JP6562551B2 - Structure damage detection method and system - Google Patents

Structure damage detection method and system

Info

Publication number
JP6562551B2
JP6562551B2 JP2015242753A JP2015242753A JP6562551B2 JP 6562551 B2 JP6562551 B2 JP 6562551B2 JP 2015242753 A JP2015242753 A JP 2015242753A JP 2015242753 A JP2015242753 A JP 2015242753A JP 6562551 B2 JP6562551 B2 JP 6562551B2
Authority
JP
Japan
Prior art keywords
structural member
piezoelectric device
controller
damage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015242753A
Other languages
Japanese (ja)
Other versions
JP2017106878A (en
Inventor
丹羽 直幹
直幹 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2015242753A priority Critical patent/JP6562551B2/en
Publication of JP2017106878A publication Critical patent/JP2017106878A/en
Application granted granted Critical
Publication of JP6562551B2 publication Critical patent/JP6562551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は構造物の損傷検知方法及びシステムに関し,とくに地震被災時の構造部材に生じる損傷を検知する方法及びシステムに関する。   The present invention relates to a structure damage detection method and system, and more particularly to a method and system for detecting damage caused to a structural member during an earthquake.

地震に被災した構造物(例えばビル等の建物)は,その損傷が大きいゆえに余震等で二次被害を生じるおそれがある一方で,損傷が小さいにもかかわらず居住者が恐怖心から避難する場合もある。二次被害と避難者を共に減らすためには,地震被災後の構造物の損傷を迅速に検知することが必要である。従来から地震被災後の構造物の柱,梁等の構造部材を専門技術者が目視により観察して損傷を判定する方法が実施されている。しかし,部材の損傷は耐火被覆等によって簡単に目視できないことも多く,この方法は損傷の判定に時間がかかる問題点が指摘されている(非特許文献1参照)。   A structure damaged by an earthquake (such as a building) may cause secondary damage due to an aftershock because the damage is large, but a resident may evacuate from fear even though the damage is small. is there. In order to reduce both secondary damage and evacuees, it is necessary to quickly detect damage to structures after an earthquake. 2. Description of the Related Art Conventionally, a method in which a specialized engineer visually observes structural members such as pillars and beams of a structure after an earthquake has been carried out to determine damage. However, damage to members is often not easily visible due to fireproof coating or the like, and it has been pointed out that this method takes time to determine damage (see Non-Patent Document 1).

従来の目視による損傷判定方法に代えて,構造物の損傷が懸念される複数の所定部位に予め挙動をモニタリングするセンサ(例えば変位計等)を取り付け,地震時のモニタリングセンサの出力情報から構造部材の損傷をリアルタイムで判定する方法が提案されている(特許文献1〜3参照)。また,予め構造物の弾性応答解析モデルを設定すると共に構造物上の所定部位にセンサ(例えば変位計等)を設置し,地震時の計測センサの出力情報から弾性応答解析モデルを用いたシミュレーションにより構造部材又は構造物全体の損傷をリアルタイムで判定する方法が提案されている(特許文献4〜5参照)。   In place of the conventional visual damage judgment method, sensors (for example, displacement gauges) that monitor behavior in advance are attached to a plurality of predetermined sites where damage to the structure is a concern. A method for determining the damage in real time has been proposed (see Patent Documents 1 to 3). In addition, an elastic response analysis model of the structure is set in advance and a sensor (for example, a displacement meter) is installed at a predetermined location on the structure, and simulation using the elastic response analysis model is performed from the output information of the measurement sensor during an earthquake. There has been proposed a method for determining damage to a structural member or an entire structure in real time (see Patent Documents 4 to 5).

他方,従来から構造物の構造部材に圧電デバイスを装着し,構造物に加わる地震エネルギーを圧電デバイスに吸収させて減衰させる(制振力を作用させる)ことにより,構造物の損傷を低減する方法が提案されている(特許文献6〜7参照)。一般に構造物に加わる地震の総エネルギーEは,(1)式に示すように,構造物の弾性振動エネルギーWe,累積塑性歪みエネルギーWp,減衰によるエネルギー吸収量Whの総和と釣り合っている(非特許文献2参照)。このうち,構造物の弾性変形は地震収束後に解放されて無歪み状態に復帰するが,塑性変形は解放されずに破壊状態に至るまで蓄積するので,地震被災後の構造物の損傷は(1)式の累積塑性歪みエネルギーWpと対応している。圧電デバイスは,地震エネルギー(力)を電気エネルギー(電荷)に変換して吸収することにより,(1)式のエネルギー吸収量Whを高めて累積塑性歪みエネルギーWpを低減するエネルギー吸収型の制振機構(制震機構)と考えることができる。
E=We+Wp+Wh ……………………………………………………………(1)
On the other hand, a method of reducing damage to a structure by attaching a piezoelectric device to the structural member of the structure and absorbing the seismic energy applied to the structure by the piezoelectric device to attenuate (actuate a damping force). Has been proposed (see Patent Documents 6 to 7). Generally, the total energy E of the earthquake applied to the structure is balanced with the sum of the elastic vibration energy We, the cumulative plastic strain energy Wp, and the energy absorption amount Wh due to the damping as shown in the equation (1) (non-patent) Reference 2). Among them, the elastic deformation of the structure is released after the earthquake converges and returns to the unstrained state, but the plastic deformation accumulates until it breaks without being released, so damage to the structure after the earthquake damage (1 This corresponds to the accumulated plastic strain energy Wp in the equation (1). Piezoelectric devices absorb energy by converting seismic energy (force) into electrical energy (electric charge), thereby increasing energy absorption amount Wh in equation (1) and reducing accumulated plastic strain energy Wp. It can be considered as a mechanism (seismic control mechanism).
E = We + Wp + Wh …………………………………………………………… (1)

特開2000−186944号公報JP 2000-186944 A 特開2004−037351号公報JP 2004-037351 A 特開2007−039879号公報Japanese Patent Laid-Open No. 2007-039879 特開2012−083172号公報JP 2012-083172 A 特開2014−122866号公報JP 2014-122866 A 特開平10−061708号公報Japanese Patent Laid-Open No. 10-061708 特開2015−048894号公報Japanese Patent Laying-Open No. 2015-048894 特開2006−166662号公報JP 2006-166661 A

楠浩一「建築物の地震後の残余耐震性能評価」コンクリート工学,Vol.44,No.5,2006年5月,インターネット<https://www.jstage.jst.go.jp/article/coj1975/44/5/44_102/_pdf>Koichi Tsuji "Evaluation of residual seismic performance of buildings after earthquake" Concrete Engineering, Vol. 44, no. 5, May 2006, Internet <https: // www. jstage. jst. go. jp / article / coj1975 / 44/5 / 44_102 / _pdf> 秋山宏「エネルギーの釣合に基づく建築物の耐震設計」技報堂出版,1999年11月26日Hiroshi Akiyama “Aseismic Design of Buildings Based on Energy Balance”, Gihodo Publishing, November 26, 1999

しかし,上述した地震時の構造物の挙動をモニタリングする損傷判定方法は,構造物を構成する様々な部材の損傷を検知するために膨大な数のモニタリングセンサを取り付ける必要があり,センサのケーブル配線も複雑となるため,経済的観点から構造物の損傷が危惧される全ての部位をモニタリングできない問題点がある。限られた部位のモニタリングだけでは,構造物全体の損傷を十分な精度で検知することは難しい。他方,上述したシミュレーションによる構造物の損傷判定方法は,限られた部位の計測センサによってセンサを設置していない部材の損傷を検知できる利点を有しているが,構造物の弾性応答解析モデルの設定に多大な時間とコストを要する問題点があり,損傷の検知精度もモニタリング方法に比して低下しがちである。地震被災時の損傷の判定は解析モデル等が設定されていない一般的な構造物にも導入することが望まれており,解析モデル等が設定されていなくても構造物の地震時の損傷を経済的に精度よく検知できる技術の開発が望まれている。   However, the damage determination method for monitoring the behavior of a structure during an earthquake described above requires the installation of a huge number of monitoring sensors in order to detect damage to various members constituting the structure. However, there is a problem that it is not possible to monitor all the parts that are likely to be damaged from an economic point of view. It is difficult to detect damage to the entire structure with sufficient accuracy by monitoring only a limited area. On the other hand, the structural damage determination method based on the above-mentioned simulation has the advantage of being able to detect the damage of a member where no sensor is installed by a measurement sensor in a limited area. There is a problem that requires a lot of time and cost for setting, and damage detection accuracy tends to be lower than that of the monitoring method. It is desirable to introduce damage judgment in the event of an earthquake to a general structure that does not have an analysis model or the like. Development of technology that can detect economically accurately is desired.

そこで本発明の目的は,地震被災時の構造部材に生じる損傷を経済的に精度よく検知できる方法及びシステムを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method and system that can economically and accurately detect damage caused to a structural member during an earthquake.

本発明者は,上述したエネルギー吸収型の制振機構として用いられる圧電デバイスに着目した。一般的なブレース材等の制振装置60は,図6(A)の振動モデルに示すように制振装置60を構造物1の主要構造部材と並列に装着するので,制振装置60に生じる力(荷重)と構造部材に加わる力(荷重)とは相違している。これに対して圧電デバイス20は,図6(B)の振動モデルに示すように構造物1の構造部材の間に直接挟み込むことができるので,構造部材に加わる力(荷重)の実質上全てを圧電デバイス20に直接加えることが可能であり,圧電デバイス20の出力電力から構造部材の応力を推定することが期待できる。しかも,圧電デバイス20の場合は出力電力を動力源として利用できるので,構造物の損傷が危惧される多数の部位に圧電デバイス20を組み込むことにより,外部電力を用いずに構造物の様々な部位の損傷をエネルギー自立的に検知することが期待できる。本発明は,この着想に基づく研究開発により完成に至ったものである。   The inventor has focused on the piezoelectric device used as the above-described energy absorption type vibration damping mechanism. As shown in the vibration model of FIG. 6A, a general vibration damping device 60 such as a brace material is mounted on the vibration damping device 60 in parallel with the main structural member of the structure 1. The force (load) is different from the force (load) applied to the structural member. On the other hand, since the piezoelectric device 20 can be directly sandwiched between the structural members of the structure 1 as shown in the vibration model of FIG. 6B, substantially all of the force (load) applied to the structural member is obtained. It can be applied directly to the piezoelectric device 20 and it can be expected to estimate the stress of the structural member from the output power of the piezoelectric device 20. In addition, in the case of the piezoelectric device 20, the output power can be used as a power source. Therefore, by incorporating the piezoelectric device 20 in a large number of parts where there is a risk of damage to the structure, various parts of the structure can be obtained without using external power. It is expected that damage can be detected in an energy independent manner. The present invention has been completed by research and development based on this idea.

図1の実施例を参照するに,本発明による構造物の損傷検知方法は,構造物1の相互に接合する構造部材2,3の間に圧電デバイス20をその構造部材2,3の接合部に加わる力の方向と圧電デバイス20の圧力に比例する電力が出力される加圧方向とが一致するように挟み込み,圧電デバイス20の出力電力Pを蓄電手段33が設けられたコントローラ30に入力して蓄電すると共にその蓄電した電力Pにより駆動したコントローラ30により圧電デバイス20の出力電圧Vから構造部材2,3の応力Qを算定し(図4(A)参照),その応力Qの時間履歴(図4(B)参照)に基づき構造部材2,3の損傷を検知してなるものである。 Referring to the embodiment of FIG. 1, damage detection method of the structure according to the present invention, the piezoelectric device 20 joints of the structural member 2, 3 between the structural members 2 and 3 to be bonded to each other of the structure 1 The direction of the force applied to the piezoelectric device 20 and the pressurizing direction in which power proportional to the pressure of the piezoelectric device 20 is output are matched, and the output power P of the piezoelectric device 20 is input to the controller 30 provided with the power storage means 33. The controller 30 driven by the stored electric power P calculates the stress Q of the structural members 2 and 3 from the output voltage V of the piezoelectric device 20 (see FIG. 4A), and the time history of the stress Q ( Based on FIG. 4 (B)), damage to the structural members 2 and 3 is detected.

また,図1のブロック図を参照するに,本発明による構造物の損傷検知システムは,構造物1の相互に接合する構造部材2,3の間にその構造部材2,3の接合部に加わる力の方向と圧力に比例する電力が出力される加圧方向とが一致するように挟み込む圧電デバイス20,及び,圧電デバイス20の出力電力Pを入力して蓄える蓄電手段33とその蓄電手段33により駆動されて圧電デバイス20の出力電圧Vから構造部材2,3の応力Qを算定し(図4(A)参照)且つその応力Qの時間履歴(図4(B)参照)に基づき構造部材2,3の損傷を検知する検知手段36とを有するコントローラ30を備えてなるものである。 Further, referring to the block diagram of FIG. 1, the damage detection system for a structure according to the present invention is added between the structural members 2 and 3 of the structure 1 which are joined to each other, at the joint of the structural members 2 and 3. The piezoelectric device 20 sandwiched so that the direction of force and the pressurizing direction in which power proportional to the pressure is output, the power storage means 33 for inputting and storing the output power P of the piezoelectric device 20, and the power storage means 33 The driven member calculates the stress Q of the structural members 2 and 3 from the output voltage V of the piezoelectric device 20 (see FIG. 4A) and the structural member 2 based on the time history of the stress Q (see FIG. 4B). , 3 includes a controller 30 having detection means 36 for detecting damage.

好ましい実施例では,図1(C)に示すように,コントローラ30に,蓄電手段33により駆動されて構造部材2,3の応力算定値Qを外部基地局50へ出力する情報通信手段38を設ける。更に好ましい実施例では,図1(B)及び(C)に示すように,構造部材2,3に取り付けられると共にコントローラ30経由の電力で駆動されて外部基地局50又はコントローラ30へ計測値δを出力するセンサ40を設け,外部基地局50又はコントローラ30に構造部材2,3の応力Q及びセンサ40の計測値δの時間履歴(図7(B)参照)から構造部材2,3の累積塑性歪みエネルギーWpを算出する算出手段37を設け,その累積塑性歪みエネルギーWpに基づき構造部材2,3の損傷を検知する。   In the preferred embodiment, as shown in FIG. 1C, the controller 30 is provided with information communication means 38 that is driven by the power storage means 33 and outputs the stress calculation value Q of the structural members 2 and 3 to the external base station 50. . In a more preferred embodiment, as shown in FIGS. 1B and 1C, the measurement value δ is sent to the external base station 50 or the controller 30 by being attached to the structural members 2 and 3 and driven by the power via the controller 30. An output sensor 40 is provided, and the cumulative plasticity of the structural members 2 and 3 is determined from the time history of the stress Q of the structural members 2 and 3 and the measured value δ of the sensor 40 (see FIG. 7B) in the external base station 50 or the controller 30. A calculation means 37 for calculating the strain energy Wp is provided, and damage to the structural members 2 and 3 is detected based on the accumulated plastic strain energy Wp.

圧電デバイス20は,図1のような構造物1の構造部材2,3の間に代えて又は加えて,図3(C)に示すように構造物1の構造部材2,3とブレース材4との間に挟み込むことができ,或いは図3(A)に示すように構造物1と免震装置6との間に挟み込むことができる。   The piezoelectric device 20 is replaced with or in addition to the structural members 2 and 3 of the structure 1 as shown in FIG. 1, and the structural members 2 and 3 of the structure 1 and the brace material 4 as shown in FIG. Or can be sandwiched between the structure 1 and the seismic isolation device 6 as shown in FIG.

本発明による構造物の損傷検知方法及びシステムは,構造物1の相互に接合する構造部材2,3の間に圧電デバイス20をその構造部材2,3の接合部に加わる力の方向と圧電デバイス20の圧力に比例する電力が出力される加圧方向とが一致するように挟み込み,圧電デバイス20の出力電力Pを蓄電手段33が設けられたコントローラ30に入力して蓄電すると共にその蓄電した電力Pにより駆動したコントローラ30により圧電デバイス20の出力電圧Vから構造部材2,3の応力Qを算定し,その応力Qの時間履歴に基づき構造部材2,3の損傷を検知するので,次の有利な効果を奏する。 The structure damage detection method and system according to the present invention includes the piezoelectric device 20 between the structural members 2 and 3 to be bonded to each other of the structure 1 and the direction of the force applied to the joint of the structural members 2 and 3 and the piezoelectric device. The electric power proportional to the pressure of 20 is sandwiched so as to coincide with the pressurizing direction, and the output power P of the piezoelectric device 20 is input to and stored in the controller 30 provided with the storage means 33 and the stored power The stress 30 of the structural members 2 and 3 is calculated from the output voltage V of the piezoelectric device 20 by the controller 30 driven by P, and the damage of the structural members 2 and 3 is detected based on the time history of the stress Q. Has an effect.

(イ)圧電デバイス20の出力電力Pを動力源として構造部材2,3の損傷をリアルタイムで検知することができ,従来の構造部材2,3のモニタリングで必要とされた給電ケーブル等を省略できるので,構造物1の様々な構造部材2,3の応力Qをエネルギー自立的に算定し,損傷の有無を経済的に検知することができる。
(ロ)また,圧電デバイス20の出力電力Pをコントローラ30に蓄電することにより,構造部材2,3の応力算定値Qの外部基地局50への情報通信エネルギーを賄うことが可能である。
(A) Damage to the structural members 2 and 3 can be detected in real time using the output power P of the piezoelectric device 20 as a power source, and power supply cables and the like required for monitoring the conventional structural members 2 and 3 can be omitted. Therefore, the stress Q of the various structural members 2 and 3 of the structure 1 can be calculated independently of energy, and the presence or absence of damage can be detected economically.
(B) Further, by storing the output power P of the piezoelectric device 20 in the controller 30, it is possible to provide information communication energy to the external base station 50 of the stress calculation value Q of the structural members 2 and 3.

(ハ)更に,圧電デバイス20の出力電力Pをコントローラ30経由で構造部材2,3に取り付けたセンサ40に給電することにより,様々な構造部材2,3の応力Qの時間履歴とセンサ40の計測値δから求めた構造部材2,3の変位δの時間履歴とから構造部材2,3の累積塑性歪みエネルギーWpをエネルギー自立的に算出し,様々な構造部材2,3の健全性(限界性能との関係から見た余裕度)を経済的に検知することができる。
(ニ)エネルギー吸収型の制振機構として働く圧電デバイス20をコントローラ30と組み合わせることにより,単一デバイスで制振機能と発電機能と損傷モニタリング機能との3機能を併せもったシステムを実現できる。
(C) Furthermore, by supplying the output power P of the piezoelectric device 20 to the sensor 40 attached to the structural members 2 and 3 via the controller 30, the time history of the stress Q of the various structural members 2 and 3 and the sensor 40 The cumulative plastic strain energy Wp of the structural members 2 and 3 is independently calculated from the time history of the displacement δ of the structural members 2 and 3 obtained from the measured value δ, and the soundness (limits) of various structural members 2 and 3 is calculated. It is possible to economically detect the margin) from the relationship with the performance.
(D) By combining the piezoelectric device 20 acting as an energy absorption type vibration damping mechanism with the controller 30, it is possible to realize a system that combines the three functions of a vibration damping function, a power generation function, and a damage monitoring function with a single device.

以下,添付図面を参照して本発明を実施するための形態及び実施例を説明する。
本発明による損傷検知システムの一実施例の説明図である。 図1の損傷検知システムの3つの機能を示す流れ図である。 本発明による損傷検知システムの他の実施例の説明図である。 圧電デバイスの出力電力から構造部材の応力Qを算定する方法,及び応力Qの時間履歴から構造部材の損傷を検知する方法の説明図である。 構造物の構造部材の間に挟み込んだ圧電デバイスの出力電力の一例の説明図である。 圧電デバイスと他のエネルギー吸収型制振装置との相違の説明図である。 構造部材の応力Q及び変位δの時間履歴から構造部材の累積塑性歪みエネルギーWpを算出する方法の説明図である。
Hereinafter, embodiments and examples for carrying out the present invention will be described with reference to the accompanying drawings.
It is explanatory drawing of one Example of the damage detection system by this invention. 2 is a flowchart illustrating three functions of the damage detection system of FIG. 1. It is explanatory drawing of the other Example of the damage detection system by this invention. It is explanatory drawing of the method of calculating the stress Q of a structural member from the output electric power of a piezoelectric device, and the method of detecting the damage of a structural member from the time history of the stress Q. It is explanatory drawing of an example of the output electric power of the piezoelectric device inserted | pinched between the structural members of a structure. It is explanatory drawing of the difference with a piezoelectric device and another energy absorption type damping device. It is explanatory drawing of the method of calculating the cumulative plastic strain energy Wp of a structural member from the time history of the stress Q and displacement (delta) of a structural member.

図1は,本発明の損傷検知システム10を構造物1の柱梁接合部の損傷検知に適用した実施例を示す。図示例の損傷検知システム10は,相互に接合する構造部材2,3(梁部材2及び柱部材3)の間に挟み込む複数の圧電デバイス20と,その圧電デバイス20の出力を入力して構造部材2,3の損傷を検知するコントローラ30とを有する。図示例の構造物1は,損傷が危惧される柱梁接合部の全てにそれぞれ損傷検知システム10を組み込み,各損傷検知システム10によって対応する柱梁接合部の各々の損傷を検知しているが,損傷検知システム10を組み込む数及び部位は図示例に限定されない。   FIG. 1 shows an embodiment in which the damage detection system 10 of the present invention is applied to damage detection of a beam-column joint portion of a structure 1. The damage detection system 10 in the illustrated example includes a plurality of piezoelectric devices 20 sandwiched between structural members 2 and 3 (beam members 2 and column members 3) to be joined to each other, and outputs of the piezoelectric devices 20 as inputs. And a controller 30 for detecting a few damages. In the structure 1 in the illustrated example, a damage detection system 10 is incorporated in each of the column beam joints that are likely to be damaged, and each damage detection system 10 detects each damage of the corresponding column beam joint. The number and location where the damage detection system 10 is incorporated is not limited to the illustrated example.

図1(C)に示すように,各損傷検知システム10のコントローラ30で検知した損傷状況は,無線又は有線の情報通信路59を介して構造物1内の離れた外部基地局50へ伝送し,外部基地局50において構造物1の各柱梁接合部の損傷を記憶手段51に記録して管理することができる。外部基地局60は,構造物1の内部に代えて,構造物1から離れた地点に設けることも可能である。ただし,外部基地局50は本発明の損傷検知システムに必須のものではなく,各柱梁接合部でそれぞれ独立に損傷状況を表示・管理することもできる。   As shown in FIG. 1 (C), the damage status detected by the controller 30 of each damage detection system 10 is transmitted to a remote base station 50 in the structure 1 via a wireless or wired information communication path 59. The external base station 50 can record and manage the damage of each column beam joint of the structure 1 in the storage means 51. The external base station 60 can be provided at a point away from the structure 1 instead of inside the structure 1. However, the external base station 50 is not essential for the damage detection system of the present invention, and can also display and manage the damage status independently at each column beam joint.

図示例の圧電デバイス20は,所定加圧方向の圧力が加わると圧力に比例した電荷(電力P)を出力する装置であり,例えばチタン酸ジルコンサン鉛(PZT)製のものとすることができる。構造物1の柱梁接合部に加わる力が圧電デバイス20に直接作用するように,すなわち図1(B)に示すように接合部に加わる力の方向とデバイス20の所定加圧方向とが一致するように梁部材2と柱部材3との間に圧電デバイス20を挟み込む。そのうえで,例えばボルト8及びナット9によって地震時にも離隔しない所要接合強度で圧電デバイス20を梁部材2と柱部材3とに固定する。図示例では,梁部材2及び柱部材3を鉄骨とし,梁フランジ2aに加わる力が圧電デバイス20に直接加わるように圧電デバイス20を組み込み,地震被災時に想定される最大荷重に耐える高力ボルト(ハイテンションボルト)を用いて圧電デバイス20と梁部材2及び柱部材3とを固定している。   The piezoelectric device 20 in the illustrated example is a device that outputs a charge (power P) proportional to the pressure when a pressure in a predetermined pressurizing direction is applied, and can be made of, for example, lead zirconate titanate (PZT). . The force applied to the beam-column joint of the structure 1 directly acts on the piezoelectric device 20, that is, the direction of the force applied to the joint coincides with the predetermined pressing direction of the device 20 as shown in FIG. Thus, the piezoelectric device 20 is sandwiched between the beam member 2 and the column member 3. In addition, for example, the piezoelectric device 20 is fixed to the beam member 2 and the column member 3 with the required joint strength that does not separate even during an earthquake by the bolt 8 and the nut 9. In the illustrated example, the beam member 2 and the column member 3 are steel frames, the piezoelectric device 20 is incorporated so that the force applied to the beam flange 2a is directly applied to the piezoelectric device 20, and a high-strength bolt that can withstand the maximum load assumed in an earthquake disaster ( The piezoelectric device 20 is fixed to the beam member 2 and the column member 3 using a high tension bolt.

図示例のコントローラ30は,図1(C)に示すように,圧電デバイス20の出力電力Pを継続的に入力して蓄える蓄電手段33と,その蓄電手段33に蓄えた電力Pをコントローラ30内に供給する電力供給手段34とを有し,蓄電手段33により駆動される装置である。電力供給手段34は,例えば蓄電手段33の電力に所要の電圧調整等を施したうえで供給することができる。圧電デバイス20の出力電力Pによってコントローラ30を駆動することにより,損傷検知システム10を外部からの電力供給を必要としないエネルギー自立的なデバイスとすることができる。   As shown in FIG. 1C, the controller 30 in the illustrated example includes a power storage means 33 for continuously inputting and storing the output power P of the piezoelectric device 20, and the power P stored in the power storage means 33 in the controller 30. And a power supply means 34 for supplying power to the battery, and is driven by the power storage means 33. For example, the power supply means 34 can supply the power of the power storage means 33 after performing necessary voltage adjustment. By driving the controller 30 with the output power P of the piezoelectric device 20, it is possible to make the damage detection system 10 an energy self-supporting device that does not require external power supply.

また,図示例のコントローラ30は,圧電デバイス20の出力電力Pの電流値I,電圧値Vを計測する計測手段32と,圧電デバイス20の出力電圧Vから構造部材2,3の応力Qを算定して損傷を検知する検知手段36と,算定した応力Q及び損傷状況を通信アンテナ39経由で外部基地局60へ出力する情報通信手段38とを有している。図示例は,1台の圧電デバイス20の出力電力Pを処理する1チャンネル入力の場合を示しているが,柱梁接合部に複数の圧電デバイス20を組み込む場合は,複数チャンネル入力のコントローラ30とすることができる。コントローラ30の一例は記憶手段31を有するコンピュータであり,計測手段32,検知手段36,情報通信手段38をコンピュータの内蔵プログラムとし,圧電デバイス20の出力電圧Vから構造部材2,3の応力Qを算定するために必要な関係式R等を記憶手段31に記憶することができる。   Further, the controller 30 in the illustrated example calculates the stress Q of the structural members 2 and 3 from the measurement means 32 that measures the current value I and voltage value V of the output power P of the piezoelectric device 20 and the output voltage V of the piezoelectric device 20. Then, there is a detection means 36 for detecting damage and an information communication means 38 for outputting the calculated stress Q and damage status to the external base station 60 via the communication antenna 39. The illustrated example shows the case of one channel input for processing the output power P of one piezoelectric device 20, but when incorporating a plurality of piezoelectric devices 20 in a column beam joint, can do. An example of the controller 30 is a computer having a storage means 31. The measurement means 32, the detection means 36, and the information communication means 38 are built into the computer program, and the stress Q of the structural members 2 and 3 is calculated from the output voltage V of the piezoelectric device 20. The relational expression R and the like necessary for calculation can be stored in the storage means 31.

図示例の損傷検知システム10は,圧電デバイス20及びコントローラ30に加えて,構造部材2,3に取り付けて変位δ(例えば層間変位)を計測するセンサ40を有し,蓄電手段33に蓄えた電力Pをセンサ40に供給する外部給電手段35をコントローラ30に設けている。外部給電手段35において,蓄電手段33に蓄えた電力量とコントローラ30内で必要とされる電力量(計測手段32,検知手段36,情報通信手段38,その他のコントローラ30本体の必要電力量)とを比較して,蓄電手段33の電力量に十分余裕がある場合にのみセンサ40に電力を供給するようにしてもよい。コントローラ30経由の電力でセンサ40を駆動することにより,センサ40を含めた損傷検知システム10をエネルギー自立的なデバイスとすることができる。また,センサ40の計測値(例えば構造部材2,3の変位)δは,無線又は有線の情報通信路59を介してコントローラ30又は外部基地局50へ伝送することができる。   The damage detection system 10 in the illustrated example has a sensor 40 that is attached to the structural members 2 and 3 and measures displacement δ (for example, interlayer displacement) in addition to the piezoelectric device 20 and the controller 30. External power supply means 35 for supplying P to the sensor 40 is provided in the controller 30. In the external power supply means 35, the amount of power stored in the power storage means 33 and the amount of power required in the controller 30 (measurement means 32, detection means 36, information communication means 38, and other required power amounts of the controller 30 main body) Thus, the power may be supplied to the sensor 40 only when there is a sufficient amount of power in the power storage means 33. By driving the sensor 40 with electric power via the controller 30, the damage detection system 10 including the sensor 40 can be an energy-independent device. Further, the measured value (for example, displacement of the structural members 2 and 3) δ of the sensor 40 can be transmitted to the controller 30 or the external base station 50 via a wireless or wired information communication path 59.

センサ40は,その計測値から構造部材2,3の変位δを計測できれば,任意のものを選択して用いることができる。例えば,センサ40を加速度センサとし,その計測値(加速度)を2回積分することにより部材2,3の変位δを求める。或いは,センサ40を変位センサとし,部材2,3の変位δを直接計測することも可能である。センサ40を用いて構造部材2,3の変位δを計測することにより,後述するように構造部材2,3の応力Q及び変位δから累積塑性歪みエネルギーWpを算出して損傷を定量的に評価することが可能となる。ただし,応力Qのみから構造部材2,3の損傷をある程度検知することができるので,変位δの計測は損傷検知システムに必須のものではない。なお,図示例ではコントローラ30とセンサ40とを有線の給電ケーブルで接続しているが,例えば特許文献8の開示するようなシステムを用いることにより,コントローラ3からセンサ40に電力を無線で供給することも可能である。また,センサ40に代えて又は加えて,他の多方面のデータ(例えば層間変形角)を収集するモニタリングセンサを本発明の損傷検知システム10と組み合わせることも可能である。   Any sensor 40 can be selected and used as long as the displacement δ of the structural members 2 and 3 can be measured from the measured values. For example, the sensor 40 is an acceleration sensor, and the measured value (acceleration) is integrated twice to obtain the displacement δ of the members 2 and 3. Alternatively, the sensor 40 may be a displacement sensor, and the displacement δ of the members 2 and 3 may be directly measured. By measuring the displacement δ of the structural members 2 and 3 using the sensor 40, the cumulative plastic strain energy Wp is calculated from the stress Q and the displacement δ of the structural members 2 and 3, as will be described later, and the damage is quantitatively evaluated. It becomes possible to do. However, since the damage to the structural members 2 and 3 can be detected to some extent from only the stress Q, the measurement of the displacement δ is not essential for the damage detection system. In the illustrated example, the controller 30 and the sensor 40 are connected by a wired power supply cable. For example, by using a system as disclosed in Patent Document 8, power is supplied from the controller 3 to the sensor 40 wirelessly. It is also possible. Further, in place of or in addition to the sensor 40, a monitoring sensor that collects data in various directions (for example, interlayer deformation angle) can be combined with the damage detection system 10 of the present invention.

図2は,図1の損傷検知システム10の機能の流れ図を示す。以下,図2の流れ図を参照して図1の損傷検知システム10の機能を説明する。先ずステップS001において圧電デバイス20から電力Pが出力されると,ステップS002において出力電力Pはコントローラ30に入力され,ステップS020において計測手段32を介して蓄電手段33に送られて蓄えられる。すなわち損傷検知システム10は,柱梁接合部に加わる力の実質上全てを圧電デバイス20に直接作用させることにより,圧電デバイス20により大きな電力を出力させ,コントローラ30の定常時・非常時の駆動に必要なエネルギーを賄う発電機能を果たす。   FIG. 2 shows a flow chart of the functions of the damage detection system 10 of FIG. The function of the damage detection system 10 of FIG. 1 will be described below with reference to the flowchart of FIG. First, when the electric power P is output from the piezoelectric device 20 in step S001, the output electric power P is input to the controller 30 in step S002, and is sent to and stored in the power storage means 33 via the measuring means 32 in step S020. That is, the damage detection system 10 causes the piezoelectric device 20 to output a large amount of electric power by directly applying substantially all of the force applied to the beam-column joint to the piezoelectric device 20 so that the controller 30 can be driven in a steady state or an emergency. It fulfills the power generation function to cover the necessary energy.

図5は,25階建て,建物高さ109mのモデル構造物に損傷検知システム10を適用した場合に想定される発電量を示す。図5(A)はモデル建物1の特定階の梁部材2及び柱部材3の配置を示しており,各梁部材2の端部は8本のボルトで柱部材3に接合されている。各ボルト1本当たりの定常時における発電量は,比較的頻度の高い風負荷等の外乱時に加わる水平力から考えて2W程度と想定される。各柱部材3には2台,3台又は4台の梁部材2が取り付くことから,各階の柱部材1本当たりの発電量は32W(=2台×8本×2W),42W(=3台×8本×2W),又は64W(=4台×8本×2W)となる(図5(A)参照)。   FIG. 5 shows a power generation amount assumed when the damage detection system 10 is applied to a 25-story model structure with a height of 109 m. FIG. 5A shows the arrangement of the beam members 2 and the column members 3 on the specific floor of the model building 1, and the end portions of the beam members 2 are joined to the column members 3 with eight bolts. The amount of power generated in a steady state per bolt is assumed to be about 2 W in view of the horizontal force applied during disturbances such as relatively frequent wind loads. Since two, three, or four beam members 2 are attached to each column member 3, the power generation amount per column member on each floor is 32 W (= 2 units × 8 units × 2 W), 42 W (= 3 (8 units × 2 units) or 64 W (= 4 units × 8 units × 2 W) (see FIG. 5A).

他方,2チャンネル入力,1チャンネル出力のコントローラ30の機能維持に必要な電力消費量は通常10W以下であり,通信アンテナ39等の無線に必要な電力は通数10mW程度であるから,定常時において各柱部材1での発電量32〜64Wによってコントローラ30及び情報通信に必要な消費電力を十分賄うことができる。また図5(B)は,地震等の非常時において発電量が11.2KW程度見込めることを示しており,データ処理やデータ通信が頻繁に発生しうる非常時においてもコントローラ30及び情報通信に必要な消費電力を十分賄うことができるのみならず,外部のセンサ40等に電力を供給すること(ステップS021)も十分可能であることが確認できる。   On the other hand, the power consumption required to maintain the functions of the controller 30 with 2-channel input and 1-channel output is usually 10 W or less, and the power required for radio such as the communication antenna 39 is about 10 mW. It is possible to sufficiently cover the power consumption required for the controller 30 and information communication by the power generation amount 32 to 64 W in each pillar member 1. FIG. 5B shows that the amount of power generation can be expected to be about 11.2 kW in an emergency such as an earthquake, and is necessary for the controller 30 and information communication even in an emergency where data processing and data communication can occur frequently. It can be confirmed that not only sufficient power consumption can be covered, but also power can be supplied to the external sensor 40 or the like (step S021).

図2のステップS010〜S011は,圧電デバイス20に発電させることにより,その圧電デバイス20のエネルギー変換量に比例した制振効果(制震構造)が得られることを示す。すなわち損傷検知システム10は,ステップS010において圧電デバイス20が地震エネルギーを吸収・消費して発電する一方で,(1)式を参照して上述したようにその圧電デバイス20のエネルギー吸収量Whだけ構造物1の累積塑性歪みエネルギーWpが低減されるので,ステップ020における圧電デバイス20の発電量に比例した制振機能をステップS011において果たす。   Steps S <b> 010 to S <b> 011 in FIG. 2 indicate that a vibration damping effect (damping structure) proportional to the energy conversion amount of the piezoelectric device 20 can be obtained by causing the piezoelectric device 20 to generate power. That is, in the damage detection system 10, while the piezoelectric device 20 absorbs and consumes seismic energy to generate power in step S010, the damage detection system 10 has a structure corresponding to the energy absorption amount Wh of the piezoelectric device 20 as described above with reference to the equation (1). Since the accumulated plastic strain energy Wp of the object 1 is reduced, a vibration damping function proportional to the power generation amount of the piezoelectric device 20 in step 020 is performed in step S011.

図2のステップS030は,ステップS020において圧電デバイス20の出力電力Pが計測手段32から蓄電手段33へ送られるのと同時に,計測手段32の計測値(電流値I,電圧値V)が検知手段36に送られ,検知手段36において構造部材2,3の応力Qを算定する処理を示す。すなわち,損傷検知システム10は構造物1の構造部材2,3に加わる力(荷重)の実質上全てが圧電デバイス20に直接加わるので,図4(A)に示すような圧電デバイス20の出力電圧Vと構造部材2,3の応力Qとの関係式Rを予め求めておくことにより,計測手段32において圧電デバイス20の出力電圧Vから構造部材2,3の応力Qをリアルタイムに計測することができる。図示例のような関係式Rは予め実験的に求めてコントローラ30の記憶手段31に記憶しておくことができ,算定した部材2,3の応力Qも記憶手段31に累積記憶しておくことができる。   In step S030 of FIG. 2, at the same time as the output power P of the piezoelectric device 20 is sent from the measuring means 32 to the power storage means 33 in step S020, the measured values (current value I, voltage value V) of the measuring means 32 are detected means. 36, the process of calculating the stress Q of the structural members 2 and 3 in the detection means 36 is shown. That is, in the damage detection system 10, substantially all of the force (load) applied to the structural members 2 and 3 of the structure 1 is directly applied to the piezoelectric device 20, so that the output voltage of the piezoelectric device 20 as shown in FIG. By obtaining a relational expression R between V and the stress Q of the structural members 2 and 3 in advance, the measurement means 32 can measure the stress Q of the structural members 2 and 3 in real time from the output voltage V of the piezoelectric device 20. it can. The relational expression R as in the illustrated example can be experimentally obtained in advance and stored in the storage means 31 of the controller 30, and the calculated stress Q of the members 2 and 3 is also accumulated and stored in the storage means 31. Can do.

また図2のステップS031は,コントローラ30の検知手段36により構造部材2,3の損傷を検知する処理を示す。一般に構造部材2,3の損傷は,(1)式を参照して上述したように,塑性化(降伏状態)の進展度合又は累積塑性歪みエネルギーWpとして把握できる。例えば,構造部材2,3に一方向の水平外力が入力されたときの荷重−層間変形の関係は,部材の降伏耐力Qyとそれに対応する降伏変形(弾性層間変形)δyとを用いて図7(A)のように表すことができる。この場合の部材2,3の塑性化の進展度合は塑性変形(δp−δy)として定義され,部材2,3に蓄積される塑性歪みエネルギーWpは(2)式のように表すことができる。また,地震動等の振動する水平外力が構造部材2,3に入力されたときの荷重−層間変形の関係は図7(B)のように表すことができ,この場合の部材2,3の塑性化の進展度合は荷重−層間変形の各ステップにおける塑性変形Δδp1,Δδp2,Δδp3,Δδp4を加算した(3)式の累積塑性変形δpとして定義され,部材2,3に蓄積される塑性歪みエネルギーWpは(4)式のように表すことができる。
Wp=Qy・(δp−δy) ……………………………………………………(2)
δp=(Δδp1+Δδp3)+(Δδp2+Δδp4) …………………(3)
Wp=Qy・δp …………………………………………………………………(4)
Step S031 in FIG. 2 shows processing for detecting damage to the structural members 2 and 3 by the detection means 36 of the controller 30. In general, the damage to the structural members 2 and 3 can be grasped as the progress of plasticization (yield state) or the accumulated plastic strain energy Wp as described above with reference to the equation (1). For example, the relationship between load and interlayer deformation when a horizontal external force in one direction is input to the structural members 2 and 3 is shown in FIG. 7 using the yield strength Qy of the member and the corresponding yield deformation (elastic interlayer deformation) δy. It can be expressed as (A). In this case, the degree of progress of plasticization of the members 2 and 3 is defined as plastic deformation (δp−δy), and the plastic strain energy Wp accumulated in the members 2 and 3 can be expressed by the equation (2). Further, the relationship between load and interlayer deformation when a horizontal external force such as earthquake motion is input to the structural members 2 and 3 can be expressed as shown in FIG. 7B, and the plasticity of the members 2 and 3 in this case Is defined as cumulative plastic deformation δp in equation (3) obtained by adding the plastic deformations Δδp1, Δδp2, Δδp3, Δδp4 in each step of load-interlayer deformation, and the plastic strain energy Wp accumulated in the members 2 and 3 Can be expressed as in equation (4).
Wp = Qy · (δp−δy) …………………………………………………… (2)
δp = (Δδp1 + Δδp3) + (Δδp2 + Δδp4) (3)
Wp = Qy · δp ………………………………………………………………… (4)

図2のステップS031では,構造部材2,3の応力Qは算定されているが変位δは計測されていないので,(3)〜(4)式の塑性変形δp又は累積塑性歪みエネルギーWpを算出することはできないが,図4(B)に示すような応力Qの時間履歴Hに基づき部材2,3の塑性化(降伏状態)の程度を検知することができる。すなわち,図4(B)の応力Qの時間履歴Hにおいて,一点鎖線円で示したように応力Qが一定値を保持する状況は降伏状態であるから,そのような降伏状態の発生の有無,発生回数,発生累積時間等を求めて部材2,3の損傷を検知することができる。検知手段32において求めた部材2,3の応力Q及び損傷状況は,ステップS032において情報通信手段38へ送られ,通信アンテナ39経由で外部基地局60の情報通信手段52へ出力することができる。   In step S031 in FIG. 2, since the stress Q of the structural members 2 and 3 is calculated but the displacement δ is not measured, the plastic deformation δp or the cumulative plastic strain energy Wp of the equations (3) to (4) is calculated. However, the degree of plasticization (yield state) of the members 2 and 3 can be detected based on the time history H of the stress Q as shown in FIG. That is, in the time history H of the stress Q in FIG. 4B, since the situation in which the stress Q maintains a constant value as shown by a one-dot chain line circle is a yield state, whether or not such a yield state occurs, The damage of the members 2 and 3 can be detected by obtaining the number of occurrences, the generation accumulated time, and the like. The stress Q and the damage status of the members 2 and 3 obtained by the detection means 32 are sent to the information communication means 38 in step S032, and can be output to the information communication means 52 of the external base station 60 via the communication antenna 39.

また図2のステップS033は,センサ40において構造部材2,3の変位δが計測され,その計測値δが外部基地局50又はコントローラ30に伝送された場合に,外部基地局50の算出手段53又はコントローラ30の算出手段37により,センサ40の計測値から構造部材2,3の変位δを求め,構造部材2,3の応力Q及び変位δの時間履歴から(3)〜(4)式により構造部材2,3の累積塑性歪みエネルギーWpを算出する処理を示す。累積塑性歪みエネルギーWpを算出することにより,塑性化の進展度合として部材2,3の損傷を定量的に評価することができる。また,例えば地震被災前の健全な部材2,3が保有する累積塑性歪みエネルギーWp(保有耐震性能,限界性能)を求めておき,地震被災後に累積塑性歪みエネルギーWp(消費耐震性能)を算出して保有耐震性能と対比することにより,地震被災後の健全性ないし余裕度(残存耐震性能=保有耐震性能−消費耐震性能)を求めることも可能である。   In step S033 in FIG. 2, when the displacement δ of the structural members 2 and 3 is measured by the sensor 40 and the measured value δ is transmitted to the external base station 50 or the controller 30, the calculation means 53 of the external base station 50 is used. Alternatively, the displacement δ of the structural members 2 and 3 is obtained from the measured value of the sensor 40 by the calculation means 37 of the controller 30, and the time history of the stress Q and the displacement δ of the structural members 2 and 3 is obtained by the equations (3) to (4). The process which calculates the accumulated plastic strain energy Wp of the structural members 2 and 3 is shown. By calculating the cumulative plastic strain energy Wp, the damage of the members 2 and 3 can be quantitatively evaluated as the degree of plasticization. Also, for example, the accumulated plastic strain energy Wp (holding seismic performance, limit performance) possessed by the healthy members 2 and 3 before the earthquake disaster is obtained, and the accumulated plastic strain energy Wp (consumed seismic performance) is calculated after the earthquake disaster. Therefore, by comparing with the seismic performance possessed, it is possible to determine the soundness or margin after the earthquake (residual seismic performance = retained seismic performance-consumed seismic performance).

図2の流れ図に示すように,本発明の損傷検知システム10は,エネルギー吸収型の制振機構として働く圧電デバイス20をコントローラ30と組み合わせ,構造物1の柱梁接合部に加わる力を圧電デバイス20に直接作用させることにより,単一デバイスで制振機能(ステップS010〜S011)と発電機能(ステップS020〜021)と損傷モニタリング機能(ステップS030〜033)との3機能を併せもったシステムを実現することができる。しかも,構造物1の様々な構造部材2,3の損傷をエネルギー自立的に求めることができるので,一般的な構造物にも経済的に導入可能であり,二次被害と避難者を共に減らすことができる技術として普及が期待できる。   As shown in the flowchart of FIG. 2, the damage detection system 10 of the present invention combines a piezoelectric device 20 that functions as an energy absorption type vibration damping mechanism with a controller 30, and applies a force applied to a column-beam joint of a structure 1 to the piezoelectric device. By directly acting on the system 20, a system that combines the three functions of a vibration suppression function (steps S010 to S011), a power generation function (steps S020 to 021), and a damage monitoring function (steps S030 to 033) with a single device. Can be realized. Moreover, since damage to the various structural members 2 and 3 of the structure 1 can be obtained independently of energy, it can be economically introduced into general structures, reducing both secondary damage and evacuees. The technology can be expected to spread.

こうして本発明の目的である「地震被災時の構造部材に生じる損傷を経済的に精度よく検知できる方法及びシステム」の提供を達成することができる。   In this way, it is possible to provide the “method and system capable of accurately and economically detecting damage caused to a structural member in the event of an earthquake” that is an object of the present invention.

図3(A)は,損傷検知システム10の圧電デバイス20を,図1のように構造物1の構造部材2,3の間(柱梁接合部)に代えて,構造物1と免震装置6との間に挟み込んだ実施例を示す。図3(B)は,免震装置6の主要構造部である積層ゴムと上部基礎7bとの間,及び積層ゴムと下部基礎7aとの間にそれぞれ圧電デバイス20を設置することを示している。図1を参照して上述したように,本発明の損傷検知システム10は,地震時に構造物1に入力されるエネルギーのほとんどを直接受ける部分に圧電デバイスを組み込むことで,構造上重要な部分の損傷検知が可能となるとともに,大きな制震効果を発揮する。図3(A)の場合において,損傷検知は,免震装置6の鉛直支持能力を対象とし,発電は,地震時の転倒モーメントによる免震装置6の鉛直力の変動により生じ,制震効果により,この転倒モーメントを低減することになる。図3のように地震エネルギーが加わる構造物1と免震装置6との間に圧電デバイス20を組み込み,圧電デバイス20により大きな電力を出力させることにより,圧電デバイス20の制振効果と免震装置6とを組み合わせた効果が期待できる。   FIG. 3A shows the structure 1 and the seismic isolation device in place of the piezoelectric device 20 of the damage detection system 10 between the structural members 2 and 3 (column beam joints) of the structure 1 as shown in FIG. 6 shows an embodiment sandwiched between the two. FIG. 3B shows that the piezoelectric devices 20 are installed between the laminated rubber and the upper foundation 7b, which are the main structural parts of the seismic isolation device 6, and between the laminated rubber and the lower foundation 7a, respectively. . As described above with reference to FIG. 1, the damage detection system 10 of the present invention incorporates a piezoelectric device in a portion that directly receives most of the energy input to the structure 1 during an earthquake, thereby It can detect damage and exerts great vibration control effect. In the case of FIG. 3 (A), damage detection targets the vertical support capability of the seismic isolation device 6, and power generation occurs due to fluctuations in the vertical force of the seismic isolation device 6 due to the overturning moment during the earthquake. This will reduce this overturning moment. As shown in FIG. 3, the piezoelectric device 20 is incorporated between the structure 1 to which seismic energy is applied and the seismic isolation device 6, and a large electric power is output from the piezoelectric device 20. The effect which combined 6 can be expected.

また図3(C)は,損傷検知システム10の圧電デバイス20を,構造物1の構造部材2,3とブレース材4との間に挟み込んだ実施例を示す。図3(D)は,梁部材2と柱部材3との柱梁架構をピン構造とし,その柱梁架構の内側にブラケット5a,5bを介して配置したブレース材4,4によって全ての地震力を負担する構造都した場合に,ブレース材4の両端とブラケット5a,5bを取り付けた梁部材2及び柱部材3との間にそれぞれ圧電デバイス20を設置することを示している。ブレース材4に加わる力の実質上全てを圧電デバイス20に直接作用させることにより,圧電デバイス20により大きな電力を出力させると同時に,圧電デバイス20の制振効果とブレース材4の耐震効果とを組み合わせた効果が期待できる。また,圧電デバイス20の出力電圧Vとブレース材4の応力Qとの関係式Rを予め求めておくことにより,コントローラ30により圧電デバイス20の出力電圧Vからブレース材4の応力Qをリアルタイムに計測し,ブレース材4の損傷を検知することができる。   FIG. 3C shows an embodiment in which the piezoelectric device 20 of the damage detection system 10 is sandwiched between the structural members 2 and 3 of the structure 1 and the brace material 4. FIG. 3D shows that the beam structure of the beam member 2 and the column member 3 has a pin structure, and all the seismic force is generated by the brace members 4 and 4 arranged on the inner side of the column beam structure via brackets 5a and 5b. It is shown that the piezoelectric device 20 is installed between both ends of the brace material 4 and the beam member 2 and the column member 3 to which the brackets 5a and 5b are attached. By applying substantially all of the force applied to the brace material 4 directly to the piezoelectric device 20, a large electric power is output from the piezoelectric device 20, and at the same time, the vibration damping effect of the piezoelectric device 20 and the earthquake resistance effect of the brace material 4 are combined. Can be expected. Further, by obtaining a relational expression R between the output voltage V of the piezoelectric device 20 and the stress Q of the brace material 4 in advance, the controller 30 measures the stress Q of the brace material 4 from the output voltage V of the piezoelectric device 20 in real time. Thus, damage to the brace material 4 can be detected.

1…構造物
1a…床 1b…天井
2…構造部材(梁部材) 2a…フランジ
3…構造部材(柱部材) 4…ブレース補強材
5a,5b…ブラケット 6…免震装置(積層ゴム)
7a…下部基礎 7b…上部基礎
8…ボルト 9…ナット
10…損傷検知システム
20…圧電デバイス
30…コントローラ
31…記憶手段 32…計測手段
33…蓄電手段 34…電力供給手段
35…外部給電手段 36…検知手段
37…算出手段 38…情報通信手段
39…通信アンテナ
40…センサ
50…外部基地局
51…記憶手段 52…情報通信手段
53…算出手段 59…情報通信路
60…制振デバイス
G…地盤
P…圧電デバイスの出力電力
H…時間履歴 R…関係式
Q…応力(荷重) δ…変形(塑性変形)
E…地震時の総エネルギー入力
We…弾性振動エネルギー
Wp…累積塑性歪みエネルギー
Wh…減衰によるエネルギー吸収量
DESCRIPTION OF SYMBOLS 1 ... Structure 1a ... Floor 1b ... Ceiling 2 ... Structural member (beam member) 2a ... Flange 3 ... Structural member (column member) 4 ... Brace reinforcement 5a, 5b ... Bracket 6 ... Seismic isolation device (laminated rubber)
7a ... Lower foundation 7b ... Upper foundation 8 ... Bolt 9 ... Nut 10 ... Damage detection system 20 ... Piezoelectric device 30 ... Controller 31 ... Storage means 32 ... Measuring means 33 ... Power storage means 34 ... Power supply means 35 ... External power supply means 36 ... Detection means 37 ... calculation means 38 ... information communication means 39 ... communication antenna 40 ... sensor 50 ... external base station 51 ... storage means 52 ... information communication means 53 ... calculation means 59 ... information communication path 60 ... damping device G ... ground P ... Output power H of piezoelectric device ... Time history R ... Relational expression Q ... Stress (load) δ ... Deformation (plastic deformation)
E ... Total energy input We at the time of earthquake ... Elastic vibration energy Wp ... Cumulative plastic strain energy Wh ... Amount of energy absorbed by damping

Claims (8)

構造物の相互に接合する構造部材の間に圧電デバイスを当該構造部材の接合部に加わる力の方向と当該圧電デバイスの圧力に比例する電力が出力される加圧方向とが一致するように挟み込み,前記圧電デバイスの出力電力を蓄電手段が設けられたコントローラに入力して蓄電すると共に当該蓄電した電力により駆動したコントローラにより前記圧電デバイスの出力電圧から前記構造部材の応力を算定し,前記応力の時間履歴に基づき前記構造部材の損傷を検知してなる構造物の損傷検知方法。 The piezoelectric device is sandwiched between structural members to be bonded to each other so that the direction of the force applied to the bonded portion of the structural member coincides with the pressing direction in which power proportional to the pressure of the piezoelectric device is output. , The output power of the piezoelectric device is input to a controller provided with power storage means and stored, and the controller driven by the stored power calculates the stress of the structural member from the output voltage of the piezoelectric device, A damage detection method for a structure obtained by detecting damage to the structural member based on a time history. 請求項1の方法において,前記蓄電した電力により駆動したコントローラにより前記構造部材の応力算定値を外部基地局へ出力してなる構造物の損傷検知方法。 2. The method of claim 1, wherein the controller driven by the stored electric power outputs the calculated stress value of the structural member to an external base station. 請求項2の方法において,前記構造部材に前記コントローラ経由の電力で駆動されるセンサを取付けると共に当該センサの計測値を前記外部基地局又はコントローラへ出力し,前記外部基地局又はコントローラにおいて前記構造部材の応力及び前記センサの計測値の時間履歴から前記構造部材の累積塑性歪みエネルギーを算出し,前記累積塑性歪みエネルギーに基づき前記構造部材の損傷を検知してなる構造物の損傷検知方法。 3. The method according to claim 2, wherein a sensor driven by electric power via the controller is attached to the structural member and a measurement value of the sensor is output to the external base station or controller. A damage detection method for a structure comprising calculating a cumulative plastic strain energy of the structural member from a stress history of the sensor and a time history of the measurement value of the sensor, and detecting damage of the structural member based on the cumulative plastic strain energy. 請求項1から3の何れかの方法において,前記圧電デバイスを,前記構造物の構造部材の間に代えて又は加えて,前記構造物の構造部材とブレース材との間,又は前記構造物と免震装置との間に挟み込んでなる構造物の損傷検知方法。 4. The method according to claim 1, wherein the piezoelectric device is replaced or added between the structural members of the structure, between the structural member of the structure and the brace material, or with the structure. Damage detection method for structures sandwiched between seismic isolation devices. 構造物の相互に接合する構造部材の間に当該構造部材の接合部に加わる力の方向と圧力に比例する電力が出力される加圧方向とが一致するように挟み込む圧電デバイス,及び,前記圧電デバイスの出力電力を入力して蓄える蓄電手段と当該蓄電手段により駆動されて前記圧電デバイスの出力電圧から前記構造部材の応力を算定し且つ当該応力の時間履歴に基づき前記構造部材の損傷を検知する検知手段とを有するコントローラを備えてなる構造物の損傷検知システム。 A piezoelectric device sandwiched between structural members to be bonded to each other so that a direction of a force applied to a bonded portion of the structural member and a pressurizing direction in which power proportional to the pressure is output coincide with each other; Power storage means for inputting and storing output power of the device and driving by the power storage means to calculate the stress of the structural member from the output voltage of the piezoelectric device and detect damage to the structural member based on the time history of the stress A damage detection system for a structure comprising a controller having detection means. 請求項5のシステムにおいて,前記コントローラに,前記蓄電手段により駆動されて前記構造部材の応力算定値を外部基地局へ出力する情報通信手段を設けてなる構造物の損傷検知システム。 6. The damage detection system for a structure according to claim 5, wherein the controller is provided with information communication means that is driven by the power storage means and outputs a stress calculation value of the structural member to an external base station. 請求項6のシステムにおいて,前記構造部材に取り付けられると共に前記コントローラ経由の電力で駆動されて前記外部基地局又はコントローラへ計測値を出力するセンサを設け,前記外部基地局又はコントローラに構造部材の応力及び前記センサの計測値の時間履歴から前記構造部材の累積塑性歪みエネルギーを算出する算出手段を設け,前記累積塑性歪みエネルギーに基づき前記構造部材の損傷を検知してなる構造物の損傷検知システム。 7. The system according to claim 6, wherein a sensor is provided that is attached to the structural member and is driven by electric power via the controller to output a measurement value to the external base station or controller, and the stress of the structural member is provided to the external base station or controller. And a damage detection system for a structure comprising a calculation means for calculating a cumulative plastic strain energy of the structural member from a time history of the measurement value of the sensor, and detecting damage to the structural member based on the cumulative plastic strain energy. 請求項5から7の何れかのシステムにおいて,前記圧電デバイスを,前記構造物の構造部材の間に代えて又は加えて,前記構造物の構造部材とブレース材との間,又は前記構造物と免震装置との間に挟み込んでなる構造物の損傷検知システム。 8. The system according to claim 5, wherein the piezoelectric device is replaced or added between the structural members of the structure, between the structural members of the structure and the brace material, or with the structure. Damage detection system for structures sandwiched between seismic isolation devices.
JP2015242753A 2015-12-12 2015-12-12 Structure damage detection method and system Expired - Fee Related JP6562551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015242753A JP6562551B2 (en) 2015-12-12 2015-12-12 Structure damage detection method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015242753A JP6562551B2 (en) 2015-12-12 2015-12-12 Structure damage detection method and system

Publications (2)

Publication Number Publication Date
JP2017106878A JP2017106878A (en) 2017-06-15
JP6562551B2 true JP6562551B2 (en) 2019-08-21

Family

ID=59059411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242753A Expired - Fee Related JP6562551B2 (en) 2015-12-12 2015-12-12 Structure damage detection method and system

Country Status (1)

Country Link
JP (1) JP6562551B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080080B2 (en) * 2018-03-19 2022-06-03 株式会社Nttファシリティーズ Building soundness evaluation system, building soundness evaluation method and program
JP7178876B2 (en) * 2018-11-08 2022-11-28 昭和電線ケーブルシステム株式会社 Seismic isolation device monitoring system
JP2020101941A (en) * 2018-12-20 2020-07-02 旭化成ホームズ株式会社 Damage level deriving system, damage level deriving device, damage level deriving method, and program
JP7379269B2 (en) 2020-05-18 2023-11-14 株式会社中電シーティーアイ Building health diagnosis system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131197A (en) * 1998-10-28 2000-05-12 Nkk Corp Structure health monitoring method
JP4095521B2 (en) * 2003-09-19 2008-06-04 鹿島建設株式会社 Building joint structures used in energy conversion systems
JP4279774B2 (en) * 2004-12-09 2009-06-17 鹿島建設株式会社 Building structure
US8800665B2 (en) * 2010-08-05 2014-08-12 Vetco Gray Inc. Marine composite riser for structural health monitoring using piezoelectricity
JP6120559B2 (en) * 2012-12-22 2017-04-26 鹿島建設株式会社 Evaluation method for residual seismic performance of multi-layer structures
JP2014174715A (en) * 2013-03-08 2014-09-22 Panasonic Corp Structure health monitoring system
JP6190217B2 (en) * 2013-09-02 2017-08-30 鹿島建設株式会社 Vibration control device using piezoelectric material

Also Published As

Publication number Publication date
JP2017106878A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6562551B2 (en) Structure damage detection method and system
US8800346B2 (en) Wind tunnel balance calibrator
Wiebe et al. Mechanisms to limit higher mode effects in a controlled rocking steel frame. 2: large‐amplitude shake table testing
JP5809174B2 (en) Building safety verification system, building safety verification method and program
Lee et al. Blind bolted moment connection to sides of hollow section columns
Oh et al. Experimental study of seismic performance of base-isolated frames with U-shaped hysteretic energy-dissipating devices
Blum et al. Experimental investigation of long-span cold-formed steel double channel portal frames
Wanninger et al. Experimental and analytical analysis of a post-tensioned timber frame under horizontal loads
Roghaei et al. An efficient and reliable structural health monitoring system for buildings after earthquake
JP2016109611A (en) Displacement measuring device
Midorikawa et al. Shaking table tests on rocking structural systems installed yielding base plates in steel frames
Knippers et al. Modular coreless filament winding for lightweight systems in architecture
Guerrero et al. Hybrid simulation tests of a soft Storey frame building upgraded with a buckling-restrained brace (BRB)
KR20130079443A (en) Method and apparatus for internally determining a load applied by a jack
Heiduschke et al. Shake table tests of small-and full-scale laminated timber frames with moment connections
Hurtado et al. Numerical and experimental analysis of a shear-link energy dissipator for seismic protection of buildings
Luo et al. Research and experiment on optimal separation distance of adjacent buildings based on performance
JP5431185B2 (en) Control system for variable damping damper in damping structure
KR20150114613A (en) Evaluation method for reliable seismic performance factor of Diagrid structural system using test data
Cuadra et al. Estimation of dynamic properties of traditional wooden structures using new bolt sensor
JP6213521B2 (en) Method for calculating effective mass of luggage during earthquake in automatic warehouse and rack design method for automatic warehouse
JP5889239B2 (en) Measuring system
TW202324280A (en) Monitoring and feedback system for building structure and operation method thereof
Adebar et al. Seismic deformation demands on gravityload columns in shear wall buildings
KR102296984B1 (en) Apparatus for performance enhancement of blastwall structure using deformation measurement instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6562551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees