JP6568354B2 - Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell - Google Patents

Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell Download PDF

Info

Publication number
JP6568354B2
JP6568354B2 JP2014261529A JP2014261529A JP6568354B2 JP 6568354 B2 JP6568354 B2 JP 6568354B2 JP 2014261529 A JP2014261529 A JP 2014261529A JP 2014261529 A JP2014261529 A JP 2014261529A JP 6568354 B2 JP6568354 B2 JP 6568354B2
Authority
JP
Japan
Prior art keywords
electrolyte
photoelectric conversion
dye
conversion element
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014261529A
Other languages
Japanese (ja)
Other versions
JP2016122720A (en
Inventor
尚洋 藤沼
尚洋 藤沼
純一郎 安西
純一郎 安西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014261529A priority Critical patent/JP6568354B2/en
Publication of JP2016122720A publication Critical patent/JP2016122720A/en
Application granted granted Critical
Publication of JP6568354B2 publication Critical patent/JP6568354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、電解質、光電変換素子及び色素増感太陽電池に関する。   The present invention relates to an electrolyte, a photoelectric conversion element, and a dye-sensitized solar cell.

色素増感太陽電池(DSC)は、透明導電基材、半導体、色素、電解液及び対極を備えたフレキシブルで軽量な発電素子であり、その製造プロセスが簡易であるため、盛んに開発されている。DSCの重要な特性である光電変換効率が低下する原因として、半導体からレドックス酸化種であるI3 -やCo(III)錯体への再結合反応が生じ、開放電圧(Voc)が減少することが挙げられる。 Dye-sensitized solar cells (DSCs) are flexible and lightweight power generation elements with transparent conductive substrates, semiconductors, dyes, electrolytes, and counter electrodes, and are being actively developed because their manufacturing processes are simple. . The cause of the decrease in photoelectric conversion efficiency, which is an important characteristic of DSC, is that the recombination reaction from the semiconductor to the redox oxidation species I 3 - or Co (III) complex occurs, and the open circuit voltage (Voc) decreases. Can be mentioned.

この再結合反応を抑制する試みとして、電解液中にtert-ブチルピリジンを添加することが提案されている(非特許文献1参照)。また、ピリジンにプロピル基を導入した2−n−プロピルピリジンの添加(特許文献1参照)や、ピリジンにアミノ基を導入したアミノピリジン系化合物の添加(特許文献2参照)により、再結合反応が抑制され、光電変換効率が向上すると述べられている。   As an attempt to suppress this recombination reaction, it has been proposed to add tert-butylpyridine to the electrolytic solution (see Non-Patent Document 1). Further, the recombination reaction can be carried out by adding 2-n-propylpyridine having a propyl group introduced into pyridine (see Patent Document 1) or by adding an aminopyridine compound having an amino group introduced into pyridine (see Patent Document 2). It is said that it is suppressed and the photoelectric conversion efficiency is improved.

特許第4019139号公報Japanese Patent No. 4019139 特許第4019140号公報Japanese Patent No. 4019140

“TiO2 Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells: a Periodic Density Functional Theory Study” Langmuir 2008, 24, 4411-4419“TiO2 Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells: a Periodic Density Functional Theory Study” Langmuir 2008, 24, 4411-4419

しかし、特許文献1のピリジン系化合物の添加によって抑制される再結合反応の程度は充分ではなく、特許文献2のピリジン系化合物の添加によってVocの向上と引換えに短絡電流(Isc)が顕著に低下する問題があった。   However, the degree of the recombination reaction suppressed by the addition of the pyridine compound of Patent Document 1 is not sufficient, and the addition of the pyridine compound of Patent Document 2 significantly reduces the short-circuit current (Isc) in exchange for the improvement of Voc. There was a problem to do.

本発明は、上記事情を鑑みてなされたものであり、開放電圧及び光電変換効率を向上させ、短絡電流の低下を抑制することが可能な色素増感太陽電池用の電解質、その電解質を備えた光電変換素子及び色素増感太陽電池の提供を課題とする。   The present invention has been made in view of the above circumstances, and includes an electrolyte for a dye-sensitized solar cell that can improve open-circuit voltage and photoelectric conversion efficiency and suppress a decrease in short-circuit current, and the electrolyte. An object is to provide a photoelectric conversion element and a dye-sensitized solar cell.

本発明者らが鋭意検討を行った結果、従来の添加剤の塩基性が過剰であるために、半導体表面における遮蔽効果によって色素から半導体への電子移動が阻害されていると考えられた。更に検討を進めたところ、適度な塩基性を有する添加剤を電解質に加えることにより、再結合反応を抑制し、光電変換効率を向上できることを見出し、本発明を完成するに至った。即ち、本発明は以下の手段を提供する。   As a result of intensive studies by the present inventors, it was considered that the electron transfer from the dye to the semiconductor was hindered by the shielding effect on the semiconductor surface because the basicity of the conventional additive was excessive. As a result of further investigation, it was found that by adding an additive having an appropriate basicity to the electrolyte, the recombination reaction can be suppressed and the photoelectric conversion efficiency can be improved, and the present invention has been completed. That is, the present invention provides the following means.

[1]下記一般式(1)で表される複素芳香族化合物を含有することを特徴とする電解質。

Figure 0006568354
(式中、R1、R2、R3、R4及びR5からなる群のうち何れか一つが下記一般式(2)又は(3)であり、その他の四つはそれぞれ独立に、水素原子、メチル基又はエチル基であり、k, l, mは整数であり、k≧4、l+m≧2である。)
Figure 0006568354
[2]R1、R2、R4及びR5はそれぞれ独立に、水素原子、メチル基又はエチル基であり、R3が前記一般式(2)又は(3)であることを特徴とする前記[1]に記載の電解質。
[3]前記複素芳香族化合物及び酸化還元反応を生じるレドックスを含有することを特徴とする前記[1]又は[2]に記載の電解質。
[4]前記レドックスがハロゲン化合物、Co錯体化合物、Fe錯体化合物及び有機ラジカル化合物から選択される1以上であることを特徴とする前記[3]に記載の電解質。
[5]前記[1]〜[4]の何れか一項に記載の電解質を備えた光電変換素子。
[6]前記[5]に記載の光電変換素子であり、透明導電層、半導体層及び色素を有する光電極と、前記電解質と、対向電極とを備えたことを特徴とする色素増感太陽電池。 [1] An electrolyte comprising a heteroaromatic compound represented by the following general formula (1).
Figure 0006568354
(In the formula, any one of the group consisting of R1, R2, R3, R4 and R5 is the following general formula (2) or (3), and the other four are independently a hydrogen atom, a methyl group or An ethyl group, k, l and m are integers, and k ≧ 4 and l + m ≧ 2.)
Figure 0006568354
[2] In the above [1], R1, R2, R4 and R5 are each independently a hydrogen atom, a methyl group or an ethyl group, and R3 is the general formula (2) or (3) The electrolyte described.
[3] The electrolyte according to [1] or [2] above, which contains the heteroaromatic compound and a redox that causes a redox reaction.
[4] The electrolyte according to [3], wherein the redox is at least one selected from a halogen compound, a Co complex compound, an Fe complex compound, and an organic radical compound.
[5] A photoelectric conversion element comprising the electrolyte according to any one of [1] to [4].
[6] The dye-sensitized solar cell according to [5], comprising a photoelectrode having a transparent conductive layer, a semiconductor layer, and a dye, the electrolyte, and a counter electrode. .

本発明の電解質によれば、これを備えた光電変換素子及び色素増感太陽電池における色素からレドックス酸化種へ電子が移動する再結合反応を抑制し、短絡電流の低下を抑制し、開放電圧及び光電変換効率を向上させることができる。   According to the electrolyte of the present invention, a recombination reaction in which electrons move from a dye to a redox oxidation species in a photoelectric conversion element and a dye-sensitized solar cell provided with the same is suppressed, a decrease in short-circuit current is suppressed, an open-circuit voltage and Photoelectric conversion efficiency can be improved.

本発明にかかる光電変換素子の一例を示す断面図である。It is sectional drawing which shows an example of the photoelectric conversion element concerning this invention.

図1に、本発明にかかる光電変換素子の第一実施形態の断面図を示す。光電変換素子10は、色素増感太陽電池であって、光電極基板11と、対向電極基板12と、電荷輸送層20とを備えている。光電極基板11は、透明基材13と、透明基材13の一方の板面上に形成された透明導電膜(透明導電層)14と、透明導電膜14の上に形成された半導体層15と、半導体層15及び増感色素(不図示)からなる光電極とによって構成されている。対向電極基板12は、透明基材13と一定の厚み寸法をおいて配置された対向基材16と、対向基材16の板面上に形成された対向導電膜(対向導電層)17からなる対向電極とによって構成されている。電荷輸送層20は半導体層15と対向導電膜17の間の空隙部に充填されており、電荷輸送層20の側方は、封止材21によって封止されている。   In FIG. 1, sectional drawing of 1st embodiment of the photoelectric conversion element concerning this invention is shown. The photoelectric conversion element 10 is a dye-sensitized solar cell, and includes a photoelectrode substrate 11, a counter electrode substrate 12, and a charge transport layer 20. The photoelectrode substrate 11 includes a transparent base material 13, a transparent conductive film (transparent conductive layer) 14 formed on one plate surface of the transparent base material 13, and a semiconductor layer 15 formed on the transparent conductive film 14. And a photoelectrode composed of a semiconductor layer 15 and a sensitizing dye (not shown). The counter electrode substrate 12 includes a transparent base material 13, a counter base material 16 arranged with a certain thickness, and a counter conductive film (counter conductive layer) 17 formed on the plate surface of the counter base material 16. It is comprised by the counter electrode. The charge transport layer 20 is filled in a gap between the semiconductor layer 15 and the counter conductive film 17, and the side of the charge transport layer 20 is sealed with a sealing material 21.

透明基材13は、透明導電膜14の基台となる部材であり、色素増感太陽電池の製造及び利用に適用可能であって透明な材質で構成されていれば、種類等は特に限定されない。
透明基材13としては例えば、透明なガラスや透明な樹脂材料からなるフィルム基材が好適である。
If the transparent base material 13 is a member used as the base of the transparent conductive film 14, and can be applied to manufacture and utilization of a dye-sensitized solar cell and is comprised with a transparent material, a kind etc. will not be specifically limited. .
As the transparent substrate 13, for example, a film substrate made of transparent glass or a transparent resin material is suitable.

透明導電膜14は、スパッタリング法や印刷法により透明基材13の一方の板面上に形成されている。透明導電膜14には、例えば、スズドープ酸化インジウム、フッ素ドープ酸化スズ、アルミドープ酸化亜鉛、酸化スズ、アンチモンドープ酸化スズ、酸化インジウム/酸化亜鉛、ガリウムドープ酸化亜鉛等が用いられる。   The transparent conductive film 14 is formed on one plate surface of the transparent substrate 13 by a sputtering method or a printing method. For the transparent conductive film 14, for example, tin-doped indium oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, tin oxide, antimony-doped tin oxide, indium oxide / zinc oxide, gallium-doped zinc oxide, or the like is used.

半導体層15は、増感色素を吸着可能であり、光励起された増感色素から電子を受け取り、透明導電膜14へ電子を渡すことが可能なn型半導体であれば特に制限されない。このような半導体層の材料としては、例えば金属酸化物半導体、金属カルコゲナイド等の半導体からなる微粒子が好ましく、酸化チタン微粒子がより好ましい。   The semiconductor layer 15 is not particularly limited as long as it is an n-type semiconductor capable of adsorbing a sensitizing dye and receiving electrons from the photoexcited sensitizing dye and passing the electrons to the transparent conductive film 14. As a material for such a semiconductor layer, for example, fine particles made of a semiconductor such as a metal oxide semiconductor or metal chalcogenide are preferable, and fine particles of titanium oxide are more preferable.

半導体層15の形態としては、緻密層であっても多孔質層であってもよいが、光電変換効率を高める観点から、多孔質層であることが好ましく、前記微粒子同士が焼結した多孔質層又はエアロゾル・デポジション法による粉体吹付けの物理的衝突により接合された多孔質層がより好ましい。   The form of the semiconductor layer 15 may be a dense layer or a porous layer, but is preferably a porous layer from the viewpoint of increasing photoelectric conversion efficiency, and is a porous material in which the fine particles are sintered together. More preferred are layers or porous layers joined by physical impingement of powder spraying by aerosol deposition method.

酸化チタンの種類としては、酸化チタン微粒子同士の電気的接合を向上させる点から、アナターゼ型酸化チタンが好ましい。酸化チタン微粒子は、アナターゼ型とルチル型が混合された酸化チタンであることも好ましく、ルチル型酸化チタンのみであってもよい。色素増感太陽電池において、酸化チタン製の多孔質膜の比表面積及び入射光の利用効率を高める観点から、酸化チタン微粒子の平均粒径は10nm以上500nm以下が好ましい。   As a kind of titanium oxide, anatase type titanium oxide is preferable from the viewpoint of improving electrical bonding between titanium oxide fine particles. The titanium oxide fine particles are preferably titanium oxide in which anatase type and rutile type are mixed, and may be only rutile type titanium oxide. In the dye-sensitized solar cell, the average particle diameter of the titanium oxide fine particles is preferably 10 nm or more and 500 nm or less from the viewpoint of increasing the specific surface area of the porous titanium oxide film and the utilization efficiency of incident light.

半導体層15に吸着される増感色素は、光電変換素子10に照射された光によって励起されると電子を放出する化合物である。放出された電子は、バンドギャップが広く、可視光領域に吸収帯を持たない半導体層15に受け渡されて、さらに透明導電膜14に移動する。このような増感色素として、従来の色素増感太陽電池で使用される色素が適用可能であり、例えばルテニウム錯体、シアニンやクロロフィルといった有機色素が挙げられる。増感色素としては、吸収する波長域が広く、光励起の寿命が長く、半導体層15に受け渡された電子が安定する点から、ルテニウム錯体が好適であり、例えば、N3、N719、N749、CYC-B11と一般に呼ばれる色素が挙げられる。また、MK2等のカルバゾール骨格を有するカルバゾール系有機色素も好適である。   The sensitizing dye adsorbed on the semiconductor layer 15 is a compound that emits electrons when excited by the light applied to the photoelectric conversion element 10. The emitted electrons are transferred to the semiconductor layer 15 having a wide band gap and no absorption band in the visible light region, and further move to the transparent conductive film 14. As such a sensitizing dye, a dye used in a conventional dye-sensitized solar cell is applicable, and examples thereof include organic dyes such as a ruthenium complex, cyanine, and chlorophyll. As the sensitizing dye, a ruthenium complex is preferable because it has a wide absorption wavelength range, has a long photoexcitation lifetime, and stabilizes electrons transferred to the semiconductor layer 15. For example, N3, N719, N749, CYC -A dye generally called B11 is mentioned. A carbazole organic dye having a carbazole skeleton such as MK2 is also suitable.

対向基材16は、対向導電膜17の基台となる部材であり、色素増感太陽電池の製造及び利用に適用可能な材質で構成されていれば、種類等は特に限定されない。対向基材16としては例えばガラスや樹脂材料からなるフィルム基材が好適である。   The opposing base material 16 is a member that becomes a base of the opposing conductive film 17, and the type and the like are not particularly limited as long as the opposing base material 16 is made of a material that can be applied to manufacture and use of the dye-sensitized solar cell. As the counter substrate 16, for example, a film substrate made of glass or a resin material is suitable.

対向導電膜17は、スパッタリング法や印刷法により対向基材16の透明基材13側の板面上に形成されている。対向導電膜17としては、後に説明する電荷輸送層20の酸化還元反応における触媒能を有するものが選ばれる。このような触媒として、例えば、金、白金等の金属触媒、カーボンナノチューブ、グラファイト等の導電性炭素、ポリアニリン、ポリピロール、ポリチオフェン等のp型半導体として働く導電性高分子等が挙げられる。対向基材16及び対向導電膜17は不透明であってもよい。外部から対向電極基板12を透過した光が光電極基板11に届くようにするために、透明であることが好ましい。   The counter conductive film 17 is formed on the plate surface of the counter substrate 16 on the transparent substrate 13 side by a sputtering method or a printing method. As the counter conductive film 17, one having catalytic ability in the oxidation-reduction reaction of the charge transport layer 20 described later is selected. Examples of such a catalyst include metal catalysts such as gold and platinum, conductive carbon such as carbon nanotubes and graphite, and conductive polymers that function as p-type semiconductors such as polyaniline, polypyrrole, and polythiophene. The counter substrate 16 and the counter conductive film 17 may be opaque. In order to allow the light transmitted through the counter electrode substrate 12 from the outside to reach the photoelectrode substrate 11, it is preferably transparent.

封止材21の材料は、電荷輸送層20を光電極基板11と対向電極基板12の間に封止可能な材料であれば特に制限されず、例えば光硬化性樹脂と熱硬化性樹脂との混合物等が挙げられる。   The material of the sealing material 21 is not particularly limited as long as it is a material that can seal the charge transport layer 20 between the photoelectrode substrate 11 and the counter electrode substrate 12. For example, the material of the sealing material 21 includes a photocurable resin and a thermosetting resin. A mixture etc. are mentioned.

電荷輸送層20には公知の色素増感太陽電池に使用される電解質が含まれる。この電解質に下記一般式(1)で表される複素芳香族化合物が含有されていると、当該電解質を備えた光電変換素子及び色素増感太陽電池の光電変換効率が向上する。   The charge transport layer 20 contains an electrolyte used in a known dye-sensitized solar cell. When the heteroaromatic compound represented by the following general formula (1) is contained in the electrolyte, the photoelectric conversion efficiency of the photoelectric conversion element and the dye-sensitized solar cell including the electrolyte is improved.

下記一般式(1)中、R1、R2、R3、R4及びR5からなる群のうち何れか一つが下記一般式(2)又は(3)であり、その他の四つ、即ち前記群のうち下記一般式(2)又は(3)ではない四つはそれぞれ独立に、水素原子、メチル基又はエチル基であり、k, l, mは整数であり、k≧4、l+m≧2である。なお、下記一般式(2)又は(3)の左端が、R1、R2、R3、R4及びR5が結合している炭素原子に結合する。   In the following general formula (1), any one of the groups consisting of R1, R2, R3, R4 and R5 is the following general formula (2) or (3), and the other four, that is, the following among the above groups: The four which are not the general formula (2) or (3) are each independently a hydrogen atom, a methyl group or an ethyl group, k, l and m are integers, and k ≧ 4 and l + m ≧ 2. The left end of the following general formula (2) or (3) is bonded to the carbon atom to which R1, R2, R3, R4 and R5 are bonded.

Figure 0006568354
Figure 0006568354

一般式(1)中、R1、R2、R3、R4及びR5のうち、R2、R3若しくはR4が一般式(2)又は(3)であることが好ましく、R3が一般式(2)又は(3)であることがより好ましい。
これら好適な複素芳香族化合物が含有されていると、当該電解質を備えた光電変換素子及び色素増感太陽電池の光電変換効率がより向上し得る。そのメカニズムとして、当該化合物の塩基性がより一層適度となり、半導体表面における色素から半導体への電子移動を阻害する遮蔽効果が低減され、かつ適度な立体障害により、半導体からレドックス酸化種への再結合反応が抑制されるためであると推測される。
In general formula (1), among R1, R2, R3, R4 and R5, R2, R3 or R4 is preferably general formula (2) or (3), and R3 is general formula (2) or (3 ) Is more preferable.
When these suitable heteroaromatic compounds are contained, the photoelectric conversion efficiency of the photoelectric conversion element and the dye-sensitized solar cell provided with the electrolyte can be further improved. As the mechanism, the basicity of the compound becomes even more moderate, the shielding effect that inhibits electron transfer from the dye to the semiconductor on the semiconductor surface is reduced, and recombination from the semiconductor to the redox oxidized species due to moderate steric hindrance This is presumably because the reaction is suppressed.

一般式(2)のk≧4である整数kは、4〜20が好ましく、4〜15がより好ましく、4〜10がさらに好ましい。
これら好適な複素芳香族化合物が含有されていると、当該電解質を備えた光電変換素子及び色素増感太陽電池の光電変換効率がより向上し得る。前記整数kが4以上であると、当該化合物の塩基性が適度となり、前記遮蔽効果を低減するとともに、適度な立体障害により半導体からレドックス酸化種への再結合反応が抑制されると推測される。前記整数が20以下であると、前記電解質における当該化合物の溶解性又は分散性が充分に得られる。
The integer k in the general formula (2) where k ≧ 4 is preferably 4-20, more preferably 4-15, and still more preferably 4-10.
When these suitable heteroaromatic compounds are contained, the photoelectric conversion efficiency of the photoelectric conversion element and the dye-sensitized solar cell provided with the electrolyte can be further improved. When the integer k is 4 or more, the basicity of the compound becomes moderate, the shielding effect is reduced, and the recombination reaction from the semiconductor to the redox oxidized species is suppressed by moderate steric hindrance. . When the integer is 20 or less, sufficient solubility or dispersibility of the compound in the electrolyte can be obtained.

一般式(3)のl+m≧2である整数l, mは、それぞれ独立に0〜20が好ましく、1〜10がより好ましく、1〜5がさらに好ましい。前記l+mは、2〜12が好ましく、2〜8がより好ましく、2〜6がさらに好ましい。ここで「l−m」の絶対値は0〜4が好ましく、0〜2がより好ましく、0〜1がさらに好ましい。
これら好適な複素芳香族化合物が含有されていると、当該電解質を備えた光電変換素子及び色素増感太陽電池の光電変換効率がより向上し得る。前記l+mが2以上であると、当該化合物の塩基性が適度となり、前記遮蔽効果を低減するとともに、適度な立体障害により半導体からレドックス酸化種への再結合反応が抑制されると推測される。前記l+mが12以下であると、前記電解質における溶解性又は分散性が充分に得られる。また、前記l−mの絶対値が0〜4であると、前記電解質における当該化合物の溶解性又は分散性が充分に得られる。
In general formula (3), integers l and m satisfying l + m ≧ 2 are each independently preferably 0 to 20, more preferably 1 to 10, and further preferably 1 to 5. The l + m is preferably 2 to 12, more preferably 2 to 8, and still more preferably 2 to 6. Here, the absolute value of “l-m” is preferably 0 to 4, more preferably 0 to 2, and still more preferably 0 to 1.
When these suitable heteroaromatic compounds are contained, the photoelectric conversion efficiency of the photoelectric conversion element and the dye-sensitized solar cell provided with the electrolyte can be further improved. When the l + m is 2 or more, it is presumed that the basicity of the compound becomes appropriate, the shielding effect is reduced, and the recombination reaction from the semiconductor to the redox oxidized species is suppressed by appropriate steric hindrance. When the l + m is 12 or less, sufficient solubility or dispersibility in the electrolyte can be obtained. When the absolute value of l-m is 0 to 4, the solubility or dispersibility of the compound in the electrolyte is sufficiently obtained.

一般式(1)中、R1、R2、R3、R4及びR5のうち一般式(2)又は(3)ではない四つの基は、それぞれ独立に、水素原子、メチル基又はエチル基であり、水素原子又はメチル基であることが好ましく、水素原子であることがより好ましい。
これら好適な複素芳香族化合物が含有されていると、当該電解質を備えた光電変換素子及び色素増感太陽電池の光電変換効率がより向上し得る。前記四つの基がそれぞれ独立に水素原子又はメチル基であると、当該化合物の塩基性が適度となり、前記遮蔽効果がより低減するとともに、前記電解質における当該化合物の溶解性又は分散性が充分に得られる。
In general formula (1), among R1, R2, R3, R4 and R5, the four groups not in general formula (2) or (3) are each independently a hydrogen atom, a methyl group or an ethyl group, An atom or a methyl group is preferable, and a hydrogen atom is more preferable.
When these suitable heteroaromatic compounds are contained, the photoelectric conversion efficiency of the photoelectric conversion element and the dye-sensitized solar cell provided with the electrolyte can be further improved. When the four groups are each independently a hydrogen atom or a methyl group, the basicity of the compound becomes appropriate, the shielding effect is further reduced, and the solubility or dispersibility of the compound in the electrolyte is sufficiently obtained. It is done.

一般式(1)で表される好適な化合物の具体例としては、例えば、後述する実施例で使用した4−ヘプチルピリジン、4−オクチルピリジン、4−(5−ノニル)ピリジン等の直鎖状又は分岐鎖状の炭素数4〜10のアルキル基を4位に有するピリジン系化合物が挙げられる。   Specific examples of suitable compounds represented by the general formula (1) include, for example, linear forms such as 4-heptylpyridine, 4-octylpyridine and 4- (5-nonyl) pyridine used in Examples described later. Alternatively, a pyridine compound having a branched alkyl group having 4 to 10 carbon atoms at the 4-position can be given.

電荷輸送層20を構成する電解質に含まれる前記複素芳香族化合物は1種類であってもよいし、2種類以上であってもよい。   The heteroaromatic compound contained in the electrolyte constituting the charge transport layer 20 may be one type or two or more types.

電荷輸送層20を構成する電解質には、酸化還元反応を生じるレドックスが含有される。
ここで、「レドックス」とは、酸化状態と還元状態の両方を取り、増感色素を還元し得る物質をいう。レドックスは酸化還元対と呼び替えることができる。
前記電解質に含まれるレドックスは1種類であってもよいし、2種類以上であってもよい。
The electrolyte constituting the charge transport layer 20 contains redox that causes a redox reaction.
Here, “redox” refers to a substance that can take both an oxidized state and a reduced state to reduce the sensitizing dye. Redox can be called redox couple.
The redox contained in the electrolyte may be one type or two or more types.

前記レドックスの種類は特に限定されず、従来の色素増感太陽電池に使用されるレドックスが適用可能であり、例えば、ヨウ素レドックス(I-, I -)、臭素レドックス(Br-, Br -)等が好適である。 The type of the redox is not particularly limited, and redox used in a conventional dye-sensitized solar cell can be applied. For example, iodine redox (I , I 3 ), bromine redox (Br , Br 3 And the like are preferred.

前記レドックスとして、ハロゲン化合物、コバルト(Co)錯体化合物、鉄(Fe)錯体化合物及び有機ラジカル化合物から選択される1以上が前記電解質を構成することが好ましい。
前記ハロゲン化合物は、フッ素、塩素、臭素、ヨウ素等のハロゲンと共に電荷輸送層20に含まれることが好ましい。
As the redox, it is preferable that at least one selected from a halogen compound, a cobalt (Co) complex compound, an iron (Fe) complex compound, and an organic radical compound constitutes the electrolyte.
The halogen compound is preferably included in the charge transport layer 20 together with a halogen such as fluorine, chlorine, bromine or iodine.

前記ハロゲン化合物としては、例えば、ハロゲン化された、リチウム、マグネシウム、カルシウム等の無機ハロゲン化合物、前記ハロゲンをカウンターアニオンとして含む、1-エチル-3メチルイミダゾリウム・ヨウ化物塩、1-エチル-3メチルイミダゾリウム・臭化物塩、1,2-ジメチル-3-プロピルイミダゾリウム・ヨウ化物塩(略称:DMPImI)、1,2-ジメチル-3-プロピルイミダゾリウム・臭化物塩等の有機ハロゲン化物塩が挙げられる。   Examples of the halogen compound include halogenated inorganic halogen compounds such as lithium, magnesium, and calcium, 1-ethyl-3methylimidazolium iodide salt, 1-ethyl-3 methyl iodide salt containing the halogen as a counter anion, and the like. Organic halide salts such as methyl imidazolium bromide salt, 1,2-dimethyl-3-propyl imidazolium iodide salt (abbreviation: DMPImI), 1,2-dimethyl-3-propyl imidazolium bromide salt, etc. It is done.

電荷輸送層20には、ハロゲンおよびハロゲン化合物からなるレドックスが2種以上含まれていてもよい。例えば、電荷輸送層20に含まれる電解質が、ハロゲンおよびハロゲン化合物からなるレドックスを2組以上含む、酸化還元対の混合物であってもよい。   The charge transport layer 20 may contain two or more redox composed of halogen and a halogen compound. For example, the electrolyte contained in the charge transport layer 20 may be a mixture of redox pairs containing two or more redox composed of halogen and a halogen compound.

前記コバルト錯体化合物としては、例えば、コバルト(II / III)トリス(2,2’-ビピリジン)、コバルト(II / III)トリス(4,4’-ジメチル-2,2-ビピリジン)、コバルト(II / III)トリス(4,4’-ジタート-ブチル-2,2-ビピリジン)、コバルト(II / III)トリス(1,10-フェナントロリン)、等が挙げられる。
前記電解質に含まれるコバルト錯体化合物は、1種類であってもよいし、2種類以上であってもよい。
Examples of the cobalt complex compound include cobalt (II / III) tris (2,2′-bipyridine), cobalt (II / III) tris (4,4′-dimethyl-2,2-bipyridine), cobalt (II / III) tris (4,4′-ditert-butyl-2,2-bipyridine), cobalt (II / III) tris (1,10-phenanthroline), and the like.
The cobalt complex compound contained in the electrolyte may be one type or two or more types.

前記鉄錯体化合物としては、例えば、フェロシアン酸塩、フェロセン等が挙げられる。   Examples of the iron complex compound include ferrocyanate and ferrocene.

前記有機ラジカル化合物としては、例えば、TEMPO(2,2,6,6-テトラメチルピペリジン 1-オキシル (2,2,6,6-tetramethylpiperidine 1-oxyl))、ベンゾキノン、ビオロゲン等が挙げられる。   Examples of the organic radical compound include TEMPO (2,2,6,6-tetramethylpiperidine 1-oxyl), benzoquinone, viologen, and the like.

電荷輸送層20において、前述した電解質を構成するレドックス及び複素芳香族化合物を溶解又は分散する溶媒として、有機溶媒又はイオン液体(常温溶融塩)が含まれていてもよい。前記有機溶媒としては、従来の色素増感太陽電池の電解液に使用される有機溶媒が適用可能であり、例えば、アセトニトリル、プロピオニトリル、γ−ブチロラクトン等が挙げられる。前記イオン液体としては、従来の色素増感太陽電池の電解液に使用されるイオン液体が適用可能であり、例えば、イミダゾリウム系イオン液体、ピリジニウム系イオン液体、脂肪族系イオン液体等が挙げられる。電荷輸送層20において、前記有機溶媒と前記イオン液体とを併用してもよい。また、電荷輸送層20を構成する有機溶媒がポリアクリロニトリル等のゲル化剤によってゲル化されていても構わない。   In the charge transport layer 20, an organic solvent or an ionic liquid (room temperature molten salt) may be included as a solvent for dissolving or dispersing the redox and heteroaromatic compound constituting the electrolyte. As said organic solvent, the organic solvent used for the electrolyte solution of the conventional dye-sensitized solar cell is applicable, For example, acetonitrile, propionitrile, (gamma) -butyrolactone etc. are mentioned. As the ionic liquid, an ionic liquid used in an electrolyte solution of a conventional dye-sensitized solar cell is applicable, and examples thereof include an imidazolium-based ionic liquid, a pyridinium-based ionic liquid, and an aliphatic ionic liquid. . In the charge transport layer 20, the organic solvent and the ionic liquid may be used in combination. The organic solvent constituting the charge transport layer 20 may be gelled with a gelling agent such as polyacrylonitrile.

電荷輸送層20に含まれる前記レドックスの濃度は特に限定されず、従来の色素増感太陽電池で使用されるレドックスと同様の濃度が適用可能であり、例えば、0.01〜3M(mol/L)程度にすることができる。   The concentration of the redox contained in the charge transport layer 20 is not particularly limited, and the same concentration as the redox used in the conventional dye-sensitized solar cell can be applied. For example, 0.01 to 3 M (mol / L ).

電荷輸送層20に含まれる前記複素芳香族化合物の濃度は、溶媒の種類及び溶解度にもよるが、前記レドックスの濃度と同程度或いは前記レドックスの濃度の0.1〜2.0倍程度の濃度が好ましく、例えば、0.005〜3M(mol/L)程度にすることができる。上記範囲の濃度で含まれると、溶解性又は分散性が良好であり、前記遮蔽効果を低減し、光電変換効率を充分に向上させることができる。   The concentration of the heteroaromatic compound contained in the charge transport layer 20 depends on the type and solubility of the solvent, but is about the same as the redox concentration or about 0.1 to 2.0 times the redox concentration. For example, about 0.005 to 3 M (mol / L). When contained in a concentration within the above range, the solubility or dispersibility is good, the shielding effect can be reduced, and the photoelectric conversion efficiency can be sufficiently improved.

電荷輸送層20は、従来の色素増感太陽電池で使用される液状、ゲル状及び固体状の電解質と同様の方法で作製される。例えば、溶媒に前記複素芳香族化合物及びレドックスを投入して、公知方法で均一に混合することによって電荷輸送層20としての電解液を得ることができる。また、光電変換素子の公知の部材を常法により組み立てて、光電極基板11と対向電極基板12の間に公知方法によって電荷輸送層20を封止することにより光電変換素子を得ることができる。光電変換素子の光電極に光を照射することによって、光電極基板11と対向電極基板12に接続された引出配線を介して外部回路に電流を取り出すことが可能な色素増感太陽電池として使用することができる。   The charge transport layer 20 is produced by the same method as the liquid, gel, and solid electrolytes used in conventional dye-sensitized solar cells. For example, the electrolyte solution as the charge transport layer 20 can be obtained by introducing the heteroaromatic compound and redox into a solvent and mixing them uniformly by a known method. Moreover, a photoelectric conversion element can be obtained by assembling a known member of a photoelectric conversion element by a conventional method and sealing the charge transport layer 20 between the photoelectrode substrate 11 and the counter electrode substrate 12 by a known method. It is used as a dye-sensitized solar cell capable of extracting current to an external circuit through an extraction wiring connected to the photoelectrode substrate 11 and the counter electrode substrate 12 by irradiating light to the photoelectrode of the photoelectric conversion element. be able to.

次に、本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   Next, the present invention will be described in detail by the following examples, but the present invention is not limited only to these examples.

<色素増感太陽電池の作製>
透明導電基材として、表面抵抗10Ω/sqのFTO膜を形成したガラス基板(日本板硝子社製)を用いた。この基板のFTO膜が形成された面上に、スクリーン印刷法によってSolaronix社製 Nanoxideペーストを塗布し、大気雰囲気下500℃で30分の焼成を行い、膜厚約5μm、セル面積0.16cmの酸化チタン多孔質膜を形成した。
酸化チタン多孔質膜を色素溶液A「色素:0.3mM N719、溶媒:アセトニトリル:tブタノール=1:1」または色素溶液B「色素:0.3mM MK2、溶媒:トルエン」に24時間浸漬させて、光電極を作製した。この光電極と対極としてのPt箔を対向させて、両電極間に枠型のハイミラン製セパレータを配置して封止されたセル内に、対極を備える対向電極基板に予め空けておいた注入孔から下記の電解液を注入した。
<Preparation of dye-sensitized solar cell>
As a transparent conductive substrate, a glass substrate (manufactured by Nippon Sheet Glass Co., Ltd.) on which an FTO film having a surface resistance of 10Ω / sq was formed. On the surface of the substrate on which the FTO film is formed, a Nanoxide paste manufactured by Solaronix is applied by screen printing and baked at 500 ° C. for 30 minutes in an air atmosphere. The film thickness is about 5 μm and the cell area is 0.16 cm 2. A titanium oxide porous film was formed.
The titanium oxide porous membrane is immersed in dye solution A “dye: 0.3 mM N719, solvent: acetonitrile: t-butanol = 1: 1” or dye solution B “dye: 0.3 mM MK2, solvent: toluene” for 24 hours. An electrode was produced. An injection hole previously opened in a counter electrode substrate having a counter electrode in a cell sealed by placing a frame type high-Milan separator between the electrodes with the Pt foil as a counter electrode facing this photoelectrode The following electrolyte was injected.

<電解液の調製>
実施例1〜6及び比較例1〜6の電解液として、表1に記載の組成及び濃度になるように、塩基性添加剤、レドックス1及びレドックス2をアセトニトリルに溶解することにより、ヨウ素レドックス系電解液とコバルトレドックス系溶解液をそれぞれ調製した。実施例1〜3及び比較例1〜3の光電極には色素としてN719を使用し、実施例4〜6及び比較例4〜6の光電極には色素としてMK2を使用した。表1に記載された塩基性添加剤の構造式を以下に示す。
<Preparation of electrolyte>
By dissolving basic additives, redox 1 and redox 2 in acetonitrile so as to have the compositions and concentrations shown in Table 1 as electrolytes of Examples 1 to 6 and Comparative Examples 1 to 6, an iodine redox system An electrolytic solution and a cobalt redox solution were prepared. N719 was used as the dye for the photoelectrodes of Examples 1 to 3 and Comparative Examples 1 to 3, and MK2 was used as the dye for the photoelectrodes of Examples 4 to 6 and Comparative Examples 4 to 6. The structural formula of the basic additive described in Table 1 is shown below.

Figure 0006568354
Figure 0006568354

上記表中、「DMPImI」は1,2-ジメチル-3-プロピルイミダゾリウム・ヨウ化物塩を表し、「I2」はヨウ素を表し、「TBP」はtert-ブチルピリジンを表し、「bpy」はトリス(2,2’-ビピリジン)コバルト(II)/(III)錯体を表す。   In the above table, “DMPImI” represents 1,2-dimethyl-3-propylimidazolium iodide salt, “I2” represents iodine, “TBP” represents tert-butylpyridine, and “bpy” represents tris. Represents a (2,2'-bipyridine) cobalt (II) / (III) complex.

Figure 0006568354
Figure 0006568354

<色素増感太陽電池の評価>
ソーラーシミュレーター(型番:XES−301S、株式会社三永電機製作所製)を使用して光量100mW/cmの疑似太陽光を照射し、上記で作製した実施例1〜6及び比較例1〜6の色素増感太陽電池の電流−電圧特性を評価した。その結果を表2に示す。
<Evaluation of dye-sensitized solar cell>
Using a solar simulator (model number: XES-301S, manufactured by Mitsunaga Electric Manufacturing Co., Ltd.), irradiating pseudo-sunlight with a light amount of 100 mW / cm 2 , Examples 1 to 6 and Comparative Examples 1 to 6 prepared above were used. The current-voltage characteristics of the dye-sensitized solar cell were evaluated. The results are shown in Table 2.

Figure 0006568354
Figure 0006568354

以上の結果から、本発明に係る実施例1〜6の色素増感太陽電池は、短絡電流の低下を抑制し、開放電圧及び光電変換効率が向上していることが明らかである。   From the above results, it is clear that the dye-sensitized solar cells of Examples 1 to 6 according to the present invention suppress the decrease in short-circuit current and improve the open-circuit voltage and photoelectric conversion efficiency.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。   The configurations and combinations thereof in the embodiments described above are examples, and the addition, omission, replacement, and other modifications of the configurations can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.

本発明は、色素増感太陽電池の分野で広く利用可能である。   The present invention can be widely used in the field of dye-sensitized solar cells.

10…光電変換素子、11…光電極基板、12…対向電極基板、13…透明基材(基材)、14…透明導電膜、15…半導体層(光電極)、16…対向基材、17…対向導電膜(対向電極)、20…電荷輸送層、21…封止材 DESCRIPTION OF SYMBOLS 10 ... Photoelectric conversion element, 11 ... Photoelectrode substrate, 12 ... Counter electrode substrate, 13 ... Transparent base material (base material), 14 ... Transparent electrically conductive film, 15 ... Semiconductor layer (photoelectrode), 16 ... Counter base material, 17 ... counter conductive film (counter electrode), 20 ... charge transport layer, 21 ... sealing material

Claims (8)

下記一般式(1)で表される複素芳香族化合物を含有することを特徴とする光電変換素子用電解質。
Figure 0006568354
(式中、R1、R2、R3、R4及びR5からなる群のうち何れか一つが下記一般式(2)又は(3)であり、その他の四つはそれぞれ独立に、水素原子、メチル基又はエチル基であり、k, l, mは整数であり、kは6〜20であり、l+mは3〜12である。)
Figure 0006568354
An electrolyte for a photoelectric conversion element comprising a heteroaromatic compound represented by the following general formula (1).
Figure 0006568354
(In the formula, any one of the group consisting of R1, R2, R3, R4 and R5 is the following general formula (2) or (3), and the other four are independently a hydrogen atom, a methyl group or An ethyl group, k, l, m are integers, k is 6-20, and l + m is 3-12.)
Figure 0006568354
R1、R2、R4及びR5はそれぞれ独立に、水素原子、メチル基又はエチル基であり、R3が前記一般式(2)又は(3)であることを特徴とする請求項1に記載の光電変換素子用電解質。 2. The photoelectric conversion according to claim 1, wherein R 1, R 2, R 4 and R 5 are each independently a hydrogen atom, a methyl group or an ethyl group, and R 3 is the general formula (2) or (3). Electrolyte for device . 前記複素芳香族化合物及び酸化還元反応を生じるレドックスを含有することを特徴とする請求項1又は2に記載の光電変換素子用電解質。 3. The electrolyte for a photoelectric conversion element according to claim 1, comprising the heteroaromatic compound and a redox that causes a redox reaction. 4. 前記レドックスがハロゲン化合物、Co錯体化合物、Fe錯体化合物及び有機ラジカル化合物から選択される1以上であることを特徴とする請求項3に記載の光電変換素子用電解質。 The said redox is 1 or more selected from a halogen compound, Co complex compound, Fe complex compound, and an organic radical compound, The electrolyte for photoelectric conversion elements of Claim 3 characterized by the above-mentioned. 請求項1〜4の何れか一項に記載の光電変換素子用電解質を備えた光電変換素子。 The photoelectric conversion element provided with the electrolyte for photoelectric conversion elements as described in any one of Claims 1-4. 請求項5に記載の光電変換素子であり、透明導電層、半導体層及び色素を有する光電極と、前記光電変換素子用電解質と、対向電極とを備えたことを特徴とする色素増感太陽電池。 6. A dye-sensitized solar cell according to claim 5, comprising a photoelectrode having a transparent conductive layer, a semiconductor layer and a dye, the electrolyte for the photoelectric conversion element, and a counter electrode. . 下記一般式(1)で表される複素芳香族化合物を含有する電解質であり、An electrolyte containing a heteroaromatic compound represented by the following general formula (1):
さらに酸化還元反応を生じるレドックスを含有することを特徴とする電解質。Furthermore, the electrolyte characterized by including the redox which produces a redox reaction.
Figure 0006568354
Figure 0006568354
(式中、R1、R2、R3、R4及びR5からなる群のうち何れか一つが下記一般式(2)又は(3)であり、その他の四つはそれぞれ独立に、水素原子、メチル基又はエチル基であり、k, l, mは整数であり、kは6〜20であり、l+mは3〜12である。)(In the formula, any one of the group consisting of R1, R2, R3, R4 and R5 is the following general formula (2) or (3), and the other four are independently a hydrogen atom, a methyl group or An ethyl group, k, l, m are integers, k is 6-20, and l + m is 3-12.)
Figure 0006568354
Figure 0006568354
R1、R2、R4及びR5はそれぞれ独立に、水素原子、メチル基又はエチル基であり、R3が前記一般式(2)又は(3)であることを特徴とする請求項7に記載の電解質。8. The electrolyte according to claim 7, wherein R1, R2, R4 and R5 are each independently a hydrogen atom, a methyl group or an ethyl group, and R3 is the general formula (2) or (3).
JP2014261529A 2014-12-25 2014-12-25 Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell Active JP6568354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261529A JP6568354B2 (en) 2014-12-25 2014-12-25 Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261529A JP6568354B2 (en) 2014-12-25 2014-12-25 Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2016122720A JP2016122720A (en) 2016-07-07
JP6568354B2 true JP6568354B2 (en) 2019-08-28

Family

ID=56329197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261529A Active JP6568354B2 (en) 2014-12-25 2014-12-25 Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP6568354B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934919B2 (en) * 2000-07-14 2012-05-23 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4019139B2 (en) * 2002-05-13 2007-12-12 独立行政法人産業技術総合研究所 Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same
JP4019140B2 (en) * 2002-07-10 2007-12-12 独立行政法人産業技術総合研究所 Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same
JP2010044883A (en) * 2008-08-08 2010-02-25 Mitsui Chemicals Inc Nonaqueous electrolyte and lithium secondary battery
JP5996255B2 (en) * 2011-05-09 2016-09-21 旭化成株式会社 Photoelectric conversion element and π-conjugated organic radical compound
JP2013016360A (en) * 2011-07-04 2013-01-24 Nec Corp Photoelectric conversion element
US20140332079A1 (en) * 2011-12-08 2014-11-13 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor electrode comprising a blocking layer
JP6024359B2 (en) * 2012-10-03 2016-11-16 日本ケミコン株式会社 Dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2016122720A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5590025B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME
JP2009032547A (en) Dye-sensitized photoelectric conversion element, its manufacturing method, electronic equipment, semiconductor electrode, and its manufacturing method
JP5261068B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
JP6011443B2 (en) Semiconductor layer for dye-sensitized solar cell and electrode member for dye-sensitized solar cell
JP2012146632A (en) Dye, dye-sensitized photoelectric conversion element, electronic device, and building
JP5320853B2 (en) Photoelectric conversion element
EP2833471B1 (en) Dye-sensitized solar cell and method of manufacturing same
JP4420645B2 (en) Low temperature organic molten salt, photoelectric conversion element and photovoltaic cell
JP2012156096A (en) Photoelectric conversion element, and dye-sensitized solar cell comprising the same
JP5606754B2 (en) Dye-sensitized solar cell
KR101054470B1 (en) Dye-sensitized solar cell electrolyte and dye-sensitized solar cell using same
JP6568354B2 (en) Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell
JP2015115110A (en) Method of manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
JP5881151B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2017050386A (en) Electrolyte and dye-sensitized solar battery
JP2011150881A (en) Photoelectric transfer element, optical sensor, and solar cell
JP2011165423A (en) Photoelectric conversion element
JP2015130433A (en) Photoelectric conversion element
JP2017050385A (en) Electrolyte and dye-sensitized solar battery
JP2009081074A (en) Dye-sensitized photoelectric transfer element, electrolyte composition, additive for electrolyte, and electronic equipment
JP2010056029A (en) Photoelectric conversion element
JP6472629B2 (en) Photoelectric conversion element
JP6415380B2 (en) Photoelectric conversion element
JP2017103424A (en) Dye-sensitized solar battery
JP5655325B2 (en) Electrolyte composition for dye-sensitized solar cell and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190802

R151 Written notification of patent or utility model registration

Ref document number: 6568354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151