JP6567228B1 - Power receiving device and vehicle power receiving device - Google Patents

Power receiving device and vehicle power receiving device Download PDF

Info

Publication number
JP6567228B1
JP6567228B1 JP2019520654A JP2019520654A JP6567228B1 JP 6567228 B1 JP6567228 B1 JP 6567228B1 JP 2019520654 A JP2019520654 A JP 2019520654A JP 2019520654 A JP2019520654 A JP 2019520654A JP 6567228 B1 JP6567228 B1 JP 6567228B1
Authority
JP
Japan
Prior art keywords
power
contact
power receiving
receiving unit
contact power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019520654A
Other languages
Japanese (ja)
Other versions
JPWO2020121505A1 (en
Inventor
大斗 水谷
大斗 水谷
貴昭 ▲高▼原
貴昭 ▲高▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6567228B1 publication Critical patent/JP6567228B1/en
Publication of JPWO2020121505A1 publication Critical patent/JPWO2020121505A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

本願の受電装置(車両用受電装置(1))は、接触受電部(2)と非接触受電部(35)を備え、接触受電部(2)と非接触受電部(35)のそれぞれが、給電設備(9)に接続された場合、制御部(7)は、接触受電部(2)と非接触受電部(35)のそれぞれが定格出力未満で出力する場合も含め、接触受電部(2)と非接触受電部(35)の出力比率の異なる動作条件ごとの電力変換損失の情報に基づき、出力比率を調整するように構成した。The power receiving device (vehicle power receiving device (1)) of the present application includes a contact power receiving unit (2) and a non-contact power receiving unit (35), and each of the contact power receiving unit (2) and the non-contact power receiving unit (35) When connected to the power supply facility (9), the control unit (7) includes the contact power receiving unit (2) including the case where each of the contact power receiving unit (2) and the non-contact power receiving unit (35) outputs less than the rated output. ) And the non-contact power receiving unit (35) are configured to adjust the output ratio based on the information on the power conversion loss for each operating condition with different output ratios.

Description

本願は、受電装置および車両用受電装置に関するものである。   The present application relates to a power receiving device and a vehicle power receiving device.

近年、その利便性から、磁気共鳴、電磁誘導等を利用して間隔をあけた部材間での給電方式(非接触給電方式)を用いた給電装置が開発されており、例えば、車両に搭載された蓄電装置の充電への適用が検討されている。その一方、従来の接触給電方式のみに対応する車両へも給電できるよう、非接触給電方式による給電と、接触給電方式による給電とを、車両に応じて切り替えることができる給電設備が提案されている。   In recent years, due to its convenience, a power feeding device using a power feeding method (non-contact power feeding method) between members spaced using magnetic resonance, electromagnetic induction, or the like has been developed. Application to the charging of power storage devices is being studied. On the other hand, a power supply facility has been proposed that can switch between the power supply by the non-contact power supply method and the power supply by the contact power supply method according to the vehicle so that power can be supplied to a vehicle that supports only the conventional contact power supply method. .

一方、両方式に対応する車両に対して、非接触給電方式による給電と接触給電方式による給電とを同時に実施したいとの要望があり、両方式を同時に動作させる受電装置(例えば、特許文献1参照。)が提案されている。この受電装置においては、両方式のうち、効率の悪い方式の受電量を制限して受電する技術も提案されている。   On the other hand, there is a desire to simultaneously perform power feeding by a non-contact power feeding method and power feeding by a contact power feeding method for a vehicle corresponding to both types, and a power receiving device that operates both types simultaneously (for example, see Patent Document 1). .) Has been proposed. In this power receiving apparatus, a technique has also been proposed in which power is received by limiting the amount of power received by an inefficient system among the both systems.

再公表特許WO2013/114522(段落0060〜0073、図2〜図4、段落0132〜0133、図18)Republished patent WO2013 / 114522 (paragraphs 0060-0073, FIGS. 2-4, paragraphs 0132-0133, FIG. 18)

しかしながら、効率の悪い方式の受電量を制限することで、効率を向上させるとしているが、どの条件での効率を比較しているのかが明らかにされていない。さらには、定格出力で働かせている方は、その方式において、必ずしも効率が高くなる状況であるとは限らない。つまり、効率として、最適な条件で受電しているとは限らない。   However, although the efficiency is improved by limiting the amount of power received by the inefficient method, it is not clear under which conditions the efficiency is compared. Furthermore, the person working at the rated output is not necessarily in a situation where the efficiency is high in the system. In other words, power is not always received under optimum conditions.

本願は、上記のような課題を解決するための技術を開示するものであり、効率の高い受電が可能な受電装置を得ることを目的とする。   The present application discloses a technique for solving the above-described problems, and an object thereof is to obtain a power receiving device capable of receiving power with high efficiency.

本願に開示される受電装置は、給電設備の交流電源に導体を介して電気接続され、前記導体から受電した交流電力を直流電力に変換して出力する接触受電部と、前記給電設備に設けられた非接触送電部に対して非接触で交流電力を受電し、受電した交流電力を直流電力に変換して出力する非接触受電部と、前記接触受電部からの出力および前記非接触受電部からの出力を統合し、負荷装置に出力する直流出力統合部と、前記接触受電部、前記非接触受電部、および前記直流出力統合部の動作を制御する制御部と、を備え、前記制御部は、前記接触受電部と前記非接触受電部のそれぞれが、前記給電設備に接続された場合、前記負荷装置への出力を一定に維持した状態で、前記接触受電部と前記非接触受電部の出力比率を変化させ、変化させた出力比率と、出力比率ごとに測定した検出値から算出した電力変換損失の値との組み合わせを電力変換損失の情報として取得し、前記電力変換損失の値が最小値を示した出力比率で、前記接触受電部と前記非接触受電部を動作させることを特徴とする。
The power receiving device disclosed in the present application is provided in a contact power receiving unit that is electrically connected to an AC power source of a power feeding facility via a conductor, converts AC power received from the conductor into DC power, and is output to the power feeding facility. From the non-contact power receiving unit that receives AC power in a non-contact manner, converts the received AC power into DC power and outputs the output, and the output from the contact power receiving unit and the non-contact power receiving unit and integrated output, a DC output integrating unit for outputting to a load device, said contact receiving portion, the non-contact power receiving unit, and a control section for controlling the operation of the DC output integrating unit, wherein the control unit When each of the contact power receiving unit and the non-contact power receiving unit is connected to the power supply facility, the output of the contact power receiving unit and the non-contact power receiving unit is maintained in a state where the output to the load device is kept constant. The ratio was changed and changed A combination of the power conversion loss and the value of the power conversion loss calculated from the detected value measured for each output ratio is obtained as power conversion loss information, and the output ratio at which the power conversion loss value indicates the minimum value, The contact power receiving unit and the non-contact power receiving unit are operated .

本願に開示される受電装置によれば、電力変換損失が小さくなるように接触給電による受電と非接触給電による受電の比率を調整するので、効率の高い受電を実現できる。   According to the power receiving device disclosed in the present application, since the ratio of power received by contact power feeding and power received by non-contact power feeding is adjusted so that power conversion loss is reduced, highly efficient power receiving can be realized.

実施の形態1にかかる車両用受電装置の構成を説明するためのブロック図である。1 is a block diagram for explaining a configuration of a vehicle power receiving device according to a first exemplary embodiment; 実施の形態1にかかる車両用受電装置を給電設備に接続したときの構成を説明するためのブロック図である。It is a block diagram for demonstrating a structure when the power receiving apparatus for vehicles concerning Embodiment 1 is connected to electric power feeding equipment. 実施の形態1にかかる車両用受電装置の電力変換を行う部位ごとの構成を説明するための回路図である。FIG. 3 is a circuit diagram for explaining a configuration of each part that performs power conversion of the vehicle power receiving device according to the first exemplary embodiment; 実施の形態1にかかる車両用受電装置を給電設備に接続したときの、電力変換を行う部位ごとの構成を説明するための回路図である。It is a circuit diagram for demonstrating the structure for every site | part which performs power conversion, when the power receiving apparatus for vehicles concerning Embodiment 1 is connected to electric power feeding equipment. 実施の形態1にかかる車両用受電装置を給電設備に接続したときの、電力変換を行う部位ごとの計測対象を説明するための回路図である。It is a circuit diagram for demonstrating the measuring object for every site | part which performs electric power conversion, when the power receiving apparatus for vehicles concerning Embodiment 1 is connected to electric power feeding equipment. 実施の形態1にかかる車両用受電装置において、非接触給電方式と接触給電方式の出力内訳とともに、充電電力に対する電力変換損失の関係を示すグラフである。In the vehicle power receiving device according to the first exemplary embodiment, a graph showing the relationship between the power conversion loss and the charging power together with the output breakdown of the non-contact power feeding method and the contact power feeding method. 実施の形態2にかかる車両用受電装置の制御動作を説明するためのフローチャートである。6 is a flowchart for explaining a control operation of the vehicle power receiving device according to the second exemplary embodiment; 実施の形態2にかかる車両用受電装置の制御動作において、非接触給電方式と接触給電方式の出力比率を変化させたときの、充電電力に対する電力変換損失の関係を示すグラフである。6 is a graph showing the relationship between the power conversion loss and the charging power when the output ratio of the non-contact power feeding method and the contact power feeding method is changed in the control operation of the vehicle power receiving device according to the second embodiment. 実施の形態3にかかる車両用受電装置において、非接触給電方式と接触給電方式の出力内訳ととともに、充電電力に対する電力変換損失の関係を示すグラフである。In the vehicle power receiving device according to the third exemplary embodiment, a graph showing the relationship between the power conversion loss and the charging power, together with the output breakdown of the contactless power feeding method and the contact power feeding method. 各実施の形態にかかる車両用受電装置の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of the power receiving apparatus for vehicles concerning each embodiment.

実施の形態1.
図1〜図6は、実施の形態1にかかる車両用受電装置について説明するためのものであり、図1は車両用受電装置を電力変換機能ごとに分類したブロック図、図2は車両を固定し、車両用受電装置の接触受電部と非接触受電部を給電設備に対してそれぞれ接続したときの構成を説明するための電力変換機能ごとに分類したブロック図、図3は車両用受電装置の受電に関わる電力変換を行う部位ごとの構成を説明するための回路図、図4は車両用受電装置の接触受電部と非接触受電部を給電設備に対してそれぞれ接続したときの電力変換を行う部位ごとの構成を説明するための回路図である。
Embodiment 1 FIG.
1 to 6 are diagrams for explaining the vehicle power receiving device according to the first embodiment. FIG. 1 is a block diagram in which the vehicle power receiving device is classified for each power conversion function. FIG. FIG. 3 is a block diagram categorized for each power conversion function for explaining the configuration when the contact power receiving unit and the non-contact power receiving unit of the vehicle power receiving device are respectively connected to the power feeding equipment. FIG. 4 is a circuit diagram for explaining the configuration of each part that performs power conversion related to power reception, and FIG. 4 performs power conversion when the contact power receiving unit and the non-contact power receiving unit of the vehicle power receiving apparatus are respectively connected to the power supply facility. It is a circuit diagram for demonstrating the structure for every site | part.

また、図5は車両用受電装置の接触受電部と非接触受電部を給電設備に対してそれぞれ接続したときの電力変換を行う部位ごとの構成に対する計測対象を説明するための回路図であり、図6は充電電力ごとの、非接触給電方式と接触給電方式の出力内訳を踏まえた充電電力に対する電力変換損失を示すグラフである。図面および以下の説明において、同一または同様の構成要素を示す場合には、同一の符号を付すものとする。   FIG. 5 is a circuit diagram for explaining a measurement target for a configuration for each part that performs power conversion when the contact power receiving unit and the non-contact power receiving unit of the vehicle power receiving device are respectively connected to the power supply facility. FIG. 6 is a graph showing the power conversion loss with respect to the charging power based on the output breakdown of the contactless power feeding method and the contact power feeding method for each charging power. In the drawings and the following description, the same or similar components are indicated by the same reference numerals.

以下、本願の実施の形態1にかかる車両用受電装置について図面を参照しつつ説明する。実施の形態1に示す車両用受電装置1は、図1に示すように、充電対象である蓄電装置6と、受電のための4つの電力変換機能上のブロックで構成している。具体的には、2つの給電方式に対応するため、図2に示すように、給電設備9の交流端子91tとの導体接続により交流電力を受電する接触受電部2と、給電設備9の非接触送電部34から非接触給電により交流電力を受電する非接触受電部35とを備えている。そして、接触受電部2からの直流出力と、非接触受電部35からの直流出力を統合するための統合用直流コンデンサ4と、統合した直流出力の電圧を蓄電装置6の充電に適した電圧に調整するDC/DCコンバータ5とを備えている。さらに、各ブロックの動作を制御する制御部7と、を備えている。   Hereinafter, the vehicle power receiving device according to the first exemplary embodiment of the present application will be described with reference to the drawings. As shown in FIG. 1, the vehicle power receiving device 1 shown in the first embodiment includes a power storage device 6 to be charged and four power conversion function blocks for power reception. Specifically, in order to support two power feeding methods, as shown in FIG. 2, the contact power receiving unit 2 that receives AC power through a conductor connection with the AC terminal 91 t of the power feeding facility 9 and the power feeding facility 9 are non-contact. And a non-contact power receiving unit 35 that receives AC power from the power transmission unit 34 by non-contact power feeding. Then, an integration DC capacitor 4 for integrating the DC output from the contact power reception unit 2 and the DC output from the non-contact power reception unit 35, and the voltage of the integrated DC output to a voltage suitable for charging the power storage device 6 And a DC / DC converter 5 to be adjusted. Furthermore, the control part 7 which controls operation | movement of each block is provided.

なお、この例では、統合用直流コンデンサ4は、接触受電部2の出力端と、非接触受電部35の出力端と、DC/DCコンバータ5の入力端を接続する直流母線間に接続しているが、これに限定されることはない。すなわち、非接触受電部35の出力端は、統合用直流コンデンサ4と当該直流母線との接続点より交流電源90側に接続されているが、統合用直流コンデンサ4と当該直流母線との接続点より蓄電装置6側に接続されていてもよい。   In this example, the integration DC capacitor 4 is connected between a DC bus connecting the output terminal of the contact power receiving unit 2, the output terminal of the non-contact power receiving unit 35, and the input terminal of the DC / DC converter 5. However, it is not limited to this. That is, the output terminal of the non-contact power receiving unit 35 is connected to the AC power supply 90 side from the connection point between the integration DC capacitor 4 and the DC bus, but the connection point between the integration DC capacitor 4 and the DC bus. Further, it may be connected to the power storage device 6 side.

また、交流電源90としては、商用交流系統、自家発電機等が適用例として挙げられる。また、蓄電装置6には、車両走行用の高圧バッテリ、車両電装品の鉛バッテリ等の電池のほか、キャパシターのような蓄電装置、あるいは電力を蓄えられるものであれば、他の方式のものでも適用可能である。一方、蓄電装置6と称しているが、例えば、照明、あるいは電気機器といった電力を消費する機器を用いてもよい。この場合は、車両用受電装置1は、「充電」ではなく、直流電力を「使用」するために、給電設備9から電力を受電する装置となり、「車両用受電装置」というよりも「可搬型電力変換装置」あるいは単なる「受電装置」と称すべき装置となる。   Further, as the AC power supply 90, a commercial AC system, a private power generator, and the like can be cited as application examples. The power storage device 6 may be a battery such as a high voltage battery for vehicle traveling, a lead battery for vehicle electrical components, a power storage device such as a capacitor, or any other type as long as it can store power. Applicable. On the other hand, although referred to as the power storage device 6, for example, a device that consumes electric power such as lighting or an electric device may be used. In this case, the vehicle power receiving device 1 is a device that receives power from the power supply facility 9 in order to “use” DC power instead of “charging”, and is “portable type” rather than “vehicle power receiving device”. The device is to be referred to as a “power converter” or simply a “power receiving device”.

つぎに、上述した各ブロックの詳細について説明する。
<A:接触受電部>
図3に示すように、接触受電部2は、AC/DCコンバータ21と、絶縁トランスを有する絶縁形DC/DCコンバータ23と、直流コンデンサ22の3つのサブブロックに分けることができる。AC/DCコンバータ21は、交流電圧を直流電圧へ変換しつつ、入力交流電流を高力率に制御するPFC(Power Factor Correction)コンバータである。そして、直流コンデンサ22の両端は、AC/DCコンバータ21と絶縁形DC/DCコンバータ23とが接続される直流母線間に接続されている。
Next, details of each block described above will be described.
<A: Contact power receiving unit>
As shown in FIG. 3, the contact power receiving unit 2 can be divided into three sub-blocks: an AC / DC converter 21, an insulating DC / DC converter 23 having an insulating transformer, and a DC capacitor 22. The AC / DC converter 21 is a PFC (Power Factor Correction) converter that controls an input AC current to a high power factor while converting an AC voltage into a DC voltage. Both ends of the DC capacitor 22 are connected between DC buses to which the AC / DC converter 21 and the insulated DC / DC converter 23 are connected.

<AC/DCコンバータ>
AC/DCコンバータ21は、スイッチング素子2101〜2104および交流(力率改善用)リアクトル2105、2106を備えており、スイッチング素子2101〜2104はフルブリッジ構成で接続されている。また、交流リアクトル2105の一端は、交流端子91tとの接続端子2tであり、他端は、スイッチング素子2101とスイッチング素子2102との接続点に接続されている。また、交流リアクトル2106の一端は交流端子91tとの接続端子2tであり、他端は、スイッチング素子2103とスイッチング素子2104との接続点に接続されている。
<AC / DC converter>
The AC / DC converter 21 includes switching elements 2101 to 2104 and alternating current (for power factor improvement) reactors 2105 and 2106, and the switching elements 2101 to 2104 are connected in a full bridge configuration. One end of the AC reactor 2105 is a connection terminal 2 t with the AC terminal 91 t, and the other end is connected to a connection point between the switching element 2101 and the switching element 2102. One end of the AC reactor 2106 is a connection terminal 2t to the AC terminal 91t, and the other end is connected to a connection point between the switching element 2103 and the switching element 2104.

なお、この例では、交流リアクトル2105、2106の接続端子2tをそれぞれ交流端子91tの異なる極の接続用にしているが、一方の極側のみに接続するようにしてもよい。すなわち、交流リアクトル2105と2106のいずれか一方のみを用いる構成としてもよい。また、スイッチング素子2101〜2104は、一般的なシリコンのIGBT(Insulated Gate Bipolar Transistor)、またはMOSFET(Metal Oxide Semiconductor Field Effect Transistor)に限ることはない。例えば、SiC(Silicon Carbide)−MOSFET、GaN(Gallium Nitride)−FET(Field Effect Transistor)、あるいはGaN−HEMT(High Electron Mobility Transistor)等でもよい。つまり、半導体材料として従来型のシリコンに限らず、ワイドバンドギャップ半導体材料と称されるもの、あるいは他の材料でもよく、スイッチング素子としての構造も限定する必要はない。   In this example, the connection terminals 2t of the AC reactors 2105 and 2106 are used to connect different poles of the AC terminal 91t, respectively, but may be connected to only one pole side. That is, only one of AC reactors 2105 and 2106 may be used. The switching elements 2101 to 2104 are not limited to a general silicon IGBT (Insulated Gate Bipolar Transistor) or MOSFET (Metal Oxide Semiconductor Field Effect Transistor). For example, SiC (Silicon Carbide) -MOSFET, GaN (Gallium Nitride) -FET (Field Effect Transistor), or GaN-HEMT (High Electron Mobility Transistor) may be used. That is, the semiconductor material is not limited to conventional silicon, but may be a so-called wide bandgap semiconductor material or other materials, and the structure as a switching element is not necessarily limited.

また、この例では、全半導体素子にスイッチング素子を用いた構成としているが、ダイオード等の受動半導体素子を用いたセミブリッジレス型、あるいはトーテムポール型の構成であってもよいことは言うまでもない。   In this example, the switching elements are used for all the semiconductor elements, but it goes without saying that a semi-bridgeless type or a totem pole type structure using passive semiconductor elements such as diodes may be used.

<絶縁形DC/DCコンバータ>
絶縁形DC/DCコンバータ23は、互いに磁気的に結合する2つの巻き線を備えた絶縁トランス2309を備えている。絶縁トランスの第1端と第2端に接続される巻線(図中左側)を1次側巻線と称し、第3端と第4端に接続される巻線(同右側)を2次側巻線と称することとする。
<Insulated DC / DC converter>
The insulating DC / DC converter 23 includes an insulating transformer 2309 having two windings that are magnetically coupled to each other. The winding connected to the first end and the second end of the isolation transformer (left side in the figure) is called a primary side winding, and the winding connected to the third end and the fourth end (the right side) is secondary. It shall be called a side winding.

絶縁トランス2309の1次側インバータ回路は、スイッチング素子2301〜2304を備えており、スイッチング素子2301〜2304はフルブリッジで構成される。また、1次側インバータ回路の直流側の端子、すなわち入力端子は、AC/DCコンバータ21と直流コンデンサ22と同一の直流母線で接続される。また、1次側インバータ回路の交流側の端子、すなわち出力端子は絶縁トランス2309と接続される。すなわち、直列接続されるスイッチング素子2301とスイッチング素子2302との接続点に絶縁トランス2309の第1端が接続され、直列接続されるスイッチング素子2303とスイッチング素子2304との接続点に絶縁トランス2309の第2端が接続される。   The primary-side inverter circuit of the insulating transformer 2309 includes switching elements 2301 to 2304, and the switching elements 2301 to 2304 are configured by full bridges. Further, the DC side terminal of the primary inverter circuit, that is, the input terminal is connected to the AC / DC converter 21 and the DC capacitor 22 by the same DC bus. Further, a terminal on the AC side of the primary inverter circuit, that is, an output terminal is connected to the insulating transformer 2309. That is, the first end of the isolation transformer 2309 is connected to the connection point between the switching element 2301 and the switching element 2302 that are connected in series, and the first end of the isolation transformer 2309 is connected to the connection point between the switching element 2303 and the switching element 2304 that are connected in series. Two ends are connected.

絶縁トランス2309の2次側コンバータ回路は、スイッチング素子2305〜2308を備えており、スイッチング素子2305〜2308はフルブリッジで構成される。また、2次側コンバータ回路の直流側の端子、すなわち出力端子は非接触受電部35の出力端子と、統合用直流コンデンサ4と、DC/DCコンバータ5と同一の直流母線で接続される。また、2次側コンバータ回路の交流側の端子、すなわち入力端子は絶縁トランス2309と接続される。すなわち、直列接続されるスイッチング素子2305とスイッチング素子2306との接続点に絶縁トランス2309の第3端が接続され、直列接続されるスイッチング素子2307とスイッチング素子2308との接続点に絶縁トランス2309の第4端が接続される。   The secondary side converter circuit of the insulating transformer 2309 includes switching elements 2305 to 2308, and the switching elements 2305 to 2308 are configured by a full bridge. Further, the DC side terminal of the secondary converter circuit, that is, the output terminal is connected to the output terminal of the non-contact power receiving unit 35, the integration DC capacitor 4, and the DC bus same as the DC / DC converter 5. The terminal on the AC side of the secondary converter circuit, that is, the input terminal is connected to the insulating transformer 2309. That is, the third end of the isolation transformer 2309 is connected to the connection point between the switching element 2305 and the switching element 2306 connected in series, and the third end of the isolation transformer 2309 is connected to the connection point between the switching element 2307 and the switching element 2308 connected in series. 4 ends are connected.

ここで、絶縁形DC/DCコンバータ23の絶縁トランス2309の1次側もしくは2次側巻線に対して、直列もしくは並列にリアクトルまたはコンデンサを接続することで、低損失なソフトスイッチング動作も可能である。このとき、リアクトルは外付けでも良いし、絶縁トランス2309の漏洩インダクタンス、あるいは励磁インダクタンスを用いても良い。また、スイッチング素子2301〜2308は、シリコンによるIGBT、MOSFETに限らず、ワイドバンドギャップ半導体素子によるSiC−MOSFET、GaN−FET、あるいはGaN−HEMT等でもよい。つまり、半導体材料として従来型のシリコンに限らず、ワイドバンドギャップ半導体材料と称されるもの、あるいは他の材料でもよく、スイッチング素子としての構造も限定する必要はない。さらに、2次側コンバータ回路は、ダイオードを用いたダイオード整流回路で構成しても良いし、ダイオードとコンデンサを用いた倍電圧整流回路で構成しても良い。   Here, by connecting a reactor or a capacitor in series or in parallel to the primary side or secondary side winding of the insulation transformer 2309 of the insulation type DC / DC converter 23, a low-loss soft switching operation is also possible. is there. At this time, the reactor may be externally attached, or the leakage inductance or excitation inductance of the insulating transformer 2309 may be used. Further, the switching elements 2301 to 2308 are not limited to IGBTs and MOSFETs made of silicon, but may be SiC-MOSFETs, GaN-FETs, or GaN-HEMTs made of wide band gap semiconductor elements. That is, the semiconductor material is not limited to conventional silicon, but may be a so-called wide bandgap semiconductor material or other materials, and the structure as a switching element is not necessarily limited. Furthermore, the secondary side converter circuit may be configured by a diode rectifier circuit using a diode, or may be configured by a voltage doubler rectifier circuit using a diode and a capacitor.

<B:非接触給電部>
非接触給電においては、送電側の回路と受電側の回路が、それぞれ給電設備9と車両用受電装置1とに分かれて別個に形成されている。しかし、電力変換としての説明を容易にするため、図4に示すように、車両用受電装置1が給電設備9に接続され、車両用受電装置1の非接触受電部35と給電設備9の非接触送電部34とをあわせて非接触給電部3が形成されたものとして説明を進める。非接触給電部3は、非接触で電力を送電する非接触送電部34と非接触で電力を授受する非接触受電部35とで構成される。
<B: Non-contact power feeding unit>
In the non-contact power feeding, a power transmission side circuit and a power receiving side circuit are separately formed by being divided into a power feeding facility 9 and a vehicle power receiving device 1, respectively. However, in order to facilitate explanation as power conversion, as shown in FIG. 4, the vehicle power receiving device 1 is connected to the power feeding facility 9, and the non-contact power receiving unit 35 of the vehicle power receiving device 1 and the power feeding facility 9 are not connected. The description will be made assuming that the non-contact power feeding unit 3 is formed together with the contact power transmission unit 34. The non-contact power supply unit 3 includes a non-contact power transmission unit 34 that transmits power in a non-contact manner and a non-contact power reception unit 35 that transmits and receives power in a non-contact manner.

非接触送電部34は、AC/DCコンバータ31と、非接触送電コイル3305を有するインバータ回路33と、直流コンデンサ32の3つのサブブロックに分けることができる。AC/DCコンバータ31は、交流電圧を直流電圧へ変換しつつ、入力交流電流を高力率に制御するコンバータである。そして、直流コンデンサ22の両端は、AC/DCコンバータ31とインバータ回路33とが接続される直流母線間に接続されている。   The non-contact power transmission unit 34 can be divided into three sub-blocks: an AC / DC converter 31, an inverter circuit 33 having a non-contact power transmission coil 3305, and a DC capacitor 32. The AC / DC converter 31 is a converter that controls an input AC current to a high power factor while converting an AC voltage into a DC voltage. Both ends of the DC capacitor 22 are connected between DC buses to which the AC / DC converter 31 and the inverter circuit 33 are connected.

また、非接触受電部35は、非接触受電コイル3505を有するAC/DCコンバータ回路である。ここで、インバータ回路33に非接触受電部35を合わせると、絶縁形DC/DCコンバータとして機能する。そこで、インバータ回路33と非接触受電部35との組み合わせを、非接触給電用DC/DCコンバータと称することとする。   The non-contact power reception unit 35 is an AC / DC converter circuit having a non-contact power reception coil 3505. Here, when the non-contact power reception unit 35 is combined with the inverter circuit 33, it functions as an insulating DC / DC converter. Therefore, the combination of the inverter circuit 33 and the non-contact power receiving unit 35 is referred to as a non-contact power supply DC / DC converter.

<AC/DCコンバータ>
AC/DCコンバータ31は、スイッチング素子3101〜3104および交流(力率改善用)リアクトル3105、3106を備えており、スイッチング素子3101〜3104はフルブリッジ構成で接続されている。また、交流リアクトル3105の一端は交流電源90と接続されており、他端はスイッチング素子3101とスイッチング素子3102との接続点に接続される。また、交流リアクトル3106の一端は交流電源90と接続されており、他端はスイッチング素子3103とスイッチング素子3104との接続点に接続される。
<AC / DC converter>
The AC / DC converter 31 includes switching elements 3101 to 3104 and alternating current (for power factor improvement) reactors 3105 and 3106, and the switching elements 3101 to 3104 are connected in a full bridge configuration. One end of AC reactor 3105 is connected to AC power supply 90, and the other end is connected to a connection point between switching element 3101 and switching element 3102. One end of AC reactor 3106 is connected to AC power supply 90, and the other end is connected to a connection point between switching element 3103 and switching element 3104.

なお、この例におけるAC/DCコンバータ31では、交流リアクトル3105、3106を交流電源90の両極側にそれぞれ接続しているが、交流電源90の片極側のみに接続してもよい。すなわち、交流リアクトル3105と3106のいずれか一方のみを用いる構成としてもよい。また、スイッチング素子3101〜3104は、一般的なシリコンのIGBT、またはMOSFETに限ることはない。例えば、SiC−MOSFET、GaN−FET、あるいはGaN−HEMT等のワイドバンドギャップ半導体と称される素子を用いてもよい。   In the AC / DC converter 31 in this example, the AC reactors 3105 and 3106 are connected to both polar sides of the AC power supply 90, respectively, but may be connected to only one pole side of the AC power supply 90. That is, only one of AC reactors 3105 and 3106 may be used. The switching elements 3101 to 3104 are not limited to a general silicon IGBT or MOSFET. For example, an element called a wide band gap semiconductor such as SiC-MOSFET, GaN-FET, or GaN-HEMT may be used.

また、この例におけるAC/DCコンバータ31では、全半導体素子にスイッチング素子を用いた構成としているが、ダイオード等の受動半導体素子を用いたセミブリッジレス型、あるいはトーテムポール型の構成であってもよいことは言うまでもない。   In the AC / DC converter 31 in this example, the switching elements are used for all semiconductor elements, but a semi-bridgeless type or a totem pole type structure using passive semiconductor elements such as diodes may also be used. Needless to say, it is good.

<非接触給電用DC/DCコンバータ>
非接触給電用DC/DCコンバータにおいて、非接触送電コイル3305の端子に接続される巻線を1次側巻線と称し、非接触受電コイル3505の端子に接続される巻線を2次側巻線と称することとする。
<DC / DC converter for non-contact power supply>
In the non-contact power supply DC / DC converter, a winding connected to the terminal of the non-contact power transmission coil 3305 is referred to as a primary side winding, and a winding connected to the terminal of the non-contact power receiving coil 3505 is a secondary side winding. Let's call it a line.

