JP6568656B2 - Silver powder and method for producing the same - Google Patents

Silver powder and method for producing the same Download PDF

Info

Publication number
JP6568656B2
JP6568656B2 JP2018527703A JP2018527703A JP6568656B2 JP 6568656 B2 JP6568656 B2 JP 6568656B2 JP 2018527703 A JP2018527703 A JP 2018527703A JP 2018527703 A JP2018527703 A JP 2018527703A JP 6568656 B2 JP6568656 B2 JP 6568656B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
producing
aqueous solution
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018527703A
Other languages
Japanese (ja)
Other versions
JP2018523759A (en
Inventor
ウミン ジン
ウミン ジン
テヒョン クォン
テヒョン クォン
チャングン リ
チャングン リ
サンドク ウ
サンドク ウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS MnM Inc
Original Assignee
LS Nikko Copper Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Nikko Copper Inc filed Critical LS Nikko Copper Inc
Publication of JP2018523759A publication Critical patent/JP2018523759A/en
Application granted granted Critical
Publication of JP6568656B2 publication Critical patent/JP6568656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、銀粉末及びその製造方法に関する。   The present invention relates to silver powder and a method for producing the same.

銀は、それが持つ固有の高い電気伝導度と酸化安定性により電気電子分野で電極材料として広く用いられている。特に、最近では、所望の形態の回路を直接形成する印刷エレクトロニクス技術の発達に伴い、銀を粉末化し、これをペーストまたはインク状に加工した導電性銀ペーストに関する産業が発達している。銀粉末が使用される導電性銀ペーストは、スルーホール、ダイボンディング、チップ部品などの伝統的な導電電極だけでなく、PDP、太陽電池の前面・後面電極、タッチスクリーンなどその使用先が多様であるうえ、その使用量が増加しつつある趨勢にある。   Silver is widely used as an electrode material in the electrical and electronic field due to its inherent high electrical conductivity and oxidation stability. In particular, recently, with the development of printed electronics technology for directly forming a circuit of a desired form, an industry relating to conductive silver paste in which silver is pulverized and processed into a paste or ink has been developed. Conductive silver paste that uses silver powder is not only used for traditional conductive electrodes such as through-holes, die bonding, and chip components, but also for various uses such as PDP, front and rear electrodes of solar cells, and touch screens. Besides, the usage is increasing.

従来より、銀粉末の製造には、硝酸銀水溶液とアンモニア水で銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元プロセスが採用されてきた。最近では、これらの銀粉末は、主に、チップ部品、プラズマディスプレイパネルなどの電極または回路の形成に用いられている。   Conventionally, in the production of silver powder, a wet reduction process in which a silver ammine complex aqueous solution is produced with an aqueous silver nitrate solution and aqueous ammonia and an organic reducing agent is added thereto has been employed. Recently, these silver powders are mainly used for forming electrodes or circuits of chip parts, plasma display panels and the like.

従来の銀粉末及びその製造方法において、銀粉末の結晶子径を大きくすることが容易ではなかった。結晶子径を大きくする別途の方法があるとしても、残存有機物の含有量が高くなるなど、別の問題を引き起こしてきた。   In the conventional silver powder and its manufacturing method, it was not easy to increase the crystallite diameter of the silver powder. Even if there is a separate method for increasing the crystallite diameter, it has caused other problems such as an increased content of residual organic matter.

特開2001−107101号公報JP 2001-107101 A

本発明は、かかる問題点を解決するためのもので、結晶子径が大きく且つ残存有機物の含有量が低い銀粉末を提供することを目的とする。   An object of the present invention is to provide a silver powder having a large crystallite diameter and a low content of residual organic matter in order to solve such problems.

また、本発明は、簡単な方法で結晶子径と残存有機物の含有量を同時に優秀にすることができる銀粉末の製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for producing silver powder that can simultaneously improve the crystallite size and the residual organic matter content by a simple method.

本発明は、銀イオン、還元剤及びリン酸化合物を含む反応液を準備する反応液準備段階(S21)と、前記反応液を反応させて銀粉末を得る析出段階(S22)とを含む銀塩還元段階(S2)を含む銀粉末の製造方法を提供する。   The present invention provides a silver salt comprising a reaction solution preparation step (S21) for preparing a reaction solution containing silver ions, a reducing agent and a phosphate compound, and a precipitation step (S22) for obtaining a silver powder by reacting the reaction solution. A method for producing a silver powder including a reduction step (S2) is provided.

また、前記リン酸化合物は次亜リン酸塩(ホスフィン酸塩)、亜リン酸塩(ホスホン酸塩)、リン酸塩及びポリリン酸塩のうちの少なくとも一つが選択されることを特徴とし、前記リン酸化合物はピロリン酸塩であることを特徴とする。   The phosphoric acid compound is selected from at least one of hypophosphite (phosphinate), phosphite (phosphonate), phosphate and polyphosphate, The phosphoric acid compound is a pyrophosphate.

また、前記銀イオンは、硝酸銀にアンモニアを添加して得られた銀錯塩の形態であることを特徴とする。   Further, the silver ion is in the form of a silver complex salt obtained by adding ammonia to silver nitrate.

また、前記還元剤は、ハイドロキノン、アスコルビン酸、アルカノールアミン、ヒドラジン及びホルマリンのうちの少なくとも一つが選択されることを特徴とする。   The reducing agent is selected from at least one of hydroquinone, ascorbic acid, alkanolamine, hydrazine and formalin.

