JP6570202B2 - 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 - Google Patents
絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 Download PDFInfo
- Publication number
- JP6570202B2 JP6570202B2 JP2017515837A JP2017515837A JP6570202B2 JP 6570202 B2 JP6570202 B2 JP 6570202B2 JP 2017515837 A JP2017515837 A JP 2017515837A JP 2017515837 A JP2017515837 A JP 2017515837A JP 6570202 B2 JP6570202 B2 JP 6570202B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- electronic switch
- voltage
- pulse signal
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 68
- 230000008878 coupling Effects 0.000 claims description 61
- 238000010168 coupling process Methods 0.000 claims description 61
- 238000005859 coupling reaction Methods 0.000 claims description 61
- 239000003990 capacitor Substances 0.000 claims description 52
- 230000001419 dependent effect Effects 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000005669 field effect Effects 0.000 claims 2
- 229910044991 metal oxide Inorganic materials 0.000 claims 2
- 150000004706 metal oxides Chemical class 0.000 claims 2
- 238000002955 isolation Methods 0.000 claims 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 25
- 238000010586 diagram Methods 0.000 description 24
- 230000001276 controlling effect Effects 0.000 description 15
- 230000004913 activation Effects 0.000 description 14
- 101100113692 Caenorhabditis elegans clk-2 gene Proteins 0.000 description 13
- 238000005070 sampling Methods 0.000 description 12
- 101100003180 Colletotrichum lindemuthianum ATG1 gene Proteins 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 6
- 239000000284 extract Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Electronic Switches (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410483711.9A CN105490567B (zh) | 2014-09-19 | 2014-09-19 | 固定导通时间切换式转换装置 |
CN201410483711.9 | 2014-09-19 | ||
US14/562,735 | 2014-12-07 | ||
US14/562,735 US9577543B2 (en) | 2014-09-12 | 2014-12-07 | Constant on time (COT) control in isolated converter |
PCT/US2015/050536 WO2016044497A1 (en) | 2014-09-19 | 2015-09-17 | Constant on-time (cot) control in isolated converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017529051A JP2017529051A (ja) | 2017-09-28 |
JP6570202B2 true JP6570202B2 (ja) | 2019-09-04 |
Family
ID=55533822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017515837A Active JP6570202B2 (ja) | 2014-09-19 | 2015-09-17 | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3195460A4 (zh) |
JP (1) | JP6570202B2 (zh) |
KR (1) | KR101915057B1 (zh) |
CN (1) | CN105490567B (zh) |
PH (1) | PH12017500476A1 (zh) |
WO (1) | WO2016044497A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117590056B (zh) * | 2024-01-15 | 2024-04-26 | 广州德肯电子股份有限公司 | 一种交直流信号隔离检测电路和检测装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7023717B2 (en) * | 2001-05-10 | 2006-04-04 | Fidelix Y.K. | Switching power supply apparatus |
US6510062B2 (en) * | 2001-06-25 | 2003-01-21 | Switch Power, Inc. | Method and circuit to bias output-side width modulation control in an isolating voltage converter system |
US6998828B2 (en) * | 2004-03-29 | 2006-02-14 | Semiconductor Components Industries, L.L.C. | Low audible noise power supply controller and method therefor |
RU2264685C1 (ru) * | 2004-04-01 | 2005-11-20 | Общество с ограниченной ответственностью Научно-производственное предприятие НПП "Поликоммуникационные системы" | Стабилизированный преобразователь напряжения |
WO2005101624A1 (en) * | 2004-04-13 | 2005-10-27 | System General Corp. | Pwm controller having a modulator for saving power and reducing acoustic noise |
US7280376B2 (en) | 2004-10-15 | 2007-10-09 | Dell Products L.P. | Primary side voltage sense for AC/DC power supplies capable of compensation for a voltage drop in the secondary |
US7483281B2 (en) * | 2006-08-11 | 2009-01-27 | System General Corp. | Multi-channel power converter with switching frequency modulation circuit for power saving |
JP4947147B2 (ja) * | 2007-07-18 | 2012-06-06 | 株式会社村田製作所 | 絶縁型dc−dcコンバータ |
US7983061B2 (en) * | 2008-02-22 | 2011-07-19 | System General Corporation | Switching controller capable of reducing acoustic noise for power converters |
US8253403B2 (en) * | 2008-12-16 | 2012-08-28 | Green Solution Technology Co., Ltd. | Converting circuit and controller for controlling the same |
WO2011051824A1 (en) | 2009-10-30 | 2011-05-05 | Koninklijke Philips Electronics N.V. | Isolated power converter having reduced stanby power |
WO2012109783A1 (en) * | 2011-02-14 | 2012-08-23 | Intersil Americas Inc. | Isolated boost dc/dc converter |
JP2013027145A (ja) * | 2011-07-21 | 2013-02-04 | Sanken Electric Co Ltd | スイッチング電源装置 |
US8873254B2 (en) | 2012-03-12 | 2014-10-28 | Linear Technology Corporation | Isolated flyback converter with sleep mode for light load operation |
CN103457453B (zh) * | 2012-06-04 | 2016-05-11 | 台达电子工业股份有限公司 | 一种用于降低音频噪音的控制方法 |
-
2014
- 2014-09-19 CN CN201410483711.9A patent/CN105490567B/zh active Active
-
2015
- 2015-09-17 KR KR1020177008382A patent/KR101915057B1/ko active IP Right Grant
- 2015-09-17 WO PCT/US2015/050536 patent/WO2016044497A1/en active Application Filing
- 2015-09-17 EP EP15842620.5A patent/EP3195460A4/en not_active Ceased
- 2015-09-17 JP JP2017515837A patent/JP6570202B2/ja active Active
-
2017
- 2017-03-13 PH PH12017500476A patent/PH12017500476A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
PH12017500476B1 (en) | 2017-07-31 |
JP2017529051A (ja) | 2017-09-28 |
KR20170048462A (ko) | 2017-05-08 |
EP3195460A1 (en) | 2017-07-26 |
EP3195460A4 (en) | 2018-05-16 |
KR101915057B1 (ko) | 2018-12-28 |
WO2016044497A1 (en) | 2016-03-24 |
PH12017500476A1 (en) | 2017-07-31 |
CN105490567B (zh) | 2018-04-13 |
CN105490567A (zh) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9577543B2 (en) | Constant on time (COT) control in isolated converter | |
US9954455B2 (en) | Constant on time COT control in isolated converter | |
US10651750B2 (en) | Constant on-time (COT) control in isolated converter | |
US9548667B2 (en) | Constant on-time (COT) control in isolated converter | |
JP6570623B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
US9577542B2 (en) | Constant on-time (COT) control in isolated converter | |
JP6602373B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
JP6530486B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
JP6570202B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 | |
JP6570085B2 (ja) | 絶縁型コンバータにおけるコンスタント・オン・タイム(cot)制御 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190426 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6570202 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |