JP6570861B2 - Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline - Google Patents

Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline Download PDF

Info

Publication number
JP6570861B2
JP6570861B2 JP2015079467A JP2015079467A JP6570861B2 JP 6570861 B2 JP6570861 B2 JP 6570861B2 JP 2015079467 A JP2015079467 A JP 2015079467A JP 2015079467 A JP2015079467 A JP 2015079467A JP 6570861 B2 JP6570861 B2 JP 6570861B2
Authority
JP
Japan
Prior art keywords
fault
joint
bending angle
displacement
behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015079467A
Other languages
Japanese (ja)
Other versions
JP2016200460A (en
Inventor
正吾 金子
正吾 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015079467A priority Critical patent/JP6570861B2/en
Publication of JP2016200460A publication Critical patent/JP2016200460A/en
Application granted granted Critical
Publication of JP6570861B2 publication Critical patent/JP6570861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置に関する。   The present invention relates to a behavior estimation method for a cross-fault buried pipe and a cross-fault buried pipe behavior estimation apparatus in which a plurality of pipes are joined via a seismic joint having a reference allowable bending angle α and a maximum allowable bending angle β.

図1(a),(b)に示すように、耐震継手ダクタイル鉄管等、耐震継手を介して複数の管1が接合された管路が埋設された地盤に地盤沈下や地割れが発生した場合に、一つの継手の伸縮量や屈曲角が限界に達しても、隣の継手が挙動することで大きな地盤変位が吸収される。   As shown in FIGS. 1 (a) and 1 (b), when ground subsidence or cracking occurs in the ground where a pipe line in which a plurality of pipes 1 are joined via an earthquake-resistant joint, such as an earthquake-resistant joint ductile iron pipe, is embedded. Even if the amount of expansion or contraction or the bending angle of one joint reaches the limit, a large ground displacement is absorbed by the behavior of the adjacent joint.

図1(c)には、このような耐震継手ダクタイル鉄管の一例であるNS形ダクタイル鉄管の継手部の伸縮挙動が示されている。上段は標準状態、中段は収縮状態、下段は伸長状態がそれぞれ示されている。図中、符号2は受口、符号3は挿口、符号4はゴム輪、符号5はロックリングを示している。当該耐震継手の伸縮量は管長の±1%であり、引抜耐力は3D(kN)、Dは呼び径mm、基準許容屈曲角度αは約4.9°、最大許容屈曲角度βは約8°である。   FIG. 1 (c) shows the expansion / contraction behavior of the joint portion of an NS-type ductile iron pipe, which is an example of such an earthquake-resistant joint ductile iron pipe. The upper row shows the standard state, the middle row shows the contracted state, and the lower row shows the extended state. In the figure, reference numeral 2 denotes a receiving port, reference numeral 3 denotes an insertion opening, reference numeral 4 denotes a rubber ring, and reference numeral 5 denotes a lock ring. The expansion / contraction amount of the seismic joint is ± 1% of the pipe length, the pulling strength is 3D (kN), D is the nominal diameter mm, the standard allowable bending angle α is about 4.9 °, and the maximum allowable bending angle β is about 8 °. It is.

特許文献1には、メカニカル継手を含む配管系の不等沈下に対する健全性の評価が可能な維持管理方法として、メカニカル継手を有する地中埋設配管路に沿って、地盤の沈下分布を地表で計測し、沈下分布から局所的な相対沈下量δrと、その発生範囲の長さLとを求め、発生範囲に含まれるメカニカル継手の最大曲げ角度θmaxをθmax≦2arctan(2δr/L)として、最大曲げ角度θmaxとメカニカル継手の許容曲げ角度とを比較することにより、配管系の健全性を評価する維持管理方法が提案されている。   In Patent Document 1, as a maintenance management method that can evaluate the soundness of uneven settlement of piping systems including mechanical joints, the subsidence distribution of the ground is measured along the underground pipe line with mechanical joints. Then, the local relative subsidence amount δr and the length L of the generation range are obtained from the subsidence distribution, and the maximum bending angle θmax of the mechanical joint included in the generation range is set to θmax ≦ 2 arctan (2δr / L). A maintenance method for evaluating the soundness of the piping system by comparing the angle θmax with the allowable bending angle of the mechanical joint has been proposed.

特開平7−248100号公報JP 7-248100 A

上述した配管系の健全性を評価する維持管理方法によれば、地表で計測された地盤の沈下分布に基づいてメカニカル継手の曲げ角度を算出し、算出した曲げ角度と許容曲げ角度とを比較することにより既設の配管系の健全性を評価することができる。   According to the maintenance management method for evaluating the soundness of the piping system described above, the bending angle of the mechanical joint is calculated based on the ground subsidence distribution measured on the ground surface, and the calculated bending angle is compared with the allowable bending angle. Therefore, the soundness of the existing piping system can be evaluated.

しかし、地震の活動期に入ったといわれている我が国では、断層横断埋設管路の挙動を推定して健全性を評価することの必要性が認識されながら、大掛かりなシミュレーション装置を用いて評価する方法以外に、未だそのための実用的な挙動推定方法が無い。また、既設の管路のみならずこれから敷設する計画管路に対しても、断層横断埋設管路の挙動を推定して十分な安全性を見込んで設計するために断層横断埋設管路の挙動推定方法が求められている。   However, in Japan, which is said to have entered the period of earthquake activity, it is recognized that there is a need to evaluate the soundness by estimating the behavior of buried pipes across faults. Besides, there is still no practical behavior estimation method for that purpose. In addition to the existing pipelines, the behavior of the cross-fault buried pipes is estimated in order to estimate the behavior of the cross-fault buried pipes and to design with sufficient safety in mind. There is a need for a method.

本発明の目的は、上述した問題点に鑑み、大掛かりなシミュレーション装置を用いず簡易に精度が得られる断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を提供する点にある。   In view of the above problems, an object of the present invention is to provide a cross-fault buried pipe behavior estimation method and a cross-fault buried pipe behavior estimation apparatus that can easily obtain accuracy without using a large-scale simulation apparatus. is there.

上述の目的を達成するため、本発明による断層横断埋設管路の挙動推定方法の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定方法であって、記管路の一部の耐震継手の屈曲角度が断層変位による地盤の動きに追随して屈曲する限界である基準許容屈曲角度αを超えて、地盤の動きに対して相対変位する場合に実行され、基準許容屈曲角度αに到る断層変位量に達した後の断層変位量である断層変位超過量δに対する前記一部の耐震継手のずれ量δjの比率を示す変位影響度kを、数量化理論1類に基づいて定めた少なくとも2つの目的変量P1及びP2に対する各カテゴリの係数P1i,P2iを用いた推定式
k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)
で求める変位影響度推定ステップと、前記変位影響度推定ステップで推定された変位影響度kに基づいて想定断層変位量に対する耐震継手の挙動である屈曲角度θを算出し、算出した屈曲角度θに基づいて前記想定断層変位量に対する耐震継手の安全性を評価可能とし、または、前記変位影響度推定ステップで推定された変位影響度kに基づいて耐震継手の挙動が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量を算出し、算出した断層変位量が予測断層変位量より小となるか否かに基づいて前記屈曲角度θに対する耐震継手の安全性を評価可能とする耐震継手挙動推定ステップと、を含み、前記P1は管の呼び径であり、前記P2は管の長さ、断層の傾き、耐震継手の位置の何れかまたは組合せである点にある。
In order to achieve the above-mentioned object, the first characteristic configuration of the method for estimating the behavior of a cross-fault buried pipe according to the present invention is as described in claim 1 of the claims, and the standard allowable bending angle α, maximum through the seismic joint allowable bending angle β a behavior estimation method of a tomographic cross buried duct in which a plurality of tubes are joined, the movement of the ground flexion is due to fault displacement of a portion of the seismic joint before Symbol line exceeds the reference allowable bending angle α is the limit to bend to follow the, executed if you displaced relative movement of the ground, fault after reaching the fault displacement amount reaching the reference allowable flexion angle α The displacement influence degree k indicating the ratio of the displacement amount δj of the partial seismic joint to the fault displacement excess amount δ, which is the displacement amount, is determined for each of the at least two objective variables P1 and P2 determined based on the quantification theory class 1. Estimation using category coefficients P1i and P2i Formula k = P 1i · x 1i + P 2i · x 2i (x 1i, x 2i is 0 or 1)
A displacement influence estimating step of obtaining at said calculated bending angles θ a behavior of seismic joint for assumed fault displacement amount based on the displacement influence k estimated by the displacement influence estimating step, the bending angle θ which issued calculated It is possible to evaluate the safety of the earthquake resistant joint with respect to the assumed fault displacement amount based on the above , or the behavior of the earthquake resistant joint is less than the maximum allowable bending angle β based on the displacement influence degree k estimated in the displacement influence degree estimating step. A seismic resistance that calculates a fault displacement amount at a predetermined bending angle θ, and can evaluate the safety of the earthquake-resistant joint with respect to the bending angle θ based on whether the calculated fault displacement amount is smaller than the predicted fault displacement amount. seen including a joint behavior estimating step, wherein the P1 is a nominal diameter of the tube, the P2 is the length of the tube, the inclination of the fault lies in a one or a combination of the position of the seismic joint.

耐震継手の屈曲角度が基準許容屈曲角度αを超える場合に断層により変動する地盤と管路がずれ、そのずれの程度が変位影響度kで推定される。数量化理論1類に基づいて予め求められた目的変量の各カテゴリに対する係数に基づいて、変位影響度推定ステップにより変位影響度kが算出され、変位影響度kに基づいて屈曲角度θまたは断層変位量が算出される。従って、高価なシミュレーション装置でその都度解析する必要が無く、極めて容易に屈曲角度θまたは断層変位量が算出されるようになる。 When the bending angle of the earthquake-resistant joint exceeds the reference allowable bending angle α, the ground and the pipe line that fluctuate due to the fault are displaced, and the degree of the displacement is estimated by the displacement influence degree k. The displacement influence degree k is calculated by the displacement influence degree estimation step based on the coefficient for each category of the objective variable obtained in advance based on the quantification theory type 1, and the bending angle θ or the fault displacement is calculated based on the displacement influence degree k. A quantity is calculated. Accordingly, each time there is no need to parse an expensive simulation apparatus, ing as very easily bend angle θ or fault displacement amount is calculated.

的変量として管路の安全評価のための設計項目である呼び径、管の長さ等で変位影響度kが算出されるので、管路の挙動推定の結果に基づいて設計値を変更する必要がある場合でもその変更指針を定めやすくなる。 Purpose variable nominal diameter is a design item for safety assessment of the conduit as, the displacement influence k by the length or the like of the tube is calculated to change the design value based on the results of behavior estimation conduit Even if necessary, it will be easier to define the change guidelines.

同第の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、前記一部の耐震継手は断層影響範囲と非影響範囲との境界近傍に位置する特定耐震継手である点にある。 The second feature structure, as described in the claim 2, in addition to the first characteristic feature of the above, the portion of the seismic joint particular located in the vicinity of the boundary between the fault influence range and the non-affected area The point is that it is an earthquake-resistant joint.

断層影響範囲と非影響範囲との境界近傍に位置する特定耐震継手が大きく屈曲するため、効果的に安全評価できるようになる。   Since the specific seismic joint located near the boundary between the fault-affected area and the non-affected area is greatly bent, safety evaluation can be performed effectively.

同第の特徴構成は、同請求項に記載した通り、上述の第の特徴構成に加えて、前記耐震継手挙動推定ステップで算出される特定耐震継手の屈曲角度θは、断層影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度と、非影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度との差で求められる点にある。 As described in claim 3 , the third characteristic configuration includes the bending angle θ of the specific earthquake-resistant joint calculated in the earthquake-resistant joint behavior estimation step in addition to the second characteristic configuration described above. It exists in the point calculated | required by the difference of the pipe angle between the seismic joint adjacent to the side and a specific seismic joint, and the pipe angle between the seismic joint adjacent to a non-influence range side and a specific seismic joint.

同第の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成に加えて、変位影響度kは、所定の耐震継手モデルに対するシミュレーション結果である断層変位量に対する継手屈曲特性と、断層変位量に対する継手の変位影響度kに基づいて算出した断層変位量に対する継手屈曲特性とが略一致するように回帰分析法で求められた値である点にある。 In the fourth feature configuration, as described in claim 4 , in addition to any of the first to third feature configurations described above, the displacement influence degree k is a simulation result for a predetermined earthquake-resistant joint model. It is a value obtained by regression analysis so that the joint bending characteristic with respect to the fault displacement amount and the joint bending characteristic with respect to the fault displacement amount calculated based on the displacement displacement degree k of the joint with respect to the fault displacement amount substantially coincide. is there.

同第の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成に加えて、算出された想定断層変位量に対する耐震継手の屈曲角度θが最大許容屈曲角度βを超えないように目的変量のカテゴリを求め、または、算出された屈曲角度θが最大許容屈曲角度βとなる場合の断層変位量が想定断層変位量となるように目的変量のカテゴリを求める点にある。 In the fifth feature configuration, as described in claim 5 , in addition to any of the first to fourth feature configurations described above, the bending angle θ of the earthquake-resistant joint with respect to the calculated assumed fault displacement amount is the maximum. The target variable category is determined so as not to exceed the allowable bending angle β, or the target variable category is set so that the fault displacement amount when the calculated bending angle θ becomes the maximum allowable bending angle β becomes the assumed fault displacement amount. It is in the point to ask for.

同第の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成に加えて、管が耐震継手ダクタイル鉄管である点にある。 The sixth characterizing feature of the can, as noted in the claim 6, in addition the first above Fifth any feature configuration of lies in the tube is seismic joint ductile iron pipe.

本発明による断層横断埋設管路の挙動推定装置の第一の特徴構成は、同請求項に記載した通り、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定装置であって、数量化理論1類に基づいて定めた少なくとも2つの目的変量P1及びP2に対する各カテゴリの係数P1i,P2iを記憶する記憶部と、前記記憶部に記憶された目的変量のカテゴリを選択入力する入力部と、前記一部の耐震継手の屈曲角度が断層変位による地盤の動きに追随して屈曲する限界である基準許容屈曲角度αを超えて、地盤の動きに対して相対変位する場合に実行され、前記入力部で入力された目的変量のカテゴリの係数を前記記憶部から読み出して、基準許容屈曲角度αに到る断層変位量に達した後の断層変位量である断層変位超過量δに対する前記一部の耐震継手のずれ量δjの比率を示す変位影響度kを推定式
k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)
で求める変位影響度推定演算部と、前記変位影響度推定演算部で算出された変位影響度kに基づいて想定断層変位量に対する耐震継手の屈曲角度θを算出し、出した屈曲角度θに基づいて前記想定断層変位量に対する耐震継手の安全性を評価可能とし、または、前記変位影響度推定ステップで推定された変位影響度kに基づいて耐震継手の挙動が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量を算出し、算出した断層変位量が予測断層変位量より小となるか否かに基づいて前記屈曲角度θに対する耐震継手の安全性を評価可能とする耐震継手挙動推定演算部と、前記耐震継手挙動推定演算部による演算結果を表示する表示部と、を含み、前記P1は管の呼び径であり、前記P2は管の長さ、断層の傾き、耐震継手の位置の何れかまたは組合せである点にある。
The first characteristic configuration of the behavior estimation device for a cross-fault buried pipe according to the present invention is that, as described in claim 7 , a plurality of pipes are connected via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β. A device for estimating the behavior of a cross-fault buried pipe to be joined, which stores coefficients P1i and P2i of each category for at least two objective variables P1 and P2 determined based on the quantification theory class 1, and An input unit for selecting and inputting the category of the objective variable stored in the storage unit, and the bending angle of the some seismic joints exceeds a reference allowable bending angle α which is a limit of bending following movement of the ground due to fault displacement. Te, executed if you displaced relative movement of the ground, reads the coefficients of the desired category variable input by the input unit from the storage unit, the fault displacement amount reaching the reference allowable flexion angle α After reaching Displacement influence k an estimation equation k = P 1i · x 1i indicating a ratio of a shift amount δj of the portion of the seismic joint for fault displacement overrun δ is a layer displacement + P 2i · x 2i (x 1i, x 2i Is 0 or 1)
A displacement influence estimating arithmetic unit for obtaining at the calculated bending angles seismic joint θ for assumed fault displacement amount based on the displacement influence k calculated by the displacement influence estimating arithmetic unit, the bending angle θ which issued calculated Based on the displacement influence degree k estimated in the displacement influence degree estimation step, it is possible to evaluate the safety of the earthquake resistant joint with respect to the assumed fault displacement amount , or the behavior of the earthquake resistant joint is a predetermined allowable bending angle β or less. A seismic joint that can calculate a fault displacement amount corresponding to a bending angle θ and evaluate safety of the seismic joint with respect to the bending angle θ based on whether the calculated fault displacement amount is smaller than a predicted fault displacement amount a behavior estimating arithmetic unit, seen containing a display unit, the displaying the calculation result by the seismic joint behavior estimation calculation unit, wherein P1 is the nominal diameter of the tube, the P2 is the length of the tube, the inclination of the fault, earthquake Any of the joint positions Or it is a point that is a combination .

以上説明した通り、本発明によれば、大掛かりなシミュレーション装置を用いず簡易に精度が得られる断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を提供することができる。   As described above, according to the present invention, it is possible to provide a cross-fault buried pipe behavior estimation method and a cross-fault buried pipe behavior estimation apparatus that can easily obtain accuracy without using a large-scale simulation apparatus.

(a)は耐震継手で接合された管路の地盤沈下時の挙動説明図、(b)は同地割れ時の挙動説明図、(c)は耐震継手の伸縮動作説明図(A) is a behavior explanatory diagram at the time of ground subsidence of a pipe joined by a seismic joint, (b) is a behavior explanatory diagram at the time of the ground crack, (c) is an explanatory diagram of expansion and contraction operation of the seismic joint. (a)は活断層の変位量分布図、(b)は断層の傾きによる地表面への影響範囲を示すモデル説明図(A) is an active fault displacement distribution map, (b) is a model explanatory diagram showing the range of influence on the ground surface due to the slope of the fault (a)は継手ばね及び地盤ばねの説明図、(b)〜(f)は継手ばね及び地盤ばねの特性図(A) is explanatory drawing of joint spring and ground spring, (b)-(f) is a characteristic view of joint spring and ground spring. (a)は解析モデル説明図、(b)は断層による継手の挙動説明図(A) is an explanatory diagram of an analysis model, (b) is an explanatory diagram of joint behavior due to a fault. (a)は固定側境界部の継手屈曲角の解析結果説明図、(b)は変位側境界部の継手屈曲角の解析結果説明図、(c)は複数の解析条件に対する解析結果説明図(A) is an analysis result explanatory diagram of the joint bending angle of the fixed side boundary portion, (b) is an analysis result explanatory diagram of the joint bending angle of the displacement side boundary portion, and (c) is an analysis result explanatory diagram for a plurality of analysis conditions. (a)は継手屈曲角が基準許容屈曲角度αの前後の管路の挙動の解析結果説明図、(b),(c)は幾何学モデルの説明図(A) is an explanatory diagram of the analysis result of the behavior of the pipe line before and after the joint bending angle is the reference allowable bending angle α, and (b) and (c) are explanatory diagrams of the geometric model. 幾何学モデルに基づき屈曲角度を算出する際の座標算出説明図Coordinate calculation explanatory diagram when calculating bending angle based on geometric model (a)は継手屈曲角の解析結果と推定結果の対比特性図、(b)は継手屈曲角の解析結果と推定式からの算出結果の対比特性図(A) is a comparison characteristic diagram of the analysis result and estimation result of the joint bending angle, (b) is a comparison characteristic diagram of the calculation result from the analysis result and estimation formula of the joint bending angle. (a)は変位影響度kを求めるため目的変量の説明図、(b)は目的変量とカテゴリの係数の説明図(A) is an explanatory diagram of the objective variable for obtaining the displacement influence degree k, and (b) is an explanatory diagram of the objective variable and the coefficient of the category. 断層横断埋設管路の挙動推定装置の機能ブロック構成図Functional block diagram of the behavior estimation device for cross-fault buried pipes 挙動推定装置の動作を説明するフローチャートFlowchart explaining operation of behavior estimation device

以下に本発明による断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置を、耐震継手ダクタイル鉄管の一例であるNS形ダクタイル鉄管の直管を例に説明する。尚、本発明は、NS形ダクタイル鉄管に限らず、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路全般に適用できる。   Hereinafter, a method for estimating the behavior of a cross-fault buried pipe and a behavior estimation device for a cross-fault buried pipe according to the present invention will be described taking an NS type ductile iron pipe as an example of a seismic joint ductile iron pipe as an example. Note that the present invention is not limited to NS type ductile iron pipes, and can be applied to all cross-fault buried pipes in which a plurality of pipes are joined via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β.

本発明は、継手部を含む管路をモデル化してFEM解析を行なった結果に基づいて管路挙動を幾何学的にモデル化し、その結果に基づいて継手変位及び継手屈曲角を含む管路挙動の推定式を求め、当該管路挙動の推定式に基づいて簡易的に断層横断埋設管路の挙動を推定する方法及び装置である。   The present invention geometrically models pipe behavior based on the result of FEM analysis after modeling a pipe including a joint, and pipe behavior including joint displacement and joint bending angle based on the result. Is a method and an apparatus for simply estimating the behavior of a buried pipe across a fault based on the estimation formula of the pipeline behavior.

以下、順に説明する。
図2(a)には、独立行政法人産業技術総合研究所の活断層・地震研究センターによって公開されている活断層の変位量分布が示されている。2014年8月時点で逆断層が約5割を占め、活断層の傾きは45°,60°,90°で9割を占めている。全データの約半数が断層変位量2m以下、3/4は断層変位量3m以下である。これらのデータ基づき、断層変位量3mで傾き45°,60°,90°の逆断層モデルを解析対象とした。
Hereinafter, it demonstrates in order.
FIG. 2A shows the displacement distribution of the active fault disclosed by the Active Fault and Earthquake Research Center of the National Institute of Advanced Industrial Science and Technology. As of August 2014, reverse faults account for about 50%, and active fault slopes account for 90% at 45 °, 60 ° and 90 °. About half of all data is fault displacement of 2 m or less, and 3/4 is fault displacement of 3 m or less. Based on these data , a reverse fault model with an inclination of 45 °, 60 °, and 90 ° with a fault displacement of 3 m was set as an analysis target.

日本では平野部に多くの人口が集中し、多くの水道管路が埋設されている。平野部は一般に河川の堆積作用によって形成されており、このような場所に存在する活断層は堆積層(沖積層)で覆われているため、断層の動きに伴い堆積層がどのように変形するかが管路の挙動を考える上で重要になる。   In Japan, many people are concentrated in the plains and many water pipes are buried. Plains are generally formed by river sedimentation, and active faults that exist in such places are covered with sedimentary layers (alluvium), so how the sedimentary layers deform as the faults move Is important when considering the behavior of the pipeline.

そこで、図2(b)に示すように、沖積層の層厚Hを10mとし、地表面への影響範囲を同図下段の表の数値に設定した。本多啓太らによる「日本列島における沖積層の層厚分布特性」(地学雑誌119,pp.924‐933,2010)、及び鬼塚らによる「基盤の逆断層変位に伴う地盤の変形と応力について」(応用力学論文集,Vol.2,pp.533-542,1999)の各文献に基づいて算出した値である。   Therefore, as shown in FIG. 2 (b), the layer thickness H of the alluvium is set to 10 m, and the range of influence on the ground surface is set to the numerical value shown in the lower table of the same figure. Keita Honda et al., “Layer thickness distribution characteristics of alluvium in the Japanese archipelago” (Geographical Journal 119, pp. 924-933, 2010), and Onizuka et al. “On the deformation and stress of the ground accompanying reverse fault displacement of the basement” (Applied Mechanics Papers, Vol. 2, pp. 533-542, 1999).

図3(a)には、継手ばねおよび地盤ばねモデルが示されている。解析対象となる耐震継手で接合される管路を弾性床上の梁(剛体)と見なし、実験に基づいて得られたばね定数に基づいて継手および地盤をモデル化した。   FIG. 3A shows a joint spring and ground spring model. The pipe connected by the seismic joint to be analyzed is regarded as a beam (rigid body) on the elastic floor, and the joint and the ground were modeled based on the spring constant obtained from the experiment.

図3(b)から(d)には継手ばねの特性が示され、図3(e),(f)には地盤ばねの特性が示されている。継手ばねのうちの回転ばねは、受口側の管の管軸と挿口側の管の管軸が屈曲した状態となって受口側の管の継手部内面に挿口側の管の継手部外面が接触して曲がりにくくなる角度(図3(c)のθa、呼び径75では4.9°)が設定されている。当該角度を基準許容屈曲角度αといい、呼び径に応じた角度となる。呼び径75〜250のNS形ダクタイル鉄管は地震時に曲がりうる最大屈曲角度が8°と規定され、8°以内で継手性能が保持される。当該角度を最大許容屈曲角度βという。尚、基準許容屈曲角度α及び最大許容屈曲角度βの値は、本実施形態に記載した値に限るものではなく、呼び径により異なる値であってもよいし、耐震継手鉄管の種類により異なる値に設定されていてもよい。   3 (b) to 3 (d) show the characteristics of the joint spring, and FIGS. 3 (e) and 3 (f) show the characteristics of the ground spring. The rotary spring of the joint spring is a joint of the inlet side pipe on the inner surface of the joint part of the inlet side pipe with the pipe axis of the inlet side pipe and the pipe axis of the inlet side pipe bent. An angle (θa in FIG. 3C, 4.9 ° at a nominal diameter 75) at which the outer surface comes into contact and is difficult to bend is set. This angle is referred to as a reference allowable bending angle α and is an angle corresponding to the nominal diameter. NS type ductile iron pipes with a nominal diameter of 75 to 250 have a maximum bending angle of 8 ° that can be bent during an earthquake, and the joint performance is maintained within 8 °. This angle is referred to as the maximum allowable bending angle β. Note that the values of the reference allowable bending angle α and the maximum allowable bending angle β are not limited to the values described in the present embodiment, and may be different values depending on the nominal diameter or different values depending on the type of the earthquake-resistant joint iron pipe. May be set.

軸方向ばねは、継手部のゴム輪の静摩擦力で引張り力に耐える領域、管とゴム輪が滑り継手部が伸縮する領域、継手の抜け出し防止機構が働き伸縮が止まる領域でそれぞれ異なるばね定数が設定されている。   Axial springs have different spring constants in the region that can withstand the tensile force due to the static frictional force of the rubber ring of the joint, the region where the pipe and rubber ring slide and extend the joint, and the region where the joint pull-out prevention mechanism works to stop expansion and contraction. Is set.

地盤ばねのうちの管軸方向地盤ばねは、管と地盤の滑りを考慮して管と地盤の相対変位が限界値を超えるとばね定数が小さくなるバイリニアモデルで設定され、管軸直角方向地盤ばねは、管が地盤に対し相対的に下方へ移動する場合は地盤反力を考慮し、管が地盤に対し相対的に上方へ移動する場合は地盤の崩壊を考慮して設定されている。何れも管と地盤の相対変位が限界値を超えるとばね定数が小さくなるバイリニアモデルで設定されている。   Among the ground springs, the pipe axial ground spring is set by a bilinear model in which the spring constant decreases when the relative displacement between the pipe and the ground exceeds the limit in consideration of the slip between the pipe and the ground. Is set in consideration of the ground reaction force when the pipe moves downward relative to the ground, and considering the collapse of the ground when the pipe moves upward relative to the ground. Both are set by a bilinear model in which the spring constant decreases when the relative displacement between the pipe and the ground exceeds a limit value.

3次元骨組構造物非線形動的解析システム「DYNA2E」(伊藤忠テクノソリューションズ株式会社)を用いて、このような継手ばねおよび地盤ばねモデルに対して断層位置や管長を変えてFEM解析を行なった。地盤条件はN値15相当の沖積層砂質地盤とし、地盤反力係数はN値より算出して20,700kN/mと設定した。土被りの影響は無視し、管路周辺地盤の挙動は地表面の挙動と同じとした。また、管両端が断層横断部の管路挙動に影響を与えないような管路長を対象としていることを確認し、境界条件は管端部を完全拘束とした。 Using a three-dimensional frame structure nonlinear dynamic analysis system “DYNA2E” (ITOCHU Techno-Solutions Corporation), FEM analysis was performed on such a joint spring and ground spring model by changing the fault position and pipe length. The ground condition was an alluvial sandy ground equivalent to an N value of 15, and the ground reaction force coefficient was calculated from the N value and set to 20,700 kN / m 3 . The influence of soil cover was ignored, and the behavior of the ground around the pipe was the same as that of the ground surface. In addition, it was confirmed that the pipe length was such that both ends of the pipe did not affect the pipe behavior at the fault crossing section, and the boundary condition was that the pipe end was completely constrained.

図4(a)には、断層付近の解析モデルが示されている。解析条件は、断層傾きθ=45°,60°,90°、変位量V=3.0mの逆断層、呼び径75,100,150,200,250、管長Lは定尺(5または4m),定尺の1/2,1mである。   FIG. 4A shows an analysis model near the fault. The analysis conditions are fault slope θ = 45 °, 60 °, 90 °, reverse fault with displacement V = 3.0 m, nominal diameter 75, 100, 150, 200, 250, and pipe length L is fixed (5 or 4 m). , 1/2 of the standard length, 1 m.

図4(b)には境界部に継手がある場合の解析結果が例示されている。断層挙動が影響しない範囲(非影響範囲)の固定側地盤中の継手を境界に近い順にA1,A2・・・、断層影響範囲の地盤中の継手をB1,B2・・・と定義する。変位側地盤との境界についても断層影響範囲の地盤中の継手をC1,C2・・・および非影響範囲の変位側地盤中の継手をD1,D2・・・と定義する。継手nの屈曲角をβnとし、継手A1,B1,C1,D1から境界部までの距離をそれぞれL1,L2,L3,L4とする。同図のように境界部に継手がある場合は、境界部の継手をA1(またはC1)、隣の継手をA2,B2(またはC2,D2)と定義する。このときL1(またはL3)=0,L2(またはL4)=L(管長)となる。   FIG. 4B illustrates an analysis result when there is a joint at the boundary. The joints in the fixed-side ground in the range where the fault behavior does not affect (non-influential range) are defined as A1, A2... In the order closer to the boundary, and the joints in the ground in the fault affected range are defined as B1, B2. As for the boundary with the displacement side ground, the joints in the ground in the fault influence range are defined as C1, C2... And the joints in the displacement side ground in the non-influence range are defined as D1, D2. The bending angle of the joint n is βn, and the distances from the joints A1, B1, C1, D1 to the boundary portions are L1, L2, L3, and L4, respectively. When there is a joint at the boundary as shown in the figure, the joint at the boundary is defined as A1 (or C1), and the adjacent joint is defined as A2, B2 (or C2, D2). At this time, L1 (or L3) = 0, L2 (or L4) = L (tube length).

図5(a)には、L1=0m、L3=0.5m(固定側境界部に継手が位置する)となる場合の断層変位量と継手屈曲角の特性が示され、図5(b)には、L1=1.5m、L3=0m(変位側境界部に継手が位置する)となる場合の断層変位量と継手屈曲角の特性が示されている。何れも呼び径75で管長2m、断層の傾き60°で断層位置を変えた場合の継手屈曲角の解析結果である。継手屈曲角の正負の符号は屈曲する向きを表している。何れも4.9°を超えると屈曲挙動が鈍化し、断層影響範囲と非影響範囲の境界部に継手があるときの屈曲角が最も大きく、吸収できる断層変位量が短いことが判明した(L3=0の時2.76m)。また、呼び径や管長、断層の傾きを変えても同様の傾向が確認された。何れの呼び径、断層の傾きであっても管長1mでは最大許容屈曲角度β=8°まで屈曲する継手はなかった。   FIG. 5A shows the characteristics of the tomographic displacement and the joint bending angle when L1 = 0 m and L3 = 0.5 m (the joint is located at the fixed-side boundary). Shows the characteristics of the tomographic displacement and the joint bending angle when L1 = 1.5 m and L3 = 0 m (the joint is located at the displacement side boundary). Both are the analysis results of the joint bending angle when the nominal diameter is 75, the pipe length is 2 m, and the fault position is changed with a fault inclination of 60 °. The sign of the joint bending angle represents the direction of bending. In any case, when the angle exceeds 4.9 °, the bending behavior is slowed down, the bending angle is largest when the joint exists at the boundary between the fault-affected area and the non-affected area, and the amount of fault displacement that can be absorbed is short (L3). = 2.76 m when 0). The same tendency was confirmed even when the nominal diameter, pipe length, and slope of the fault were changed. There was no joint that could bend to the maximum allowable bending angle β = 8 ° at a pipe length of 1 m at any nominal diameter or slope of the fault.

図5(c)には、断層変位量を異ならせた場合の解析結果の全体的な傾向が示されている。管路は概ね地盤とともに変位すること、断層影響範囲との境界部に位置する継手が大きく屈曲すること、管体発生応力は小さいことが判明した。   FIG. 5 (c) shows the overall tendency of the analysis results when the amount of fault displacement is varied. It was found that the pipe line was displaced with the ground, the joint located at the boundary with the fault-affected area was greatly bent, and the tube generation stress was small.

図6(a)に示すように、継手屈曲角が基準許容屈曲角度α=4.9°までは管と地盤は同じ動きを示し、継手屈曲角が基準許容屈曲角度α=4.9°を超えると曲げモーメントが急激に大きくなり、管と地盤の間にずれが発生することも判明した。以上の解析結果に基づいて、管路挙動を以下のように幾何学的にモデル化する。   As shown in FIG. 6A, the pipe and the ground show the same movement until the joint bending angle reaches the reference allowable bending angle α = 4.9 °, and the joint bending angle reaches the reference allowable bending angle α = 4.9 °. Beyond that, the bending moment suddenly increased, and it was also found that a deviation occurred between the pipe and the ground. Based on the above analysis results, the pipeline behavior is geometrically modeled as follows.

図6(b),(c)に示すように、断層がV変位することにより断層影響範囲と非影響範囲との境界部の継手A1(C1)と、隣の継手A2(C2)およびB2(D2)が断層変位に追従して幾何学的に挙動すると仮定して継手A1(C1)の屈曲角βA1(βC1)を考える。 As shown in FIGS. 6B and 6C, when the fault is displaced by V, the joint A1 (C1) at the boundary between the fault affected range and the non-affected range and the adjacent joints A2 (C2) and B2 ( Considering the bending angle β A1C1 ) of the joint A1 (C1) assuming that D2) behaves geometrically following the fault displacement.

耐震継手ダクタイル鉄管は、屈曲角が基準許容屈曲角度α(呼び径75の場合4.9°)に達すると継手部内部で管が接触し曲がりにくくなる。このため、例えば呼び径75の場合、βA1(またはβC1)が4.9°に達するまでは管と地盤は同じ動きをするが、4.9°を超えると継手A1(またはC1)は地盤の動きに追随せず相対変位が生じ、隣の継手A2やB2(またはC2やD2)が屈曲し始めると考えられる。 When the bending angle of the seismic joint ductile iron pipe reaches the reference allowable bending angle α (4.9 ° in the case of nominal diameter 75), the pipe comes into contact with the inside of the joint portion and is difficult to bend. Therefore, for example, when the nominal diameter is 75, the pipe and the ground move in the same way until β A1 (or β C1 ) reaches 4.9 °, but if it exceeds 4.9 °, the joint A1 (or C1) It is considered that relative displacement occurs without following the movement of the ground, and the adjacent joints A2 and B2 (or C2 and D2) begin to bend.

管と地盤との相対変位量δj(j=A1,C1)が基準許容屈曲角度α以降の断層変位超過量δに比例すると仮定して、比例定数を用いて次式のように算出した。この比例定数は、境界部の継手の動きやすさを表しており、ここでは「変位影響度」と呼ぶ。   Assuming that the relative displacement amount δj (j = A1, C1) between the pipe and the ground is proportional to the fault displacement excess amount δ after the reference allowable bending angle α, the proportional constant was used to calculate the following equation. This proportionality constant represents the ease of movement of the joint at the boundary, and is referred to herein as “displacement influence”.

δA1=kA1・δ
δC1=kC1・δ
但し、δA1は継手A1のずれ量、δC1は継手C1のずれ量、δは継手屈曲角が基準許容屈曲角度αに達した後の断層変位超過量、kA1,kC1は変位影響度である。後述するように、各呼び径、管長、断層の傾き毎に解析結果との相関が大きくなり、かつ解析結果よりも安全側の挙動となるよう変位影響度kA1及びkC1が求められている。
δ A1 = k A1 · δ
δ C1 = k C1 · δ
Where δ A1 is the amount of displacement of the joint A1, δ C1 is the amount of displacement of the joint C1, δ is the amount of fault displacement excess after the joint bending angle reaches the reference allowable bending angle α, and k A1 and k C1 are the degree of displacement influence. It is. As will be described later, the displacement influence degrees k A1 and k C1 are calculated so that the correlation with the analysis result increases for each nominal diameter, pipe length, and slope of the fault, and the behavior is safer than the analysis result. .

変位影響度k値が定まると、βA1≧4.9°となる継手A1の座標が求まる。断層変位前の継手A1の座標を(0,0)とすると、断層変位前後の継手A1,A2,B2の各座標(xA1,yA1)、(xA2,yA2)、(xB2,yB2)が求まり、次式により継手A1の屈曲角βA1が算出できる。継手C1も同様である。
When the displacement influence degree k value is determined, the coordinates of the joint A1 where β A1 ≧ 4.9 ° are obtained. If the coordinates of the joint A1 before the fault displacement are (0, 0), the coordinates (x A1 , y A1 ), (x A2 , y A2 ), (x B2 , y B2 ) is obtained, and the bending angle β A1 of the joint A1 can be calculated by the following equation. The same applies to the joint C1.

図7には、管路挙動の幾何学的モデルが示され、各座標(xA1,yA1)、(xA2,yA2)、(xB2,yB2)の算出式が示されている。 FIG. 7 shows a geometric model of pipe behavior, and formulas for calculating respective coordinates (x A1 , y A1 ), (x A2 , y A2 ), and (x B2 , y B2 ). .

図8(a)には、代表例として、呼び径75、管長2m、断層の傾き60°、変位側地盤との境界にある継手C1について、断層変位量に対する屈曲角の解析結果が破線で示されている。データ数は、断層変位0.03m毎の100点である。   In FIG. 8 (a), as a representative example, the analysis result of the bending angle with respect to the amount of fault displacement is indicated by a broken line with respect to the joint C1 at the boundary with the nominal diameter 75, the pipe length 2m, the fault inclination 60 °, and the displacement side ground. Has been. The number of data is 100 points for every 0.03 m of fault displacement.

変位影響度k値が定まると、図7を参考にして断層変位に対する継手屈曲角を推定することができる。断層変位量0.03m毎の100点の継手屈曲角の解析結果と推定結果との残差から算出される決定係数R2が最大になるよう、回帰分析法を用いて変位影響度k値を算出した。   When the displacement influence degree k value is determined, the joint bending angle with respect to the fault displacement can be estimated with reference to FIG. Displacement influence degree k value is calculated using regression analysis so that the determination coefficient R2 calculated from the residual between the analysis result and the estimation result of 100 joint bending angles for every 0.03m of fault displacement is maximized. did.

この時、変位影響度はk=0.133であり、決定係数はR2=0.986であった。このk値から算出した断層変位に対する継手屈曲角の推定結果が図8(a)に実線で示されている。両者はよく一致しており、本モデルによる推定が妥当であることが裏付けられる。変位影響度k値は断層影響範囲と非影響範囲との境界部にある継手の動きやすさを表す指標となり、継手の屈曲特性と地盤特性との間に相関があると考えられる。   At this time, the displacement influence degree was k = 0.133, and the determination coefficient was R2 = 0.986. The estimation result of the joint bending angle with respect to the fault displacement calculated from the k value is shown by a solid line in FIG. Both agree well, confirming that the estimation by this model is valid. The displacement influence degree k value is an index indicating the ease of movement of the joint at the boundary between the fault-affected range and the non-affected range, and it is considered that there is a correlation between the bending characteristics and the ground characteristics of the joint.

図9(a)に示すように、継手の屈曲特性として管の呼び径、管長、継手部の位置、地盤特性として断層の傾き等の項目を用いることができ、管の呼び径P1(5条件:呼び径75,100,150,200,250)、管長P2(2条件:定尺と定尺×1/2)、断層の傾きP3(3条件:45°,60°,90°)および継手部の位置P4(2条件:固定側境界と変位側境界)を代表値として、全60条件について変位影響度k値を算出した。   As shown in FIG. 9A, items such as the nominal diameter of the pipe, the pipe length, the position of the joint portion, and the slope of the fault as the ground characteristics can be used as the bending characteristics of the joint, and the nominal diameter P1 of the pipe (5 conditions) : Nominal diameter 75, 100, 150, 200, 250), pipe length P2 (2 conditions: standard and standard x 1/2), fault slope P3 (3 conditions: 45 °, 60 °, 90 °) and joint The displacement influence degree k value was calculated for all 60 conditions with the position P4 (2 conditions: fixed side boundary and displacement side boundary) as a representative value.

変位影響度k値は、何れも断層変位量0.03m毎の継手屈曲角の解析結果と推定結果との残差から算出される決定係数R2が最大になるよう算出した。得られた変位影響度k値をもとに、図9(b)に示す各項目を目的変量およびそのカテゴリとし、数量化理論I類に基づいて、次式のようにk値の推定式を導出した。図9(b)には導出結果を一部補正した各目的変量のカテゴリスコアが併せて示されている。Pniは目的変量nカテゴリiの係数、xniは0または1である。尚、これらは例示であり、カテゴリは表記の事項に限るものではない。例えば、継手部の位置は固定側及び変位側に限らず、断層影響範囲の中の固定側及び変位側から所定距離離れた位置に設定することも可能である。
The displacement influence degree k value was calculated so that the determination coefficient R2 calculated from the residual between the analysis result and the estimation result of the joint bending angle for each fault displacement amount 0.03 m was maximized. Based on the obtained displacement influence degree k value, each item shown in FIG. 9B is set as a target variable and its category. Based on the quantification theory class I, an estimation equation for the k value is expressed as follows: Derived. FIG. 9B also shows the category score of each objective variable obtained by partially correcting the derivation result. P ni is a coefficient of the objective variable n category i, and x ni is 0 or 1. These are merely examples, and the categories are not limited to the items described. For example, the position of the joint portion is not limited to the fixed side and the displacement side, but can be set to a position away from the fixed side and the displacement side within the fault influence range by a predetermined distance.

図8(b)には、図8(a)と同様に、呼び径75、管長2m、断層の傾き60°、変位側地盤との境界にある継手C1について、上式で推定したk値を用いて断層変位量に対する屈曲角を算出した結果が実線で示されている。   FIG. 8B shows the k value estimated by the above equation for the joint C1 at the boundary with the nominal diameter 75, the pipe length of 2 m, the fault inclination of 60 °, and the displacement side ground, as in FIG. The result of calculating the bending angle with respect to the displacement of the fault using the solid line is shown by a solid line.

解析結果では、最大許容屈曲角度β=8°屈曲時の断層変位量である許容断層変位量は2.76mであるのに対し、〔数2〕に示した推定式を用いた推定では2.19mとやや短い。解析結果との間に僅かの乖離が見られるが、これは解析結果よりも安全側の推定となるようにk値の推定のためのカテゴリスコアを丸めたためであり、安全側の推定となるため管路の安全評価上は特段の問題はない。尚、今回の推定式による推定k値は0.125で、決定係数Rは0.972であった。   According to the analysis result, the allowable fault displacement amount, which is the fault displacement amount at the time of bending at the maximum allowable bending angle β = 8 °, is 2.76 m, whereas in the estimation using the estimation formula shown in [Equation 2], 2. Slightly short at 19m. There is a slight divergence from the analysis result, but this is because the category score for k value estimation is rounded so that the estimation is on the safe side than the analysis result, and the estimation is on the safe side. There is no particular problem in the safety evaluation of the pipeline. In addition, the estimated k value by this estimation formula was 0.125, and the determination coefficient R was 0.972.

このように、〔数2〕に示した推定式で求まる変位影響度k値を用いることにより、耐震継手の屈曲角度θや所定の屈曲角度θとなる場合の断層変位量が精度良く求められ、求めた屈曲角度θまたは断層変位量に基づいて耐震継手の挙動を推定することができるようになる。   Thus, by using the displacement influence degree k value obtained by the estimation equation shown in [Equation 2], the fault displacement amount when the bending angle θ of the earthquake-resistant joint or the predetermined bending angle θ is obtained is obtained with high accuracy. The behavior of the earthquake-resistant joint can be estimated based on the obtained bending angle θ or the amount of fault displacement.

その結果、既設の管路のみならず敷設予定の管路に対しても、想定断層変位量に対する耐震継手の屈曲角度θが最大許容屈曲角度βより小となるか否かで安全性評価ができるようになり、耐震継手が最大許容屈曲角度β以下の所定の屈曲角度θとなる場合の断層変位量が具体的な断層に対する予測断層変位量より小となるか否かで安全性評価ができるようになる。   As a result, it is possible to evaluate safety not only for existing pipes but also for pipes scheduled to be laid, based on whether or not the bending angle θ of the earthquake-resistant joint with respect to the assumed fault displacement is smaller than the maximum allowable bending angle β. Thus, the safety evaluation can be performed based on whether or not the fault displacement amount when the earthquake-resistant joint has a predetermined bending angle θ that is equal to or less than the maximum allowable bending angle β is smaller than the predicted fault displacement amount for a specific fault. become.

そして、このような演算を管の呼び径、管長、継手部の位置を異ならせて行なった値から安全性が確保できるような呼び径、管長、継手部の位置等を反映させて敷設設計することができるようになる。   Then, design is performed by reflecting the nominal diameter, pipe length, joint position, etc. that can ensure safety from the values obtained by varying the nominal diameter, pipe length, and joint position of such pipes. Will be able to.

つまり、本発明による断層横断埋設管路の挙動推定方法は、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定方法であって、断層変位により管路の一部の耐震継手の屈曲角度が基準許容屈曲角度αを超える場合に実行され、断層変位超過量δに対する一部の耐震継手のずれ量δjの比率を示す変位影響度kを、数量化理論1類に基づいて定めた少なくとも2つの目的変量P1及びP2に対する各カテゴリの係数P1i,P2iを用いた推定式k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)で求める変位影響度推定ステップと、変位影響度推定ステップで推定された変位影響度kに基づいて想定断層変位量に対する耐震継手の屈曲角度θを算出し、または、推定式で得られた変位影響度kに基づいて耐震継手が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量を算出し、算出した屈曲角度θまたは断層変位量に基づいて耐震継手の挙動を推定する耐震継手挙動推定ステップと、を含む。 That is, the method for estimating the behavior of a cross-fault buried pipe according to the present invention is a method for estimating the behavior of a cross-fault buried pipe in which a plurality of pipes are joined via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β. The displacement is executed when the bending angle of a part of the seismic joint in the pipe exceeds the reference allowable bending angle α due to the fault displacement, and indicates the ratio of the displacement δj of the part of the seismic joint to the excess displacement δ of the fault. The degree of influence k is estimated using the coefficients P1i and P2i of each category for at least two objective variables P1 and P2 determined based on the quantification theory class 1, k = P 1i · x 1i + P 2i · x 2i (x 1i, x 2i is 0 or 1 and the displacement influence estimating step of obtaining at), calculates a bending angle θ of the seismic joint for assumed fault displacement amount based on the displacement influence k estimated by the displacement influence estimating step, also Then, based on the displacement influence degree k obtained by the estimation formula, the earthquake resistant joint calculates a fault displacement amount having a predetermined bending angle θ that is equal to or less than the maximum allowable bending angle β, and based on the calculated bending angle θ or fault displacement amount And a seismic joint behavior estimating step for estimating the behavior of the seismic joint.

また、目的変量は2つに限るものではなく、必要に応じて適宜設定すればよい。少なくとも目的変量P1は管の呼び径であることが好ましく、目的変量P2は管の長さ、断層の傾き、耐震継手の位置の何れか一つまたはそれらの組合せであることが好ましい。基本的に目的変量が少なければそれだけ変位影響度kの値が小さくなるので、同じ想定断層変位量であっても屈曲角度θが大きな値になる。   Further, the target variable is not limited to two, and may be set as needed. At least the target variable P1 is preferably the nominal diameter of the pipe, and the target variable P2 is preferably any one of the length of the pipe, the slope of the fault, the position of the earthquake-resistant joint, or a combination thereof. Basically, if there are few objective variables, the value of the displacement influence level k becomes smaller. Therefore, even if the same assumed fault displacement amount, the bending angle θ becomes a large value.

断層横断埋設管路の挙動推定方法によれば、断層影響範囲内の任意の継手部での屈曲角度θを求めることができるが、解析結果からも明らかなように、断層影響範囲との境界部に位置する継手が大きく屈曲する点に鑑みれば、一部の耐震継手は断層影響範囲と非影響範囲との境界近傍に位置する特定耐震継手であることが好ましい。   According to the method for estimating the behavior of the cross-fault buried pipe, the bending angle θ at any joint within the fault-affected area can be obtained, but as is clear from the analysis results, the boundary with the fault-affected area In view of the fact that the joint located at 1 is greatly bent, some of the earthquake-resistant joints are preferably specific earthquake-resistant joints located near the boundary between the fault-affected range and the non-affected range.

また、上述の〔数1〕に示した通り、耐震継手挙動推定ステップで算出される特定耐震継手の屈曲角度θは、断層影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度と、非影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度との差で求められる。   Moreover, as shown in the above [Equation 1], the bending angle θ of the specific earthquake resistant joint calculated in the earthquake resistant joint behavior estimation step is the tube angle between the earthquake resistant joint adjacent to the fault influence range side and the specific earthquake resistant joint. And the difference in tube angle between the seismic joint adjacent to the non-affected range and the specific seismic joint.

変位影響度kは、所定の耐震継手モデルに対するシミュレーション結果である断層変位量に対する継手屈曲特性と、断層変位量に対する継手の変位影響度kに基づいて算出した断層変位量に対する継手屈曲特性とが略一致するように回帰分析法で求められた値であることが好ましい。   The displacement influence degree k is approximately a joint bending characteristic with respect to a fault displacement amount, which is a simulation result for a predetermined earthquake resistant joint model, and a joint bending characteristic with respect to a fault displacement amount calculated based on the displacement influence degree k of the joint with respect to the fault displacement amount. A value obtained by a regression analysis method so as to coincide is preferable.

しかし、所定の耐震継手モデルに対するシミュレーション結果に代えて、実際の管路または縮小モデル管路を模擬断層設備上に堆積させた土砂中に埋設して、模擬断層設備で模擬断層を発生させた場合の測定結果を用いてもよい。   However, instead of the simulation result for a given seismic joint model, when an actual or reduced model pipe is buried in the sediment deposited on the simulated fault facility and a simulated fault is generated by the simulated fault facility The measurement result may be used.

また、算出された想定断層変位量に対する耐震継手の屈曲角度θが最大許容屈曲角度βを超えないように目的変量のカテゴリを求め、または、算出された屈曲角度θが最大許容屈曲角度βとなる場合の断層変位量が想定断層変位量となるように目的変量のカテゴリを求めることにより、安全性を確保した管路の敷設設計が可能になる。   In addition, the target variable category is determined so that the bending angle θ of the earthquake-resistant joint with respect to the calculated assumed fault displacement does not exceed the maximum allowable bending angle β, or the calculated bending angle θ becomes the maximum allowable bending angle β. By determining the target variable category so that the amount of fault displacement in the case becomes the assumed fault displacement amount, it is possible to design the laying of the pipeline ensuring safety.

上述の実施形態では、耐震継手管路を構成する管がNS形ダクタイル鉄管である場合を説明したが、耐震継手を介して複数の管が接合される管路であれば、NS形ダクタイル鉄管以外の鉄管であっても本発明の適用が可能である。さらに、本発明は、基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される管路全般に適用できる。   In the above-described embodiment, the case where the pipe constituting the earthquake-resistant joint pipe is an NS-type ductile iron pipe is described, but any pipe other than NS-type ductile iron pipe can be used as long as a plurality of pipes are joined via the earthquake-resistant joint. The present invention can also be applied to any steel pipe. Furthermore, the present invention can be applied to all pipe lines in which a plurality of pipes are joined via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β.

以下に上述の断層横断埋設管路の挙動推定方法を用いた断層横断埋設管路の挙動推定装置について説明する。
図10に示すように、断層横断埋設管路の挙動推定装置100は、ハンドヘルドコンピュータで構成され、タッチパネル式の液晶表示部10、記憶部30、演算部20,40を備えている。
Hereinafter, a cross-fault buried pipe behavior estimation apparatus using the above-described cross-fault buried pipe behavior estimation method will be described.
As shown in FIG. 10, the behavior estimation apparatus 100 for a cross-fault buried pipeline is configured by a handheld computer and includes a touch panel type liquid crystal display unit 10, a storage unit 30, and calculation units 20 and 40.

記憶部30には、上述した変位影響度k値を〔数2〕に基づいて算出するための目的変量及び各カテゴリの係数が格納されている。具体的には、図9(b)で説明した呼び径、管長、断層の傾き、継手部の位置とそれらに対する係数が格納されている。尚、目的変量及び各カテゴリの種類及び数は例示であり、これらに限るものではない。   The storage unit 30 stores objective variables and coefficients for each category for calculating the above-described displacement influence degree k value based on [Equation 2]. Specifically, the nominal diameter, the pipe length, the slope of the fault, the position of the joint portion, and the coefficients for them described in FIG. 9B are stored. In addition, the objective variable and the kind and number of each category are examples, and are not limited to these.

液晶表示部10には、ソフトウェアスイッチが表示された入力部11が設けられ、画面に表示されたスイッチを操作することにより、断層横断埋設管路の挙動推定処理が実行され、その結果が表示部12に表示されるように構成されている。   The liquid crystal display unit 10 is provided with an input unit 11 on which a software switch is displayed. By operating the switch displayed on the screen, a behavior estimation process of a cross-fault buried pipeline is executed, and the result is displayed on the display unit. 12 is displayed.

入力部11には、記憶部30に記憶された目的変量及びカテゴリが表示され、それを選択操作することによりk値推定条件が確定し、更に想定屈曲角度θまたは想定断層変位量の何れかが入力可能に構成され、想定断層変位量が設定入力されると、想定断層変位量の断層が活動した場合の継手部の屈曲角度θが算出され、想定屈曲角度が設定入力されると、継手部が想定屈曲角度屈曲するときの断層変位量が算出される。   The target variable and category stored in the storage unit 30 are displayed in the input unit 11, and the k value estimation condition is determined by selecting and operating the selected variable. Further, either the assumed bending angle θ or the assumed fault displacement amount is determined. When the assumed fault displacement amount is set and inputted, the bending angle θ of the joint when the fault of the assumed fault displacement is activated is calculated, and when the assumed bending angle is set and inputted, the joint portion A tomographic displacement amount when the assumed bending angle is bent is calculated.

演算部では、先ず変位影響度推定演算部20によって、入力部11で入力された目的変量のカテゴリの係数を記憶部30から読み出して、変位影響度kを推定式k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)で求められる。 In the calculation unit, first, the displacement influence degree estimation calculation unit 20 reads out the coefficient of the target variable category input from the input unit 11 from the storage unit 30, and calculates the displacement influence degree k from the estimation equation k = P 1i · x 1i + P. 2i · x 2i (where x 1i and x 2i are 0 or 1).

次に耐震継手挙動推定演算部40によって、変位影響度推定演算部20で算出された変位影響度kに基づいて想定断層変位量に対する耐震継手の屈曲角度θが算出され、または、推定式で得られた変位影響度kに基づいて耐震継手が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量が算出される。   Next, the earthquake-resistant joint behavior estimation calculation unit 40 calculates the bending angle θ of the earthquake-proof joint with respect to the assumed fault displacement based on the displacement influence degree k calculated by the displacement influence degree estimation calculation unit 20, or is obtained by an estimation formula. Based on the obtained displacement influence degree k, the fault displacement amount at which the seismic joint has a predetermined bending angle θ equal to or less than the maximum allowable bending angle β is calculated.

図11には、断層横断埋設管路の挙動推定装置の動作フローが示されている。先ず、入力部11を介して評価条件である断層、地盤、管路に関する目的変量及び各カテゴリの設定が行なわれると(S1)、変位影響度推定演算部20によって変位影響度k値が求められ(S2)、耐震継手挙動推定演算部40によって各管路位置座標が算出され(S3)、さらに継手屈曲角が算出され、表示部12に表示される(S4)。   FIG. 11 shows an operation flow of the behavior estimation device for a fault crossing buried pipeline. First, when the objective variable and each category relating to the fault, ground, and pipeline, which are the evaluation conditions, are set via the input unit 11 (S1), the displacement influence degree estimation calculating part 20 calculates the displacement influence degree k value. (S2) Each pipe position coordinate is calculated by the earthquake-resistant joint behavior estimation calculation unit 40 (S3), and further, the joint bending angle is calculated and displayed on the display unit 12 (S4).

その結果、オペレータが十分に安全性が確保されていると判断可能な場合には処理が終了され(S5)、そうでない場合には、例えば管長のカテゴリが変更設定されて(S6)、同様の演算処理が繰り返される。   As a result, if the operator can determine that the safety is sufficiently secured, the process is terminated (S5). If not, for example, the category of the tube length is changed and set (S6). The calculation process is repeated.

耐震継手挙動推定演算部40によって算出された屈曲角度θまたは断層変位超過量δが表示部12に表示され、表示された値に基づいて耐震継手の挙動を確認することにより安全性評価ができるようになる。   The bending angle θ or the fault displacement excess amount δ calculated by the earthquake-resistant joint behavior estimation calculation unit 40 is displayed on the display unit 12, and the safety evaluation can be performed by confirming the behavior of the earthquake-resistant joint based on the displayed value. become.

従って、専用の大掛かりな解析装置を用いなくても、簡易に精度が得られる断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置が実現できる。   Therefore, a cross-fault buried pipe behavior estimation method and a cross-fault buried pipe behavior estimation apparatus that can easily obtain accuracy can be realized without using a dedicated large-scale analysis device.

上述した説明は、断層横断埋設管路の挙動推定方法及び断層横断埋設管路の挙動推定装置の一実施形態の説明であり、該記載により本発明の範囲が限定されるものではなく、目的変量及び目的変量のカテゴリの係数が上述した種類及び数値に限るものではなく、本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The above description is an explanation of one embodiment of the behavior estimation method of the cross-fault buried pipeline and the behavior estimation apparatus of the cross-fault buried pipeline, and the scope of the present invention is not limited by the description, and the target variable The coefficients of the target variable category are not limited to the types and values described above, and it is needless to say that the design can be appropriately changed within the range where the effects of the present invention are exhibited.

1:管
10:表示装置
11:入力部
12:表示部
20:変位影響度推定演算部
30:記憶部
40:耐震継手挙動推定演算部
100:断層横断埋設管路の挙動推定装置
1: Tube 10: Display device 11: Input unit 12: Display unit 20: Displacement influence degree estimation calculation unit 30: Storage unit 40: Seismic joint behavior estimation calculation unit 100: Cross-fault buried pipe behavior estimation device

Claims (7)

基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定方法であって、
記管路の一部の耐震継手の屈曲角度が断層変位による地盤の動きに追随して屈曲する限界である基準許容屈曲角度αを超えて、地盤の動きに対して相対変位する場合に実行され、基準許容屈曲角度αに到る断層変位量に達した後の断層変位量である断層変位超過量δに対する前記一部の耐震継手のずれ量δjの比率を示す変位影響度kを、数量化理論1類に基づいて定めた少なくとも2つの目的変量P1及びP2に対する各カテゴリの係数P1i,P2iを用いた推定式
k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)
で求める変位影響度推定ステップと、
前記変位影響度推定ステップで推定された変位影響度kに基づいて想定断層変位量に対する耐震継手の挙動である屈曲角度θを算出し、算出した屈曲角度θに基づいて前記想定断層変位量に対する耐震継手の安全性を評価可能とし、または、前記変位影響度推定ステップで推定された変位影響度kに基づいて耐震継手の挙動が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量を算出し、算出した断層変位量が予測断層変位量より小となるか否かに基づいて前記屈曲角度θに対する耐震継手の安全性を評価可能とする耐震継手挙動推定ステップと、
を含み、
前記P1は管の呼び径であり、前記P2は管の長さ、断層の傾き、耐震継手の位置の何れかまたは組合せである断層横断埋設管路の挙動推定方法。
A method for estimating the behavior of a cross-fault buried pipeline in which a plurality of pipes are joined via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β,
Beyond bending angle of a portion of the seismic joint before SL line is the reference allowable bending angle α is the limit to bend to follow the movement of the ground caused by fault displacement, if you displaced relative movement of the ground A displacement influence degree k indicating the ratio of the displacement amount δj of the partial seismic joint to the fault displacement excess amount δ, which is the fault displacement amount after being executed and reaching the fault displacement amount reaching the reference allowable bending angle α , Estimated expression k = P 1i · x 1i + P 2i · x 2i (x 1i , x 2i is the coefficient P1i, P2i of each category for at least two objective variables P1 and P2 determined based on the quantification theory class 1 0 or 1)
The displacement influence degree estimation step obtained in
Wherein calculating the bending angle θ is a behavior of seismic joint for assumed fault displacement amount based on the displacement influence k estimated by the displacement influence estimating step, for the assumed fault displacement amount based on the bending angle θ which issued calculated Fault displacement that makes it possible to evaluate the safety of a seismic joint , or the behavior of a seismic joint has a predetermined bending angle θ that is less than or equal to the maximum allowable bending angle β based on the displacement influence degree k estimated in the displacement influence degree estimation step A seismic joint behavior estimation step capable of calculating the amount, and evaluating the safety of the seismic joint with respect to the bending angle θ based on whether the calculated fault displacement amount is smaller than the predicted fault displacement amount ;
Only including,
The P1 is a nominal diameter of a pipe, and the P2 is a method for estimating a behavior of a cross-fault buried pipe, which is any one or a combination of a pipe length, a fault inclination, and a position of a seismic joint .
前記一部の耐震継手は断層影響範囲と非影響範囲との境界近傍に位置する特定耐震継手である請求項記載の断層横断埋設管路の挙動推定方法。 It said portion of the seismic joint specific seismic joint at which claim 1 behavior estimation method of fault transverse buried duct according positioned in the vicinity of the boundary between the fault influence range and the non-affected area. 前記耐震継手挙動推定ステップで算出される特定耐震継手の屈曲角度θは、断層影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度と、非影響範囲側に隣接する耐震継手と特定耐震継手との間の管角度との差で求められる請求項記載の断層横断埋設管路の挙動推定方法。 The bending angle θ of the specific seismic joint calculated in the earthquake-resistant joint behavior estimation step includes the tube angle between the seismic joint adjacent to the fault-affected area and the specific seismic joint, and the seismic joint adjacent to the non-affected area side. The method for estimating the behavior of a cross-fault buried pipe according to claim 2, which is obtained from a difference between the pipe angle and the specified earthquake-resistant joint. 変位影響度kは、所定の耐震継手モデルに対するシミュレーション結果である断層変位量に対する継手屈曲特性と、断層変位量に対する継手の変位影響度kに基づいて算出した断層変位量に対する継手屈曲特性とが略一致するように回帰分析法で求められた値である請求項1からの何れかに記載の断層横断埋設管路の挙動推定方法。 The displacement influence degree k is approximately a joint bending characteristic with respect to a fault displacement amount, which is a simulation result for a predetermined earthquake resistant joint model, and a joint bending characteristic with respect to a fault displacement amount calculated based on the displacement influence degree k of the joint with respect to the fault displacement amount. The method for estimating the behavior of a cross-fault buried pipe according to any one of claims 1 to 3 , which is a value obtained by a regression analysis method so as to match. 算出された想定断層変位量に対する耐震継手の屈曲角度θが最大許容屈曲角度βを超えないように目的変量のカテゴリを求め、または、算出された屈曲角度θが最大許容屈曲角度βとなる場合の断層変位量が想定断層変位量となるように目的変量のカテゴリを求める請求項1からの何れかに記載の断層横断埋設管路の挙動推定方法。 Obtain the target variable category so that the bending angle θ of the seismic joint with respect to the calculated assumed fault displacement does not exceed the maximum allowable bending angle β, or when the calculated bending angle θ is the maximum allowable bending angle β The method for estimating the behavior of a cross-fault buried pipeline according to any one of claims 1 to 4 , wherein a category of a target variable is obtained so that the fault displacement amount becomes an assumed fault displacement amount. 管が耐震継手ダクタイル鉄管である請求項1からの何れかに記載の断層横断埋設管路の挙動推定方法。 The method for estimating the behavior of a fault-crossing buried pipe according to any one of claims 1 to 5 , wherein the pipe is a seismic joint ductile iron pipe. 基準許容屈曲角度α、最大許容屈曲角度βの耐震継手を介して複数の管が接合される断層横断埋設管路の挙動推定装置であって、
数量化理論1類に基づいて定めた少なくとも2つの目的変量P1及びP2に対する各カテゴリの係数P1i,P2iを記憶する記憶部と、
前記記憶部に記憶された目的変量のカテゴリを選択入力する入力部と、
前記一部の耐震継手の屈曲角度が断層変位による地盤の動きに追随して屈曲する限界である基準許容屈曲角度αを超えて、地盤の動きに対して相対変位する場合に実行され、
前記入力部で入力された目的変量のカテゴリの係数を前記記憶部から読み出して、基準許容屈曲角度αに到る断層変位量に達した後の断層変位量である断層変位超過量δに対する前記一部の耐震継手のずれ量δjの比率を示す変位影響度kを推定式
k=P1i・x1i+P2i・x2i (x1i,x2iは0または1)
で求める変位影響度推定演算部と、
前記変位影響度推定演算部で算出された変位影響度kに基づいて想定断層変位量に対する耐震継手の屈曲角度θを算出し、出した屈曲角度θに基づいて前記想定断層変位量に対する耐震継手の安全性を評価可能とし、または、前記変位影響度推定ステップで推定された変位影響度kに基づいて耐震継手の挙動が最大許容屈曲角度β以下の所定の屈曲角度θとなる断層変位量を算出し、算出した断層変位量が予測断層変位量より小となるか否かに基づいて前記屈曲角度θに対する耐震継手の安全性を評価可能とする耐震継手挙動推定演算部と、
前記耐震継手挙動推定演算部による演算結果を表示する表示部と、
を含み、
前記P1は管の呼び径であり、前記P2は管の長さ、断層の傾き、耐震継手の位置の何れかまたは組合せである断層横断埋設管路の挙動推定装置。
A device for estimating the behavior of a cross-fault buried pipe in which a plurality of pipes are joined via an earthquake-resistant joint having a reference allowable bending angle α and a maximum allowable bending angle β,
A storage unit for storing coefficients P1i and P2i of each category for at least two objective variables P1 and P2 determined based on the quantification theory class 1,
An input unit for selectively inputting a category of the objective variable stored in the storage unit;
Bending angle of the part of the seismic joint exceeds the reference allowable bending angle α is the limit to bend to follow the movement of the ground by the fault displacement is executed when you displaced relative movement of the ground,
The coefficient of the target variable category input at the input unit is read from the storage unit, and the one with respect to the fault displacement excess amount δ which is the fault displacement amount after reaching the fault displacement amount reaching the reference allowable bending angle α. The displacement influence degree k indicating the ratio of the deviation amount δj of the seismic joint of the portion is estimated by the equation k = P 1i · x 1i + P 2i · x 2i (x 1i , x 2i is 0 or 1)
A displacement influence degree estimation calculation unit obtained in
Wherein calculating the bending angle θ of the seismic joint against displacement influence estimating assumed fault displacement amount based on the calculated displacement influence k in the calculating portion, seismic joint with respect to the assumed fault displacement amount based on the bending angle θ which issued calculated of safety to enable evaluation, or the fault displacement amount of behavior is the maximum allowable flexion angle β below the predetermined bending angle θ seismic joint on the basis of the displacement influence estimating displacement influence k estimated in step An earthquake-resistant joint behavior estimation calculation unit that can calculate and evaluate safety of the earthquake-resistant joint with respect to the bending angle θ based on whether the calculated fault displacement amount is smaller than the predicted fault displacement amount ;
A display unit for displaying a calculation result by the earthquake-resistant joint behavior estimation calculation unit;
Only including,
The P1 is a nominal diameter of a pipe, and the P2 is a behavior estimation device for a cross-fault buried pipe, which is any one or a combination of a pipe length, a fault inclination, and a position of a seismic joint .
JP2015079467A 2015-04-08 2015-04-08 Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline Active JP6570861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079467A JP6570861B2 (en) 2015-04-08 2015-04-08 Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079467A JP6570861B2 (en) 2015-04-08 2015-04-08 Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline

Publications (2)

Publication Number Publication Date
JP2016200460A JP2016200460A (en) 2016-12-01
JP6570861B2 true JP6570861B2 (en) 2019-09-04

Family

ID=57424254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079467A Active JP6570861B2 (en) 2015-04-08 2015-04-08 Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline

Country Status (1)

Country Link
JP (1) JP6570861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106777454B (en) * 2016-11-09 2020-04-24 中国石油天然气集团公司 Design method for pipeline crossing slip fault
CN112231874A (en) * 2020-10-19 2021-01-15 中铁建华南建设有限公司 Method and device for establishing underground pipeline model, computer equipment and storage medium
CN112435527B (en) * 2020-12-02 2022-11-01 哈尔滨工业大学(威海) Matching type box structure for simulating fault motion
CN113187953B (en) * 2021-04-27 2022-05-31 成都建工工业设备安装有限公司 Auxiliary construction method for positioning electromechanical pipeline passing through settlement joint
CN114924055B (en) * 2022-05-16 2023-06-30 西安科技大学 Two-way angle adjustable three-dimensional physical similarity simulation experiment platform and experiment method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4524608A (en) * 1983-12-05 1985-06-25 Bellefeuille David T Gas leak meter
JPS60154152A (en) * 1984-01-25 1985-08-13 Osaka Gas Co Ltd Investigating method of corrosion state of buried pipe
JPS61215879A (en) * 1985-03-20 1986-09-25 株式会社クボタ Method of designing piping of sinking type buried duct
JPH0814113B2 (en) * 1989-08-04 1996-02-14 株式会社クボタ Seismic design method for buried pipelines near structures
JPH03191844A (en) * 1989-12-21 1991-08-21 Sekisui Chem Co Ltd Method for testing settling behavior of underground pipeline
JPH076883B2 (en) * 1991-03-14 1995-01-30 日本鋼管株式会社 Subsidence control method for buried piping
JPH07248100A (en) * 1994-03-11 1995-09-26 Osaka Gas Co Ltd Maintenance and control method to differential settlement of piping system

Also Published As

Publication number Publication date
JP2016200460A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6570861B2 (en) Behavior estimation method for cross-fault buried pipeline and behavior estimation device for cross-fault buried pipeline
Psyrras et al. Safety of buried steel natural gas pipelines under earthquake-induced ground shaking: A review
Tsinidis et al. A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: Fragility relations and implemented seismic intensity measures
Liu et al. A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings
Mai et al. Effect of deterioration on the performance of corrugated steel culverts
Trifonov et al. A semi-analytical approach to a nonlinear stress–strain analysis of buried steel pipelines crossing active faults
Banushi et al. Innovative analysis of a buried operating pipeline subjected to strike-slip fault movement
Abdo Parametric study of using only static response in structural damage detection
Iimura Simplified mechanical model for evaluating stress in pipeline subject to settlement
Kunert et al. Nonlinear FEM strategies for modeling pipe–soil interaction
Zhang et al. Vibration and deformation monitoring of a long-span rigid-frame bridge with distributed long-gauge sensors
JP6502803B2 (en) Method for estimating the behavior of a buried underground pipeline and a device for estimating the behavior of a buried underground pipeline.
Zahid et al. An analytical procedure for modelling pipeline-landslide interaction in gas pipelines
Zheng et al. Strain demand of elastic pipes subjected to permanent ground displacements using the finite difference method
Hu et al. Analytical method for the mechanical response of buried pipeline under the action of strike-slip faulting
Imanzadeh et al. Simplified uncertainties analysis of continuous buried steel pipes on an elastic foundation in the presence of low stiffness zones
Kunert et al. Failures and integrity of pipelines subjected to soil movements
Lockey et al. Predicting pipeline performance in geohazard areas using ILI mapping techniques
Liu et al. Strain prediction for X80 steel pipeline subjected to strike-slip fault under compression combined with bending
Tahamouli Roudsari et al. New method to evaluate the buried pipeline–sandy soil interaction subjected to strike slip faulting
Orynyak et al. Problem of large displacements of buried pipelines. Part 1. Working out a numerical procedure
Fredj et al. Application of the SPH finite element method to evaluate pipeline response to slope instability and landslides
Honegger et al. Recent PRCI guidelines for pipelines exposed to landslide and ground subsidence hazards
Sarvanis et al. Soil-pipe interaction models for the simulation of buried steel pipeline behaviour against geohazards
Ose et al. A finite-element model for in-situ behavior of offshore pipelines on uneven seabed and its application to on-bottom stability

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20150416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150