非接触給電用DC/DCコンバータの1次側インバータであるインバータ回路33は、スイッチング素子3301〜3304を備えており、スイッチング素子3301〜3304はフルブリッジで構成される。また、1次側インバータ回路33の直流側の端子、すなわち入力端子は、非接触受電部用AC/DCコンバータ31と直流コンデンサ32と同一の直流母線で接続される。また、1次側インバータ回路33の交流側の端子、すなわち出力端子は非接触送電コイル3305と接続される。すなわち、直列接続されるスイッチング素子3301とスイッチング素子3302との接続点に非接触送電コイル3305の第1端が接続され、直列接続されるスイッチング素子3303とスイッチング素子3304との接続点に非接触送電コイル3305の第2端が接続される。   The inverter circuit 33 that is a primary side inverter of the DC / DC converter for non-contact power feeding includes switching elements 3301 to 3304, and the switching elements 3301 to 3304 are configured by a full bridge. Further, the DC side terminal of the primary side inverter circuit 33, that is, the input terminal is connected to the AC / DC converter 31 for the non-contact power reception unit and the DC capacitor 32 through the same DC bus. Further, the AC side terminal of the primary side inverter circuit 33, that is, the output terminal is connected to the non-contact power transmission coil 3305. That is, the first end of the non-contact power transmission coil 3305 is connected to the connection point between the switching element 3301 and the switching element 3302 that are connected in series, and the non-contact power transmission is performed at the connection point between the switching element 3303 and the switching element 3304 that are connected in series. A second end of the coil 3305 is connected.

非接触給電用DC/DCコンバータの2次側回路、すなわち非接触受電部35は、スイッチング素子3501〜3504を備えており、スイッチング素子3501〜3504はフルブリッジで構成される。また、2次側回路の直流側の端子、すなわち出力端子は接触受電部2の出力端子と、統合用直流コンデンサ4と、DC/DCコンバータ5と同一の直流母線で接続される。また、2次側回路の交流側の端子、すなわち入力端子は非接触受電コイル3505と接続される。すなわち、直列接続されるスイッチング素子3501とスイッチング素子3502との接続点に非接触受電コイル3505の第1端が接続され、直列接続されるスイッチング素子3503とスイッチング素子3504との接続点に非接触受電コイル3505の第2端が接続される。   The secondary circuit of the DC / DC converter for non-contact power feeding, that is, the non-contact power reception unit 35 includes switching elements 3501 to 3504, and the switching elements 3501 to 3504 are configured by a full bridge. Further, the DC side terminal of the secondary circuit, that is, the output terminal, is connected to the output terminal of the contact power receiving unit 2, the integration DC capacitor 4, and the DC bus same as the DC / DC converter 5. In addition, a terminal on the AC side of the secondary circuit, that is, an input terminal is connected to the non-contact power receiving coil 3505. That is, the first end of the non-contact power receiving coil 3505 is connected to the connection point between the switching element 3501 and the switching element 3502 that are connected in series, and the non-contact power reception is connected to the connection point between the switching element 3503 and the switching element 3504 that are connected in series. A second end of the coil 3505 is connected.

ここで、非接触給電用DC/DCコンバータの1次側もしくは2次側巻線に対して、直列もしくは並列にリアクトルまたはコンデンサを接続することで、低損失なソフトスイッチング動作も可能である。このとき、リアクトルは外付けでも良いし、非接触送受電コイルの寄生インダクタンスを用いても良い。また、スイッチング素子3301〜3304、3501〜3504は、一般的なシリコンのIGBT、またはMOSFETに限ることはない。例えば、SiC−MOSFET、GaN−FET、あるいはGaN−HEMT等でもよい。つまり、半導体材料として従来型のシリコンに限らず、ワイドバンドギャップ半導体材料と称されるもの、あるいは他の材料でもよく、スイッチング素子としての構造も限定する必要はない。さらに、非接触受電部35は、ダイオードを用いたダイオード整流回路で構成しても良いし、ダイオードとコンデンサを用いた倍電圧整流回路で構成しても良い。   Here, a low-loss soft switching operation is also possible by connecting a reactor or a capacitor in series or in parallel to the primary side or secondary side winding of the DC / DC converter for non-contact power feeding. At this time, the reactor may be externally attached, or the parasitic inductance of the non-contact power transmission / reception coil may be used. The switching elements 3301 to 3304 and 3501 to 3504 are not limited to general silicon IGBTs or MOSFETs. For example, SiC-MOSFET, GaN-FET, or GaN-HEMT may be used. That is, the semiconductor material is not limited to conventional silicon, but may be a so-called wide bandgap semiconductor material or other materials, and the structure as a switching element is not necessarily limited. Further, the non-contact power receiving unit 35 may be configured by a diode rectifier circuit using a diode or a voltage doubler rectifier circuit using a diode and a capacitor.

<C:直流出力統合部(DC/DCコンバータ)>
DC/DCコンバータ5は、スイッチング素子501、502、および直流(平滑用)リアクトル503と平滑用コンデンサ504を備えており、降圧チョッパの構成で接続される。なお、この例におけるDC/DCコンバータ5では、降圧チョッパの回路方式としているが、昇圧型、または昇降圧型のチョッパ構成であってもよい。また、インターリーブの構成、あるいは並列接続構成であってもよく、絶縁トランスを用いた絶縁形DC/DCコンバータの構成であっても良いことは言うまでもない。
<C: DC output integration unit (DC / DC converter)>
The DC / DC converter 5 includes switching elements 501, 502, a direct current (smoothing) reactor 503, and a smoothing capacitor 504, which are connected in a step-down chopper configuration. In the DC / DC converter 5 in this example, a step-down chopper circuit system is used, but a step-up or step-up / step-down chopper configuration may be used. Needless to say, an interleaved configuration, a parallel connection configuration, or an insulated DC / DC converter using an insulating transformer may be used.

<D:制御部>
つぎに、上述した電力変換機能を有する各部位の動作制御を行う制御部7について、定常動作時における基本的な制御にのっとり説明する。本実施の形態にかかる車両用受電装置1においては、図5に示すように、電圧検出器と電流検出器(例えば、電圧検出器89vと電流検出器82a)からの検出値に基づいて制御部7でフィードバック演算を行う。制御部7は、接触受電部2と非接触受電部35とDC/DCコンバータ5等、車両用受電装置1内のすべての電力変換回路を制御可能であり、各電力変換回路が備えるスイッチング素子の制御を行う。すなわち、電圧検出器と電流検出器から得られる検出結果の少なくとも一部に基づいて、必要な電力変換回路内のスイッチング素子に対して駆動信号を送信し、スイッチング素子のオンオフを制御することにより所望の動作を行うことができる。
<D: Control unit>
Next, the control unit 7 that controls the operation of each part having the above-described power conversion function will be described in accordance with basic control during steady operation. In the vehicle power receiving device 1 according to the present embodiment, as shown in FIG. 5, the control unit is based on detection values from the voltage detector and the current detector (for example, the voltage detector 89v and the current detector 82a). 7 performs feedback calculation. The control unit 7 can control all the power conversion circuits in the vehicle power receiving device 1 such as the contact power reception unit 2, the non-contact power reception unit 35, the DC / DC converter 5, and the like. Take control. In other words, based on at least a part of the detection results obtained from the voltage detector and the current detector, a drive signal is transmitted to the necessary switching elements in the power conversion circuit, and the switching elements are turned on and off to control the desired state. Can be performed.

定常動作時の接触受電部2の制御について説明する。制御部7は、接触受電部2の入力力率の値が1となるように、電流検出器82aが検出する接触受電部2の交流入力電流の検出値(交流入力電流iac_2)を制御するための各スイッチング素子のデューティ比を演算する。具体的には、電圧検出器89vが検出する交流入力電圧の検出値(=交流出力電圧Vac)と同期した正弦波状の予め定められた電流指令(目標正弦波電流)iac_2sと、交流入力電流iac_2との電流差を算出する。算出した電流差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。また、図示しない電圧検出器による直流コンデンサ22の直流電圧の検出値(コンデンサ直流電圧Vc_2)については、予め定められた目標直流電圧Vc_2sと、コンデンサ直流電圧Vc_2との電圧差を算出する。算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。The control of the contact power receiving unit 2 during steady operation will be described. The control unit 7 controls the detected value of the AC input current (AC input current i ac_2 ) of the contact power receiving unit 2 detected by the current detector 82 a so that the value of the input power factor of the contact power receiving unit 2 becomes 1. Therefore, the duty ratio of each switching element is calculated. Specifically, a sinusoidal predetermined current command (target sine wave current) i ac — 2 s synchronized with the detected value of the AC input voltage (= AC output voltage V ac ) detected by the voltage detector 89v, and AC A current difference from the input current i ac — 2 is calculated. Using the calculated current difference as a feedback amount, the output is calculated by proportional control or proportional integral control. Further, for the detected value of the DC voltage of the DC capacitor 22 (capacitor DC voltage V c_2 ) by a voltage detector (not shown), the voltage difference between a predetermined target DC voltage V c_2 s and the capacitor DC voltage V c_2 is calculated. To do. The output is calculated by proportional control or proportional integral control with the calculated voltage difference as a feedback amount.

また、電圧検出器84vが検出する統合用直流コンデンサ4の直流電圧の検出値(直流電圧Vint)については、予め定められた目標直流電圧Vintsと、統合用直流コンデンサ4の直流電圧の検出値(直流電圧Vint)との電圧差を算出する。算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。Further, the detected value of the DC voltage of the integration DC capacitor 4 (DC voltage V int ) detected by the voltage detector 84v is determined based on the predetermined target DC voltage V ints and the DC voltage of the integration DC capacitor 4. The voltage difference from the detected value (DC voltage V int ) is calculated. The output is calculated by proportional control or proportional integral control with the calculated voltage difference as a feedback amount.

また、蓄電装置6への直流出力電圧Voutを制御する場合、予め定められた目標直流出力電圧Voutsと、電圧検出器81vが検出する直流出力電圧の検出値(直流出力電圧Vout)との電圧差を算出する。算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。Further, when controlling the DC output voltage V out to the power storage device 6, a predetermined target DC output voltage V out s and a detected value of the DC output voltage detected by the voltage detector 81 v (DC output voltage V out ). The voltage difference is calculated. The output is calculated by proportional control or proportional integral control with the calculated voltage difference as a feedback amount.

さらに、蓄電装置6への直流出力電流Ioutを制御する場合、予め定められた目標直流出力電流Ioutsと、電流検出器81iが検出する直流出力電流の検出値(直流出力電流Iout)との電流差を算出する。算出した電流差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。Furthermore, when controlling the DC output current I out to the power storage device 6, a predetermined target DC output current I out s and a detected value of the DC output current detected by the current detector 81i (DC output current I out ). And the current difference is calculated. Using the calculated current difference as a feedback amount, the output is calculated by proportional control or proportional integral control.

<検出器>
本実施の形態1にかかる車両用受電装置1では、接触受電部2に対しては、直流出力電流io_2を検出するための電流検出器82dと、(交流)入力電流iac_2を検出するための電流検出器82aを配置した。非接触受電部35に対しては、直流出力電流io_3を検出するための電流検出器83dと、フルブリッジコンバータとしての交流端子電圧Vbr_3を検出するための電圧検出器85vと、入力電流iwlを検出するための電流検出器85aを配置した。また、統合用直流コンデンサ4に対しては、直流電圧Vintを検出するための電圧検出器84vを設けている。
<Detector>
In the vehicle power receiving device 1 according to the first exemplary embodiment, for the contact power receiving unit 2, a current detector 82d for detecting the DC output current i o_2 and the (AC) input current i ac_2 are detected. Current detector 82a. For the non-contact power receiving unit 35, a current detector 83d for detecting the DC output current i o — 3 , a voltage detector 85v for detecting the AC terminal voltage V br — 3 as a full bridge converter, and an input current i A current detector 85a for detecting wl is arranged. Further, for the unified DC capacitor 4 is provided with a voltage detector 84v for detecting a DC voltage V int.

さらに、給電設備9側の非接触送電部34に対しては、(交流)入力電流iac_3を検出する電流検出器83aから検出値を受信できるよう、図示しない通信手段が設けられている。なお、これらの電圧・電流検出器は、例えば、実施の形態2で必要となる検出器、あるいはその他の展開例において必要となる可能性も含めて記載しているため、必ずしもすべて必要な検出器ではないことを断っておく。通信手段としては、非接触で入手する場合、Bluetooth(登録商標)、あるいはWi−Fi(登録商標)などが例として挙げられるが、これらの手法に限定されないことは言うまでもない。また、通信用の配線を別途用いてもよいが、例えば給電設備9から、接続端子2tを介してPLC(Power Line Communication)により通信するようにしてもよく、適宜変更してよい。Further, the non-contact power transmission unit 34 on the power supply facility 9 side is provided with communication means (not shown) so as to receive the detection value from the current detector 83a that detects the (AC) input current iac_3 . In addition, since these voltage / current detectors are described including, for example, the detectors required in the second embodiment or the possibility of being required in other development examples, all the required detectors are described. I will refuse that. Examples of the communication means include Bluetooth (registered trademark), Wi-Fi (registered trademark), and the like when obtained in a non-contact manner, but it is needless to say that the communication means is not limited to these methods. Further, although communication wiring may be used separately, for example, communication may be performed from the power supply facility 9 via PLC (Power Line Communication) via the connection terminal 2t, or may be changed as appropriate.

本実施の形態1にかかる車両用受電装置1は、上述した構成に基づき、受電時に3つのモードを使い分けることができる。接触受電部2のみを介して受電する接触受電モードと、非接触受電部35のみを介して受電する非接触受電モードと、接触受電部2と非接触受電部35の両方を介して受電する並列受電モードである。   The vehicle power receiving device 1 according to the first exemplary embodiment can use three modes properly during power reception based on the above-described configuration. A contact power receiving mode for receiving power only through the contact power receiving unit 2, a non-contact power receiving mode for receiving power only through the non-contact power receiving unit 35, and a parallel receiving power through both the contact power receiving unit 2 and the non-contact power receiving unit 35 The power receiving mode.

<並列受電モード>
以下に、実施の形態1にかかる車両用受電装置1が並列受電可能な状態での動作、つまり、給電設備9との間で、図2あるいは図4に示す接続がなされた状態での動作について説明する。ここで、接触受電部2と非接触受電部35の定格電力をそれぞれ3Pと定義し、DC/DCコンバータ5の定格電力を6Pと定義する。すなわち、車両用受電装置1の定格電力を6Pと定義する。なお、ここでの定格電力は一例であり、他の定格電力の値であっても良いことは言うまでもない。
<Parallel power reception mode>
The operation in the state where the vehicle power receiving device 1 according to the first embodiment can receive power in parallel, that is, the operation in the state where the connection shown in FIG. 2 or FIG. explain. Here, the rated power of the contact power receiving unit 2 and the non-contact power receiving unit 35 is defined as 3P, and the rated power of the DC / DC converter 5 is defined as 6P. That is, the rated power of the vehicle power receiving device 1 is defined as 6P. Needless to say, the rated power here is merely an example, and other rated power values may be used.

また、車両用受電装置1における合計電力変換損失とは、接触受電部2と非接触受電部35とDC/DCコンバータ5の電力変換損失の和を示す。つまり、蓄電装置6へ出力される電力から、接触受電部2および非接触受電部35に入力される電力を差し引いたものである。   Further, the total power conversion loss in the vehicle power receiving device 1 indicates the sum of the power conversion losses of the contact power receiving unit 2, the non-contact power receiving unit 35, and the DC / DC converter 5. That is, the power input to the contact power receiving unit 2 and the non-contact power receiving unit 35 is subtracted from the power output to the power storage device 6.

そして、接触受電部2の出力電力を充電電力Pconと表すと、統合用直流コンデンサ4の直流電圧Vintと接触受電部の出力電流io_2から算出される。非接触受電部35の出力電力を充電電力Pwptと表すと、統合用直流コンデンサ4の直流電圧Vintと非接触受電部35の出力電流io_3から算出される。さらに、DC/DCコンバータ5の出力電力を蓄電装置6へ出力される総充電電力Pとすると、蓄電装置6への直流出力電圧Voutと直流出力電流Ioutから算出される。Then, when the output power of the contact power receiving unit 2 is expressed as the charging power P con , it is calculated from the DC voltage V int of the DC capacitor for integration 4 and the output current io_2 of the contact power receiving unit. When the output power of the non-contact power reception unit 35 is expressed as the charging power P wpt , it is calculated from the DC voltage V int of the integration DC capacitor 4 and the output current i o — 3 of the non-contact power reception unit 35. Further, when the output power of the DC / DC converter 5 is the total charging power P t output to the power storage device 6, it is calculated from the DC output voltage V out and the DC output current I out to the power storage device 6.

蓄電装置6に対して車両用受電装置1の定格電力(6P)で充電動作を行う場合、当然ながら、接触受電部2と非接触受電部35はそれぞれの定格電力3Pで動作する。すなわち、非接触受電部35の充電電力Pwptに対する接触受電部2の充電電力Pconの出力比率(Pcon/Pwpt)が1の状態で動作する。一方、蓄電装置6に対して定格電力6P未満で充電動作を行う場合、受電比率(出力比率)を調整して動作させる。When the charging operation is performed on the power storage device 6 with the rated power (6P) of the vehicle power receiving device 1, the contact power receiving unit 2 and the non-contact power receiving unit 35 operate with the rated power 3P. That is, the operation is performed in a state where the output ratio (P con / P wpt ) of the charging power P con of the contact power receiving unit 2 to the charging power P wpt of the non-contact power receiving unit 35 is 1. On the other hand, when the charging operation is performed on the power storage device 6 with less than the rated power 6P, the power receiving ratio (output ratio) is adjusted to operate.

本実施の形態1にかかる車両用受電装置1では、表1に示すように、予め定められた電力変換損失のテーブルに基づいて出力比率を調整する。表1は、接触受電部2と、非接触受電部35と、DC/DCコンバータ5、それぞれの充電電力に応じた電力変換損失をテーブル化したものである。ここで、テーブルの値は、理論式から算出した値でもよく、実験により得られた損失でもよい。また、表1では説明の簡略化のため実値ではなく、規格化した電力変換損失Lで表現している。なお、表1に示す電力変換損失の例は、説明のための一例であることは言うまでもない。   In the vehicle power receiving device 1 according to the first embodiment, as shown in Table 1, the output ratio is adjusted based on a predetermined power conversion loss table. Table 1 tabulates the power conversion loss according to the charging power of each of the contact power receiving unit 2, the non-contact power receiving unit 35, and the DC / DC converter 5. Here, the value of the table may be a value calculated from a theoretical formula, or may be a loss obtained by an experiment. Further, in Table 1, not the actual value but a standardized power conversion loss L is expressed for simplification of explanation. In addition, it cannot be overemphasized that the example of the power conversion loss shown in Table 1 is an example for description.

Figure 0006567228
Figure 0006567228

表1に示すような電力変換損失テーブルを用いた場合の出力比率の制御について説明する。なお、電力変換損失を考慮すると、厳密には充電電力Pwptと充電電力Pconの和は、総充電電力PにDC/DCコンバータ5での電力変換損失分を加算した値にする必要がある。しかし、テーブルを用いた出力比率調整の考え方を説明するため、以下の調整例では、Pwpt+Pcon≒Pとみなし、簡略化して記載する。また、テーブルとの関係をわかりやすくするため、出力比率の代わりに、充電電力Pwptと充電電力Pconのそれぞれの充電電力(P単位)による「振り分け」として説明する。The control of the output ratio when the power conversion loss table as shown in Table 1 is used will be described. In consideration of power conversion loss, strictly speaking, the sum of the charging power P wpt and the charging power P con needs to be a value obtained by adding the power conversion loss in the DC / DC converter 5 to the total charging power P t. is there. However, in order to explain the concept of output ratio adjustment using a table, in the following adjustment examples, it is assumed that P wpt + P con ≈P t and is described in a simplified manner. Further, in order to make the relationship with the table easier to understand, instead of the output ratio, the description will be made as “distribution” based on the charging power (P unit) of the charging power P wpt and the charging power P con .

例えば、総充電電力Pが5Pで充電動作を行う場合、接触受電部2の充電電力Pconが3P、非接触受電部35の充電電力Pwptが2Pになるように振り分けたとする。すると、表1の通り、接触受電部2の電力変換損失が3L、非接触受電部35の電力変換損失が2L、DC/DCコンバータ5の電力変換損失が2.5Lとなり、電力変換損失の合計が7.5Lとなる。For example, the total charging power P t is the case of performing a charging operation with 5P, charge power P con contact power receiving portion 2 is 3-Way, a charge power P wpt contactless power receiving unit 35 is distributed so that the 2P. Then, as shown in Table 1, the power conversion loss of the contact power receiving unit 2 is 3L, the power conversion loss of the non-contact power receiving unit 35 is 2L, the power conversion loss of the DC / DC converter 5 is 2.5L, and the total power conversion loss Becomes 7.5L.

これに対して、充電電力Pconが2P、充電電力Pwptが3Pになるように振り分けたとする。DC/DCコンバータ5の電力変換損失は2.5Lで変わらないが、表1の通り、接触受電部2の電力変換損失がL、非接触受電部35の電力変換損失が3.5Lに変化し、電力変換損失の合計が7Lとなる。すなわち、総充電電力Pが5Pとなる充電動作条件では、Pcon:Pwptを2:3の比で振り分けるように、各受電部からの充電電力を制御すればよい。In contrast, it is assumed that the charging power P con is 2P and the charging power P wpt is 3P. The power conversion loss of the DC / DC converter 5 does not change at 2.5L, but as shown in Table 1, the power conversion loss of the contact power receiving unit 2 changes to L, and the power conversion loss of the non-contact power receiving unit 35 changes to 3.5L. The total power conversion loss is 7L. That is, in the charging operation conditions the total charging power P t becomes 5P, P con: the P wpt 2: As distribute 3 ratio may be controlled charging power from the power receiving unit.

同様に、総充電電力Pが4Pで充電動作を行う場合、接触受電部2の充電電力PconをP、非接触受電部35の充電電力Pwptを3Pになるように振り分ける。すると、表1の通り、接触受電部2の電力変換損失が0.8L、非接触受電部35の電力変換損失が3.5L、DC/DCコンバータ5の電力変換損失が2Lとなり、電力変換損失の合計は6.3Lとなる。一方、充電電力Pconを3P、充電電力PwptをPに振り分けると、接触受電部2の電力変換損失が3L、非接触受電部35の電力変換損失が0.5L、DC/DCコンバータ5の電力変換損失が2Lとなり、電力変換損失の合計が5.5Lとなる。Similarly, if the total charged electrical P t performs a charging operation in 4P, distributes the charge power P con contact power receiving portion 2 P, the charging power P wpt contactless power receiving unit 35 such that the 3-Way. Then, as shown in Table 1, the power conversion loss of the contact power receiving unit 2 is 0.8 L, the power conversion loss of the non-contact power receiving unit 35 is 3.5 L, the power conversion loss of the DC / DC converter 5 is 2 L, and the power conversion loss The total is 6.3L. On the other hand, when the charging power P con is allocated to 3P and the charging power P wpt is allocated to P, the power conversion loss of the contact power receiving unit 2 is 3L, the power conversion loss of the non-contact power receiving unit 35 is 0.5L, and the DC / DC converter 5 The power conversion loss is 2L, and the total power conversion loss is 5.5L.

これらに対して、充電電力Pconを2P、充電電力Pwptを2Pに振り分ける。DC/DCコンバータ5の電力変換損失は2Lで変わらないが、接触受電部2の電力変換損失がL、非接触受電部35の電力変換損失が2Lとなり、電力変換損失の合計電力が5Lとなる。すなわち、総充電電力Pが4Pとなる充電動作条件では、Pcon:Pwptを1:1の比で振り分けるよう各受電部からの充電電力を制御すればよい。In contrast, the charging power P con is distributed to 2P and the charging power P wpt is distributed to 2P. The power conversion loss of the DC / DC converter 5 remains unchanged at 2L, but the power conversion loss of the contact power receiving unit 2 is L, the power conversion loss of the non-contact power receiving unit 35 is 2L, and the total power of the power conversion loss is 5L. . That is, in the charging operation conditions the total charging power P t becomes 4P, P con: the P wpt 1: may control the charging power from the power receiving unit as allocating 1 ratio.

また同様に、総充電電力Pが3Pで充電動作を行う場合、接触受電のみ、すなわち接触受電部2の充電電力Pconを3Pとして充電動作を行うとする。すると、表1の通り接触受電部2の電力変換損失が3L、DC/DCコンバータ5の電力変換損失が1.5Lとなり、電力変換損失の合計が4.5Lとなる。一方、非接触受電のみ、すなわち非接触受電部35の充電電力Pwptを3Pとして充電動作を行うとする。すると、非接触受電部35の電力変換損失が3.5L、DC/DCコンバータ5の電力変換損失が1.5Lとなり、電力変換損失の合計が5Lとなる。Similarly, if the total charged electrical P t performs a charging operation in 3-Way, contact power receiving only, that is, performs a charging operation for charging power P con contact power receiving portion 2 as 3-Way. Then, as shown in Table 1, the power conversion loss of the contact power receiving unit 2 is 3L, the power conversion loss of the DC / DC converter 5 is 1.5L, and the total power conversion loss is 4.5L. On the other hand, it is assumed that the charging operation is performed with only non-contact power reception, that is, the charging power P wpt of the non-contact power reception unit 35 is 3P. Then, the power conversion loss of the non-contact power receiving unit 35 is 3.5L, the power conversion loss of the DC / DC converter 5 is 1.5L, and the total power conversion loss is 5L.

また、充電電力PconをP、充電電力Pwptを2Pに振り分けるとする。ここでも、DC/DCコンバータ5の電力変換損失は1.5Lで変わらないが、接触受電部2の電力変換損失が0.8L、非接触受電部35の電力変換損失が2Lとなり、電力変換損失の合計が4.3Lとなる。これらに対して、充電電力Pconを2P、充電電力PwptをPに振り分けるとする。すると、接触受電部2の電力変換損失がL、非接触受電部35の電力変換損失が0.5Lとなり、電力変換損失の合計が3Lとなる。すなわち、総充電電力Pが3Pとなる充電動作条件では、Pcon:Pwptを2:1の比で振り分けるよう各受電部からの充電電力を制御すればよい。Further, it is assumed that charging power P con is distributed to P and charging power P wpt is distributed to 2P. Here, the power conversion loss of the DC / DC converter 5 is not changed at 1.5 L, but the power conversion loss of the contact power receiving unit 2 is 0.8 L, the power conversion loss of the non-contact power receiving unit 35 is 2 L, and the power conversion loss. The total is 4.3L. In contrast, it is assumed that charging power P con is distributed to 2P and charging power P wpt is allocated to P. Then, the power conversion loss of the contact power reception unit 2 is L, the power conversion loss of the non-contact power reception unit 35 is 0.5L, and the total power conversion loss is 3L. That is, in the charging operation conditions the total charging power P t is 3-Way, P con: the P wpt 2: may control the charging power from the power receiving unit as allocating 1 ratio.

また同様に、総充電電力Pが2Pで充電動作を行う場合、接触受電部2の充電電力PconをP、非接触受電部35の充電電力PwptをPに振り分けたとする。すると、表1の通り、接触受電部2の電力変換損失が0.8L、非接触受電部35の電力変換損失が0.5L、DC/DCコンバータ5の電力変換損失がLとなり、電力変換損失の合計が2.3Lとなる。また、非接触受電のみ、すなわち非接触受電部35の充電電力Pwptを2Pとして充電動作を行うと、DC/DCコンバータ5の電力変換損失はLで変わらないが、非接触受電部35の電力変換損失が2Lとなり、電力変換損失の合計が3Lとなる。Similarly, if the total charged electrical P t performs a charging operation in 2P, charging power P con contact power receiving portion 2, the distribution P, and charging power P wpt contactless power receiving unit 35 to the P. Then, as shown in Table 1, the power conversion loss of the contact power receiving unit 2 is 0.8 L, the power conversion loss of the non-contact power receiving unit 35 is 0.5 L, the power conversion loss of the DC / DC converter 5 is L, and the power conversion loss. The total of 2.3L. Further, when the charging operation is performed with only non-contact power reception, that is, the charging power P wpt of the non-contact power reception unit 35 being 2P, the power conversion loss of the DC / DC converter 5 does not change with L, but the power of the non-contact power reception unit 35 The conversion loss is 2L, and the total power conversion loss is 3L.

これらに対して、接触充電のみ、すなわち接触受電部2の充電電力Pconを2Pとして充電動作を行うと、接触受電部2の電力変換損失がLとなり、電力変換損失の合計が2Lとなる。すなわち、総充電電力Pが2Pとなる充電動作条件では、並列受電を行わずに接触受電のみで充電動作するよう制御すればよい。On the other hand, when the charging operation is performed only with contact charging, that is, when the charging power P con of the contact power receiving unit 2 is 2P, the power conversion loss of the contact power receiving unit 2 is L, and the total power conversion loss is 2L. That is, under the charging operation condition in which the total charging power Pt is 2P, the charging operation may be controlled only by contact power reception without performing parallel power reception.

また、総充電電力PがPで充電動作を行う場合、すなわち最小の電力で動作する場合、表1に示す通り、非接触受電のみで動作するよう制御すればよい。Further, when the charging operation is performed with the total charging power Pt being P, that is, when the operation is performed with the minimum power, the operation may be controlled so as to operate only with non-contact power reception as shown in Table 1.

このように、方式ごとの電力変換損失のデータに基づき、総充電電力Ptに応じて、充電動作に必要な電力を接触受電部2による充電電力Pconと非接触受電部35による充電電力Pwptの振り分けを調整するようにした。その際、それぞれが定格未満で出力する場合も考慮した。これにより、図6に示すように、単純な均等割り、あるいは特許文献3のように、単に効率の悪い側の電力を絞るようにした場合と比べて、車両用受電装置1全体での電力変換損失を抑制して動作することが可能となる。As described above, based on the data of the power conversion loss for each method, the power required for the charging operation is converted into the charging power P con by the contact power receiving unit 2 and the charging power P wpt by the non-contact power receiving unit 35 according to the total charging power Pt. Adjusted the distribution of. In that case, the case where each output was less than the rating was also considered. As a result, as shown in FIG. 6, power conversion in the vehicle power receiving device 1 as a whole is simpler than that in the case of simple even splitting or simply reducing the power on the inefficient side as in Patent Document 3. It becomes possible to operate while suppressing loss.

図6において、横軸は、総充電電力Pを示し、縦軸は、電力変換損失を示す。また、「〇」は、接触給電と非接触給電を併用している状態を示し、「■」内に記した数字は、接触給電に振り分けた充電電力を、「▲」内に記した数字は、非接触給電に振り分けた充電電力を、それぞれ示す。6, the horizontal axis represents the total charging power P t, the vertical axis represents the power conversion loss. In addition, “◯” indicates that both contact power supply and non-contact power supply are used together. The numbers in “■” indicate the charging power allocated to contact power supply, and the numbers in “▲” indicate The charging power distributed to non-contact power feeding is shown respectively.

なお、ここでは2Pまで共用充電を行う場合について説明したが、電力変換損失のデータに基づき、共用充電を行うよりもいずれか一方の充電方式で充電する方が低損失な場合、一方の方式にすべて振り分ける、つまり、単一方式の受電に切り替えても良い。また、本実施の形態1ではPから6Pの計6つの電力条件に分類したテーブルを用いたが、分類数がこれに限らないことは言うまでもなく、より細分化したテーブルを用いて高精度に電力分配を実施してもよい。さらには、テーブルの代わりに、総充電電力Pと接触給電と非接触給電の出力比率を変数として、電力変換損失が導き出せる数式を用いるようにしてもよく、条件に応じた解が得られる情報を入手できるようにすればよい。In addition, although the case where shared charge was performed up to 2P was explained here, based on the data of power conversion loss, when charging with one of the charging methods is less loss than performing shared charging, one method is used. All may be distributed, that is, switched to single-type power reception. In the first embodiment, a table classified into a total of six power conditions from P to 6P is used. Needless to say, the number of classifications is not limited to this, and power can be accurately generated using a more detailed table. Distribution may be performed. Further information, instead of the table, the total charging power P t and contact power and output ratio of the non-contact power supply as a variable may be used a formula that power conversion loss can be derived, the solution according to the conditions can be obtained Can be obtained.

なお、非接触給電は、公知の通り、送受電コイル間(例えば、非接触送電コイル3305と、非接触受電コイル3505)の位置ずれにより電力変換損失が著しく変化することがある。本実施の形態1では、一例として、充電電力に対する電力変換損失を、表1のように、方式ごとの1対1の簡易的な関係で示したが、これに限ることはない。例えば、送受電コイルの位置ずれを変数にしたテーブルも追加して、より高精度なテーブルを用いて電力分配制御を行っても良い。あるいは、上述した数式として、ずれの評価値を変数に用いるようにしてもよい。ここで、送受電コイルのコイル面に平行な方向をx方向とy方向、コイル面に垂直な方向をz方向とする。すると、位置ずれとしては、送受電コイル間の、コイル面に平行な方向(x方向とy方向)のずれ、および面間距離(z方向)を総合的に評価することになる。その際、連続的な値の評価値に限ることはなく、位置ずれの状態を複数段階のクラスに分類し、該当するクラスを評価値として用いてもよい。あるいは、クラスごとにテーブルあるいは数式を用意しておき、クラスに応じて複数のテーブルあるいは数式から、必要なものを選択するようにしてもよい。なお、送受電コイルの位置ずれの変数として送電コイルに対する受電コイルの傾きも含めて考慮してもよい。   As is well known, in non-contact power feeding, the power conversion loss may change remarkably due to the positional deviation between the power transmitting and receiving coils (for example, the non-contact power transmitting coil 3305 and the non-contact power receiving coil 3505). In the first embodiment, as an example, the power conversion loss with respect to the charging power is shown by a simple one-to-one relationship for each method as shown in Table 1, but the present invention is not limited to this. For example, a power distribution control may be performed using a more accurate table by adding a table in which the positional deviation of the power transmission / reception coil is a variable. Or you may make it use the evaluation value of deviation | shift as a variable as a numerical formula mentioned above. Here, the direction parallel to the coil surface of the power transmission / reception coil is the x direction and the y direction, and the direction perpendicular to the coil surface is the z direction. Then, as the positional deviation, the deviation in the direction (x direction and y direction) parallel to the coil surface and the inter-surface distance (z direction) between the power transmitting and receiving coils are comprehensively evaluated. At this time, the evaluation value is not limited to a continuous evaluation value, and the misalignment state may be classified into a plurality of classes, and the corresponding class may be used as the evaluation value. Alternatively, a table or formula may be prepared for each class, and a necessary one may be selected from a plurality of tables or formulas according to the class. In addition, you may consider including the inclination of the receiving coil with respect to a power transmission coil as a variable of the position shift of a power transmission / reception coil.

ここで、一般的には、例えば、特許文献1にも記載されているように、「接触充電については、充電電力の大きさによって効率はそれ程変化しない」と、考えられている。しかし、より効率を高めるためには、いずれか一方の給電方式を常に定格電力とすれば良いとは限らない。とくに、搭載量、あるいはサイズに制約のある車両と異なり、給電設備9のような固定された設備の方が、高効率な回路を構成しやすく、その場合、電力変換回路の半分が固定側に配置される非接触給電の方が効率の高い給電ができる可能性もある。   Here, in general, for example, as described in Patent Document 1, it is considered that “the efficiency of contact charging does not change so much depending on the magnitude of charging power”. However, in order to further increase the efficiency, it is not always necessary to set one of the power feeding methods to the rated power. In particular, unlike a vehicle with a limited amount or size, a fixed facility such as the power supply facility 9 can easily form a highly efficient circuit, in which case half of the power conversion circuit is on the fixed side. There is a possibility that the arranged non-contact power feeding can perform power feeding with higher efficiency.

そのため、本実施の形態1に示すように、接触給電と非接触給電の双方が定格未満の場合も含めて、要求される総充電電力Pに対し、充電電力Pconと、非接触給電による充電電力Pwptの出力比率の異なる運転条件(動作条件)を複数設定する。そして、設定した複数の動作条件のそれぞれに対して、部位ごとの電力変換損失のデータに基づき電力変換損失を算出し、要求される総充電電力Pに対して、その動作条件の出力比率に応じた電力変換損失の情報を生成する。生成した電力変換損失の情報に基づき、電力変換損失が最小となる動作条件の出力比率で動作させることで、より効率の高い受電が可能となる。Therefore, as shown in the first embodiment, the charging power P con and the non-contact power feeding are required for the total charging power P t required, including the case where both the contact power feeding and the non-contact power feeding are less than the rating. A plurality of operating conditions (operating conditions) having different output ratios of the charging power P wpt are set. Then, for each of a plurality of set operating conditions, power conversion loss is calculated based on the power conversion loss data for each part, and the output ratio of the operating conditions is calculated for the required total charging power P t . Information on the corresponding power conversion loss is generated. Based on the information on the generated power conversion loss, the power can be received with higher efficiency by operating at the output ratio of the operation condition that minimizes the power conversion loss.

なお、本例では、接触受電部2の充電電力Pconを接触受電部2の出力電力とし、非接触受電部35の充電電力Pwptを非接触受電部35の出力電力として扱ったが、これに限ることはない。例えば、接触受電部2の(交流)入力電力を充電電力Pconとし、非接触受電部35の入力電力を充電電力Pwptとして扱っても良い。このとき、接触受電部2の充電電力Pconは交流電源90の電圧の検出値と接触受電部2の入力電流の検出値(Vacとiac_2)から算出できる。また、非接触受電部35の充電電力Pwptは非接触受電部35を構成するフルブリッジコンバータの交流端子の電圧の検出値と出力電流の検出値(Vbr_3とiwl)から算出できる。In this example, the charging power P con of the contact power receiving unit 2 is treated as the output power of the contact power receiving unit 2, and the charging power P wpt of the non-contact power receiving unit 35 is treated as the output power of the non-contact power receiving unit 35. It is not limited to. For example, the (alternating current) input power of the contact power receiving unit 2 may be treated as the charging power P con and the input power of the non-contact power receiving unit 35 may be treated as the charging power P wpt . At this time, the charging power P con of the contact power receiving unit 2 can be calculated from the detected value of the voltage of the AC power supply 90 and the detected value of the input current of the contact power receiving unit 2 (V ac and i ac_2 ). Further, the charging power P wpt of the non-contact power receiving unit 35 can be calculated from the detected value of the voltage at the AC terminal of the full bridge converter constituting the non-contact power receiving unit 35 and the detected value of the output current (V br — 3 and i wl ).

なお、本実施の形態、および以降の各実施の形態においては、給電設備9から電力を受電する例について説明するが、これに限ることはない。例えば、停電時等に、蓄電装置6に蓄えた電力を、非接触給電と接触給電の(逆方向の)出力比率を調整して、給電設備9側に送電する場合においても、効率よく電力を送電することができる。その場合、制御部7は、例えば、動作切り替え指令を受けることで、接触受電部2と非接触受電部35を、それぞれ、接触送電部と非接触送電部として機能するように、制御動作を切り替える機能を有することになる。   In the present embodiment and each of the following embodiments, an example in which power is received from the power supply facility 9 will be described, but the present invention is not limited to this. For example, even when power stored in the power storage device 6 is transmitted to the power supply facility 9 side by adjusting the output ratio of the non-contact power supply and the contact power supply (in the reverse direction) at the time of a power failure or the like. Can transmit power. In that case, for example, the control unit 7 receives the operation switching command, and switches the control operation so that the contact power reception unit 2 and the non-contact power reception unit 35 function as a contact power transmission unit and a non-contact power transmission unit, respectively. It will have a function.

実施の形態2.
上記実施の形態1においては、電力変換損失のデータとして、あらかじめ入力されたデータ、あるいは事前に測定したデータに基づき、総充電電力に応じた、接触給電と、非接触給電の出力比率を調整する例について説明した。本実施の形態2においては、総充電電力を一定にし、出力比率を変化させて動作させたときの測定値に基づいて、比率を調整するようにした。
Embodiment 2. FIG.
In the first embodiment, the power conversion loss data is adjusted based on the pre-input data or the data measured in advance, and the output ratio between contact power supply and non-contact power supply according to the total charge power is adjusted. An example was described. In the second embodiment, the ratio is adjusted based on the measured value when the operation is performed with the total charging power fixed and the output ratio changed.

図7と図8は、本実施の形態2にかかる車両用受電装置について説明するためのもので、図7は出力比率を調整する制御動作を説明するためのフローチャート、図8は出力比率を調整する制御動作において、非接触給電方式と接触給電方式の比率を変化させていったときの、充電電力に対する電力変換損失の関係を示すグラフである。なお、本実施の形態2に係る車両用受電装置の回路構成は、実施の形態1の説明に用いた図1〜図5と概ね同様であるため、構成の詳細な説明は繰り返さない。   FIGS. 7 and 8 are for explaining the vehicle power receiving apparatus according to the second embodiment. FIG. 7 is a flowchart for explaining the control operation for adjusting the output ratio, and FIG. 8 is for adjusting the output ratio. It is a graph which shows the relationship of the power conversion loss with respect to charging power when changing the ratio of a non-contact electric power feeding system and a contact electric power feeding system in the control operation to perform. Since the circuit configuration of the vehicle power receiving device according to the second embodiment is substantially the same as that of FIGS. 1 to 5 used in the description of the first embodiment, detailed description of the configuration will not be repeated.

ここで、実施の形態1と同様に、実施の形態2にかかる接触受電部2の充電電力Pconとは接触受電部2の出力電力を表し、統合用直流コンデンサ4の直流電圧Vintの検出値と接触受電部2の出力電流io_2の検出値から算出される。また、非接触受電部35の充電電力Pwptとは、非接触受電部35の出力電力を表し、統合用直流コンデンサ4の直流電圧Vintの検出値と非接触受電部35の出力電流io_3の検出値から算出される。Here, as in the first embodiment, the charging power P con of the contact power receiving unit 2 according to the second embodiment represents the output power of the contact power receiving unit 2, and the detection of the DC voltage V int of the integration DC capacitor 4 is performed. It is calculated from the value and the detected value of the output current io_2 of the contact power receiving unit 2. Further, the charging power P wpt of the non-contact power receiving unit 35 represents the output power of the non-contact power receiving unit 35, the detected value of the DC voltage V int of the integration DC capacitor 4 and the output current i o — 3 of the non-contact power receiving unit 35. It is calculated from the detected value.

そして、接触受電部2へ入力される電力は、図5で説明した電圧検出器89vが検出した接続端子2tにかかる交流出力電圧Vacと、電流検出器82aが検出した入力電流iac_2から算出する。充電電力Pconと算出した入力電力との差を接触受電部2での電力変換損失とする。なお、入力交流電力については、電圧と力率が一定とみなせる場合、例えば、入力電流iac_2に定数を乗ずることで算出するようにしてもよい。The power input to the contact power receiving unit 2 is calculated from the AC output voltage V ac applied to the connection terminal 2t detected by the voltage detector 89v described in FIG. 5 and the input current i ac_2 detected by the current detector 82a. To do. A difference between the charging power P con and the calculated input power is defined as a power conversion loss in the contact power receiving unit 2. Note that the input AC power may be calculated by, for example, multiplying the input current i ac — 2 by a constant when the voltage and the power factor can be considered constant.

また、例えば、非接触受電部35へ入力される電力は、フルブリッジコンバータの交流端子電圧Vbr_3の検出値と入力電流iwlの検出値から算出し、充電電力Pwptとの差を非接触受電部35での電力変換損失とする。つまり、電圧検出器85vと電流検出器85aが検出した非接触受電コイル3505に流れる電流(入力電流iwl)と電圧(交流端子電圧Vbr_3)から算出できる。Further, for example, the power input to the non-contact power receiving unit 35 is calculated from the detected value of the AC terminal voltage V br — 3 of the full bridge converter and the detected value of the input current i wl , and the difference between the charging power P wpt is determined in a non-contact manner. The power conversion loss in the power receiving unit 35 is assumed. That is, it can be calculated from the current (input current i wl ) and voltage (AC terminal voltage V br — 3 ) flowing through the non-contact power receiving coil 3505 detected by the voltage detector 85v and the current detector 85a.

つぎに、電力変換損失のデータとして、テーブルではなく、動作中の測定値から算出するようにした。動作中に出力比率を変化させて、つまり、動作条件を変化させて、電力変換損失が最小となる出力比率で受電を行うために制御部7が実行する制御動作を図7のフローチャートを用いて説明する。なお、図7のフローチャートは一例であり、これに限定したものでないことは言うまでもない。   Next, power conversion loss data is calculated from measured values during operation instead of a table. The control operation executed by the control unit 7 to change the output ratio during operation, that is, to change the operating condition and receive power at the output ratio at which the power conversion loss is minimized is shown in the flowchart of FIG. explain. It should be noted that the flowchart of FIG. 7 is an example, and the present invention is not limited to this.

図7の通り、まず初めに、Step1として、総充電電力Pが定格電力である6P未満であるかどうかを判定する。このとき、総充電電力Pが6Pの場合、すなわちNoの場合、Step2−Bへ移行する。Step2−Bでは、接触受電部2と非接触受電部35の出力比率(Pcon/Pwpt)を1として、それぞれの受電部の定格電力3Pで動作する。As Figure 7, first, it determines whether a Step1, the total charging power P t is less than 6P is the rated power. At this time, the total charge power P t is the case of the 6P, ie If No, the process proceeds to Step2-B. In Step 2 -B, the output ratio (P con / P wpt ) of the contact power receiving unit 2 and the non-contact power receiving unit 35 is set to 1, and the operation is performed at the rated power 3P of each power receiving unit.

これに対し、総充電電力Pが6P未満の場合、すなわちYesの場合、Step2−Aへ移行する。Step2−Aでは、接触受電部2と非接触受電部35の出力比率(Pcon/Pwpt)の設定値(比率設定値Sr)を1から、総充電電力Pに応じて任意に設定した最大比率まで、任意の間隔で比率設定値を変化(増加)させ、比率設定値Srごとに、測定値に基づいて電力変換損失を演算し、演算結果を電力変換損失情報として記憶する。最大比率までの比率設定値Srの設定と、比率設定値Srごとの電力変換損失情報の演算と記憶が終了すると、Step3へ移行する。In contrast, the total charging power P t is of less than 6P, that is, if Yes, the process proceeds to Step2-A. In Step 2-A, the set value (ratio set value Sr) of the output ratio (P con / P wpt ) of the contact power receiving unit 2 and the non-contact power receiving unit 35 is arbitrarily set from 1 according to the total charging power P t The ratio set value is changed (increased) at arbitrary intervals up to the maximum ratio, the power conversion loss is calculated based on the measured value for each ratio set value Sr, and the calculation result is stored as power conversion loss information. When the setting of the ratio set value Sr up to the maximum ratio and the calculation and storage of the power conversion loss information for each ratio set value Sr are completed, the process proceeds to Step 3.

Step3では、比率設定値Srを1から総充電電力Pに応じて任意に設定した最小比率まで、任意の間隔で変化(減少)させる。そして、比率設定値Srごとに、測定値に基づいて電力変換損失を演算し、演算結果をStep2で記憶した電力変換損失情報に追加して記憶する。最小比率までの比率設定値Srの設定と、比率設定値Srごとの電力変換損失情報の演算と記憶が終了すると、Step4へ移行する。In step3, the ratio set value Sr from 1 to a minimum ratios arbitrarily set according to the total charged electrical P t, make changes at any interval (decrease). Then, for each ratio setting value Sr, the power conversion loss is calculated based on the measured value, and the calculation result is added to the power conversion loss information stored in Step 2 and stored. When the setting of the ratio set value Sr up to the minimum ratio and the calculation and storage of the power conversion loss information for each ratio set value Sr are completed, the process proceeds to Step 4.

Step4では、記憶した電力変換損失情報の中から、最小の電力変換損失となる比率設定値Srを抽出し、その比率設定値Srになるように各部位の動作点(動作条件)を移行させる。これにより、実施の形態1とは異なり、予め電力変換損失のテーブルを作成せず、動的に電力変換損失を抑制する出力の振り分け(出力比率)を調整することが可能となる。   In Step 4, the ratio setting value Sr that is the minimum power conversion loss is extracted from the stored power conversion loss information, and the operating point (operating condition) of each part is shifted so as to be the ratio setting value Sr. Thus, unlike Embodiment 1, it is possible to adjust the output distribution (output ratio) that dynamically suppresses the power conversion loss without creating a power conversion loss table in advance.

Step5では、Step2−B、もしくはStep4の状態から、総充電電力Pが変化したかどうか、任意の時間間隔で判定する。このとき、総充電電力Pが変化しない場合、すなわちNoの場合、Step2−BもしくはStep4の電力分配率を維持し、定期的に総充電電力Pの変動を検出する。一方、総充電電力Pが変化した場合、すなわちYesの場合、Step1へと戻り、変動後の総充電電力Pに応じて、前述のように動作制御を行う。In step5, from the state of Step2-B, or Step4, whether the total charging power P t is changed, it determines at any time interval. At this time, when the total charging power P t does not change, that is, in the case of No, the power distribution ratio of Step 2 -B or Step 4 is maintained, and fluctuations in the total charging power P t are periodically detected. On the other hand, if the total charged electrical P t is changed, that is, when Yes, the process returns to Step1, according to the total charging power P t after variation, controls the operation as described above.

このような動作制御における、各部位の動作点の推移について、図8を用いて説明する。図8において、Case1は、出力比率(Pcon/Pwpt)が1の場合、つまり接触給電と非接触給電を均等に働かせた時の電力変換損失を示す。同様に、Case2は、出力比率を最大にしたときの電力変換損失を、Case3は、出力比率を最小にしたときの電力変換損失を示す。なお、最大比率または最小比率は、例えば、総充電電力Pが3P以下の場合は、接触給電または非接触給電のみを動作させた場合を含み、3Pを超える場合は制御の最小単位で実現できる比率等に定めることができる。The transition of the operating point of each part in such operation control will be described with reference to FIG. In FIG. 8, Case 1 indicates a power conversion loss when the output ratio (P con / P wpt ) is 1, that is, when contact power supply and non-contact power supply are equally applied. Similarly, Case 2 indicates a power conversion loss when the output ratio is maximized, and Case 3 indicates a power conversion loss when the output ratio is minimized. Note that the maximum ratio or the minimum ratio can be realized by the minimum unit of control when the total charge power Pt is 3P or less, including the case where only contact power supply or non-contact power supply is operated, and when exceeding 3P. The ratio can be determined.

図8において、動作開始時の総充電電力Pが6Pの状態から開始する際、a:Step1の判定により、b:Step2−Bへと移行し、比率設定値Srを1として動作する。任意の期間後、c:Step5にて総充電電力Pが5Pへ変化したと判別すると、d:Step1へ移行する。なお、総充電電力Pが変化していないと判別した場合、Step2−Bへと移行した状態(b)を維持し、再び任意の期間後にStep5へと移行し、同様の判別を繰り返す。In FIG. 8, when starting from a state where the total charging power P t at the start of the operation is 6P, the process proceeds to b: Step 2−B by the determination of a: Step 1 and operates with the ratio set value Sr as 1. After an arbitrary period, c: total charged electrical P t at Step5 is the determined to have changed to 5P, d: the process proceeds to Step1. Incidentally, if the total charged electrical P t is determined to not changed, maintaining the state of being shifted to Step2-B (b), the operation proceeds to Step5 after any period of time to repeat the same discrimination.

d:Step1にて、総充電電力Pが5P、すなわち6P未満であると判断されると、e:Step2−Aへ移行し、Case2の最大出力比率まで任意の間隔で比率設定値Srを増加させ、比率設定値Srごとの電力変換損失を演算し、記憶する。比率設定値Srが、5P(総充電電力P)における最大値に達すると、f:Step3へ移行し、Case3の最小出力比率まで任意の間隔で比率設定値Srを減少させ、比率設定値Srごとの電力変換損失を演算し、記憶する。d: When it is determined in Step 1 that the total charging power P t is 5P, that is, less than 6P, the process proceeds to e: Step 2-A, and the ratio setting value Sr is increased at an arbitrary interval up to the maximum output ratio of Case 2. The power conversion loss for each ratio set value Sr is calculated and stored. When the ratio set value Sr reaches the maximum value at 5P (total charge power P t ), the process proceeds to f: Step 3 where the ratio set value Sr is decreased at an arbitrary interval until the minimum output ratio of Case 3 is reached. Each power conversion loss is calculated and stored.

比率設定値Srが、5P(総充電電力P)における最小値に達すると、g:Step4へ移行し、5P(総充電電力P)に対して測定・演算・記憶した電力変換損失情報の中から、総電力変換損失が最小となる比率設定値Srを抽出し、その比率設定値Srになるように各部位の動作点を移行させて電力変換動作を行う。任意の期間後、h:Step5にて総充電電力Pが4Pへ変化したと判別すると、i:Step1へ移行し、4P(総充電電力P)における電力変換損失情報を取得し、最適な動作条件に移行する。Ratio set value Sr reaches the minimum in the 5P (total charged electrical P t), g: Step4 migrated to, 5P power conversion loss information measured and calculated and stored for the (total charged electrical P t) The ratio setting value Sr that minimizes the total power conversion loss is extracted from the inside, and the power conversion operation is performed by shifting the operating point of each part so that the ratio setting value Sr is reached. After an arbitrary period, if it is determined that the total charge power P t has changed to 4P at h: Step 5, the process proceeds to i: Step 1 to obtain power conversion loss information at 4P (total charge power P t ), and the optimum Move to operating conditions.

つまり、本実施の形態2に示すように、接触給電と非接触給電の双方が定格未満の場合も含めて、要求される総充電電力Pに対し、充電電力Pconと、非接触給電による充電電力Pwptの出力比率(比率設定値Sr)の異なる動作条件を複数設定する。そして、総充電電力Pを保ったまま、設定した複数の動作条件のそれぞれの出力比率で動作させ、動作時の測定値を用いて、電力変換損失を算出し、要求される総充電電力Pに対して、動作条件ごとの出力比率に応じた電力変換損失の情報を生成する。生成した電力変換損失の情報に基づき、電力変換損失が最小となる動作条件の出力比率で動作させることで、より効率の高い受電が可能となる。That is, as shown in the second embodiment, the charging power P con and the non-contact power feeding are required for the required total charging power P t including the case where both the contact power feeding and the non-contact power feeding are less than the rating. A plurality of operating conditions having different output ratios (ratio setting values Sr) of the charging power P wpt are set. Then, while maintaining the total charging power P t , the operation is performed at each output ratio of the set plurality of operating conditions, and the power conversion loss is calculated using the measured value at the time of operation, and the required total charging power P For t , information on power conversion loss according to the output ratio for each operating condition is generated. Based on the information on the generated power conversion loss, the power can be received with higher efficiency by operating at the output ratio of the operation condition that minimizes the power conversion loss.

実施の形態3.
上記実施の形態1または2においては、車両用受電装置内の電力変換損失が最小になるように、接触給電と非接触給電の出力比率を調整した例について説明したが、これに限ることはない。本実施の形態3は、給電設備に設けられた非接触送電部での電力変換損失も考慮した電力変換損失の情報に基づき、総合的な電力変換損失が最小となるように接触給電と非接触給電の出力比率を調整するようにした。
Embodiment 3 FIG.
In the first or second embodiment, the example in which the output ratio of the contact power supply and the non-contact power supply is adjusted so that the power conversion loss in the vehicle power receiving device is minimized has been described. However, the present invention is not limited to this. . The third embodiment is based on the information on the power conversion loss in consideration of the power conversion loss in the non-contact power transmission unit provided in the power supply equipment, and the contact power supply and the non-contact so that the total power conversion loss is minimized. The power supply output ratio was adjusted.

図9は、本実施の形態3にかかる車両用受電装置について説明するためのもので、実施の形態1の説明に用いた図6と同様、充電電力ごとの、非接触給電方式と接触給電方式の出力内訳を踏まえた充電電力に対する電力変換損失を示すグラフである。図6と同様に、横軸は、総充電電力を示し、縦軸は、電力変換損失を示す。また、「〇」は、接触給電と非接触給電を併用している状態を示し、「■」内に記した数字は、接触給電に振り分けた充電電力を、「▲」内に記した数字は、非接触給電に振り分けた充電電力を、それぞれ示す。なお、本実施の形態3にかかる車両用受電装置の回路構成も、実施の形態2で説明したように、実施の形態1の説明に用いた図1〜図5と概ね同様であるため、構成の詳細な説明は繰り返さない。   FIG. 9 is for explaining the power receiving device for a vehicle according to the third embodiment. Like FIG. 6 used for the description of the first embodiment, the non-contact power feeding method and the contact power feeding method for each charging power. It is a graph which shows the power conversion loss with respect to charging electric power based on the output breakdown. Similar to FIG. 6, the horizontal axis represents the total charge power, and the vertical axis represents the power conversion loss. In addition, “◯” indicates that both contact power supply and non-contact power supply are used together. The numbers in “■” indicate the charging power allocated to contact power supply, and the numbers in “▲” indicate The charging power distributed to non-contact power feeding is shown respectively. The circuit configuration of the vehicle power receiving device according to the third embodiment is also substantially the same as that shown in FIGS. 1 to 5 used in the description of the first embodiment, as described in the second embodiment. The detailed description of will not be repeated.

本実施の形態3においては、図3、図4、そして図5で説明したように、車両用受電装置1とは別体である給電設備9における電力変換損失に関するデータを必要とする。つまり、非接触送電部34の電力変換損失もしくは電力変換効率の少なくとも一方、あるいは、交流電源90の交流出力といった、給電設備9内の情報を得る必要がある。   In the third embodiment, as described with reference to FIGS. 3, 4, and 5, data regarding power conversion loss in the power feeding facility 9 that is separate from the vehicle power receiving device 1 is required. That is, it is necessary to obtain information in the power supply facility 9 such as power conversion loss or power conversion efficiency of the non-contact power transmission unit 34 or AC output of the AC power supply 90.

この際、実施の形態1で説明したように、図示しない通信手段を用いて給電設備9からデータを入手できるようにすればよい。ただし、あらかじめ制御部7に記憶させておける場合、あるいは車両用受電装置1内で得られる情報から演算できるデータのみで動作制御できる場合は、通信手段を省略することも可能である。例えば、非接触送電部34の電力変換損失が、接触受電部2あるいは非接触受電部35の状態と関連することが分かっている場合は、関連する部位の状態を示す測定値に基づいて演算するようにすればよい。   At this time, as described in the first embodiment, data may be obtained from the power supply facility 9 using a communication unit (not shown). However, if the control unit 7 can store the information in advance, or if the operation can be controlled only by data that can be calculated from the information obtained in the vehicle power receiving device 1, the communication means can be omitted. For example, when it is known that the power conversion loss of the non-contact power transmission unit 34 is related to the state of the contact power reception unit 2 or the non-contact power reception unit 35, the calculation is performed based on the measured value indicating the state of the related part. What should I do?

また、本実施の形態にかかる車両用受電装置1において、給電設備9とデータのやり取りを行う態様の場合、制御部7は、接触受電部2の入力力率の値が1となるだけでなく、非接触給電部3としての入力力率の値も1となるように、非接触給電部3の動作制御を行わせることができる。その際、電流検出器83aが検出する非接触給電部3としての交流入力電流の検出値(交流入力電流iac_3)を制御するための各スイッチング素子のデューティ比を演算する。Further, in the vehicle power receiving device 1 according to the present embodiment, in the aspect of exchanging data with the power supply facility 9, the control unit 7 not only has a value of the input power factor of the contact power receiving unit 2 of 1. The operation control of the non-contact power feeding unit 3 can be performed so that the value of the input power factor as the non-contact power feeding unit 3 is also 1. At that time, the duty ratio of each switching element for controlling the detection value (AC input current i ac — 3) of the AC input current as the non-contact power feeding unit 3 detected by the current detector 83 a is calculated.

具体的には、電圧検出器89vが検出する交流入力電圧の検出値(=交流出力電圧Vac)と同期した正弦波状の予め定められた電流指令(目標正弦波電流)iac_3sと、交流入力電流iac_3との電流差を算出する。算出した電流差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。また、図示しない電圧検出器による直流コンデンサ32の直流電圧の検出値(コンデンサ直流電圧Vc_3)については、予め定められた目標直流電圧Vc_3sとコンデンサ直流電圧Vc_3との電圧差を算出する。算出した電圧差をフィードバック量として比例制御もしくは比例積分制御により出力を演算する。Specifically, a sinusoidal predetermined current command (target sine wave current) i ac — 3 s synchronized with the detected value of the AC input voltage (= AC output voltage V ac ) detected by the voltage detector 89v, and AC The current difference from the input current i ac — 3 is calculated. Using the calculated current difference as a feedback amount, the output is calculated by proportional control or proportional integral control. Further, for the detected value of the DC voltage of the DC capacitor 32 (capacitor DC voltage V c — 3 ) by a voltage detector (not shown), the voltage difference between a predetermined target DC voltage V c — 3 s and the capacitor DC voltage V c — 3 is calculated. . The output is calculated by proportional control or proportional integral control with the calculated voltage difference as a feedback amount.

本実施の形態3にかかる車両用受電装置1では、実施の形態1の表1を用いた説明と同様に、予め定められた電力変換損失のテーブルに基づいて出力比率を調整しても良い。この場合、表2においては、非接触受電部35だけではなく、非接触受電部35と非接触送電部34を合わせた非接触給電部3としての電力変換損失のデータを用いる。   In the vehicle power receiving device 1 according to the third embodiment, the output ratio may be adjusted based on a predetermined power conversion loss table, as in the description using Table 1 of the first embodiment. In this case, in Table 2, not only the non-contact power receiving unit 35 but also the power conversion loss data as the non-contact power feeding unit 3 including the non-contact power receiving unit 35 and the non-contact power transmission unit 34 is used.

本実施の形態3にかかる車両用受電装置1では、表2および図9に示すように、予め定められた電力変換損失のテーブルに基づいて出力比率を調整する。表2は、表1における非接触受電部35に代えて、非接触給電部3の充電電力に応じた電力変換損失をテーブル化したものである。ここで、テーブルの値は、理論式から算出した値でもよく、実験により得られた損失でもよい。また、表2では説明の簡略化のため実値ではなく、規格化した電力変換損失Lで表現している。なお、表2に示す電力変換損失の例は、説明のための一例であることは言うまでもない。   In the vehicle power receiving device 1 according to the third embodiment, as shown in Table 2 and FIG. 9, the output ratio is adjusted based on a predetermined power conversion loss table. Table 2 is a table of power conversion losses corresponding to the charging power of the non-contact power feeding unit 3 instead of the non-contact power receiving unit 35 in Table 1. Here, the value of the table may be a value calculated from a theoretical formula, or may be a loss obtained by an experiment. In Table 2, for simplicity of explanation, the power conversion loss L is expressed not as a real value but as a standardized power conversion loss L. In addition, it cannot be overemphasized that the example of the power conversion loss shown in Table 2 is an example for description.

Figure 0006567228
Figure 0006567228

あるいは、実施の形態2の図7のフローチャートを用いた説明と同様に、動作中に比率設定値Srを変化させて、非接触送電部34も含めた電力変換損失が最小となる動作条件を抽出する手法を用いても良い。   Alternatively, similarly to the description using the flowchart of FIG. 7 of the second embodiment, the operation condition that minimizes the power conversion loss including the non-contact power transmission unit 34 is extracted by changing the ratio set value Sr during operation. You may use the technique to do.

なお、上述のように、接触給電と非接触給電の出力比率を調整するとき、実施の形態1と実施の形態2では、車両用受電装置1の合計電力変換損失を、接触受電部2と非接触受電部35とDC/DCコンバータ5の電力変換損失の和として扱っていた。しかし、本実施の形態3では、非接触送電部34も含めた電力変換損失の和を合計電力変換損失として扱う。   As described above, when adjusting the output ratio of contact power supply and non-contact power supply, in Embodiment 1 and Embodiment 2, the total power conversion loss of the vehicle power receiving device 1 is compared with that of the contact power receiving unit 2. It was handled as the sum of the power conversion losses of the contact power reception unit 35 and the DC / DC converter 5. However, in this Embodiment 3, the sum of the power conversion loss including the non-contact power transmission unit 34 is treated as the total power conversion loss.

そこで、実施の形態3にかかる車両用受電装置1では、接触給電に関しては、接触受電部2の充電電力Pconは、実施の形態1、2と同様に、接触受電部2の出力電力とする。一方、非接触給電に関しても、最終的な出力としては、実施の形態1、2と同様に、非接触受電部35の充電電力Pwptを、非接触給電部3の出力電力とする。このとき、接触受電部2の充電電力Pconは統合用直流コンデンサ4の直流電圧Vintの検出値と接触受電部2の出力電流io_2の検出値から算出される。また、非接触受電部35の充電電力Pwptは、非接触受電部35の出力電力を表し、統合用直流コンデンサ4の直流電圧Vintの検出値と非接触受電部35の出力電流io_3の検出値から算出される。Therefore, in the vehicle power receiving device 1 according to the third embodiment, with respect to contact power feeding, the charging power P con of the contact power receiving unit 2 is the output power of the contact power receiving unit 2 as in the first and second embodiments. . On the other hand, regarding the non-contact power feeding, as the final output, the charging power P wpt of the non-contact power receiving unit 35 is set as the output power of the non-contact power feeding unit 3 as in the first and second embodiments. At this time, the charging power P con of the contact power receiving unit 2 is calculated from the detected value of the DC voltage V int of the integration DC capacitor 4 and the detected value of the output current i o — 2 of the contact power receiving unit 2. The charging power P wpt of the non-contact power receiving unit 35 represents the output power of the non-contact power receiving unit 35, and the detected value of the DC voltage V int of the integration DC capacitor 4 and the output current i o — 3 of the non-contact power receiving unit 35. Calculated from the detected value.

なお、接触受電部2の充電電力Pconを接触受電部2の入力電力とし、非接触給電部3の充電電力Pwptを非接触給電部3の入力電力として扱っても良い。このとき、接触受電部2の充電電力Pconは交流電源電圧の検出値と接触受電部2への入力電流の検出値(Vacとiac_2)から算出できる。また、非接触給電部3の充電電力Pwptは交流電源90の電圧の検出値と非接触送電部34への入力電流の検出値(Vacとiac_3)から算出される。The charging power P con of the contact power receiving unit 2 may be used as the input power of the contact power receiving unit 2, and the charging power P wpt of the non-contact power feeding unit 3 may be handled as the input power of the non-contact power feeding unit 3. At this time, the charging power P con of the contact power receiving unit 2 can be calculated from the detected value of the AC power supply voltage and the detected value of the input current to the contact power receiving unit 2 (V ac and i ac — 2 ). Further, the charging power P wpt of the non-contact power feeding unit 3 is calculated from the detected value of the voltage of the AC power supply 90 and the detected value of the input current to the non-contact power transmitting unit 34 (V ac and i ac — 3 ).

一方、出力比率調整のための充電電力については、接触給電による充電電力Pconと非接触給電による充電電力Pwptを区別する必要があるが、電力変換損失の評価については、必ずしも接触給電と非接触給電を区別する必要はない。例えば、交流電源90の出力電圧(交流出力電圧Vac)と出力電流iacを用いて、給電設備9としての出力を演算し、総充電電力Pとの差を、非接触給電部3と接触受電部2とを区別しない総電力変換損失のデータとして用いてもよい。On the other hand, regarding the charging power for adjusting the output ratio, it is necessary to distinguish between the charging power P con by contact power feeding and the charging power P wpt by non-contact power feeding. There is no need to distinguish between contact feeds. For example, using the output voltage of the AC power supply 90 (AC output voltage V ac ) and the output current i ac , the output as the power supply facility 9 is calculated, and the difference from the total charging power P t is calculated with the non-contact power supply unit 3. You may use as data of the total electric power conversion loss which does not distinguish with the contact power receiving part 2. FIG.

つまり、本実施の形態3に示すように、接触給電と非接触給電の双方が定格未満の場合も含めて、要求される総充電電力Pに対し、充電電力Pconと、非接触給電による充電電力Pwptの出力比率の異なる動作条件を複数設定する。そして、予め得られたデータまたは、出力比率を実際に変化させた動作での測定結果を用いて、非接触送電部34も含めた動作条件ごとの電力変換損失を算出し、要求される総充電電力Pに対して、動作条件ごとの出力比率に応じた電力変換損失の情報を生成する。生成した電力変換損失の情報に基づき、電力変換損失が最小となる動作条件の出力比率で動作させることで、非接触送電部34も含め、より効率の高い受電が可能となる。In other words, as shown in the third embodiment, the charging power P con and the non-contact power feeding are required for the required total charging power P t including the case where both the contact power feeding and the non-contact power feeding are less than the rating. A plurality of operating conditions having different output ratios of the charging power P wpt are set. Then, using the data obtained in advance or the measurement result in the operation in which the output ratio is actually changed, the power conversion loss for each operation condition including the non-contact power transmission unit 34 is calculated, and the required total charge to the power P t, generates information power conversion loss corresponding to the output ratio for each operating condition. Based on the generated power conversion loss information, by operating at the output ratio of the operation condition that minimizes the power conversion loss, it is possible to receive power more efficiently including the non-contact power transmission unit 34.

なお、各実施の形態において、車両用受電装置1は、車両の動力源となる蓄電装置6を含めて構成し、今後広まるであろう非接触給電と接触給電の両方を備える給電設備9に対して好適な構成として説明した。しかし、蓄電装置6に代えて直流電力を消費する機器を加え、電力変換装置として適応した場合にも好適な例であると説明したように、蓄電装置6の代わりに、直流電気機器を接続できるようにした受電装置と読み替えるようにしてもよい。   In each embodiment, the vehicle power receiving device 1 includes the power storage device 6 that is a power source of the vehicle, and is provided for a power supply facility 9 that includes both non-contact power supply and contact power supply that will spread in the future. The preferred configuration has been described. However, a DC electric device can be connected in place of the power storage device 6 as described above as a suitable example even when a device that consumes DC power is added instead of the power storage device 6 and is adapted as a power conversion device. You may make it read as the power receiving apparatus which was made.

以上のように、各実施の形態にかかる受電装置(車両用受電装置1)によれば、給電設備9の交流電源90に導体を介して電気接続され、導体から受電した交流電力を直流電力に変換して出力する接触受電部2と、給電設備9に設けられた非接触送電部34に対して非接触で交流電力を受電し、受電した交流電力を直流電力に変換して出力する非接触受電部35と、接触受電部2からの出力と、非接触受電部35からの出力とを統合し、負荷装置(例えば、蓄電装置6あるいは直流機器)に出力する直流出力統合部(DC/DCコンバータ5)と、接触受電部2と非接触受電部35、および直流出力統合部の動作を制御する制御部7と、を備え、接触受電部2と非接触受電部35のそれぞれが、給電設備9に接続された場合、制御部7は、接触受電部2と非接触受電部35の出力比率(例えば、比率設定値Sr=充電電力Pcon/充電電力Pwpt)の異なる動作条件ごとの電力変換損失の情報に基づき、出力比率を調整するように構成したので、どのような総充電電力Pにおいても、効率の高い受電が可能となる。なお、出力比率の異なる動作条件とは、要求された総充電電力Pに対して設定する、出力比率(例えば、比率設定値Sr)が異なる複数の動作条件の設定値であり、例えば、接触受電部2と非接触受電部35の双方が定格出力未満で出力する場合も含む。As described above, according to the power receiving device (vehicle power receiving device 1) according to each embodiment, the AC power that is electrically connected to the AC power supply 90 of the power supply facility 9 via the conductor and received from the conductor is converted to DC power. Contactless power receiving unit 2 that converts and outputs power and noncontact power transmission unit 34 provided in power supply facility 9 contactlessly receives AC power, converts the received AC power to DC power, and outputs the contactless power. A DC output integration unit (DC / DC) that integrates the output from the power reception unit 35, the output from the contact power reception unit 2, and the output from the non-contact power reception unit 35 and outputs the output to a load device (for example, the power storage device 6 or a DC device). Converter 5), contact power reception unit 2, non-contact power reception unit 35, and control unit 7 that controls the operation of the DC output integration unit, and each of contact power reception unit 2 and non-contact power reception unit 35 is a power supply facility. 9 is connected to the control unit 7. The output ratio of the power receiving portion 2 and the non-contact power receiving unit 35 (e.g., ratio set value Sr = charge power P con / charge power P wpt) based on information of the power conversion loss for different operating conditions of, to adjust the output ratio since it is configured to, in any total charged electrical P t, thereby enabling efficient power reception. Note that the different operating conditions of the output ratio is set relative to the total charge power P t, which is required, the output ratio (e.g., ratio set value Sr) is the set value of the plurality of different operating conditions, for example, contact This includes the case where both the power receiving unit 2 and the non-contact power receiving unit 35 output less than the rated output.

とくに、いずれの給電方式であっても、動作点によって効率が変動するという事象を考慮し、一方を定格出力で動作させ、他方の出力を絞るのとは異なり、総充電電力Pに応じた電力変換損失の情報に基づいて、出力比率を調整するので、高効率化が狙える。また、偏った使い方にもならず、発熱源も分散するので、都合がよい。In particular, in any power supply method, considering the phenomenon that the efficiency varies depending on the operating point, one is operated at the rated output, and the other output is narrowed, and according to the total charging power P t Since the output ratio is adjusted based on the power conversion loss information, higher efficiency can be aimed at. In addition, it is convenient because the heat source is not distributed and the heat source is dispersed.

ここで、制御部7は、接触受電部2の出力(充電電力Pcon)の値と非接触受電部35の出力(充電電力Pwpt)の値から、電力変換損失を導き出せるテーブルおよび数式のいずれかを電力変換損失の情報として用いるようにすれば、余分な測定をしなくても、容易に効率の高い受電が可能となる。Here, the control unit 7 is any of a table and a mathematical expression that can derive a power conversion loss from the value of the output of the contact power receiving unit 2 (charging power P con ) and the value of the output of the non-contact power receiving unit 35 (charging power P wpt ). If this is used as the information on the power conversion loss, it is possible to easily receive power with high efficiency without extra measurement.

とくに、電力変換損失の情報である、テーブルまたは数式は、非接触送電部34と非接触受電部35との間の位置ずれの程度に応じて複数が用意されており、制御部7は、例えば、検知して得た位置ずれの程度を表す情報に基づいて、複数の電力変換損失の情報のなかから用いる情報を選定するようにすれば、位置ずれがあっても、その状況に応じて最適な電力変換損失の情報を用いた出力比率の調整が可能となる。なお、選定したテーブルまたは数式に、位置ずれの程度を示す評価値を変数として使用するようにしてもよいことは言うまでもない。   In particular, a plurality of tables or mathematical expressions, which are information on power conversion loss, are prepared in accordance with the degree of positional deviation between the non-contact power transmission unit 34 and the non-contact power reception unit 35. If the information to be used is selected from the information of multiple power conversion losses based on the information indicating the degree of misalignment obtained by detection, even if there is misalignment, it is optimal depending on the situation It is possible to adjust the output ratio using information on the power conversion loss. It goes without saying that an evaluation value indicating the degree of positional deviation may be used as a variable in the selected table or mathematical expression.

さらに、電力変換損失の情報には、非接触送電部34での電力変換損失も含まれているようにすれば、給電設備9の交流電源90から負荷装置(蓄電装置6)への総合的な効率を最大限にすることができる。   Furthermore, if the power conversion loss information includes the power conversion loss in the non-contact power transmission unit 34, the information from the AC power supply 90 of the power supply facility 9 to the load device (power storage device 6) is comprehensive. Efficiency can be maximized.

一方、制御部7は、負荷装置(蓄電装置6)への出力(総充電電力P)を一定に維持した状態で、動作条件である出力比率(例えば、比率設定値Sr=充電電力Pcon/充電電力Pwpt)を変化させる。そして、動作条件ごとの、出力比率と、測定した車両用受電装置1内の検出値から算出した電力変換損失の値との組み合わせを電力変換損失の情報として取得し、電力変換損失の値が最小値を示した出力比率で、接触受電部2と非接触受電部35を動作させるようにすれば、予め情報を収集しなくても、その場の状況に即した最適な出力比率の調整を行い、効率の高い受電が可能となる。On the other hand, the control unit 7 maintains the output (total charge power P t ) to the load device (power storage device 6) constant, and the output ratio (for example, ratio set value Sr = charge power P con ) as an operation condition. / Charging power P wpt ) is changed. Then, a combination of the output ratio for each operating condition and the power conversion loss value calculated from the measured detected value in the vehicle power receiving device 1 is acquired as power conversion loss information, and the power conversion loss value is minimized. If the contact power receiving unit 2 and the non-contact power receiving unit 35 are operated with the output ratios indicating the values, the optimum output ratio is adjusted in accordance with the situation without collecting information in advance. Highly efficient power reception is possible.

給電設備9とデータ通信を行う図示しない通信部を備え、制御部7は、通信部を介して受信した、交流電源90の出力および非接触送電部34への入力電流iac_3のうち少なくともいずれかの検出値を、電力変換損失の値の算出に用いるようにすれば、給電設備9の交流電源90から負荷装置(蓄電装置6)への総合的な効率を最大限にすることができる。A communication unit (not shown) that performs data communication with the power supply facility 9 is provided, and the control unit 7 receives at least one of the output of the AC power supply 90 and the input current i ac_3 to the non-contact power transmission unit 34 received via the communication unit. Is used for calculation of the value of power conversion loss, the overall efficiency from the AC power supply 90 of the power supply facility 9 to the load device (power storage device 6) can be maximized.

上述した受電装置と、負荷装置として、車両の電源に用いる蓄電装置6と、を備えた車両用受電装置1であれば、車両に対して効率よく充電ができる。とくに、車両用においては、給電の繰り返し性も高く、出力も高いので、省エネ効果が期待できる。   If the vehicle power receiving device 1 includes the power receiving device described above and the power storage device 6 used as a load device for the power source of the vehicle, the vehicle can be efficiently charged. In particular, for vehicles, the power supply repeatability is high and the output is high, so that an energy saving effect can be expected.

車両用受電装置1は、接触受電部2と非接触受電部35、および直流出力統合部(DC/DCコンバータ5)の動作を、蓄電装置6から給電設備9への逆方向給電に切り替える機能を有し、制御部7は、動作を逆方向給電に切り替える際に、上述した電力変換損失の情報に対応する逆方向給電に応じた情報に基づき、逆方向給電における接触受電部2と非接触受電部35の出力比率を調整するようにすれば、逆送においても電力変換損失の小さな高効率な送電が可能となる。なお、給電設備9が逆送可能なタイプを想定しており、その場合、非接触送電部34については、給電設備9に逆送の指令を出すことで対応できることが想定される。   The vehicle power receiving device 1 has a function of switching the operation of the contact power receiving unit 2, the non-contact power receiving unit 35, and the direct current output integration unit (DC / DC converter 5) to reverse power feeding from the power storage device 6 to the power feeding facility 9. When the control unit 7 switches the operation to the reverse power supply, the contact power receiving unit 2 and the non-contact power reception in the reverse power supply are based on the information corresponding to the reverse power supply corresponding to the power conversion loss information described above. If the output ratio of the unit 35 is adjusted, high-efficiency power transmission with small power conversion loss is possible even in reverse transmission. In addition, the type in which the power feeding facility 9 can be reversely transported is assumed, and in that case, it is assumed that the non-contact power transmission unit 34 can cope with it by issuing a reverse feed command to the power feeding facility 9.

なお、本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。   Although various exemplary embodiments and examples are described in this application, various features, aspects, and functions described in one or more embodiments may be described in particular embodiments. The present invention is not limited to the above-described application, but can be applied to the embodiments alone or in various combinations. Accordingly, countless variations that are not illustrated are envisaged within the scope of the technology disclosed herein. For example, the case where at least one component is deformed, the case where the component is added or omitted, the case where the at least one component is extracted and combined with the component of another embodiment are included.

なお、制御部7は、ハードウエアの一例を図10に示すように、プロセッサ70と記憶装置71から構成される。記憶装置は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ70は、記憶装置71から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ70にプログラムが入力される。また、プロセッサ70は、演算結果等のデータを記憶装置71の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。通信機能をプロセッサ70が有するようにしてもよいが、図示しない通信部を具備するようにしてもよい。   The control unit 7 includes a processor 70 and a storage device 71 as shown in FIG. 10 as an example of hardware. Although not shown, the storage device includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory. The processor 70 executes a program input from the storage device 71. In this case, a program is input from the auxiliary storage device to the processor 70 via the volatile storage device. The processor 70 may output data such as a calculation result to the volatile storage device of the storage device 71, or may store the data in the auxiliary storage device via the volatile storage device. The processor 70 may have a communication function, but may include a communication unit (not shown).

1:車両用受電装置(受電装置)、
2:接触受電部、21:AC/DCコンバータ、 22:直流コンデンサ、 23:絶縁形DC/DCコンバータ、
3:非接触給電部、 31:AC/DCコンバータ、 32:直流コンデンサ、 33:インバータ回路、 34:非接触送電部、 35:非接触受電部、
4:統合用直流コンデンサ、
5:DC/DCコンバータ(直流出力統合部)、
6:蓄電装置、
7:制御部、
9:給電設備、 90:交流電源、 91t:交流端子、
con:充電電力(接触受電部の出力)、 P:総充電電力、 Pwpt:充電電力(非接触受電部の出力)、 Sr:比率設定値。
1: vehicle power receiving device (power receiving device),
2: contact power receiving unit, 21: AC / DC converter, 22: DC capacitor, 23: insulated DC / DC converter,
3: Non-contact power supply unit, 31: AC / DC converter, 32: DC capacitor, 33: Inverter circuit, 34: Non-contact power transmission unit, 35: Non-contact power reception unit,
4: DC capacitor for integration,
5: DC / DC converter (DC output integration unit),
6: Power storage device,
7: Control unit,
9: Power supply equipment, 90: AC power supply, 91t: AC terminal,
P con : charging power (output of the contact power receiving unit), P t : total charging power, P wpt : charging power (output of the non-contact power receiving unit), Sr: ratio set value.

Claims (7)

給電設備の交流電源に導体を介して電気接続され、前記導体から受電した交流電力を直流電力に変換して出力する接触受電部と、
前記給電設備に設けられた非接触送電部に対して非接触で交流電力を受電し、受電した交流電力を直流電力に変換して出力する非接触受電部と、
前記接触受電部からの出力および前記非接触受電部からの出力を統合し、負荷装置に出力する直流出力統合部と、
前記接触受電部、前記非接触受電部、および前記直流出力統合部の動作を制御する制御部と、を備え、
前記制御部は、
前記接触受電部と前記非接触受電部のそれぞれが、前記給電設備に接続された場合、
前記負荷装置への出力を一定に維持した状態で、前記接触受電部と前記非接触受電部の出力比率を変化させ、変化させた出力比率と、出力比率ごとに測定した検出値から算出した電力変換損失の値との組み合わせを電力変換損失の情報として取得し、前記電力変換損失の値が最小値を示した出力比率で、前記接触受電部と前記非接触受電部を動作させることを特徴とする受電装置。
A contact power receiving unit that is electrically connected to the AC power source of the power supply facility via a conductor, converts AC power received from the conductor into DC power, and outputs the DC power;
A non-contact power receiving unit that receives AC power in a non-contact manner with respect to a non-contact power transmission unit provided in the power supply facility, converts the received AC power into DC power, and outputs it,
DC output integration unit that integrates the output from the contact power reception unit and the output from the non-contact power reception unit, and outputs to the load device;
A control unit that controls operations of the contact power reception unit, the non-contact power reception unit, and the DC output integration unit,
The controller is
When each of the contact power receiving unit and the non-contact power receiving unit is connected to the power supply facility,
In a state where the output to the load device is kept constant, the output ratio of the contact power receiving unit and the non-contact power receiving unit is changed, the changed output ratio, and the power calculated from the detected value measured for each output ratio A combination with a value of conversion loss is acquired as information of power conversion loss, and the contact power receiving unit and the non-contact power receiving unit are operated at an output ratio at which the value of the power conversion loss indicates a minimum value. Power receiving device.
前記給電設備とデータ通信を行う通信部を備え、
前記制御部は、前記通信部を介して受信した、前記交流電源の出力および前記非接触送電部への入力電流のうち少なくともいずれかの検出値を、前記電力変換損失の値の算出に用いることを特徴とする請求項に記載の受電装置。
A communication unit that performs data communication with the power supply facility,
The control unit uses a detection value of at least one of the output of the AC power supply and the input current to the contactless power transmission unit received via the communication unit for calculation of the value of the power conversion loss. The power receiving device according to claim 1 .
給電設備の交流電源に導体を介して電気接続され、前記導体から受電した交流電力を直流電力に変換して出力する接触受電部と、
前記給電設備に設けられた非接触送電部に対して非接触で交流電力を受電し、受電した交流電力を直流電力に変換して出力する非接触受電部と、
前記接触受電部からの出力および前記非接触受電部からの出力を統合し、負荷装置に出力する直流出力統合部と、
前記接触受電部、前記非接触受電部、および前記直流出力統合部の動作を制御し、前記接触受電部と前記非接触受電部のそれぞれが、前記給電設備に接続された場合、前記接触受電部と前記非接触受電部の出力比率の異なる動作条件ごとの電力変換損失の情報に基づき、前記出力比率を調整する制御部と、を備え、
前記電力変換損失の情報として、前記接触受電部の出力の値と前記非接触受電部の出力の値から、前記電力変換損失を導き出せるテーブルおよび数式のいずれかにつき、前記非接触送電部と前記非接触受電部との間の位置ずれの程度に応じて複数が用意されており、
前記制御部は、前記位置ずれの程度を示す情報に基づいて、前記複数の電力変換損失の情報のなかから用いる情報を選定することを特徴とする受電装置。
A contact power receiving unit that is electrically connected to the AC power source of the power supply facility via a conductor, converts AC power received from the conductor into DC power, and outputs the DC power;
A non-contact power receiving unit that receives AC power in a non-contact manner with respect to a non-contact power transmission unit provided in the power supply facility, converts the received AC power into DC power, and outputs it,
DC output integration unit that integrates the output from the contact power reception unit and the output from the non-contact power reception unit, and outputs to the load device;
When the operation of the contact power receiving unit, the non-contact power receiving unit, and the DC output integration unit is controlled, and each of the contact power receiving unit and the non-contact power receiving unit is connected to the power supply facility, the contact power receiving unit And a control unit that adjusts the output ratio based on information on power conversion loss for each operating condition with a different output ratio of the non-contact power receiving unit,
As the information of the power conversion loss, the contactless power transmission unit and the non-contact power can be obtained from any one of a table and a mathematical expression that can derive the power conversion loss from the output value of the contact power reception unit and the output value of the contactless power reception unit. Plural are prepared according to the degree of positional deviation with the contact power receiving unit,
The control unit selects information to be used from among the plurality of pieces of power conversion loss information based on information indicating the degree of the positional deviation.
前記電力変換損失の情報には、前記非接触送電部における電力変換損失も含まれていることを特徴とする請求項1から3のいずれか1項に記載の受電装置。   The power receiving device according to any one of claims 1 to 3, wherein the information on the power conversion loss includes a power conversion loss in the contactless power transmission unit. 請求項1からのいずれか1項に記載の受電装置と、
前記負荷装置として、車両の電源に用いる蓄電装置と、を備えた車両用受電装置。
The power receiving device according to any one of claims 1 to 4 ,
A power receiving device for a vehicle, comprising: a power storage device used as a power source of the vehicle as the load device.
当該車両用受電装置は、前記接触受電部と前記非接触受電部、および前記直流出力統合部の動作を、前記蓄電装置から前記給電設備への逆方向給電に切り替える機能を有し、
前記制御部は、前記動作を逆方向給電に切り替える際に、前記電力変換損失の情報に対応する前記逆方向給電に応じた情報に基づき、逆方向給電における前記接触受電部と前記非接触受電部の出力比率を調整することを特徴とする請求項に記載の車両用受電装置。
The vehicle power receiving device has a function of switching the operation of the contact power receiving unit, the non-contact power receiving unit, and the DC output integration unit to reverse power feeding from the power storage device to the power feeding facility,
The control unit, when switching the operation to reverse power feeding, based on the information corresponding to the reverse power feeding corresponding to the information of the power conversion loss, the contact power receiving unit and the non-contact power receiving unit in the reverse power feeding The vehicle power receiving device according to claim 5 , wherein an output ratio of the vehicle is adjusted.
車両の電源に用いる蓄電装置、A power storage device used for a power source of a vehicle,
給電設備の交流電源に導体を介して電気接続され、前記導体から受電した交流電力を直流電力に変換して出力する接触受電部と、  A contact power receiving unit that is electrically connected to the AC power source of the power supply facility via a conductor, converts AC power received from the conductor into DC power, and outputs the DC power;
前記給電設備に設けられた非接触送電部に対して非接触で交流電力を受電し、受電した交流電力を直流電力に変換して出力する非接触受電部と、  A non-contact power receiving unit that receives AC power in a non-contact manner with respect to a non-contact power transmission unit provided in the power supply facility, converts the received AC power into DC power, and outputs it,
前記接触受電部からの出力および前記非接触受電部からの出力を統合し、前記蓄電装置に出力する直流出力統合部と、  DC output integration unit that integrates the output from the contact power reception unit and the output from the non-contact power reception unit, and outputs to the power storage device,
前記接触受電部、前記非接触受電部、および前記直流出力統合部の動作を制御し、前記接触受電部と前記非接触受電部のそれぞれが、前記給電設備に接続された場合、前記接触受電部と前記非接触受電部の出力比率の異なる動作条件ごとの電力変換損失の情報に基づき、前記出力比率を調整する制御部と、を備えるとともに、  When the operation of the contact power receiving unit, the non-contact power receiving unit, and the DC output integration unit is controlled, and each of the contact power receiving unit and the non-contact power receiving unit is connected to the power supply facility, the contact power receiving unit And a control unit that adjusts the output ratio based on information on power conversion loss for each operating condition with a different output ratio of the non-contact power receiving unit,
前記接触受電部と前記非接触受電部、および前記直流出力統合部の動作を、前記蓄電装置から前記給電設備への逆方向給電に切り替える機能を有し、  The function of switching the operation of the contact power receiving unit and the non-contact power receiving unit, and the DC output integration unit to reverse power feeding from the power storage device to the power feeding equipment,
前記制御部は、前記動作を逆方向給電に切り替える際に、前記電力変換損失の情報に対応する前記逆方向給電に応じた情報に基づき、逆方向給電における前記接触受電部と前記非接触受電部の出力比率を調整することを特徴とする車両用受電装置。  The control unit, when switching the operation to reverse power feeding, based on the information corresponding to the reverse power feeding corresponding to the information of the power conversion loss, the contact power receiving unit and the non-contact power receiving unit in the reverse power feeding The vehicle power receiving device is characterized in that the output ratio of the vehicle is adjusted.
JP2019520654A 2018-12-14 2018-12-14 Power receiving device and vehicle power receiving device Expired - Fee Related JP6567228B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046016 WO2020121505A1 (en) 2018-12-14 2018-12-14 Power receiving device and vehicle power receiving device

Publications (2)

Publication Number Publication Date
JP6567228B1 true JP6567228B1 (en) 2019-08-28
JPWO2020121505A1 JPWO2020121505A1 (en) 2021-02-15

Family

ID=67766607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019520654A Expired - Fee Related JP6567228B1 (en) 2018-12-14 2018-12-14 Power receiving device and vehicle power receiving device

Country Status (2)

Country Link
JP (1) JP6567228B1 (en)
WO (1) WO2020121505A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114522A1 (en) * 2012-01-30 2013-08-08 トヨタ自動車株式会社 Vehicle power receiving device, power supply equipment and electrical power transmission system
JP2014023426A (en) * 2012-07-23 2014-02-03 Lsis Co Ltd Battery charging apparatus and battery charging method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350312B2 (en) * 2015-01-29 2018-07-04 株式会社デンソー Non-contact charging parking support device
CN107517595B (en) * 2015-03-23 2020-03-31 三菱电机株式会社 Bidirectional non-contact power supply device and bidirectional non-contact power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114522A1 (en) * 2012-01-30 2013-08-08 トヨタ自動車株式会社 Vehicle power receiving device, power supply equipment and electrical power transmission system
JP2014023426A (en) * 2012-07-23 2014-02-03 Lsis Co Ltd Battery charging apparatus and battery charging method thereof

Also Published As

Publication number Publication date
WO2020121505A1 (en) 2020-06-18
JPWO2020121505A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US9806625B2 (en) Power conversion device including a transformer with three or more windings
US10270289B2 (en) Polyphase inductive power transfer system with individual control of phases
JP6490093B2 (en) Power converter
US9787199B2 (en) Power conversion device to control power distribution of input power to multiple outputs
US20170133943A1 (en) Solar photovoltaic power conditioning units
KR102308628B1 (en) Hybrid Power Conversion System and Method for Determining Maximum Efficiency Using the Same
JPWO2015008506A1 (en) Power feeding device and non-contact power feeding system
EP2712073A1 (en) Power conversion system
US20150145340A1 (en) Coil unit
JPWO2016125292A1 (en) DC-DC converter, power converter, power generation system, and DC-DC conversion method
JP2006121791A (en) Noncontact power feeder for vehicle
US20150200607A1 (en) Power converter
US10277139B2 (en) Power conversion device which detects power shortage and switches to a power supply that is capable of supplying power
JP2011097688A (en) Power conversion device and power conversion method
KR20220004938A (en) Power Supply System
JP7209868B2 (en) DC/DC converter and power converter
JP6567228B1 (en) Power receiving device and vehicle power receiving device
JP6523592B1 (en) Power converter
US10886744B2 (en) Power conversion system, power supply system and power conversion device
CN112448584B (en) Power supply device for electric vehicle
JP7356102B2 (en) Wireless power supply device
US11462946B2 (en) Non-contact power supply system and power transmission device
JP2013021867A (en) Power conversion device and charging device
JPWO2012017753A1 (en) Power converter
US20200122586A1 (en) Vehicle power system with configurable output converter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190730

R151 Written notification of patent or utility model registration

Ref document number: 6567228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees