 thus formed and the optical component substrate 21 are coated by patterning an adhesive by a known wafer bonding technique, and then bonded and cured to form a bonding layer 23 to be integrated (FIG. 3 ( b)).

その後、ダイシングによってチッピングされ、光学部品とPDが備わった受光部品が完成する。   Thereafter, chipping is performed by dicing to complete a light receiving component including an optical component and a PD.

本実施例1の構造では、信号光の光路となる部分に接着剤がないことから、原理上、信号光に影響するボイド発生は無く、万一、堰体膜であるAR膜39bを乗り越えて接着剤が流入しても、緩衝層として空気層30が信号光の反射防止膜であるAR膜39aに達するのを防ぐため、ボイド発生の可能性はほぼゼロとすることができ、ボイドによる光結合効率の低下を想定した検査が不要になり、光部品製造の低コスト化に寄与する。   In the structure of the first embodiment, since there is no adhesive in the portion that becomes the optical path of the signal light, in principle there is no void generation that affects the signal light, and overcoming the AR film 39b that is a weir body film. Even if the adhesive flows, the air layer 30 as a buffer layer is prevented from reaching the AR film 39a which is an antireflection film for signal light, so that the possibility of generation of voids can be made almost zero. Inspection that assumes a decrease in coupling efficiency is no longer necessary, contributing to cost reduction in optical component manufacturing.

(実施例2)
図6に、本発明の実施例2の光部品のウエハ接合前後の断面構造を示す。
(Example 2)
FIG. 6 shows a cross-sectional structure of the optical component according to the second embodiment of the present invention before and after wafer bonding.

図6の実施例2においても、図3の実施例1と同様にPD基板1上にPDを作製する(図6(a))。ただし、研磨の後にPD基板下部の空気層60から信号光がPD基板に入射してもなるべく反射が発生しないように、PD基板1の下面にもAR膜69aを形成しておく(図6(b))。   In Example 2 of FIG. 6 as well, PD is produced on the PD substrate 1 as in Example 1 of FIG. 3 (FIG. 6A). However, an AR film 69a is also formed on the lower surface of the PD substrate 1 so that reflection does not occur as much as possible even if signal light enters the PD substrate from the air layer 60 below the PD substrate after polishing (FIG. 6 ( b)).

一方、光学部品基板21についても、実施例1と同様に例えばガラス基板を用いて、その下面に、レンズ8とAR膜9を作製するが、光学部品基板21の上面(表面、接合面)にも、光学部品基板21から空気層60へ信号光7が透過した場合に、なるべく反射が発生しないようにAR膜69bを設ける。また、この接合面のAR膜69bは、実施例1とは異なり図6及び図7のように光学部品基板21の上面全面に設けられ、図5のようなパターン加工はしない。   On the other hand, for the optical component substrate 21, as in the first embodiment, for example, a glass substrate is used, and the lens 8 and the AR film 9 are formed on the lower surface thereof, but the upper surface (surface, bonding surface) of the optical component substrate 21 is formed. Also, when the signal light 7 is transmitted from the optical component substrate 21 to the air layer 60, the AR film 69b is provided so that reflection is not generated as much as possible. Further, unlike the first embodiment, the AR film 69b on the bonding surface is provided on the entire upper surface of the optical component substrate 21 as shown in FIGS. 6 and 7, and the pattern processing as shown in FIG. 5 is not performed.

図6の実施例2では、この接合面のAR膜69bの表面上に、公知のフォトリソグラフィーとリフトオフ技術、あるいはめっき技術により、図7に示すように光軸を中心とした円環状にパターン加工した金属などで構成された円環状の堰体膜70を堰体構造として形成する。   In Example 2 of FIG. 6, patterning is performed on the surface of the AR film 69b at the joint surface in a ring shape with the optical axis as the center, as shown in FIG. 7, by known photolithography and lift-off technology or plating technology. An annular weir body film 70 made of a metal or the like is formed as a weir structure.

この堰体膜70が、実施例1で記載した最外郭の円環状のAR膜39bと同じ堰体構造としての機能を担い、接合時に接着剤23aのはみ出しによる光路中心部分への流入を防止する。   The weir body film 70 functions as the same weir body structure as the outermost annular AR film 39b described in the first embodiment, and prevents the adhesive 23a from flowing into the center portion of the optical path due to the protrusion during bonding. .

実施例1の堰体構造である堰体膜(円環状のAR膜39b)においては、反射防止膜としての光路上の円形AR膜39aと同じプロセスで形成されていたため、光反射防止作用を考慮して厚みなどを決定する必要があり制約があったが、実施例2の堰体膜70はAR膜とは別の単層膜であるため、光反射防止作用を考慮することなく、接着剤のはみ出しを防ぐために最適の厚さ、材質の構造を簡単に形成することができる。   The weir body film (annular AR film 39b) having the weir body structure of Example 1 was formed by the same process as the circular AR film 39a on the optical path as the antireflection film, and therefore the antireflection effect was taken into consideration. However, since the thickness of the weir body film 70 is limited, the weir body film 70 according to the second embodiment is a single-layer film different from the AR film. It is possible to easily form the structure of the optimum thickness and material in order to prevent the protrusion.

図6(b)のウエハ接合後の断面図に示すように本実施例2においては、実施例1と異なり、PD直下の信号光7の光路中心部分に空気層60が設けられているが、PD基板1と光学部品基板21の両方において、その接着面側にAR膜69a、69bが形成されていることから、空気層60による信号光7の反射は無視できると考えてよい。   As shown in the cross-sectional view after wafer bonding in FIG. 6B, in the second embodiment, unlike the first embodiment, an air layer 60 is provided at the center of the optical path of the signal light 7 directly under the PD. Since both the PD substrate 1 and the optical component substrate 21 have the AR films 69a and 69b formed on the bonding surface side, it may be considered that the reflection of the signal light 7 by the air layer 60 is negligible.

なお、実施例2のPD直下部分の空気層60は、実施例1の空気層30よりも容積が大きいので、仮に接着剤23aが堰体膜70を越えて多少はみ出しても光路への影響は相対的に少ないが、逆に容積が大きいため、温度変化などによる空気層60内の空気の膨張・収縮が問題となる場合がある。   Since the air layer 60 immediately below the PD in Example 2 has a larger volume than the air layer 30 in Example 1, even if the adhesive 23a protrudes beyond the weir body film 70, there is no influence on the optical path. Although the volume is relatively small, on the contrary, since the volume is large, expansion / contraction of the air in the air layer 60 due to a temperature change or the like may be a problem.

この場合においては、図8で示すように、PD直下の空気層60部分からチップの外周へ空気の通路が確保されるように、円環状の堰体膜70の円周の一部を切り欠いて、切り口部分を基板外へ延長して引き出し、空気層60の空気通路として光部品構造外部に連通した、ヘアピン型に形成した堰体膜80としても良い。   In this case, as shown in FIG. 8, a part of the circumference of the annular weir body film 70 is cut out so that an air passage is secured from the air layer 60 directly under the PD to the outer periphery of the chip. Thus, the weir body film 80 formed in a hairpin shape and extending to the outside of the substrate and drawn out and communicated with the outside of the optical component structure as an air passage of the air layer 60 may be used.

本実施例2の構造においても実施例1と同様に、堰体膜の基本形状は円環形状に限定されるものではなく、信号光の光路にあたる部分を少なくとも部分的に囲む1ないし複数の部分からなる堰体膜で形成された堰体構造であっても良い。   Also in the structure of the second embodiment, as in the first embodiment, the basic shape of the weir body film is not limited to the annular shape, and one or more portions that at least partially surround the portion corresponding to the optical path of the signal light. A dam body structure formed of a dam body film may be used.

また、本実施例2の構造においても実施例1と同様に、信号光の光路となる部分に接着剤がないことから、原理上、信号光に影響するボイド発生は無く、万一、堰体膜70、または80を乗り越えて接着剤が流入しても空気層60が広いため、信号光の光路部分に達するのは防がれ、ボイド発生の可能性はほぼゼロとすることができ、ボイドによる光結合効率の低下を想定した検査が不要になり、光部品製造の低コスト化に寄与する。   Also in the structure of the second embodiment, as in the first embodiment, since there is no adhesive in the portion that becomes the optical path of the signal light, in principle there is no void generation that affects the signal light. Even if the adhesive flows over the film 70 or 80, the air layer 60 is wide, so that it can be prevented from reaching the optical path portion of the signal light, and the possibility of void generation can be almost zero. This eliminates the need for inspections that assume a decrease in optical coupling efficiency due to, thereby contributing to cost reduction in optical component manufacturing.

(他の実施例)
以上、実施例1,2においては、PDの形成された半導体基板と、レンズの形成された光学部品基板を接合した受光部品について説明したが、本発明の光部品構造は接着剤で接合された接合部を有する光部品であれば適用可能であり、他の実施例として、受光素子としてのPD以外にも、LED,レーザのような発光素子である光半導体素子の設けられた半導体基板であってもよく、レンズ以外にもミラー、プリズム、光導波路、回折格子(グレーティング)などの光学部品が設けられた光学部品基板であってもよい。
(Other examples)
As described above, in the first and second embodiments, the light receiving component in which the semiconductor substrate on which the PD is formed and the optical component substrate on which the lens is bonded is described. However, the optical component structure of the present invention is bonded with an adhesive. The present invention can be applied to any optical component having a joint. As another example, in addition to a PD as a light receiving element, a semiconductor substrate provided with an optical semiconductor element that is a light emitting element such as an LED or a laser can be used. In addition to the lens, an optical component substrate provided with optical components such as a mirror, a prism, an optical waveguide, and a diffraction grating (grating) may be used.

これらの光半導体素子、光学部品はいずれも基板上に1つとは限らず、両基板上にそれぞれ同種または異種のものが複数設けられていてもよく、これらの素子、部品を結ぶ信号光の光路も複数あっても本発明は適用可能であることも明らかである。   These optical semiconductor elements and optical components are not limited to one on the substrate, and a plurality of the same or different types may be provided on both substrates, and the optical path of signal light connecting these elements and components. It is also clear that the present invention can be applied even if there are a plurality of them.

また、堰体構造、堰体膜は、光学部品基板の接合部側表面(上面、接合面)に形成する構造を説明したが、半導体基板の接合部側の面(裏面、下面、接合面)に形成しても良いことも明らかである。   In addition, the structure of the weir body structure and the weir body film is described as being formed on the surface (upper surface, bonding surface) of the optical component substrate, but the surface on the bonding portion side (back surface, lower surface, bonding surface) of the semiconductor substrate. It is also clear that it may be formed.

接着剤を塗布する面も、堰体構造、堰体膜の形成される面と必ずしも同じである必要は無く、基板接合(ウエハ張り合わせ)時の位置あわせの精度は要求されるが、接着剤を塗布する面と、堰体構造、堰体膜の形成される面を、それぞれ光学部品基板側、半導体基板側の面、またはその逆に分けることも可能である。   The surface on which the adhesive is applied is not necessarily the same as the surface on which the dam body structure and the dam body film are formed, and accuracy of alignment at the time of substrate bonding (wafer bonding) is required. It is also possible to divide the surface to be coated and the surface on which the weir body structure and the weir body film are formed into the surface on the optical component substrate side, the surface on the semiconductor substrate side, or vice versa.

以上記載したように、本発明によれば、接合型の光部品において、接合部光路上のボイド発生の可能性をなくして、低コストで安定した性能の光部品構造をを提供することが可能となる。   As described above, according to the present invention, it is possible to provide a low-cost and stable performance optical component structure by eliminating the possibility of voids on the optical path of the junction in the junction-type optical component. It becomes.

1 PD基板(半導体基板)
2 n型半導体層、n型InP層
3 i型光吸収層、ノンドープ(i型)InGaAs層
4 p型半導体層、p型InGaAs層
5,6 配線電極
7 入射光、信号光
8 レンズ
9、22、39、39a、39b、69a、69b 反射防止膜(AR膜)
21 光学部品基板
23 接合層
23a 接着剤
30、60 空気層
70,80 堰体膜
1 PD substrate (semiconductor substrate)
2 n-type semiconductor layer, n-type InP layer 3 i-type light absorption layer, non-doped (i-type) InGaAs layer 4 p-type semiconductor layer, p-type InGaAs layer 5, 6 wiring electrode 7 incident light, signal light 8 lens 9, 22 , 39, 39a, 39b, 69a, 69b Antireflection film (AR film)
21 Optical component substrate 23 Bonding layer 23a Adhesive 30, 60 Air layer 70, 80 Weir body film

Claims (3)

表面に光半導体素子が設けられた半導体基板と、裏面に光学部品が設けられた光学部品基板とからなり、前記半導体基板の裏面と前記光学部品基板の表面を接着剤を用いて接合した光部品構造において、
前記半導体基板と前記光学部品基板の間の接合部の前記光半導体素子と前記光学部品を結ぶ信号光の光路にあたる部分には接着剤がなく、
前記接合部の前記信号光の光路にあたる部分を少なくとも部分的に囲む堰体構造が形成されて光路上に接着剤が流入しないように構成されており、
前記堰体構造は、
前記光学部品基板または前記半導体基板の前記接合部の側の面上に、前記信号光の光路にあたる部分に形成された反射防止膜とは離隔して形成された別の反射防止膜からなる堰体膜から形成されている
ことを特徴とする光部品構造。
An optical component comprising a semiconductor substrate provided with an optical semiconductor element on the front surface and an optical component substrate provided with an optical component on the back surface, wherein the back surface of the semiconductor substrate and the surface of the optical component substrate are bonded using an adhesive. In structure
There is no adhesive in the portion corresponding to the optical path of the signal light connecting the optical semiconductor element and the optical component at the joint between the semiconductor substrate and the optical component substrate,
A weir body structure is formed so as to at least partially surround a portion corresponding to the optical path of the signal light of the joint portion, and the adhesive does not flow into the optical path;
The weir structure is
A weir body comprising another antireflection film formed on the surface of the optical component substrate or the semiconductor substrate on the side of the bonding portion and separated from the antireflection film formed in the portion corresponding to the optical path of the signal light An optical component structure formed of a film.
請求項1に記載の光部品構造において、
前記光半導体素子はフォトダイオード(PD)、LED,レーザのいずれか一つまたは複数であり、
前記光学部品はレンズ、ミラー、プリズム、光導波路、回折格子(グレーティング)のいずれか一つまたは複数である
ことを特徴とする光部品構造。
The optical component structure according to claim 1 ,
The optical semiconductor element is one or more of a photodiode (PD), an LED, and a laser,
The optical component structure is one or more of a lens, a mirror, a prism, an optical waveguide, and a diffraction grating (grating).
半導体基板の表面に光半導体素子を形成するステップと、
光学部品基板の裏面に光学部品を形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、反射防止膜を形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、前記光学部品と前記光半導体素子を結ぶ信号光の光路にあたる部分を少なくとも部分的に囲み、基板接合用の接着剤の光路への流入を防ぐ堰体構造を、前記反射防止膜とは離隔して形成された別の反射防止膜として形成するステップと、
前記光学部品基板の表面または前記半導体基板の裏面に、前記堰体構造から離隔して接着剤パターンを形成するステップと、
前記光学部品基板と前記半導体基板を圧着接合し、接着剤を硬化して基板接合部を形成するステップと
からなる光部品構造の製造方法。
Forming an optical semiconductor element on a surface of a semiconductor substrate;
Forming an optical component on the back surface of the optical component substrate;
Forming an antireflection film on the front surface of the optical component substrate or the back surface of the semiconductor substrate;
The surface of the optical component substrate or the back surface of the semiconductor substrate is at least partially surrounded by a portion corresponding to the optical path of the signal light connecting the optical component and the optical semiconductor element to prevent the adhesive for bonding the substrate from flowing into the optical path. a step that form the Sekitai structure, wherein the anti-reflection film as a separate anti-reflection film that is spaced apart from,
Forming an adhesive pattern on the front surface of the optical component substrate or the back surface of the semiconductor substrate, spaced from the weir structure;
A method of manufacturing an optical component structure comprising the steps of pressure bonding the optical component substrate and the semiconductor substrate, and curing the adhesive to form a substrate bonded portion.
JP2015237934A 2015-12-04 2015-12-04 Optical component structure Active JP6572118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237934A JP6572118B2 (en) 2015-12-04 2015-12-04 Optical component structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237934A JP6572118B2 (en) 2015-12-04 2015-12-04 Optical component structure

Publications (2)

Publication Number Publication Date
JP2017103435A JP2017103435A (en) 2017-06-08
JP6572118B2 true JP6572118B2 (en) 2019-09-04

Family

ID=59016909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237934A Active JP6572118B2 (en) 2015-12-04 2015-12-04 Optical component structure

Country Status (1)

Country Link
JP (1) JP6572118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927098B2 (en) 2018-03-13 2021-08-25 日本電信電話株式会社 Lens integrated light receiving element and its inspection method
JP7438595B1 (en) 2022-12-27 2024-02-27 株式会社京都セミコンダクター Light receiving device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045556B2 (en) * 1991-03-19 2000-05-29 富士通株式会社 Manufacturing method of optical coupling device
JP2991172B2 (en) * 1997-10-24 1999-12-20 日本電気株式会社 Semiconductor device
US6963437B2 (en) * 2000-10-03 2005-11-08 Gentex Corporation Devices incorporating electrochromic elements and optical sensors
JP3839271B2 (en) * 2001-05-01 2006-11-01 富士写真フイルム株式会社 Solid-state imaging device and manufacturing method thereof
TWI222705B (en) * 2003-10-08 2004-10-21 United Microelectronics Corp Method and structure for a wafer level packaging
JP2007235276A (en) * 2006-02-27 2007-09-13 Kyocera Corp Imaging device
JP5501814B2 (en) * 2010-03-17 2014-05-28 ルネサスエレクトロニクス株式会社 Avalanche photodiode
JP5818455B2 (en) * 2011-02-17 2015-11-18 キヤノン株式会社 Solid-state imaging device and manufacturing method thereof
JP5775707B2 (en) * 2011-03-01 2015-09-09 オリンパス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6248441B2 (en) * 2013-07-12 2017-12-20 富士通オプティカルコンポーネンツ株式会社 Optical device and optical device manufacturing method
JP2015211166A (en) * 2014-04-28 2015-11-24 日本電信電話株式会社 Semiconductor light-receiving element and method for manufacturing the same

Also Published As

Publication number Publication date
JP2017103435A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
WO2010108399A1 (en) Laterally coupled optical fiber component and processing method thereof
US8805129B2 (en) Optical devices and methods of fabricating the same
US10078184B2 (en) Integrated lens-array-on-substrate for optical coupling system and fabrication method thereof
JP3100584B2 (en) Optoelectronic integrated circuit and method of manufacturing the same
CN111033335A (en) Three-dimensional optical path with 1xM output ports using SOI-based vertical splitting waveguide
JP7117133B2 (en) Optical subassembly, manufacturing method thereof, and optical module
JP6572118B2 (en) Optical component structure
JP2009092860A (en) Camera module and camera module manufacturing method
EP2434322B1 (en) Optical module
JP2011124450A (en) Semiconductor light reception element
JP2008124086A (en) Light sensing element and optical receiver using same
JP2005167090A (en) Semiconductor light receiving element and manufacturing method therefor
JP6527451B2 (en) Optical demultiplexer, optical receiving module and method of manufacturing the same
JPH0513749A (en) Optical connection circuit
JP3795869B2 (en) Optical module
US20080285974A1 (en) Optical Multiplexer/Demultiplexer
JP2003188406A (en) Photodetector, optical receiver using the same, and method for manufacturing the same
JP6660282B2 (en) Light receiving element
US20140133801A1 (en) Light receptacle and optical module equipped with same
JP2014048550A (en) Light receiving component and manufacturing method for optical receiver module
JP6850212B2 (en) Manufacturing method of light receiving element
KR100871017B1 (en) Optical modulator package for triplexer type bi-directional data communication, and method for manufacturing the beam splitter/filter
KR101824668B1 (en) Optical receiver module using optical waveguide chip and method for manufacturing the same
JP4113577B2 (en) Composite optical element and composite optical component
JP5908369B2 (en) Light receiving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6572118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150