また、前記リン酸化合物は、銀イオン100重量部に対して0.01乃至1.0重量部の範囲内で含まれることを特徴とする。   In addition, the phosphoric acid compound is included in a range of 0.01 to 1.0 part by weight with respect to 100 parts by weight of silver ions.

また、前記反応液準備段階(S21)は、前記銀イオン及びリン酸化合物を含む水溶液またはスラリーに還元剤を含む水溶液を添加して得られることを特徴とする。   The reaction solution preparation step (S21) is obtained by adding an aqueous solution containing a reducing agent to an aqueous solution or slurry containing the silver ions and the phosphate compound.

また、本発明は、有機物の含有量が1.0重量%以下、結晶子径が250Å〜600Åの範囲内であり、リン(P)の含有量が0.002乃至0.03重量%の範囲内である銀粉末を提供する。   In the present invention, the organic substance content is 1.0% by weight or less, the crystallite diameter is in the range of 250 to 600%, and the phosphorus (P) content is in the range of 0.002 to 0.03% by weight. Provide a silver powder that is within.

本発明に係る銀粉末及びその製造方法は、リン酸化合物を添加することにより残存有機物の含有量を大幅に下げることができ、結晶子径を大きくすることができる。   In the silver powder and the method for producing the same according to the present invention, by adding a phosphoric acid compound, the content of residual organic matter can be greatly reduced, and the crystallite diameter can be increased.

以下、本発明を詳細に説明するに先立ち、本明細書で使用された用語は、特定の実施形態を記述するためのものに過ぎず、添付する特許請求の範囲によってのみ限定される本発明の範囲を限定しようとするものではないことを理解すべきである。本明細書に使用されるすべての技術用語及び科学用語は、他の記載がない限り、技術的に通常の技術を有する者に一般に理解されるのと同様の意味を持つ。   Prior to describing the present invention in detail, the terminology used herein is for the purpose of describing particular embodiments only and is intended to be limited only by the scope of the appended claims. It should be understood that it is not intended to limit the scope. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.

本明細書及び請求の範囲の全般にわたり、他の記載がない限り、「含む(comprise、comprises、comprising)」という用語は、記載された物、段階または一群の物、及び段階を含むことを意味し、任意のある他の物、段階または一群の物または一群の段階を排除する意味で使用されたものではない。   Throughout this specification and the claims, unless otherwise stated, the term “comprise”, “comprises”, “comprising” is meant to include the stated article, step or group of things, and step. And not intended to exclude any certain other thing, step or group of things or group of steps.

一方、本発明の様々な実施形態は、明確な反対の指摘がない限り、その他のいずれかの他の実施形態と組み合わせることができる。特に、好ましいか有利であると指示するいずれの特徴も、好ましいか有利であると指示したその他のいずれかの特徴及び特徴等と組み合わせることができる。以下、添付図面を参照して本発明の実施形態及びそれによる効果を説明する。   On the other hand, the various embodiments of the present invention may be combined with any other embodiment, unless expressly indicated to the contrary. In particular, any feature indicated as preferred or advantageous may be combined with any other feature or feature indicated as preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.

本発明の一実施形態に係る銀粉末の製造方法は、銀塩製造段階(S1)、銀塩還元段階(S2)、濾過及び洗浄などの精製段階(S3)、及び表面処理段階(S4)を含んでなる。本発明に係る銀粉末の製造方法は、銀塩還元段階(S2)を必ず含み、その他の段階は省略可能である。   The method for producing silver powder according to an embodiment of the present invention includes a silver salt production step (S1), a silver salt reduction step (S2), a purification step (S3) such as filtration and washing, and a surface treatment step (S4). Comprising. The method for producing silver powder according to the present invention necessarily includes a silver salt reduction step (S2), and the other steps can be omitted.

1.銀塩製造段階(S1)
本発明の一実施形態に係る銀塩製造段階(S1)は、インゴット、粒、顆粒(granule)状の銀(silver、Ag)を酸処理して、銀イオン(Ag)を含む銀塩(silver salt)溶液を製造する段階であって、本段階を経て銀塩溶液を直接製造して銀粉末を製造することができるが、市販で購入した硝酸銀、銀塩錯体または銀中間体溶液を用いて以後の段階を行うことができる。
1. Silver salt production stage (S1)
In the silver salt production step (S1) according to an embodiment of the present invention, the silver salt (Sg + ) containing silver ions (Ag + ) is obtained by acid-treating ingots, grains, and granulated silver (silver, Ag) A silver salt solution can be directly produced through this step to produce a silver powder, but a commercially available silver nitrate, silver salt complex or silver intermediate solution is used. Later steps can be performed.

2.銀塩還元段階(S2)
本発明の一実施形態に係る銀塩還元段階(S2)は、銀イオン、還元剤及びリン酸化合物を含む反応液を準備する反応液準備段階(S21)、及び前記反応液を反応させて銀粉末を得る析出段階(S22)を含む。
2. Silver salt reduction stage (S2)
The silver salt reduction step (S2) according to an embodiment of the present invention includes a reaction solution preparation step (S21) of preparing a reaction solution containing silver ions, a reducing agent and a phosphate compound, and a silver solution by reacting the reaction solution. A precipitation step (S22) for obtaining a powder is included.

本発明の一実施形態に係る反応液準備段階(S21)は、まず、銀イオン、還元剤及びリン酸化合物を含む反応液を準備する。制限されないが、前記反応液は、銀イオン及びリン酸化合物を含む水溶液またはスラリーを製造した後、還元剤を含む水溶液を添加して得られるのが良い。銀イオン及びリン酸化合物を含む水溶液またはスラリーを攪拌する状態で、還元剤を含む水溶液をゆっくりと滴加するか或いは一括添加することができる。一括添加すると、短時間で還元反応が一括終了するため、粒子同士の凝集を防止しかつ分散性を向上させることができて好ましい。   In the reaction liquid preparation step (S21) according to one embodiment of the present invention, first, a reaction liquid containing silver ions, a reducing agent and a phosphate compound is prepared. Although not limited, the reaction solution may be obtained by preparing an aqueous solution or slurry containing silver ions and a phosphoric acid compound and then adding an aqueous solution containing a reducing agent. While stirring the aqueous solution or slurry containing silver ions and the phosphate compound, the aqueous solution containing the reducing agent can be slowly added dropwise or added together. Addition at once is preferable because the reduction reaction is completed at once in a short time, so that aggregation of particles can be prevented and dispersibility can be improved.

前記銀イオンは、銀陽イオンの形態であれば制限されない。例えば、硝酸銀、銀塩錯体または銀中間体であり得る。銀塩錯体は、硝酸銀などにアンモニア水、アンモニウム塩、キレート化合物などの添加によって製造することができる。銀中間体は、硝酸銀などに水酸化ナトリウム、塩化ナトリウム、炭酸ナトリウムなどの添加によって製造することができる。銀イオンの濃度は、制限されないが、6g/L乃至20g/Lの範囲内が良い。上記の範囲未満である場合には経済性に劣り、上記の範囲を超える場合には粉末の凝集をもたらす。   The silver ions are not limited as long as they are in the form of silver cations. For example, it can be silver nitrate, a silver salt complex or a silver intermediate. The silver salt complex can be produced by adding ammonia water, ammonium salt, chelate compound or the like to silver nitrate or the like. The silver intermediate can be produced by adding sodium hydroxide, sodium chloride, sodium carbonate or the like to silver nitrate or the like. The concentration of silver ions is not limited, but is preferably in the range of 6 g / L to 20 g / L. When it is less than the above range, it is inferior in economic efficiency, and when it exceeds the above range, aggregation of powder is caused.

適切な粒径及び球状の形状を有する銀粉末の製造のために、硝酸銀水溶液にアンモニア水を添加して得られるアンミン錯体を使用することが好ましい。   In order to produce silver powder having an appropriate particle size and spherical shape, it is preferable to use an ammine complex obtained by adding aqueous ammonia to an aqueous silver nitrate solution.

前記還元剤は、制限されないが、アスコルビン酸、アルカノールアミン、ハイドロキノン、ヒドラジン及びホルマリンよりなる群から選ばれる1種以上であり得る。これらの中からハイドロキノンを好ましく選択することができる。還元剤は、銀の1/2当量乃至2/3当量使用するのが良い。還元剤を銀イオンの1/2当量未満で使用する場合には、銀イオンがすべて還元されないおそれがあり、還元剤を銀イオンの2/3当量を超えて使用する場合には、有機物の含有量が増加して問題になるおそれがある。   The reducing agent is not limited, but may be one or more selected from the group consisting of ascorbic acid, alkanolamine, hydroquinone, hydrazine and formalin. Of these, hydroquinone can be preferably selected. The reducing agent is preferably used in an amount of 1/2 to 2/3 equivalent of silver. When the reducing agent is used at less than 1/2 equivalent of silver ions, all the silver ions may not be reduced. When the reducing agent is used at more than 2/3 equivalents of silver ions, it contains an organic substance. The amount may increase and become a problem.

本発明者は、前記反応液にリン酸化合物を添加することにより、リンがシード(seed)として作用して銀が成長する反応をするので、残存有機物の含有量を減少させることができ、画期的に結晶子径を大きくすることができるものと推定される。これは後述の実験例によって裏付けられる。   By adding a phosphoric acid compound to the reaction solution, the inventor performs a reaction in which phosphorus acts as a seed and grows silver, so that the content of residual organic matter can be reduced. It is presumed that the crystallite diameter can be increased periodically. This is supported by experimental examples described later.

前記リン酸化合物は、制限されないが、次亜リン酸塩(ホスフィン酸塩)、亜リン酸塩(ホスホン酸塩)、リン酸塩及びポリリン酸塩のうちの少なくとも一つが選択できる。次亜リン酸塩(ホスフィン酸塩)としては、ホスフィン酸塩(次亜リン酸塩)と次亜リン酸(HPO)の金属塩を含む。例えば、次亜リン酸ナトリウム(NaPH)、次亜リン酸カルシウム(Ca(PH)、アンモニウム鉄の次亜リン酸塩などを挙げることができる。亜リン酸塩(ホスホン酸塩)としては、ホスホン酸(亜リン酸)(HPO)の塩形態を含み、アンモニウムナトリウムカリウムとカルシウムの塩であり得る。リン酸塩としては、リン酸(HPO)の塩形態を挙げることがき、アンモニウムナトリウムカリウムとカルシウムの塩であり得る。水素の全部または一部が塩で置換できる。すなわち、一塩基性、二塩基性または三塩基性(すなわち、1、2または3金属原子を含有する)塩になることができる。ナトリウム塩を例として挙げると、二水素オルトリン酸ナトリウム[一塩基性リン酸塩(NaHPO)]、一水素オルトリン酸二ナトリウム[二塩基性リン酸塩(Na2HPO)]、及びリン酸三ナトリウム[三塩基性リン酸塩(NaPO)]を挙げることができる。ポリリン酸塩としては、例えば、ピロリン酸(H)の塩形態であるピロリン酸塩(二リン酸塩)、メタリン酸(HPOの塩形態であるメタリン酸塩(ここで、nは2乃至10の範囲内が良い)、高重合度を有するポリリン酸塩などを挙げることができる。これらはアンモニウムナトリウムカリウムとカルシウムの塩であり得る。但し、水可用性塩であることが良い。 The phosphoric acid compound is not limited, but at least one of hypophosphite (phosphinate), phosphite (phosphonate), phosphate and polyphosphate can be selected. Hypophosphite (phosphinate) includes metal salts of phosphinate (hypophosphite) and hypophosphorous acid (H 3 PO 2 ). For example, sodium hypophosphite (NaPH 2 O 2 ), calcium hypophosphite (Ca (PH 2 O 2 ) 2 ), ammonium iron hypophosphite and the like can be mentioned. Phosphites (phosphonates) include the salt form of phosphonic acid (phosphorous acid) (H 3 PO 3 ) and can be salts of ammonium sodium potassium and calcium. Examples of the phosphate include a salt form of phosphoric acid (H 3 PO 4 ), and may be a salt of ammonium sodium potassium and calcium. All or part of the hydrogen can be replaced with a salt. That is, it can be a monobasic, dibasic or tribasic (ie, containing 1, 2 or 3 metal atoms) salt. Examples of sodium salts include sodium dihydrogen orthophosphate [monobasic phosphate (NaH 2 PO 4 )], disodium monohydrogen orthophosphate [dibasic phosphate (Na 2 HPO 4 )], and And trisodium phosphate [tribasic phosphate (Na 3 PO 4 )]. Examples of the polyphosphate include pyrophosphate (diphosphate), which is a salt form of pyrophosphate (H 4 P 2 O 7 ), and metaphosphate (here, metaphosphate (HPO 3 ) n ) N is preferably in the range of 2 to 10), and examples thereof include polyphosphate having a high degree of polymerization. These can be ammonium sodium potassium and calcium salts. However, it should be a water availability salt.

この中で、ピロリン酸塩、リン酸が有機物の含有量の減少効果及び結晶子径の増加効果に優れて好ましく、特にナトリウム塩の形態であることがよい。   Among these, pyrophosphate and phosphoric acid are preferable because they are excellent in the effect of reducing the content of organic substances and the effect of increasing the crystallite diameter, and particularly preferably in the form of a sodium salt.

リン酸化合物の含有量は、制限されないが、銀イオン100重量部に対して0.01〜1重量部の範囲内で添加するのがよい。0.01重量部未満では、結晶子径の増加効果が微々たるものであり、1重量部超過では、結晶子径の増加幅が減少する。   Although content of a phosphoric acid compound is not restrict | limited, It is good to add within the range of 0.01-1 weight part with respect to 100 weight part of silver ions. If the amount is less than 0.01 parts by weight, the effect of increasing the crystallite diameter is negligible. If the amount exceeds 1 part by weight, the increase in the crystallite diameter decreases.

本発明の一実施形態に係る析出段階(S22)は、前記反応液を反応させて銀粉末を得る。反応液は攪拌するのが良い。一方、本発明の実施形態では、銀粒子の分散性の向上及び凝集防止のために、前記反応物に分散剤が含まれることを権利範囲から除外しない。分散剤の例としては、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤及び保護コロイドなどを挙げることができる。   In the precipitation step (S22) according to an embodiment of the present invention, the reaction solution is reacted to obtain silver powder. The reaction solution should be stirred. On the other hand, in the embodiment of the present invention, in order to improve the dispersibility of silver particles and prevent aggregation, it is not excluded from the scope of the right that the reactant contains a dispersant. Examples of the dispersant include fatty acids, fatty acid salts, surfactants, organic metals, chelating agents, and protective colloids.

しかし、前記分散剤が含まれる場合、残存有機物の含有量が増加して問題になるおそれがある。好ましくは、分散剤の添加なしで銀粉末の粒径、残存有機物の含有量及び結晶子径を制御する必要がある。   However, when the dispersant is included, the content of residual organic matter may increase and become a problem. Preferably, it is necessary to control the particle size of the silver powder, the content of residual organic matter, and the crystallite size without adding a dispersant.

3.精製段階(S3)
本発明の一実施形態に係る精製段階(S3)は、銀塩還元段階(S2)を介して銀粒子析出反応を完了した後、水溶液またはスラリー内に分散している銀粉末を濾過などを用いて分離し、洗浄する段階(S31)を含む。さらに具体的には、銀粉末分散液中の銀粒子を沈降させた後、分散液の上澄み液を捨て、遠心分離器を用いて濾過し、濾材を純水で洗浄する。洗浄を行う過程は、粉末を洗浄した洗浄水を完全に除去してこそなされる。よって、含水率10%未満に減少させる。選択的に、濾過前に、反応完了溶液に上記の分散剤を添加して銀粉末の凝集を防止することも可能である。
3. Purification stage (S3)
In the purification step (S3) according to an embodiment of the present invention, after completing the silver particle precipitation reaction through the silver salt reduction step (S2), the silver powder dispersed in the aqueous solution or slurry is filtered or the like. Separating and washing (S31). More specifically, after the silver particles in the silver powder dispersion are settled, the supernatant of the dispersion is discarded and filtered using a centrifuge, and the filter medium is washed with pure water. The cleaning process is performed by completely removing the cleaning water from which the powder has been cleaned. Therefore, the water content is reduced to less than 10%. Optionally, before the filtration, it is also possible to add the above dispersant to the reaction completion solution to prevent aggregation of the silver powder.

また、本発明の一実施形態に係る精製段階(S3)は、洗浄後、乾燥及び解砕段階(S34)をさらに含むことができる。   In addition, the purification step (S3) according to an embodiment of the present invention may further include a drying and crushing step (S34) after washing.

4.表面処理段階(S4)
本発明の一実施形態に係る表面処理段階(S4)は、銀粉末の親水表面を疎水化する段階であって、選択的に行われ得る。さらに具体的には、濾過の後に得られる湿潤ケーキ(wet cake)の含水率を10%未満に調節した後、銀粉末の表面処理のために表面処理剤を添加し、含水率を70%〜85%に調節することができる。その後、乾燥、解砕過程を経て銀粉末を得ることができる。銀粉末を表面処理するときに粉末がうまく分散してこそ表面処理が十分に行われ、含水率が低ければ分散効率に劣るので、一定の含水率をもって表面処理を施すのが良い。
4). Surface treatment stage (S4)
The surface treatment step (S4) according to an embodiment of the present invention is a step of hydrophobizing the hydrophilic surface of the silver powder and may be selectively performed. More specifically, after the moisture content of the wet cake obtained after filtration is adjusted to less than 10%, a surface treatment agent is added for the surface treatment of the silver powder, and the moisture content is increased from 70% to It can be adjusted to 85%. Thereafter, silver powder can be obtained through drying and crushing processes. The surface treatment is sufficiently performed only when the powder is well dispersed when the surface treatment is performed on the silver powder. If the water content is low, the dispersion efficiency is poor. Therefore, the surface treatment should be performed with a certain water content.

反応を完了した後、銀粉末を濾過などを用いて分離し、洗浄過程を経る。選択的に、濾過前に、反応完了溶液に上記の分散剤を添加して銀粉末の凝集を防止することも可能である。または、濾過後に得られる湿潤ケーキ(wet cake)の含水率を10%未満に調節した後、銀粉末の表面処理のために表面処理剤を添加し、含水率を70%〜85%に調節することができる。その後、乾燥、解砕過程を経て銀粉末を得ることができる。   After the reaction is completed, the silver powder is separated using filtration or the like and is subjected to a washing process. Optionally, before the filtration, it is also possible to add the above dispersant to the reaction completion solution to prevent aggregation of the silver powder. Alternatively, after adjusting the moisture content of the wet cake obtained after filtration to less than 10%, a surface treatment agent is added for the surface treatment of the silver powder, and the moisture content is adjusted to 70% to 85%. be able to. Thereafter, silver powder can be obtained through drying and crushing processes.

本発明の一実施形態によって製造された銀粉末は、有機物の含有量が1.0重量%以下、結晶子径が250Å〜600Åの範囲内であり、リン(P)の含有量が0.002重量%乃至0.03重量%の範囲内である。上記の範囲でリンを含有することにより、有機物の含有量が低減するとともに、結晶子径の大きい銀粉末を得ることができる。銀粉末の粒径は、制限されないが、0.5〜3.0μmの範囲内が良い。   The silver powder produced according to an embodiment of the present invention has an organic content of 1.0% by weight or less, a crystallite diameter in the range of 250 to 600%, and a phosphorus (P) content of 0.002. It is in the range of wt% to 0.03 wt%. By containing phosphorus in the above range, it is possible to obtain a silver powder having a large crystallite size while reducing the content of organic matter. The particle size of the silver powder is not limited, but is preferably in the range of 0.5 to 3.0 μm.

以下、本発明を具体的に説明するために実施例を挙げて詳細に説明する。しかし、本発明に係る実施例は、様々な他の形態に変形でき、本発明の範囲を限定するものと解釈されてはならない。本発明の実施例は、当業分野における通常の知識を有する者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments of the present invention can be modified in various other forms and should not be construed to limit the scope of the present invention. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

実施例及び実験例
<実施例1>
常温の純水730gに硝酸銀128g、アンモニア(濃度25%)175g及びピロリン酸ナトリウム0.02gを入れて攪拌し、溶解させて第1水溶液を調製した。一方、常温の純水1000gにハイドロキノン20gを入れて攪拌し、溶解させて第2水溶液を調製した(表1参照)。
Examples and Experimental Examples <Example 1>
A first aqueous solution was prepared by adding 128 g of silver nitrate, 175 g of ammonia (concentration 25%) and 0.02 g of sodium pyrophosphate to 730 g of pure water at room temperature, stirring and dissolving. On the other hand, 20 g of hydroquinone was added to 1000 g of pure water at room temperature, stirred and dissolved to prepare a second aqueous solution (see Table 1).

次いで、第1水溶液を攪拌した状態にし、この第1水溶液に第2水溶液を一括添加して、添加終了後から5分間さらに攪拌して混合液中で粒子を成長させた。その後、攪拌を停止し、混合液中の粒子を沈降させた後、混合液の上澄み液を捨て、遠心分離器を用いて混合液を濾過し、濾材を純水で洗浄し、乾燥させて銀粉を得た。   Next, the first aqueous solution was stirred, the second aqueous solution was added to the first aqueous solution, and the mixture was further stirred for 5 minutes after the addition was completed to grow particles in the mixed solution. Thereafter, the stirring is stopped, and the particles in the mixed solution are allowed to settle. Then, the supernatant of the mixed solution is discarded, the mixed solution is filtered using a centrifuge, the filter medium is washed with pure water, dried, and silver powder. Got.

得られた銀粉に対して、SEMサイズ、結晶子径、有機物の含有量を下記方法によって測定した。その結果を表2に示した。   With respect to the obtained silver powder, SEM size, crystallite diameter, and organic content were measured by the following methods. The results are shown in Table 2.

(SEMサイズ):JEOL社製の走査電子顕微鏡を用いて、パウダー100個それぞれの直径を測定した後、平均値を求めた。   (SEM size): Using a scanning electron microscope manufactured by JEOL, the diameter of each of 100 powders was measured, and then the average value was obtained.

(結晶子径):PANalytical社製のX線回折装置X’pertを用いて粉末X線回折を行い、得られた[111]面の回折角ピーク位置と半価幅からシェラーの式(scherrer equation)を用いて結晶子径を求めた。   (Crystallite diameter): Powder X-ray diffraction was performed using an X-ray diffractometer X'pert manufactured by PANalytical, and Scherrer equation was calculated from the diffraction angle peak position and half width of the obtained [111] plane. ) Was used to determine the crystallite size.

(有機物の含有量):セイコーインスツルメンツ(Seiko Instruments)社製のTG/DTA EXART6600を用いて、空気中、昇温速度10℃/minで常温から500℃までの範囲でTGA分析を行い、有機物の含有量を測定した。   (Content of organic substance): Using TG / DTA EXART6600 manufactured by Seiko Instruments Inc., TGA analysis was performed in the air at a temperature rising rate of 10 ° C / min in the range from room temperature to 500 ° C. The content was measured.

<実施例2>
常温の純水730gに硝酸銀128g、アンモニア(濃度25%)175g及びピロリン酸ナトリウム0.032gを入れて撹拌し、溶解させて第1水溶液を調製した。一方、常温の純水1000gにハイドロキノン20gを入れて攪拌し、溶解させて第2水溶液を調製した(表1参照)。
<Example 2>
A first aqueous solution was prepared by adding 128 g of silver nitrate, 175 g of ammonia (concentration 25%), and 0.032 g of sodium pyrophosphate to 730 g of pure water at room temperature, stirring and dissolving. On the other hand, 20 g of hydroquinone was added to 1000 g of pure water at room temperature, stirred and dissolved to prepare a second aqueous solution (see Table 1).

次いで、第1水溶液を攪拌した状態にし、この第1水溶液に第2水溶液を一括添加して、添加終了後から5分間さらに攪拌して混合液中で粒子を成長させた。その後、攪拌を停止し、混合液中の粒子を沈降させた後、混合液の上澄み液を捨て、遠心分離器を用いて混合液を濾過し、濾材を純水で洗浄し、乾燥させて銀粉を得た。   Next, the first aqueous solution was stirred, the second aqueous solution was added to the first aqueous solution, and the mixture was further stirred for 5 minutes after the addition was completed to grow particles in the mixed solution. Thereafter, the stirring is stopped, and the particles in the mixed solution are allowed to settle. Then, the supernatant of the mixed solution is discarded, the mixed solution is filtered using a centrifuge, the filter medium is washed with pure water, dried, and silver powder. Got.

得られた銀粉に対して、SEMサイズ、結晶子径、有機物の含有量を下記方法によって測定した。その結果を表2に示す。   With respect to the obtained silver powder, SEM size, crystallite diameter, and organic content were measured by the following methods. The results are shown in Table 2.

<実施例3>
常温の純水730gに硝酸銀128g、アンモニア(濃度25%)175g及びリン酸ナトリウム0.08gを入れて撹拌し、溶解させて第1水溶液を調製した。一方、常温の純水1000gにハイドロキノン20gを入れて攪拌し、溶解させて第2水溶液を調製した(表1参照)。
<Example 3>
A first aqueous solution was prepared by adding and stirring 128 g of silver nitrate, 175 g of ammonia (concentration 25%), and 0.08 g of sodium phosphate in 730 g of pure water at room temperature. On the other hand, 20 g of hydroquinone was added to 1000 g of pure water at room temperature, stirred and dissolved to prepare a second aqueous solution (see Table 1).

次いで、第1水溶液を攪拌した状態にし、この第1水溶液に第2水溶液を一括添加して、添加終了後から5分間さらに攪拌して混合液中で粒子を成長させた。その後、攪拌を停止し、混合液中の粒子を沈降させた後、混合液の上澄み液を捨て、遠心分離器を用いて混合液を濾過し、濾材を純水で洗浄し、乾燥させて銀粉を得た。   Next, the first aqueous solution was stirred, the second aqueous solution was added to the first aqueous solution, and the mixture was further stirred for 5 minutes after the addition was completed to grow particles in the mixed solution. Thereafter, the stirring is stopped, and the particles in the mixed solution are allowed to settle. Then, the supernatant of the mixed solution is discarded, the mixed solution is filtered using a centrifuge, the filter medium is washed with pure water, dried, and silver powder. Got.

得られた銀粉に対して、SEMサイズ、結晶子径、有機物の含有量を下記方法によって測定した。その結果を表2に示す。   With respect to the obtained silver powder, SEM size, crystallite diameter, and organic content were measured by the following methods. The results are shown in Table 2.

<比較例1>
常温の純水730gに硝酸銀128g、アンモニア(濃度25%)175gを入れて攪拌し、溶解させて第1水溶液を調製した。一方、常温の純水1000gにハイドロキノン20gを入れて攪拌し、溶解させて第2水溶液を調製した(表1参照)。
<Comparative Example 1>
A first aqueous solution was prepared by adding 128 g of silver nitrate and 175 g of ammonia (concentration 25%) to 730 g of pure water at room temperature, stirring and dissolving. On the other hand, 20 g of hydroquinone was added to 1000 g of pure water at room temperature, stirred and dissolved to prepare a second aqueous solution (see Table 1).

次いで、第1水溶液を攪拌した状態にし、この第1水溶液に第2水溶液を一括添加して、添加終了後から5分間さらに攪拌して混合液中で粒子を成長させた。その後、攪拌を停止し、混合液中の粒子を沈降させた後、混合液の上澄み液を捨て、遠心分離器を用いて混合液を濾過し、濾材を純水で洗浄し、乾燥させて銀粉を得た。   Next, the first aqueous solution was stirred, the second aqueous solution was added to the first aqueous solution, and the mixture was further stirred for 5 minutes after the addition was completed to grow particles in the mixed solution. Thereafter, the stirring is stopped, and the particles in the mixed solution are allowed to settle. Then, the supernatant of the mixed solution is discarded, the mixed solution is filtered using a centrifuge, the filter medium is washed with pure water, dried, and silver powder. Got.

得られた銀粉に対して、SEMサイズ、結晶子径、有機物の含有量を下記方法によって測定した。その結果を表2に示す。   With respect to the obtained silver powder, SEM size, crystallite diameter, and organic content were measured by the following methods. The results are shown in Table 2.

Figure 0006568656
Figure 0006568656

Figure 0006568656
Figure 0006568656

表2に示すように、リン酸化合物を添加したとき、有機物の含有量が著しく減少し、結晶子径が大きく増加することを確認することができる。   As shown in Table 2, it can be confirmed that when a phosphoric acid compound is added, the content of the organic substance is remarkably reduced and the crystallite diameter is greatly increased.

以上、本発明の実施形態を中心に説明したが、これは例示的なものに過ぎず、本発明の属する技術分野における通常の知識を有する者であれば、これから様々な変形及び均等な他の実施形態が可能であることを理解するであろう。よって、本発明の真正な技術的保護範囲は、以下に記載される特許請求の範囲によって判断されるべきである。
The embodiments of the present invention have been described above. However, this is merely an example, and various modifications and other equivalents will be made by those having ordinary knowledge in the technical field to which the present invention belongs. It will be appreciated that embodiments are possible. Accordingly, the true technical protection scope of the present invention should be determined by the claims set forth below.

Claims (6)

銀イオン、還元剤及びリン酸化合物を含む反応液を準備する反応液準備段階(S21)と、前記反応液を反応させて銀粉末を得る析出段階(S22)とを含む銀塩還元段階(S2)を含む、銀粉末の製造方法であって、前記反応液準備段階(S21)に準備した反応液は、前記銀イオン及びリン酸化合物を含む水溶液またはスラリーを製造した後に、還元剤を含む水溶液を添加して得られ、有機物の含有量が1.0重量%以下、前記銀粉末の結晶子径が250Å〜600Åの範囲内であり、リン(P)の含有量が0.002乃至0.03重量%の範囲内である、銀粉末の製造方法。 A silver salt reduction step (S2) including a reaction solution preparation step (S21) for preparing a reaction solution containing silver ions, a reducing agent and a phosphate compound, and a precipitation step (S22) for reacting the reaction solution to obtain silver powder. The reaction solution prepared in the reaction solution preparation step (S21) includes an aqueous solution or slurry containing the silver ions and a phosphate compound, and then an aqueous solution containing a reducing agent. The silver powder has a crystallite diameter in the range of 250 to 600% and a phosphorus (P) content of 0.002 to 0.00. A method for producing silver powder , which is within the range of 03% by weight . 前記リン酸化合物は次亜リン酸塩、亜リン酸塩、リン酸塩及びポリリン酸塩のうちの少なくとも一つが選択されることを特徴とする、請求項1に記載の銀粉末の製造方法。 The method for producing silver powder according to claim 1, wherein the phosphoric acid compound is selected from at least one of hypophosphite, phosphite, phosphate and polyphosphate. 前記リン酸化合物がピロリン酸塩であることを特徴とする、請求項1に記載の銀粉末の製造方法。     The method for producing silver powder according to claim 1, wherein the phosphoric acid compound is pyrophosphate. 前記銀イオンは、硝酸銀にアンモニアを添加して得られた銀錯塩の形態であることを特徴とする、請求項1に記載の銀粉末の製造方法。     The method for producing a silver powder according to claim 1, wherein the silver ions are in the form of a silver complex salt obtained by adding ammonia to silver nitrate. 前記還元剤は、ハイドロキノン、アスコルビン酸、アルカノールアミン、ヒドラジン及びホルマリンのうちの少なくとも一つが選択されることを特徴とする、請求項1に記載の銀粉末の製造方法。     The method for producing a silver powder according to claim 1, wherein the reducing agent is selected from at least one of hydroquinone, ascorbic acid, alkanolamine, hydrazine, and formalin. 前記リン酸化合物は、銀イオン100重量部に対して0.01乃至1.0重量部の範囲内で含まれることを特徴とする、請求項1に記載の銀粉末の製造方法。     2. The method for producing a silver powder according to claim 1, wherein the phosphoric acid compound is contained within a range of 0.01 to 1.0 part by weight with respect to 100 parts by weight of silver ions.
JP2018527703A 2015-08-12 2016-08-01 Silver powder and method for producing the same Active JP6568656B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0113933 2015-08-12
KR1020150113933A KR101733169B1 (en) 2015-08-12 2015-08-12 silver particles and manufacturing method thereof
PCT/KR2016/008475 WO2017026723A1 (en) 2015-08-12 2016-08-01 Silver powder and preparing method therefor

Publications (2)

Publication Number Publication Date
JP2018523759A JP2018523759A (en) 2018-08-23
JP6568656B2 true JP6568656B2 (en) 2019-08-28

Family

ID=57983802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527703A Active JP6568656B2 (en) 2015-08-12 2016-08-01 Silver powder and method for producing the same

Country Status (4)

Country Link
JP (1) JP6568656B2 (en)
KR (1) KR101733169B1 (en)
CN (1) CN107921542B (en)
WO (1) WO2017026723A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180047528A (en) * 2016-10-31 2018-05-10 엘에스니꼬동제련 주식회사 silver powder and manufacturing method of the same
JP6857166B2 (en) * 2017-12-15 2021-04-14 Dowaエレクトロニクス株式会社 Spherical silver powder and its manufacturing method
KR101905033B1 (en) 2018-09-03 2018-10-05 엘에스니꼬동제련 주식회사 silver powder and manufacturing method of the same
KR20200038742A (en) * 2018-10-04 2020-04-14 대주전자재료 주식회사 Silver powder manufacturing method
KR102178009B1 (en) * 2018-11-30 2020-11-12 엘에스니꼬동제련 주식회사 Manufacturing method of silver powder capable of controlling shrinkage rate
KR102263618B1 (en) * 2019-03-29 2021-06-10 대주전자재료 주식회사 Mixed silver powder and conductive paste comprising same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3570591B2 (en) * 1996-03-22 2004-09-29 株式会社村田製作所 Production method of copper powder
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP4639395B2 (en) * 2001-08-09 2011-02-23 Dowaエレクトロニクス株式会社 Method for producing silver particles
US7648557B2 (en) * 2006-06-02 2010-01-19 E. I. Du Pont De Nemours And Company Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
CN101622090B (en) * 2007-02-27 2013-03-13 三菱麻铁里亚尔株式会社 Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
KR100954425B1 (en) * 2007-11-02 2010-04-26 주식회사 지오션 Method for preparation of silver powder by continuous solution reduction
KR101215011B1 (en) * 2009-03-05 2012-12-24 서강대학교산학협력단 Preparation method of silver powder by using sodium hypophosphite
JP5568255B2 (en) * 2009-06-17 2014-08-06 住友金属鉱山株式会社 Silver powder and method for producing the same
CN101811196B (en) * 2010-05-11 2011-12-28 中国乐凯胶片集团公司 Method for preparing dendritic micron silver powder
JP5556561B2 (en) * 2010-10-06 2014-07-23 住友金属鉱山株式会社 Silver powder and method for producing the same
KR101157478B1 (en) * 2011-04-28 2012-06-20 에이엠씨주식회사 Silver paste for solar cell electrode and the method thereof
KR101353995B1 (en) * 2012-06-20 2014-01-22 (주)이건이엔씨 Method for preparing silver cluster of micro-size consisting of agglomerate nano-silver particle
JP6096261B2 (en) * 2014-09-29 2017-03-15 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, and hydrophilic conductive paste

Also Published As

Publication number Publication date
KR20170019728A (en) 2017-02-22
JP2018523759A (en) 2018-08-23
WO2017026723A1 (en) 2017-02-16
CN107921542B (en) 2020-09-04
CN107921542A (en) 2018-04-17
KR101733169B1 (en) 2017-05-08

Similar Documents

Publication Publication Date Title
JP6568656B2 (en) Silver powder and method for producing the same
KR101905033B1 (en) silver powder and manufacturing method of the same
TWI605018B (en) Silver powder, method for producing the same, and hydrophilic, electrically conductive paste
CA2537278A1 (en) Lithium metal phosphates, method for producing the same and use thereof as electrode material
JP5759688B2 (en) Flat copper particles
TW200819390A (en) Nanofine phosphates
US5801318A (en) Method of manufacturing copper powder having excellent dispersibility and small particle diameter deviation
JP2013541640A (en) Silver particles and method for producing the same
JP7240809B2 (en) Method for producing anisotropic zinc phosphate particles and anisotropic zinc metal mixed phosphate particles, and use thereof
CN115477293A (en) Preparation method of anhydrous iron phosphate with low impurity and high specific surface area
CN106809810A (en) A kind of preparation method of anhydrous ferric orthophosphate
JP3073732B1 (en) Nickel fine powder and method for producing the same
CN113165075A (en) Silver powder and method for producing same
JP2020007633A (en) Nickel coupling particle and manufacturing method therefor
KR100851815B1 (en) A method of preparing nano silver powder
JP2013132636A (en) Manufacturing method for phosphorus adsorbent and phosphorus adsorbent
JP2008121051A (en) Method for producing silver powder
CN110114175B (en) High-temperature sintered silver powder and method for producing same
JP5790292B2 (en) Method for producing nickel oxide powder
JP6451679B2 (en) Method for producing copper nanoparticles
KR20170035578A (en) The manufacturing method of silver powder
JP4074637B2 (en) Method for producing fine silver powder
KR20180047528A (en) silver powder and manufacturing method of the same
KR100962214B1 (en) Manufacturing Method of Copper Powder
JP2018104724A (en) Production method of silver-coated copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R150 Certificate of patent or registration of utility model

Ref document number: 6568656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250