JP6562158B2 - Multilayer toroidal coil and manufacturing method thereof - Google Patents

Multilayer toroidal coil and manufacturing method thereof Download PDF

Info

Publication number
JP6562158B2
JP6562158B2 JP2018538268A JP2018538268A JP6562158B2 JP 6562158 B2 JP6562158 B2 JP 6562158B2 JP 2018538268 A JP2018538268 A JP 2018538268A JP 2018538268 A JP2018538268 A JP 2018538268A JP 6562158 B2 JP6562158 B2 JP 6562158B2
Authority
JP
Japan
Prior art keywords
magnetic substrate
main surface
conductor
substrate
peripheral end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018538268A
Other languages
Japanese (ja)
Other versions
JPWO2018047486A1 (en
Inventor
純一 南條
純一 南條
大悟 松原
大悟 松原
幸男 前田
幸男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2018047486A1 publication Critical patent/JPWO2018047486A1/en
Application granted granted Critical
Publication of JP6562158B2 publication Critical patent/JP6562158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、積層体に形成される積層トロイダルコイル、およびその製造方法に関するものである。   The present invention relates to a laminated toroidal coil formed in a laminated body and a manufacturing method thereof.

従来、磁性体基板に形成される複数の層間接続導体を、磁性体基板の両面に形成される導体パターンで接続した構造のトロイダルコイルが知られている(特許文献1)。   Conventionally, a toroidal coil having a structure in which a plurality of interlayer connection conductors formed on a magnetic substrate are connected by conductor patterns formed on both surfaces of the magnetic substrate is known (Patent Document 1).

上記トロイダルコイルはチップ部品であるため、トロイダルコアに銅線を巻き付ける構造のトロイダルコイルに比べて、特性のばらつきが抑制され、小型化できる。   Since the toroidal coil is a chip component, variation in characteristics is suppressed and the size can be reduced as compared with a toroidal coil having a structure in which a copper wire is wound around a toroidal core.

特開平10−12446号公報Japanese Patent Laid-Open No. 10-12446

しかし、特許文献1に示される構造では、トロイダルコイルの一部である層間接続導体が磁性体基板の内部に形成される。すなわち、トロイダルコイルの巻回範囲外に磁性体が存在し、トロイダルコイルの巻回範囲外に漏れる磁束が多くなるため、電流の磁界変換効率は低下する。   However, in the structure shown in Patent Document 1, an interlayer connection conductor that is a part of the toroidal coil is formed inside the magnetic substrate. That is, since the magnetic substance exists outside the winding range of the toroidal coil and the magnetic flux leaking outside the winding range of the toroidal coil increases, the magnetic field conversion efficiency of the current decreases.

本発明の目的は、電流の磁界変換効率の低下を抑制した小型の積層トロイダルコイルを提供することにある。   An object of the present invention is to provide a small laminated toroidal coil in which a decrease in current magnetic field conversion efficiency is suppressed.

(1)本発明の積層トロイダルコイルは、
第1主面および第2主面を有する磁性体基板と、
非磁性体基板と、
前記磁性体基板および前記非磁性体基板を積層してなり、第3主面および第4主面を有する積層体と、
前記第3主面または前記第4主面に配置される、前記非磁性体基板に形成された外部電極と、
コイルと、
を備え、
前記積層体は、前記第3主面および前記第4主面を貫通する貫通孔が設けられ、
前記コイルは、
前記磁性体基板の前記第1主面に形成される第1導体パターンと、
前記磁性体基板の前記第2主面に形成される第2導体パターンと、
前記磁性体基板の外周側端面に形成される外周側端面導体と、
前記磁性体基板のうち前記貫通孔側の内周側端面に形成される内周側端面導体と、
が接続されてなることを特徴とする。
(1) The laminated toroidal coil of the present invention is
A magnetic substrate having a first main surface and a second main surface;
A non-magnetic substrate;
A laminate comprising a laminate of the magnetic substrate and the non-magnetic substrate and having a third principal surface and a fourth principal surface;
An external electrode formed on the non-magnetic substrate, disposed on the third main surface or the fourth main surface;
Coils,
With
The laminate is provided with a through-hole penetrating the third main surface and the fourth main surface,
The coil is
A first conductor pattern formed on the first main surface of the magnetic substrate;
A second conductor pattern formed on the second main surface of the magnetic substrate;
An outer peripheral end face conductor formed on the outer peripheral end face of the magnetic substrate;
An inner peripheral end face conductor formed on the inner peripheral end face on the through hole side of the magnetic substrate;
Are connected to each other.

この構成により、コイルの巻回範囲外に漏れる磁束の発生が抑制され、結果的にコイルの電流の磁界変換効率の低下が抑制される。また、磁性体基板および非磁性体基板を積層してなる積層体を備えるため、トロイダルコイルの閉磁路特性を確保しつつ、非磁性体基板を利用して自由に導体を引き回すことができ、回路の構成が容易となる。   With this configuration, generation of magnetic flux that leaks outside the coil winding range is suppressed, and as a result, a decrease in the magnetic field conversion efficiency of the coil current is suppressed. In addition, since a laminated body formed by laminating a magnetic substrate and a nonmagnetic substrate is provided, a conductor can be freely routed using the nonmagnetic substrate while ensuring the closed magnetic circuit characteristics of the toroidal coil. It becomes easy to configure.

(2)上記(1)において、前記非磁性体基板は、前記第3主面に配置される第1非磁性体基板と、前記第4主面に配置される第2非磁性体基板と、を有することが好ましい。この構成により、非磁性体基板を利用した導体の引き回しの自由度はさらに高まる。また、この構成により、磁性体基板と非磁性体基板との間の焼成時の収縮率の違いに起因する積層体の割れや変形が抑制される。 (2) In the above (1), the nonmagnetic substrate includes a first nonmagnetic substrate disposed on the third principal surface, a second nonmagnetic substrate disposed on the fourth principal surface, It is preferable to have. With this configuration, the degree of freedom of conductor routing using the non-magnetic substrate is further increased. Also, with this configuration, cracking and deformation of the laminate due to the difference in shrinkage rate during firing between the magnetic substrate and the non-magnetic substrate are suppressed.

(3)上記(1)または(2)において、前記積層体の外縁形状は、前記磁性体基板および前記非磁性体基板の積層方向から視て、長方形であることが好ましい。この構成により、磁性体基板および非磁性体基板の積層方向から視た積層体の外縁形状が、円形等である場合に比べて、外部電極の形状および配置等の自由度を高めることができる。 (3) In said (1) or (2), it is preferable that the outer edge shape of the said laminated body is a rectangle seeing from the lamination direction of the said magnetic body board | substrate and the said nonmagnetic board | substrate. With this configuration, it is possible to increase the degree of freedom of the shape and arrangement of the external electrodes as compared to the case where the outer edge shape of the laminated body viewed from the lamination direction of the magnetic substrate and the nonmagnetic substrate is circular or the like.

(4)上記(3)において、前記外周側端面には複数の前記外周側端面導体が形成され、前記積層方向から視た前記積層体の各辺の前記外周側端面に形成される外周側端面導体の数は、いずれも等しいことが好ましい。この構成により、コイルに発生する磁界の偏りを抑制できる。 (4) In the above (3), a plurality of the outer peripheral end surface conductors are formed on the outer peripheral end surface, and the outer peripheral end surface is formed on the outer peripheral end surface of each side of the multilayer body as viewed from the stacking direction. It is preferable that the number of conductors is equal. With this configuration, the bias of the magnetic field generated in the coil can be suppressed.

(5)上記(1)から(4)のいずれかにおいて、前記外部電極は、前記磁性体基板および前記非磁性体基板の積層方向から視て、前記外部電極が形成された前記非磁性体基板と前記磁性体基板との界面に形成されている、前記第1導体パターンまたは第2導体パターンに重ならない位置に配置されることが好ましい。この構成により、外部電極と外部電極に近接する導体パターンとが面同士で対向しないため、導体パターン(コイルの一部)と外部電極との間に発生する浮遊容量を小さくできる。 (5) In any one of the above (1) to (4), the external electrode is the nonmagnetic substrate on which the external electrode is formed when viewed from the stacking direction of the magnetic substrate and the nonmagnetic substrate. It is preferable that the first conductor pattern or the second conductor pattern is formed at the interface between the first conductor pattern and the second magnetic substrate. With this configuration, since the external electrode and the conductor pattern adjacent to the external electrode do not face each other, the stray capacitance generated between the conductor pattern (a part of the coil) and the external electrode can be reduced.

(6)上記(1)から(5)のいずれかにおいて、前記積層体は、複数の前記貫通孔が設けられ、前記コイルは、前記磁性体基板および前記非磁性体基板の積層方向から視て、隣接する前記貫通孔の周囲に形成される磁界の向きが互いに逆になるように巻回されることが好ましい。この構成により、互いに隣接する貫通孔の周囲に発生した磁束のうち、隣接する貫通孔の間にある磁性体基板を通る磁束の向きが同じとなる。したがって、一方の貫通孔の周囲に生じる磁束が、他方の貫通孔の周囲に生じる磁束によって打ち消されることが抑制されるため、複数の貫通孔を設けた場合でも、インダクタンス値の低下を抑制した積層トロイダルコイルが実現できる。 (6) In any one of the above (1) to (5), the laminated body is provided with a plurality of the through holes, and the coil is viewed from the lamination direction of the magnetic substrate and the nonmagnetic substrate. It is preferable that the windings are wound so that the directions of the magnetic fields formed around the adjacent through holes are opposite to each other. With this configuration, among the magnetic fluxes generated around the adjacent through holes, the directions of the magnetic fluxes passing through the magnetic substrate between the adjacent through holes are the same. Therefore, since the magnetic flux generated around one through hole is suppressed from being canceled out by the magnetic flux generated around the other through hole, even when a plurality of through holes are provided, the lamination that suppresses the decrease in inductance value is suppressed. A toroidal coil can be realized.

(7)上記(1)から(6)のいずれかにおいて、前記内周側端面には複数の前記内周側端面導体が形成され、前記積層体は、前記磁性体基板および前記非磁性体基板の積層方向から視た前記貫通孔に、凸部および凹部が形成され、前記複数の内周側端面導体は、前記凸部および前記凹部の内周側端面に形成されることが好ましい。この構成により、凹部が形成されていない内周側端面に内周側端面導体を形成する場合に比べて、隣接する内周側端面導体同士の間隙を大きくできる。したがって、この構成により、内周側端面を巻回する巻回数が同じ場合でも、隣接する内周側端面導体間に短絡が発生する可能性は低い。 (7) In any one of the above (1) to (6), a plurality of the inner peripheral side end surface conductors are formed on the inner peripheral side end surface, and the laminated body includes the magnetic substrate and the nonmagnetic substrate. It is preferable that a convex portion and a concave portion are formed in the through hole viewed from the stacking direction, and the plurality of inner peripheral side end surface conductors are formed on the inner peripheral side end surfaces of the convex portion and the concave portion. With this configuration, it is possible to increase the gap between the adjacent inner peripheral side end surface conductors as compared to the case where the inner peripheral side end surface conductor is formed on the inner peripheral side end surface where no recess is formed. Therefore, with this configuration, even when the number of turns for winding the inner peripheral end face is the same, there is a low possibility that a short circuit will occur between adjacent inner peripheral end face conductors.

(8)上記(1)から(7)のいずれかにおいて、前記コイルはAgを主成分とする導体で構成されることが好ましい。この構成により、コイルがCuを主成分とする導体で構成された場合に比べて、コイルのRdc(直流抵抗)を低減できる。 (8) In any one of the above (1) to (7), the coil is preferably made of a conductor mainly composed of Ag. With this configuration, the Rdc (DC resistance) of the coil can be reduced as compared with the case where the coil is made of a conductor whose main component is Cu.

(9)本発明の積層トロイダルコイルの製造方法は、
第1主面および第2主面を有する磁性体基板を形成する、磁性体基板形成工程と、
非磁性体基板を形成する、非磁性体基板形成工程と、
前記磁性体基板形成工程の後に、前記第1主面に第1導体パターンを形成し、前記第2主面に第2導体パターンを形成する、導体形成工程と、
前記導体形成工程および前記非磁性体基板形成工程の後に、前記非磁性体基板が第3主面に配置されるように、前記磁性体基板および前記非磁性体基板を積層して積層体を得る、積層工程と、
前記積層工程の後に、前記磁性体基板および前記非磁性体基板の積層方向に貫通する貫通孔を前記積層体に形成する、貫通孔形成工程と、
前記積層工程の後に、前記積層体を個片に分離する、分離工程と、
前記分離工程の後に、前記積層体を加熱する、加熱工程と、
を備えることを特徴とする。
(9) The method for producing the laminated toroidal coil of the present invention includes:
Forming a magnetic substrate having a first main surface and a second main surface;
Forming a non-magnetic substrate; a non-magnetic substrate forming step;
A conductor forming step of forming a first conductor pattern on the first main surface and forming a second conductor pattern on the second main surface after the magnetic substrate forming step;
After the conductor forming step and the non-magnetic substrate forming step, the magnetic substrate and the non-magnetic substrate are laminated so that the non-magnetic substrate is disposed on the third main surface to obtain a laminate. And laminating process,
A through-hole forming step of forming a through-hole penetrating in the stacking direction of the magnetic substrate and the non-magnetic substrate after the stacking step;
A separation step of separating the laminate into pieces after the lamination step;
A heating step of heating the laminate after the separation step;
It is characterized by providing.

この製造方法により、電流の磁界変換効率の低下を抑制した小型の積層トロイダルコイルを容易に製造できる。   With this manufacturing method, it is possible to easily manufacture a small-sized laminated toroidal coil that suppresses a decrease in current magnetic field conversion efficiency.

(10)上記(9)において、前記導体形成工程は、前記磁性体基板に、前記第1導体パターンと前記第2導体パターンとを接続する層間接続導体を形成する工程を含み、前記分離工程は、前記積層体を、前記層間接続導体ごと分離する工程を含んでいてもよい。 (10) In the above (9), the conductor forming step includes a step of forming an interlayer connection conductor connecting the first conductor pattern and the second conductor pattern on the magnetic substrate, and the separating step includes The step of separating the laminated body together with the interlayer connection conductors may be included.

本発明によれば、電流の磁界変換効率の低下を抑制した小型の積層トロイダルコイルを実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the small multilayer toroidal coil which suppressed the fall of the magnetic field conversion efficiency of an electric current is realizable.

図1は第1の実施形態に係る積層トロイダルコイル101の斜視図である。FIG. 1 is a perspective view of a laminated toroidal coil 101 according to the first embodiment. 図2(A)は積層トロイダルコイル101の平面図であり、図2(B)は図2(A)におけるA−A断面図であり、図2(C)は積層トロイダルコイル101の底面図である。2A is a plan view of the laminated toroidal coil 101, FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 2C is a bottom view of the laminated toroidal coil 101. is there. 図3は積層トロイダルコイル101の製造工程を順に示す断面図である。FIG. 3 is a cross-sectional view illustrating the manufacturing process of the laminated toroidal coil 101 in order. 図4(A)は第2の実施形態に係る積層トロイダルコイル102の平面図であり、図4(B)は積層トロイダルコイル102の正面図であり、図4(C)は、積層トロイダルコイル102の底面図である。4A is a plan view of the laminated toroidal coil 102 according to the second embodiment, FIG. 4B is a front view of the laminated toroidal coil 102, and FIG. 4C is a laminated toroidal coil 102. FIG. 図5は、コイルに流れる電流と磁性体基板11に形成される磁界との関係を示す、積層トロイダルコイル102の平面図である。FIG. 5 is a plan view of the laminated toroidal coil 102 showing the relationship between the current flowing through the coil and the magnetic field formed on the magnetic substrate 11. 図6(A)は第3の実施形態に係る積層トロイダルコイル103の平面図であり、図6(B)は積層トロイダルコイル103の正面図である。FIG. 6A is a plan view of the laminated toroidal coil 103 according to the third embodiment, and FIG. 6B is a front view of the laminated toroidal coil 103. 図7は、図6におけるDP部の拡大平面図である。FIG. 7 is an enlarged plan view of the DP portion in FIG.

以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。   Hereinafter, several specific examples will be given with reference to the drawings to show a plurality of modes for carrying out the present invention. In each figure, the same reference numerals are assigned to the same portions. In consideration of ease of explanation or understanding of the main points, the embodiments are shown separately for convenience, but the components shown in different embodiments can be partially replaced or combined. In the second and subsequent embodiments, description of matters common to the first embodiment is omitted, and only different points will be described. In particular, the same operation effect by the same configuration will not be sequentially described for each embodiment.

《第1の実施形態》
図1は第1の実施形態に係る積層トロイダルコイル101の斜視図である。図2(A)は積層トロイダルコイル101の平面図であり、図2(B)は図2(A)におけるA−A断面図であり、図2(C)は積層トロイダルコイル101の底面図である。図2(A)では、第2非磁性体基板13の図示を省略している。
<< First Embodiment >>
FIG. 1 is a perspective view of a laminated toroidal coil 101 according to the first embodiment. 2A is a plan view of the laminated toroidal coil 101, FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 2C is a bottom view of the laminated toroidal coil 101. is there. In FIG. 2A, the second nonmagnetic substrate 13 is not shown.

積層トロイダルコイル101は、図2(B)等に示すように、積層体1、コイルCL(後に詳述する)および外部電極P1,P2を備える。   As shown in FIG. 2B and the like, the laminated toroidal coil 101 includes a laminated body 1, a coil CL (described in detail later), and external electrodes P1 and P2.

積層体1は、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13を積層してなり、第3主面S3および第4主面S4を有する直方体状の絶縁体である。図2(A)および図2(C)に示すように、積層体1の外縁形状は、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13の積層方向(Z軸方向)から視て、長方形である。また、積層体1には、第3主面S3および第4主面S4を貫通し、Z軸方向から視た形状が円形の貫通孔CPが設けられている。積層体1は、例えば低温同時焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)のような誘電体セラミックである。   The laminated body 1 is a rectangular parallelepiped insulator that is formed by laminating a magnetic substrate 11, a first nonmagnetic substrate 12, and a second nonmagnetic substrate 13, and has a third main surface S3 and a fourth main surface S4. is there. As shown in FIGS. 2A and 2C, the outer edge shape of the multilayer body 1 is the stacking direction of the magnetic substrate 11, the first nonmagnetic substrate 12, and the second nonmagnetic substrate 13 (Z-axis). It is a rectangle when viewed from (direction). Further, the laminate 1 is provided with a through hole CP that penetrates the third main surface S3 and the fourth main surface S4 and has a circular shape when viewed from the Z-axis direction. The laminated body 1 is a dielectric ceramic such as a low temperature co-fired ceramic (LTCC).

磁性体基板11は、図2(B)等に示すように、第1主面S1および第2主面S2を有する絶縁体平板である。第1非磁性体基板12は、磁性体基板11の第1主面S1側に積層され、積層体1のうち第3主面S3に配置される絶縁体平板である。第2非磁性体基板13は、磁性体基板11の第2主面S2側に積層され、積層体1のうち第4主面S4に配置される絶縁体平板である。磁性体基板11は例えば磁性体フェライトシートであり、第1非磁性体基板12および第2非磁性体基板13は例えば非磁性体フェライトシートである。   As shown in FIG. 2B and the like, the magnetic substrate 11 is an insulating flat plate having a first main surface S1 and a second main surface S2. The first nonmagnetic substrate 12 is an insulating flat plate that is stacked on the first main surface S1 side of the magnetic substrate 11 and is disposed on the third main surface S3 of the stacked body 1. The second nonmagnetic substrate 13 is an insulating flat plate that is stacked on the second main surface S2 side of the magnetic substrate 11 and is disposed on the fourth main surface S4 of the stacked body 1. The magnetic substrate 11 is, for example, a magnetic ferrite sheet, and the first nonmagnetic substrate 12 and the second nonmagnetic substrate 13 are, for example, nonmagnetic ferrite sheets.

磁性体基板11の第1主面S1には、図2(C)に示すように、11の第1導体パターン21が形成される。磁性体基板11の第2主面S2には、図2(A)に示すように12の第2導体パターン22が形成される。第1導体パターン21および第2導体パターン22は、Z軸方向から視て、貫通孔CPから磁性体基板11の外周側端面(図2(A)および図2(C)に示す磁性体基板11の外縁である各辺)に向かって延伸する線状の導体パターンである。図2(B)に示すように、第1導体パターン21は、第1非磁性体基板12と磁性体基板11との界面に形成されている。第2導体パターン22は、第2非磁性体基板13と磁性体基板11との界面に形成されている。第1導体パターン21および第2導体パターン22は例えばAgを主成分とする導体パターンである。   As shown in FIG. 2C, eleven first conductor patterns 21 are formed on the first main surface S1 of the magnetic substrate 11. On the second main surface S2 of the magnetic substrate 11, twelve second conductor patterns 22 are formed as shown in FIG. The first conductor pattern 21 and the second conductor pattern 22 are viewed from the Z-axis direction through the through hole CP to the outer peripheral side end surface of the magnetic substrate 11 (the magnetic substrate 11 shown in FIGS. 2A and 2C). It is a linear conductor pattern extended toward each side). As shown in FIG. 2B, the first conductor pattern 21 is formed at the interface between the first non-magnetic substrate 12 and the magnetic substrate 11. The second conductor pattern 22 is formed at the interface between the second nonmagnetic substrate 13 and the magnetic substrate 11. The first conductor pattern 21 and the second conductor pattern 22 are conductor patterns mainly composed of Ag, for example.

また、磁性体基板11の外周側端面には、12の外周側端面導体41が形成される。磁性体基板11のうち貫通孔CP側の内周側端面には、12の内周側端面導体42が形成される。外周側端面導体41および内周側端面導体42は、Z軸方向に延伸し、一部が磁性体基板11から露出する導体であり、連接された複数の層間接続導体で構成されている。外周側端面導体41および内周側端面導体42は例えばAgを主成分とする導体である。   Further, twelve outer peripheral end surface conductors 41 are formed on the outer peripheral end surface of the magnetic substrate 11. Twelve inner peripheral end surface conductors 42 are formed on the inner peripheral end surface on the through hole CP side of the magnetic substrate 11. The outer peripheral side end surface conductor 41 and the inner peripheral side end surface conductor 42 are conductors that extend in the Z-axis direction and are partially exposed from the magnetic substrate 11, and are composed of a plurality of interconnected interlayer connection conductors. The outer peripheral side end surface conductor 41 and the inner peripheral side end surface conductor 42 are conductors mainly composed of Ag, for example.

図2(A)に示すように、第1導体パターン21の第1端は外周側端面導体41に接続され、第1導体パターン21の第2端は内周側端面導体42に接続される。図2(C)に示すように、第2導体パターン22の第1端は外周側端面導体41に接続され、第2導体パターン22の第2端は内周側端面導体42に接続される。このように、11の第1導体パターン21、12の第2導体パターン22、12の外周側端面導体41および12の内周側端面導体42が接続され、磁性体基板11の第1主面S1、第2主面S2、内周側端面および外周側端面を巻回するコイルCLが形成される。   As shown in FIG. 2A, the first end of the first conductor pattern 21 is connected to the outer peripheral end surface conductor 41, and the second end of the first conductor pattern 21 is connected to the inner peripheral end surface conductor 42. As shown in FIG. 2C, the first end of the second conductor pattern 22 is connected to the outer peripheral end face conductor 41, and the second end of the second conductor pattern 22 is connected to the inner peripheral end face conductor 42. In this way, the 11 first conductor patterns 21, the 12 second conductor patterns 22, the outer peripheral end face conductors 41 of the 12 and the inner peripheral end face conductor 42 of the 12 are connected, and the first main surface S 1 of the magnetic substrate 11 is connected. A coil CL is formed to wind the second main surface S2, the inner peripheral side end surface, and the outer peripheral side end surface.

上記コイルCLの第1端および第2端は、外部電極P1,P2にそれぞれ接続される。具体的には、図2(C)に示すように、外部電極P1は、外周側端面導体41に接続された引き回し導体51を介して、コイルCLの第1端に接続される。また、外部電極P2は、内周側端面導体42に接続された引き回し導体51を介して、コイルCLの第2端に接続される。   The first end and the second end of the coil CL are connected to the external electrodes P1 and P2, respectively. Specifically, as shown in FIG. 2C, the external electrode P <b> 1 is connected to the first end of the coil CL via a lead conductor 51 connected to the outer peripheral end face conductor 41. In addition, the external electrode P2 is connected to the second end of the coil CL through a lead conductor 51 connected to the inner peripheral end face conductor 42.

外部電極P1,P2は、第1非磁性体基板12の表面(積層体1の第3主面S3)に形成される平面形状が矩形の導体パターンである。外部電極P1,P2は、Z軸方向から視て、第1導体パターン21または第2導体パターン22(コイルCLの一部)に重ならない位置に配置されている。引き回し導体51,52は、第1非磁性体基板12の表面(積層体1の第3主面S3)に形成される線状の導体パターンである。   The external electrodes P1, P2 are conductor patterns having a rectangular planar shape formed on the surface of the first nonmagnetic substrate 12 (the third main surface S3 of the multilayer body 1). The external electrodes P1 and P2 are arranged at positions that do not overlap the first conductor pattern 21 or the second conductor pattern 22 (a part of the coil CL) when viewed from the Z-axis direction. The lead conductors 51 and 52 are linear conductor patterns formed on the surface of the first nonmagnetic substrate 12 (the third main surface S3 of the multilayer body 1).

図2(A)および図2(C)に示すように、Z軸方向から視た積層体1の各辺の外周側端面に形成される外周側端面導体41の数は、いずれも等しい(3つ)である。すなわち、内周側端面から積層体1の各辺の外周側端面に対して巻回されるコイルCLの巻回数は、いずれも等しい。   As shown in FIGS. 2A and 2C, the number of outer peripheral end surface conductors 41 formed on the outer peripheral end surface of each side of the multilayer body 1 as viewed from the Z-axis direction is the same (3 One). That is, the number of turns of the coil CL wound from the inner peripheral end surface to the outer peripheral end surface of each side of the multilayer body 1 is equal.

本実施形態に係る積層トロイダルコイル101によれば、次のような効果を奏する。   The laminated toroidal coil 101 according to this embodiment has the following effects.

(a)本実施形態に係る積層トロイダルコイル101は、第1導体パターン21および第2導体パターン22が磁性体基板11の主面に形成され、外周側端面導体41の一部および内周側端面導体42の一部が磁性体基板11から露出している。すなわち、本実施形態では、コイルの巻回範囲外に磁性体が存在しないため、コイルの巻回範囲外に漏れる磁束の発生が抑制され、結果的にコイルの電流の磁界変換効率の低下が抑制される。 (A) In the laminated toroidal coil 101 according to the present embodiment, the first conductor pattern 21 and the second conductor pattern 22 are formed on the main surface of the magnetic substrate 11, and a part of the outer peripheral end surface conductor 41 and the inner peripheral end surface A part of the conductor 42 is exposed from the magnetic substrate 11. That is, in this embodiment, since there is no magnetic body outside the coil winding range, the generation of magnetic flux that leaks outside the coil winding range is suppressed, and as a result, the reduction in the magnetic field conversion efficiency of the coil current is suppressed. Is done.

なお、本実施形態では、複数の外周側端面導体41および複数の内周側端面導体42全てが磁性体基板11から露出する構成について示したが、これに限定されるものではない。複数の外周側端面導体41、または複数の内周側端面導体42のうち少なくとも1つが、磁性体基板11から露出する構成であれば、上記の作用・効果を奏する。   In the present embodiment, the configuration in which the plurality of outer peripheral side end surface conductors 41 and the plurality of inner peripheral side end surface conductors 42 are all exposed from the magnetic substrate 11 has been described, but the present invention is not limited to this. If at least one of the plurality of outer peripheral end face conductors 41 or the plurality of inner peripheral end face conductors 42 is exposed from the magnetic substrate 11, the above-described functions and effects are exhibited.

(b)本実施形態に係る積層体1は、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13を積層してなるため、トロイダルコイルの閉磁路特性を確保しつつ、非磁性体基板を利用して自由に導体を引き回すことができ、回路の構成が容易となる。 (B) Since the multilayer body 1 according to the present embodiment is formed by laminating the magnetic substrate 11, the first nonmagnetic substrate 12, and the second nonmagnetic substrate 13, while ensuring the closed magnetic circuit characteristics of the toroidal coil. The conductor can be freely routed using the non-magnetic substrate, and the circuit configuration becomes easy.

なお、本実施形態では、第1非磁性体基板12および第2非磁性体基板13が磁性体基板11の第1主面S1および第2主面S2にそれぞれ積層される。すなわち、磁性体基板11が第1非磁性体基板12および第2非磁性体基板13で挟まれる構成であるため、第1非磁性体基板12および第2非磁性体基板13を利用した導体の引き回しの自由度はさらに高まる。また、この構成により、磁性体基板と非磁性体基板との間の焼成時の収縮率の違いに起因する積層体1の割れや変形が抑制される。   In the present embodiment, the first nonmagnetic substrate 12 and the second nonmagnetic substrate 13 are laminated on the first main surface S1 and the second main surface S2 of the magnetic substrate 11, respectively. That is, since the magnetic substrate 11 is sandwiched between the first non-magnetic substrate 12 and the second non-magnetic substrate 13, the conductor using the first non-magnetic substrate 12 and the second non-magnetic substrate 13 is used. The degree of freedom of routing is further increased. Further, with this configuration, cracking and deformation of the laminate 1 due to a difference in shrinkage rate during firing between the magnetic substrate and the non-magnetic substrate are suppressed.

(c)本実施形態では、コイルCLが積層体1に形成されるため、コアに銅線を巻き付ける構造のトロイダルコイルに比べて、小型の(特に低背化した)トロイダルコイルを実現できる。 (C) In this embodiment, since the coil CL is formed in the laminated body 1, a small (especially low-profile) toroidal coil can be realized as compared with a toroidal coil having a structure in which a copper wire is wound around a core.

(d)本実施形態に係る積層トロイダルコイル101は、磁性体基板11にコイルCLが巻回される構成である。そのため、大型化することなく、所定のインダクタンス値の積層トロイダルコイルが得られる。また、この構成により、少ないターン数で所定のインダクタンスが得られるため、磁性体基板11を備えていない場合と比較してコイルの線路長を短くでき、コイルのRdc(直流抵抗)を低減できる。 (D) The laminated toroidal coil 101 according to the present embodiment has a configuration in which the coil CL is wound around the magnetic substrate 11. Therefore, a laminated toroidal coil having a predetermined inductance value can be obtained without increasing the size. Also, with this configuration, since a predetermined inductance can be obtained with a small number of turns, the coil line length can be shortened and the Rdc (DC resistance) of the coil can be reduced as compared with the case where the magnetic substrate 11 is not provided.

(e)本実施形態では、積層体1の外縁形状が、Z軸方向から視て、長方形である。そのため、Z軸方向から視た積層体1の外縁形状が円形等である場合に比べて、外部電極P1,P2の形状および配置等の自由度を高めることができる。 (E) In this embodiment, the outer edge shape of the laminated body 1 is a rectangle when viewed from the Z-axis direction. Therefore, compared with the case where the outer edge shape of the laminated body 1 seen from the Z-axis direction is circular or the like, the degree of freedom of the shape and arrangement of the external electrodes P1 and P2 can be increased.

(f)本実施形態では、外部電極P1,P2が、Z軸方向から視て、第1導体パターン21(コイルCLの一部)に重ならない位置に配置されている。この構成により、外部電極P1,P2と第1導体パターン21とが面同士で対向しないため、第1導体パターン21(コイルCLの一部)と外部電極P1,P2との間に発生する浮遊容量を小さくできる。 (F) In the present embodiment, the external electrodes P1 and P2 are disposed at positions that do not overlap the first conductor pattern 21 (a part of the coil CL) when viewed from the Z-axis direction. With this configuration, since the external electrodes P1, P2 and the first conductor pattern 21 do not face each other, stray capacitance generated between the first conductor pattern 21 (a part of the coil CL) and the external electrodes P1, P2. Can be reduced.

(g)本実施形態では、Z軸方向から視た積層体1の各辺の外周側端面に形成される外周側端面導体の数は、いずれも等しい(3つ)である。すなわち、内周側端面から積層体1の各辺の外周側端面に対して巻回されるコイルCLの巻回数は、いずれも等しい。そのため、コイルに発生する磁界の偏りを抑制できる。 (G) In this embodiment, the number of outer peripheral side end surface conductors formed on the outer peripheral side end surface of each side of the multilayer body 1 as viewed from the Z-axis direction is equal (three). That is, the number of turns of the coil CL wound from the inner peripheral end surface to the outer peripheral end surface of each side of the multilayer body 1 is equal. Therefore, the bias of the magnetic field generated in the coil can be suppressed.

(h)本実施形態では、コイルCLがAgを主成分とする導体(第1導体パターン21、第2導体パターン22、外周側端面導体41および内周側端面導体42)で構成されている。そのため、コイルCLがCuを主成分とする導体で構成された場合に比べて、コイルCLのRdc(直流抵抗)を5%程度低減できる。 (H) In the present embodiment, the coil CL is composed of conductors mainly composed of Ag (the first conductor pattern 21, the second conductor pattern 22, the outer peripheral end surface conductor 41, and the inner peripheral end surface conductor 42). Therefore, the Rdc (DC resistance) of the coil CL can be reduced by about 5% compared to the case where the coil CL is made of a conductor whose main component is Cu.

本実施形態に係る積層トロイダルコイル101は、例えば次の工程で製造される。図3は積層トロイダルコイル101の製造工程を順に示す断面図である。   The laminated toroidal coil 101 according to the present embodiment is manufactured, for example, by the following process. FIG. 3 is a cross-sectional view illustrating the manufacturing process of the laminated toroidal coil 101 in order.

まず、図3中の(1)に示すように、第1主面S1および第2主面S2を有する焼成前の磁性体基板11Aを形成する。また、焼成前の第1非磁性体基板12Aおよび第2非磁性体基板13Aを形成する。磁性体基板11Aは、例えば低温同時焼成セラミックス(LTCC)のような磁性体フェライト等のグリーンシートである。第1非磁性体基板12Aおよび第2非磁性体基板13Aは、例えば低温同時焼成セラミックス(LTCC)のような非磁性体フェライト等のグリーンシートである。   First, as shown to (1) in FIG. 3, the magnetic substrate 11A before baking which has 1st main surface S1 and 2nd main surface S2 is formed. Further, the first nonmagnetic substrate 12A and the second nonmagnetic substrate 13A before firing are formed. The magnetic substrate 11A is a green sheet such as magnetic ferrite such as low temperature co-fired ceramics (LTCC). The first nonmagnetic substrate 12A and the second nonmagnetic substrate 13A are green sheets such as nonmagnetic ferrite such as low temperature co-fired ceramics (LTCC).

第1主面S1および第2主面S2を有する磁性体基板11Aを形成するこの工程が、本発明における「磁性体基板形成工程」の一例である。また、第1非磁性体基板12Aおよび第2非磁性体基板13Aを形成するこの工程が、本発明における「非磁性体基板形成工程」の一例である。   This step of forming the magnetic substrate 11A having the first main surface S1 and the second main surface S2 is an example of the “magnetic substrate forming step” in the present invention. Further, this step of forming the first nonmagnetic substrate 12A and the second nonmagnetic substrate 13A is an example of the “nonmagnetic substrate forming step” in the present invention.

次に、磁性体基板11Aに層間接続導体31A,32Aを形成した後、磁性体基板11Aの第1主面S1に第1導体パターン21Aを形成し、第2主面S2に第2導体パターン22Aを形成する。第1導体パターン21Aと第2導体パターン22Aとは、層間接続導体31A,32Aによって接続される。層間接続導体31A,32Aは連接した複数の層間接続導体で構成されている。層間接続導体31A,32Aは、例えば磁性体基板11Aを厚み方向(Z軸方向)に貫通する貫通孔を複数連接して形成した後に導電性ペーストを充填してなるビア導体等である。第1導体パターン21Aおよび第2導体パターン22Aは、例えばAgペーストの印刷により形成される導体パターンである。   Next, after forming the interlayer connection conductors 31A and 32A on the magnetic substrate 11A, the first conductor pattern 21A is formed on the first main surface S1 of the magnetic substrate 11A, and the second conductor pattern 22A is formed on the second main surface S2. Form. The first conductor pattern 21A and the second conductor pattern 22A are connected by interlayer connection conductors 31A and 32A. The interlayer connection conductors 31A and 32A are composed of a plurality of interconnected interlayer connection conductors. The interlayer connection conductors 31A and 32A are, for example, via conductors formed by connecting a plurality of through holes penetrating the magnetic substrate 11A in the thickness direction (Z-axis direction) and then filling with a conductive paste. The first conductor pattern 21A and the second conductor pattern 22A are conductor patterns formed by printing Ag paste, for example.

上記「磁性体基板形成工程」の後に、第1主面S1に第1導体パターン21Aを形成し、第2主面S2に第2導体パターン22Aを形成するこれらの工程が、本発明における「導体形成工程」の一例である。   After the “magnetic substrate forming step”, these steps of forming the first conductor pattern 21A on the first main surface S1 and forming the second conductor pattern 22A on the second main surface S2 are the “conductor” in the present invention. It is an example of a “forming process”.

また、第1非磁性体基板12Aに層間接続導体(図示省略)や外部電極P1A,P2Aを形成する。外部電極P1A,P2Aは、例えばAgペーストの印刷により形成される導体パターンである。   In addition, interlayer connection conductors (not shown) and external electrodes P1A and P2A are formed on the first nonmagnetic substrate 12A. The external electrodes P1A and P2A are conductor patterns formed by printing Ag paste, for example.

次に、図3中の(2)に示すように、磁性体基板11Aおよび第1非磁性体基板12Aおよび第2非磁性体基板13Aを積層して積層体1Aを得る。具体的には、第1非磁性体基板12A、磁性体基板11Aおよび第2非磁性体基板13Aの順に積層することにより積層体1Aを得る。このとき、積層体1Aの第3主面S3側には第1非磁性体基板12Aが配置され、積層体1Aの第4主面S4側には第2非磁性体基板13Aが配置される。   Next, as shown in (2) of FIG. 3, the magnetic substrate 11A, the first nonmagnetic substrate 12A, and the second nonmagnetic substrate 13A are laminated to obtain a laminated body 1A. Specifically, the laminated body 1A is obtained by laminating the first nonmagnetic substrate 12A, the magnetic substrate 11A, and the second nonmagnetic substrate 13A in this order. At this time, the first non-magnetic substrate 12A is disposed on the third main surface S3 side of the multilayer body 1A, and the second non-magnetic substrate 13A is disposed on the fourth main surface S4 side of the multilayer body 1A.

上記「導体形成工程」および「非磁性体基板形成工程」の後に、第1非磁性体基板12Aが第3主面S3に配置されるように、磁性体基板11A、第1非磁性体基板12Aおよび第2非磁性体基板13Aを積層して積層体1Aを得るこの工程が、本発明における「積層工程」の一例である。   After the “conductor forming step” and the “nonmagnetic substrate forming step”, the magnetic substrate 11A and the first nonmagnetic substrate 12A are arranged so that the first nonmagnetic substrate 12A is disposed on the third main surface S3. This step of laminating the second nonmagnetic substrate 13A to obtain the laminate 1A is an example of the “lamination step” in the present invention.

次に、図3中の(3)に示すように、磁性体基板11A、第1非磁性体基板12Aおよび第2非磁性体基板13Aの積層方向(Z軸方向)に貫通する貫通孔CPを形成する。具体的には、複数の層間接続導体が連接された層間接続導体32Aを横断するように、貫通ライン(図3中の(2)に示す貫通ラインDL1を参照。)まで達する貫通孔を、ドリル等により積層体1Aに形成する。これにより、内周側端面導体42Aが形成され、貫通孔CPに内周側端面導体42Aが露出することになる。   Next, as shown in (3) of FIG. 3, a through hole CP penetrating in the stacking direction (Z-axis direction) of the magnetic substrate 11A, the first nonmagnetic substrate 12A, and the second nonmagnetic substrate 13A is formed. Form. Specifically, a through hole reaching a through line (see the through line DL1 shown in (2) in FIG. 3) is drilled so as to cross the interlayer connecting conductor 32A in which a plurality of interlayer connecting conductors are connected. Etc. to form the laminated body 1A. As a result, the inner peripheral end face conductor 42A is formed, and the inner peripheral end face conductor 42A is exposed in the through hole CP.

上記「積層工程」の後に、磁性体基板11A、第1非磁性体基板12Aおよび第2非磁性体基板13Aの積層方向に貫通する貫通孔CPを積層体1Aに形成するこの工程が、本発明における「貫通孔形成工程」の一例である。   This step of forming the through hole CP penetrating in the stacking direction of the magnetic substrate 11A, the first nonmagnetic substrate 12A and the second nonmagnetic substrate 13A in the stacked body 1A after the “stacking step” is performed according to the present invention. Is an example of a “through-hole forming step”.

また、積層体1Aを個片(積層体1B)に分離する。具体的には、複数の層間接続導体が連接された層間接続導体31Aを横断するように、層間接続導体31Aごと切断ライン(図3中の(2)に示す切断ラインDL2を参照)で、集合基板状態の積層体1Aをダイサーカット等により切断して分離する。これにより、外周側端面導体31Bが形成され、切断面に外周側端面導体31Bが露出することになる。   Further, the laminated body 1A is separated into individual pieces (laminated body 1B). Specifically, a set of cutting lines (see cutting line DL2 shown in (2) in FIG. 3) for each interlayer connection conductor 31A so as to cross the interlayer connection conductor 31A connected with a plurality of interlayer connection conductors. The laminated body 1A in a substrate state is cut and separated by a dicer cut or the like. As a result, the outer peripheral end face conductor 31B is formed, and the outer peripheral end face conductor 31B is exposed on the cut surface.

上記「積層工程」の後に、積層体1Aを個片に分離するこの工程が、本発明における「分離工程」の一例である。なお、「分離工程」は上記「貫通項形成工程」の前に行われてもよい。   This step of separating the laminated body 1A into individual pieces after the “lamination step” is an example of the “separation step” in the present invention. The “separation step” may be performed before the “penetration term formation step”.

次に、積層体1Bを800℃以上の温度で加熱して焼成することにより、図3中の(4)に示す積層トロイダルコイル101を得る。   Next, the laminated body 1B is heated and baked at a temperature of 800 ° C. or higher to obtain a laminated toroidal coil 101 shown in (4) in FIG.

上記「分離工程」の後に、積層体1Bを加熱するこの工程が、本発明における「加熱工程」の一例である。   This step of heating the laminate 1B after the “separation step” is an example of the “heating step” in the present invention.

この製造方法により、電流の磁界変換効率の低下を抑制した小型の積層トロイダルコイル101を容易に製造できる。   By this manufacturing method, the small laminated toroidal coil 101 in which the decrease in the magnetic field conversion efficiency of the current is suppressed can be easily manufactured.

《第2の実施形態》
第2の実施形態では、複数の貫通孔が設けられた積層トロイダルコイルの例を示す。
<< Second Embodiment >>
In the second embodiment, an example of a laminated toroidal coil provided with a plurality of through holes is shown.

図4(A)は第2の実施形態に係る積層トロイダルコイル102の平面図であり、図4(B)は積層トロイダルコイル102の正面図であり、図4(C)は、積層トロイダルコイル102の底面図である。   4A is a plan view of the laminated toroidal coil 102 according to the second embodiment, FIG. 4B is a front view of the laminated toroidal coil 102, and FIG. 4C is a laminated toroidal coil 102. FIG.

積層トロイダルコイル102は、図4(B)等に示すように、積層体1C、コイルおよび外部電極P1,P2を備える。   As shown in FIG. 4B and the like, the laminated toroidal coil 102 includes a laminated body 1C, a coil, and external electrodes P1 and P2.

積層トロイダルコイル102は、2つの貫通孔CP1,CP2が設けられた積層体1Cを備える点で、第1の実施形態に係る積層トロイダルコイル101と異なる。その他の構成については、積層トロイダルコイル101と実質的に同じである。以下、積層トロイダルコイル101と異なる部分について説明する。   The laminated toroidal coil 102 is different from the laminated toroidal coil 101 according to the first embodiment in that the laminated toroidal coil 102 includes a laminated body 1C provided with two through holes CP1 and CP2. Other configurations are substantially the same as those of the laminated toroidal coil 101. Hereinafter, a different part from the laminated toroidal coil 101 will be described.

積層体1Cは、磁性体基板11および第1非磁性体基板12を積層してなる。積層体1Cには、第3主面S3および第4主面S4を貫通し、Z軸方向から視た形状が円形である2つの貫通孔CP1,CP2が設けられている。貫通孔CP1,CP2は、Z軸方向から視て、X軸方向に互いに隣接して配置されている。コイルは、外部電極P1を始点とした場合、外部電極P1から貫通孔CP1の左側、下側、右側、上側と順に巻回されて、次に引き回し導体を介して貫通孔CP2の上側、右側、下側と順に巻回されて外部電極P2に接続されている。   The laminated body 1C is formed by laminating a magnetic substrate 11 and a first nonmagnetic substrate 12. The laminated body 1C is provided with two through holes CP1 and CP2 that pass through the third main surface S3 and the fourth main surface S4 and have a circular shape when viewed from the Z-axis direction. The through holes CP1 and CP2 are disposed adjacent to each other in the X-axis direction when viewed from the Z-axis direction. When the external electrode P1 is a starting point, the coil is wound in order from the external electrode P1 to the left side, the lower side, the right side, and the upper side of the through hole CP1, and then the upper side, the right side of the through hole CP2 through the lead conductor, It is wound in order from the lower side and connected to the external electrode P2.

次に、積層トロイダルコイル102のコイルに流れる電流と、磁性体基板11に形成される磁界との関係について説明する。図5は、コイルに流れる電流と磁性体基板11に形成される磁界との関係を示す、積層トロイダルコイル102の平面図である。   Next, the relationship between the current flowing through the laminated toroidal coil 102 and the magnetic field formed on the magnetic substrate 11 will be described. FIG. 5 is a plan view of the laminated toroidal coil 102 showing the relationship between the current flowing through the coil and the magnetic field formed on the magnetic substrate 11.

本実施形態に係るコイルは、Z軸方向から視て、隣接する貫通孔CP1,CP2の周囲に形成される磁界の向きは互いに逆になるように巻回されている(図5における磁束φ1,φ2を参照)。このとき、第2導体パターン22(コイルの一部)には、図5に示す破線の矢印の方向に向かって電流が流れる。なお、コイルの巻き方は、貫通孔CP1,CP2の周囲に形成される磁界の向きが互いに逆になるのであれば、本実施形態で示した巻き方に限定されるものではない。   The coil according to the present embodiment is wound so that the directions of the magnetic fields formed around the adjacent through holes CP1 and CP2 are opposite to each other as viewed from the Z-axis direction (the magnetic fluxes φ1 and φ1 in FIG. 5). (See φ2). At this time, a current flows through the second conductor pattern 22 (a part of the coil) in the direction of the broken arrow shown in FIG. The method of winding the coil is not limited to the winding method shown in the present embodiment as long as the directions of the magnetic fields formed around the through holes CP1 and CP2 are opposite to each other.

本実施形態に係る積層トロイダルコイル102によれば、第1の実施形態で述べた効果以外に、次のような効果を奏する。   According to the laminated toroidal coil 102 according to the present embodiment, the following effects can be obtained in addition to the effects described in the first embodiment.

(i)本実施形態に係るコイルは、Z軸方向から視て、隣接する貫通孔CP1,CP2の周囲に形成される磁界の向きは互いに逆になるように巻回されている。この構成により、互いに隣接する貫通孔CP1,CP2の周囲に発生した磁束のうち、隣接する貫通孔CP1,CP2の間にある磁性体基板11を通る磁束の向きが同じとなる(図5における磁束φ1,φ2を参照)。そのため、一方の貫通孔CP1の周囲に生じる磁束が、他方の貫通孔CP2の周囲に生じる磁束によって打ち消されることが抑制される。したがって、この構成により、複数の貫通孔を設けた場合でも、インダクタンス値の低下を抑制した積層トロイダルコイルが実現できる。 (I) The coil according to the present embodiment is wound so that the directions of the magnetic fields formed around the adjacent through holes CP1 and CP2 are opposite to each other when viewed from the Z-axis direction. With this configuration, among the magnetic fluxes generated around the adjacent through holes CP1 and CP2, the direction of the magnetic flux passing through the magnetic substrate 11 between the adjacent through holes CP1 and CP2 is the same (the magnetic flux in FIG. 5). (See φ1 and φ2). Therefore, the magnetic flux generated around one through hole CP1 is suppressed from being canceled by the magnetic flux generated around the other through hole CP2. Therefore, with this configuration, even when a plurality of through holes are provided, a laminated toroidal coil that suppresses a decrease in inductance value can be realized.

(j)本実施形態に係る積層体1Cは、磁性体基板11および第1非磁性体基板12を積層した構成である。そのため、磁性体基板が2つの非磁性体基板で挟まれる構成(例えば、第1の実施形態の積層体1)に比べて、さらに小型の(低背化した)トロイダルコイルを実現できる。但し、非磁性体基板を利用した導体の引き回しの自由度を高める点では、第1の実施形態の積層体1のように、磁性体基板が非磁性体基板で挟まれる構成が好ましい。 (J) The laminated body 1C according to the present embodiment has a configuration in which the magnetic substrate 11 and the first nonmagnetic substrate 12 are laminated. Therefore, it is possible to realize a toroidal coil that is smaller (lower in profile) than a configuration in which a magnetic substrate is sandwiched between two nonmagnetic substrates (for example, the laminated body 1 of the first embodiment). However, in terms of increasing the degree of freedom of conductor routing using the nonmagnetic substrate, a configuration in which the magnetic substrate is sandwiched between the nonmagnetic substrates as in the multilayer body 1 of the first embodiment is preferable.

なお、本実施形態では、2つの貫通孔が設けられた積層体1Cについて示したが、貫通孔の数は2つ以上あってもよい。その場合でも、コイルは、Z軸方向から視て、互いに隣接する貫通孔の周囲に形成される磁界の向きが互いに逆になるように巻回されることが好ましい。   In addition, in this embodiment, although shown about the laminated body 1C provided with two through-holes, the number of through-holes may be two or more. Even in this case, the coil is preferably wound so that the directions of the magnetic fields formed around the adjacent through holes are opposite to each other when viewed from the Z-axis direction.

《第3の実施形態》
第3の実施形態では、貫通孔の形状が異なる積層トロイダルコイルの例を示す。
<< Third Embodiment >>
In 3rd Embodiment, the example of the laminated toroidal coil from which the shape of a through-hole differs is shown.

図6(A)は第3の実施形態に係る積層トロイダルコイル103の平面図であり、図6(B)は積層トロイダルコイル103の正面図である。図7は、図6におけるDP部の拡大平面図である。図6では、第2非磁性体基板13の図示を省略している。   FIG. 6A is a plan view of the laminated toroidal coil 103 according to the third embodiment, and FIG. 6B is a front view of the laminated toroidal coil 103. FIG. 7 is an enlarged plan view of the DP portion in FIG. In FIG. 6, the second nonmagnetic substrate 13 is not shown.

積層トロイダルコイル103は、積層体1D、コイルおよび外部電極(図示省略)を備える。   The laminated toroidal coil 103 includes a laminated body 1D, a coil, and external electrodes (not shown).

積層トロイダルコイル103は、貫通孔CP3が設けられた積層体1Dを備える点で、第1の実施形態に係る積層トロイダルコイル101と異なる。その他の構成については、積層トロイダルコイル101と実質的に同じである。以下、積層トロイダルコイル101と異なる部分について説明する。   The laminated toroidal coil 103 is different from the laminated toroidal coil 101 according to the first embodiment in that it includes a laminated body 1D provided with a through hole CP3. Other configurations are substantially the same as those of the laminated toroidal coil 101. Hereinafter, a different part from the laminated toroidal coil 101 will be described.

積層体1Dは、図6(B)に示すように、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13を積層してなる。積層体1Dには、第3主面S3および第4主面S4を貫通する貫通孔CP3が設けられている。貫通孔CP3は、Z軸方向から視た形状が略矩形であり、円形である複数の貫通孔を連接することにより略矩形状に繰り抜いたような形状である。そのため、Z軸方向から視た貫通孔CP3には、図7に示すように、複数の凸部PP1および複数の凹部GP1が形成されている。図7に示すように、凹部GP1は、Z軸方向から視て、隣接する凸部PP1同士の間の内周側端面を、−X方向に向かって半径Rの半球状に切り欠いた形状である。   As shown in FIG. 6B, the laminated body 1D is formed by laminating a magnetic substrate 11, a first nonmagnetic substrate 12, and a second nonmagnetic substrate 13. The stacked body 1D is provided with a through hole CP3 penetrating the third main surface S3 and the fourth main surface S4. The through hole CP3 has a substantially rectangular shape when viewed from the Z-axis direction, and has a shape that is pulled out into a substantially rectangular shape by connecting a plurality of circular through holes. Therefore, as shown in FIG. 7, a plurality of convex portions PP1 and a plurality of concave portions GP1 are formed in the through hole CP3 viewed from the Z-axis direction. As shown in FIG. 7, the concave portion GP1 has a shape in which the inner peripheral side end surface between the adjacent convex portions PP1 is cut into a hemispherical shape with a radius R toward the −X direction when viewed from the Z-axis direction. is there.

磁性体基板11のうち貫通孔CP3側の内周側端面には、24の内周側端面導体42aと28の内周側端面導体42bとが形成される。内周側端面導体42aは凸部PP1の内周側端面に形成される導体であり、内周側端面導体42bは凹部GP1の内周側端面に形成される導体である。   24 inner peripheral end face conductors 42a and 28 inner peripheral end face conductors 42b are formed on the inner peripheral end face of the magnetic substrate 11 on the through hole CP3 side. The inner peripheral end face conductor 42a is a conductor formed on the inner peripheral end face of the convex portion PP1, and the inner peripheral end face conductor 42b is a conductor formed on the inner peripheral end face of the concave portion GP1.

また、磁性体基板11の第1主面S1には、51(または52)の第1導体パターン(図示省略)が形成される。磁性体基板11の第2主面S2には、52の第2導体パターン22が形成される。磁性体基板11の外周側端面には、52の外周側端面導体41が形成される。   Further, 51 (or 52) first conductor patterns (not shown) are formed on the first main surface S1 of the magnetic substrate 11. 52 second conductor patterns 22 are formed on the second main surface S2 of the magnetic substrate 11. 52 outer peripheral end surface conductors 41 are formed on the outer peripheral end surface of the magnetic substrate 11.

これら51(または52)の第1導体パターン、52の第2導体パターン22、52の外周側端面導体41、24の内周側端面導体42aおよび28の内周側端面導体42bが接続され、磁性体基板11の第1主面S1、第2主面S2、内周側端面および外周側端面を巻回するコイルが形成される。   These 51 (or 52) first conductor patterns, 52 second conductor patterns 22, 52 outer peripheral side end surface conductors 41, 24 inner peripheral side end surface conductors 42a and 28 inner peripheral side end surface conductors 42b are connected, and magnetic The coil which winds 1st main surface S1, 2nd main surface S2, the inner peripheral side end surface, and the outer peripheral side end surface of the body substrate 11 is formed.

本実施形態では、内周側端面導体42a,42bが、Z軸方向から視た貫通孔CP3の凸部PP1および凹部GP1の内周側端面に形成される。そのため、凹部GP1が形成されていない内周側端面に内周側端面導体を形成する場合に比べて、隣接する内周側端面導体42a,42b同士の間隙を大きくできる(例えば、図7におけるY軸方向に複数の内周側端面導体を配列した場合、隣接する内周側端面導体同士の間隙はRであるが、本実施形態に係る内周側端面導体42a,42b同士の間隙は21/2Rとなる)。したがって、この構成により、内周側端面を巻回する巻回数が同じ場合でも、隣接する内周側端面導体間に短絡が発生する可能性は低い。In this embodiment, the inner peripheral side end surface conductors 42a and 42b are formed on the inner peripheral side end surfaces of the convex portion PP1 and the concave portion GP1 of the through hole CP3 as viewed from the Z-axis direction. Therefore, compared with the case where the inner peripheral side end surface conductor is formed on the inner peripheral side end surface where the recess GP1 is not formed, the gap between the adjacent inner peripheral side end surface conductors 42a and 42b can be increased (for example, Y in FIG. 7). When a plurality of inner peripheral end face conductors are arranged in the axial direction, the gap between adjacent inner peripheral end face conductors is R, but the gap between the inner peripheral end face conductors 42a and 42b according to the present embodiment is 2 1. / 2 R). Therefore, with this configuration, even when the number of turns for winding the inner peripheral end face is the same, there is a low possibility that a short circuit will occur between adjacent inner peripheral end face conductors.

本実施形態で示したように、積層体に設けられる貫通孔の形状は、Z軸方向から視て、円形に限定されるものではない。Z軸方向から視た貫通孔の形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば矩形、楕円形、多角形等であってもよい。   As shown in the present embodiment, the shape of the through hole provided in the stacked body is not limited to a circle as viewed from the Z-axis direction. The shape of the through hole viewed from the Z-axis direction can be changed as appropriate within the range where the functions and effects of the present invention are exhibited, and may be, for example, a rectangle, an ellipse, a polygon, or the like.

なお、本実施形態では、1つの凹部GP1の内周側端面に1つの内周側端面導体42bが形成される構成を示したが、これに限定されるものではない。1つの凹部GP1の内周側端面に複数の内周側端面導体が形成されていてもよい。   In the present embodiment, the configuration in which one inner peripheral end surface conductor 42b is formed on the inner peripheral end surface of one concave portion GP1 is not limited to this. A plurality of inner peripheral end surface conductors may be formed on the inner peripheral end surface of one recess GP1.

また、本実施形態では、Z軸方向から視た凹部GP1が、半球状に内周側端面を切り欠いた形状である例を示したが、この構成に限定されるものではない。Z軸方向から視た凹部GP1の形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば矩形状に内周側端面を切り欠いた形状であってもよい。   In the present embodiment, the concave portion GP1 viewed from the Z-axis direction has a hemispherical shape with the inner peripheral side end face notched, but the present invention is not limited to this configuration. The shape of the recess GP1 viewed from the Z-axis direction can be changed as appropriate within the range where the functions and effects of the present invention are exhibited. For example, the shape may be a shape in which the inner peripheral side end face is cut out in a rectangular shape.

《その他の実施形態》
以上に示した各実施形態では、積層体の外縁形状が、Z軸方向から視て、長方形である例を示したが、この構成に限定されるものではない。積層体の外縁形状は、本発明の作用・効果を奏する範囲において適宜変更可能であり、例えば多角形、円形、楕円形等であってもよい。
<< Other Embodiments >>
In each of the embodiments described above, an example in which the outer edge shape of the stacked body is a rectangle when viewed from the Z-axis direction is shown, but the configuration is not limited to this. The outer edge shape of the laminate can be appropriately changed within the range where the effects and effects of the present invention are exhibited, and may be, for example, a polygon, a circle, an ellipse, or the like.

また、以上に示した第1の実施形態では、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13を積層してなる積層体1について示したが、この構成に限定されるものではない。積層体の積層数は2または3に限定されるものではなく、4以上であってもよい。すなわち、磁性体基板11、第1非磁性体基板12および第2非磁性体基板13の数は、複数でもよい。   In the first embodiment described above, the laminated body 1 formed by laminating the magnetic substrate 11, the first nonmagnetic substrate 12, and the second nonmagnetic substrate 13 has been described. However, the present invention is limited to this configuration. Is not to be done. The number of stacked layers is not limited to 2 or 3, and may be 4 or more. That is, the number of the magnetic substrate 11, the first nonmagnetic substrate 12, and the second nonmagnetic substrate 13 may be plural.

以上に示した各実施形態では、外周側端面導体41および内周側端面導体42が、連接された複数の層間接続導体を分割(切断)して形成され、外周側端面導体41および内周側端面導体42の一部が磁性体基板11に埋設される例を示したが、この構成に限定されるものではない。外周側端面導体41は、1つの層間接続導体を分割(切断)して形成してもよい。また、外周側端面導体41は、外周側端面に形成される導体パターンであってもよい。このことは、内周側端面導体42についても同様である。   In each of the embodiments described above, the outer peripheral end face conductor 41 and the inner peripheral end face conductor 42 are formed by dividing (cutting) a plurality of interconnected interlayer connection conductors, and the outer peripheral end face conductor 41 and the inner peripheral side are formed. Although an example in which a part of the end surface conductor 42 is embedded in the magnetic substrate 11 has been shown, the present invention is not limited to this configuration. The outer peripheral end surface conductor 41 may be formed by dividing (cutting) one interlayer connection conductor. Moreover, the outer peripheral side end surface conductor 41 may be a conductor pattern formed on the outer peripheral side end surface. The same applies to the inner peripheral side end face conductor 42.

また、本発明におけるコイルCLの形状および巻回数等は、以上に示した各実施形態の構成に限定されるものではなく、本発明の作用・効果を奏する範囲において適宜変更可能である。   In addition, the shape, the number of windings, and the like of the coil CL in the present invention are not limited to the configurations of the embodiments described above, and can be appropriately changed within the scope of the operations and effects of the present invention.

最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。   Finally, the description of the above embodiment is illustrative in all respects and not restrictive. Modifications and changes can be made as appropriate by those skilled in the art. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope equivalent to the claims.

CP,CP1,CP2,CP3…貫通孔
CL…コイル
DL1…貫通ライン
DL2…切断ライン
PP1…凸部
GP1…凹部
P1,P1A,P2,P1A…外部電極
S1…磁性体基板の第1主面
S2…磁性体基板の第2主面
S3…積層体の第3主面
S4…積層体の第4主面
1,1A,1B,1C,1D…積層体
11,11A…磁性体基板
12,12A…第1非磁性体基板
13,13A…第2非磁性体基板
21,21A…第1導体パターン
22,22A…第2導体パターン
31A,32A…層間接続導体
41,41A…外周側端面導体
42,42a,42b,42A…内周側端面導体
51,52…引き回し導体
101,102,103…積層トロイダルコイル
CP, CP1, CP2, CP3 ... through hole CL ... coil DL1 ... through line DL2 ... cutting line PP1 ... convex portion GP1 ... concave portion P1, P1A, P2, P1A ... external electrode S1 ... first main surface S2 of the magnetic substrate ... Second main surface S3 of magnetic substrate ... Third main surface S4 of laminated body ... Fourth main surface 1, 1A, 1B, 1C, 1D of laminated body ... Laminated bodies 11, 11A ... Magnetic substrates 12, 12A ... No. 1 nonmagnetic substrate 13, 13A ... second nonmagnetic substrate 21, 21A ... first conductor pattern 22, 22A ... second conductor pattern 31A, 32A ... interlayer connection conductor 41, 41A ... outer peripheral end face conductors 42, 42a, 42b, 42A ... inner peripheral side end conductors 51, 52 ... routing conductors 101, 102, 103 ... laminated toroidal coil

Claims (9)

第1主面および第2主面を有する磁性体基板と、
非磁性体基板と、を含み、
前記磁性体基板の少なくとも前記第1主面に前記非磁性体基板を積層してなり、第3主面および第4主面を有する積層体と、
前記第3主面に配置される、前記非磁性体基板に形成された外部電極と、
コイルと、
を備え、
前記積層体は、前記第3主面から前記第4主面までを貫通する貫通孔が設けられ、
前記コイルは、
前記磁性体基板の前記第1主面に形成される第1導体パターンと、
前記磁性体基板の前記第2主面に形成される第2導体パターンと、
前記磁性体基板の外周側端面に形成される外周側端面導体と、
前記磁性体基板のうち前記貫通孔側の内周側端面に形成される内周側端面導体と、
が接続されてなり、
前記積層体は、複数の前記貫通孔が設けられ、
前記コイルは、
前記磁性体基板および前記非磁性体基板の積層方向から視て、隣接する前記貫通孔の周囲に形成される磁界の向きが互いに逆になるように巻回される、
積層トロイダルコイル。
A magnetic substrate having a first main surface and a second main surface;
A non-magnetic substrate,
A non-magnetic substrate laminated on at least the first main surface of the magnetic substrate, and a laminate having a third main surface and a fourth main surface;
An external electrode formed on the non-magnetic substrate, disposed on the third main surface;
Coils,
With
The laminate is provided with a through-hole penetrating from the third main surface to the fourth main surface,
The coil is
A first conductor pattern formed on the first main surface of the magnetic substrate;
A second conductor pattern formed on the second main surface of the magnetic substrate;
An outer peripheral end face conductor formed on the outer peripheral end face of the magnetic substrate;
An inner peripheral end face conductor formed on the inner peripheral end face on the through hole side of the magnetic substrate;
Ri but the name is connected,
The laminate is provided with a plurality of the through holes,
The coil is
As viewed from the stacking direction of the magnetic substrate and the non-magnetic substrate, it is wound so that directions of magnetic fields formed around the adjacent through holes are opposite to each other.
Multilayer toroidal coil.
第1主面および第2主面を有する磁性体基板と、
非磁性体基板と、を含み、
前記磁性体基板の少なくとも前記第1主面に前記非磁性体基板を積層してなり、第3主面および第4主面を有する積層体と、
前記第3主面に配置される、前記非磁性体基板に形成された外部電極と、
コイルと、
を備え、
前記積層体は、前記第3主面から前記第4主面までを貫通する貫通孔が設けられ、
前記コイルは、
前記磁性体基板の前記第1主面に形成される第1導体パターンと、
前記磁性体基板の前記第2主面に形成される第2導体パターンと、
前記磁性体基板の外周側端面に形成される外周側端面導体と、
前記磁性体基板のうち前記貫通孔側の内周側端面に形成される内周側端面導体と、
が接続されてなり、
前記内周側端面には複数の前記内周側端面導体が形成され、
前記積層体は、前記磁性体基板および前記非磁性体基板の積層方向から視た前記貫通孔に、凸部および凹部が形成され、
前記複数の内周側端面導体は、前記凸部および前記凹部が形成された位置における前記内周側端面に形成される、
積層トロイダルコイル。
A magnetic substrate having a first main surface and a second main surface;
A non-magnetic substrate,
A non-magnetic substrate laminated on at least the first main surface of the magnetic substrate, and a laminate having a third main surface and a fourth main surface;
An external electrode formed on the non-magnetic substrate, disposed on the third main surface;
Coils,
With
The laminate is provided with a through-hole penetrating from the third main surface to the fourth main surface,
The coil is
A first conductor pattern formed on the first main surface of the magnetic substrate;
A second conductor pattern formed on the second main surface of the magnetic substrate;
An outer peripheral end face conductor formed on the outer peripheral end face of the magnetic substrate;
An inner peripheral end face conductor formed on the inner peripheral end face on the through hole side of the magnetic substrate;
Is connected,
A plurality of inner peripheral end surface conductors are formed on the inner peripheral end surface,
The laminate is formed with a convex portion and a concave portion in the through hole viewed from the lamination direction of the magnetic substrate and the non-magnetic substrate,
The plurality of inner peripheral side end surface conductors are formed on the inner peripheral side end surface at positions where the convex portions and the concave portions are formed.
Multilayer toroidal coil.
前記非磁性体基板は、一方主面が前記第1主面上に配置され、他方主面が前記第3主面となる第1非磁性体基板と、一方主面が前記第2主面上に配置され、他方主面が前記第4主面となる第2非磁性体基板と、を有する、請求項1または請求項2に記載の積層トロイダルコイル。 The non-magnetic substrate has a first non-magnetic substrate having one main surface disposed on the first main surface and the other main surface serving as the third main surface, and one main surface on the second main surface. The laminated toroidal coil according to claim 1, further comprising: a second non-magnetic substrate having the other main surface serving as the fourth main surface. 前記積層体の外縁形状は、前記磁性体基板および前記非磁性体基板の積層方向から視て、長方形である、請求項1から3のいずれかに記載の積層トロイダルコイル。 4. The multilayer toroidal coil according to claim 1, wherein an outer edge shape of the multilayer body is a rectangle as viewed from a lamination direction of the magnetic substrate and the nonmagnetic substrate. 前記外周側端面には複数の前記外周側端面導体が形成され、
前記積層体の各辺の前記外周側端面に形成される外周側端面導体の数は、いずれも等しい、請求項に記載の積層トロイダルコイル。
A plurality of the outer peripheral end surface conductors are formed on the outer peripheral end surface,
The multilayer toroidal coil according to claim 4 , wherein the number of outer peripheral side end surface conductors formed on the outer peripheral side end surface of each side of the multilayer body is equal.
前記外部電極は、前記磁性体基板および前記非磁性体基板の積層方向から視て、前記第1導体パターンに重ならない位置に配置される、請求項1からのいずれかに記載の積層トロイダルコイル。 The multilayer toroidal coil according to any one of claims 1 to 5 , wherein the external electrode is disposed at a position that does not overlap the first conductor pattern when viewed from the lamination direction of the magnetic substrate and the nonmagnetic substrate. . 前記コイルはAgを主成分とする導体で構成される、請求項1からのいずれかに記載の積層トロイダルコイル。 The coil consists of a conductor whose main component is Ag, stacked toroidal coil according to any one of claims 1 to 6. 第1主面および第2主面を有する磁性体基板を形成する、磁性体基板形成工程と、
非磁性体基板を形成する、非磁性体基板形成工程と、
前記磁性体基板形成工程の後に、前記第1主面に第1導体パターンを形成し、前記第2主面に第2導体パターンを形成する、導体形成工程と、
前記導体形成工程および前記非磁性体基板形成工程の後に、前記非磁性体基板の一方主面が前記第1主面上に配置され、前記非磁性体基板の他方主面が第3主面となるように、前記磁性体基板および前記非磁性体基板を積層して積層体を得る、積層工程と、
前記積層工程の後に、前記磁性体基板および前記非磁性体基板の積層方向に貫通する貫通孔を前記積層体に形成する、貫通孔形成工程と、
前記積層工程の後に、前記積層体を個片に分離する、分離工程と、
前記分離工程の後に、前記積層体を加熱する、加熱工程と、
を備える、積層トロイダルコイルの製造方法。
Forming a magnetic substrate having a first main surface and a second main surface;
Forming a non-magnetic substrate; a non-magnetic substrate forming step;
A conductor forming step of forming a first conductor pattern on the first main surface and forming a second conductor pattern on the second main surface after the magnetic substrate forming step;
After the conductor forming step and the non-magnetic substrate forming step, one main surface of the non-magnetic substrate is disposed on the first main surface, and the other main surface of the non-magnetic substrate is the third main surface. A stacking step of stacking the magnetic substrate and the non-magnetic substrate to obtain a stacked body; and
A through-hole forming step of forming a through-hole penetrating in the stacking direction of the magnetic substrate and the non-magnetic substrate after the stacking step;
A separation step of separating the laminate into pieces after the lamination step;
A heating step of heating the laminate after the separation step;
A method for producing a laminated toroidal coil.
前記導体形成工程は、前記磁性体基板に、前記第1導体パターンと前記第2導体パターンとを接続する層間接続導体を形成する工程を含み、
前記分離工程は、前記積層体を、前記層間接続導体ごと分離する工程を含む、請求項に記載の積層トロイダルコイルの製造方法。
The conductor forming step includes a step of forming an interlayer connection conductor for connecting the first conductor pattern and the second conductor pattern to the magnetic substrate,
The method for manufacturing a laminated toroidal coil according to claim 8 , wherein the separating step includes a step of separating the laminated body together with the interlayer connection conductor.
JP2018538268A 2016-09-09 2017-07-25 Multilayer toroidal coil and manufacturing method thereof Active JP6562158B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016176097 2016-09-09
JP2016176097 2016-09-09
PCT/JP2017/026758 WO2018047486A1 (en) 2016-09-09 2017-07-25 Laminated toroidal coil and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2018047486A1 JPWO2018047486A1 (en) 2019-02-14
JP6562158B2 true JP6562158B2 (en) 2019-08-21

Family

ID=61561908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018538268A Active JP6562158B2 (en) 2016-09-09 2017-07-25 Multilayer toroidal coil and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6562158B2 (en)
WO (1) WO2018047486A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149168A1 (en) * 2022-02-03 2023-08-10 ローム株式会社 Circuit component, electronic device and method for producing circuit component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149807U (en) * 1986-03-13 1987-09-22
US5349743A (en) * 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
JPH07220948A (en) * 1994-02-04 1995-08-18 Matsushita Electric Ind Co Ltd Chip inductance part and its manufacturing method
US5877666A (en) * 1997-03-12 1999-03-02 Lucent Technologies Inc. Stackable, passively-tunable, cost-reduced inductor

Also Published As

Publication number Publication date
WO2018047486A1 (en) 2018-03-15
JPWO2018047486A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6455959B2 (en) Magnetic module for power inductor, power inductor and manufacturing method thereof
US20180254139A1 (en) Coil-incorporated component
JP6780589B2 (en) Electronic components
KR101532171B1 (en) Inductor and Manufacturing Method for the Same
JP2004128506A (en) Stacked coil component and its manufacturing method
JP5835355B2 (en) Coil parts
JP2012038806A (en) Laminated coil
JPWO2006008878A1 (en) Coil parts
KR101843283B1 (en) Coil Electronic Component
JP2019067883A (en) Magnetic coupling type coil component
JP2012256757A (en) Lc composite component and mounting structure of lc composite component
JP7369546B2 (en) coil parts
WO2016136653A1 (en) Multilayer coil component, method for producing same and dc-dc converter module provided with said multilayer coil component
JP2018006411A (en) Laminated coil component
JP2019079844A (en) Lamination coil component and manufacturing method thereof
JP2017050556A (en) Common mode filter and method of manufacturing the same
JPWO2005024863A1 (en) Multilayer coil component and manufacturing method thereof
JP2006339617A (en) Electronic component
CN107871585B (en) Electronic component
JP2017152457A (en) Coil component
JP6562158B2 (en) Multilayer toroidal coil and manufacturing method thereof
JP2012182286A (en) Coil component
JPH0529147A (en) Laminated chip transformer
JP2003217935A (en) Layered inductor array
JP5516552B2 (en) Electronic component and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6562158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150