JP6558765B2 - 処理装置、処理方法、推測装置、推測方法、およびプログラム - Google Patents

処理装置、処理方法、推測装置、推測方法、およびプログラム Download PDF

Info

Publication number
JP6558765B2
JP6558765B2 JP2014256104A JP2014256104A JP6558765B2 JP 6558765 B2 JP6558765 B2 JP 6558765B2 JP 2014256104 A JP2014256104 A JP 2014256104A JP 2014256104 A JP2014256104 A JP 2014256104A JP 6558765 B2 JP6558765 B2 JP 6558765B2
Authority
JP
Japan
Prior art keywords
input
output
selection
vector
option
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014256104A
Other languages
English (en)
Other versions
JP2016115316A (ja
Inventor
貴行 恐神
貴行 恐神
哲郎 森村
哲郎 森村
大塚 誠
誠 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to JP2014256104A priority Critical patent/JP6558765B2/ja
Priority to US14/974,467 priority patent/US10579933B2/en
Publication of JP2016115316A publication Critical patent/JP2016115316A/ja
Application granted granted Critical
Publication of JP6558765B2 publication Critical patent/JP6558765B2/ja
Priority to US16/792,472 priority patent/US11227228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)

Description

本発明は、処理装置、処理方法、推測装置、推測方法、およびプログラムに関する。
従来、消費者の消費行動を分析する方法、および消費者に商品を推薦するシステム等が知られている(例えば、非特許文献1〜3参照)。また、消費者が複数の商品から1または複数の商品を選択する場合、当該消費者の選択行動には種々の認知バイアスがかかることおよびその関連技術が知られている(例えば、特許文献1〜4、非特許文献1〜3等参照)。
[特許文献1] 特開2009−87235号公報
[特許文献2] 特開2010−26596号公報
[非特許文献1] Roe, Robert M.; Busemeyer, Jermone R.; Townsend, James T.; "Multialternative decision field theory: A dynamic connectionst model of decision making.", Psychological Review, Vol. 108(2), Apr 2001, 370-392.
[非特許文献2] Hruschka, Harald.; "Analyzing market baskets by restricted Boltzmann machines.", OR Spectrum, Aug 2012, 1-20.
[非特許文献3] Teppan, Erich Christian; Alexander Felfernig; "Minimization of product utility estimation errors in recommender result set evaluations, "Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 01. IEEE Computer Society, 2009.
[非特許文献4] Shenoy, P.; Yu., A. J.; "Rational preference shifts in multi-attribute choice: What is fair?", インターネット<URL : http://www.cogsci.ucsd.edu/~ajyu/Papers/jdm_cogsci13.pdf>, 2013
[非特許文献5] Hinton, G. E.; Salakhutdinov, R.; "Replicated softmax: an undirected topic model.", Advances in Neural Information Processing Systems 22, NIPS 2009, pp. 1607-1614
このような、認知バイアスがかかった消費者の選択行動は、選択肢の商品リストに含まれるアイテムの種類の組み合わせに応じて商品の相対的な選択確率に影響を与えることになり、既存のモデルで表現することが困難であった。そして、認知バイアスをモデル化しても、複雑なモデルとなってしまう上に、学習アルゴリズムまで構築することは知られていなかった。また、このような選択行動において、商品の特徴量まで考慮してモデル化することは、知られていなかった。
本発明の第1の態様においては、提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する処理装置であって、選択主体に提示された複数の入力選択肢の特徴を示す複数の入力特徴ベクトルと、複数の入力選択肢の中から選択主体によって選択された選択肢である出力選択肢の特徴を示す出力特徴ベクトルとを含む学習データを取得する取得部と、複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、入力合成ベクトルおよび出力特徴ベクトルに基づいて、選択モデルを学習する学習処理部と、を備える処理装置、当該処理装置の処理方法、および当該処理装置として動作させるプログラムを提供する。
本発明の第2の態様においては、提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて前記選択主体の選択行動を推測する推測装置であって、選択主体に提示される複数の入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する取得部と、複数の入力選択肢に対応する複数の入力特徴ベクトルの中から、選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択部と、複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、入力合成ベクトルおよび出力特徴ベクトルに基づいて、選択モデルにおいて出力選択肢が選択される可能性を推測する推測部と、を備える推測装置、当該推測装置の推測方法、および当該推測装置として動作させるプログラムを提供する。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る認知バイアスの第1例を示す。 本実施形態に係る認知バイアスの第2例を示す。 本実施形態に係る認知バイアスの第3例を示す。 本実施形態に係る処理装置100の構成例を示す。 本実施形態に係る処理装置100の動作フローを示す。 本実施形態に係る学習データの一例を示す。 本実施形態に係る学習データの一例を示す。 本実施形態に係るバイナリ化部112が用いる変換テーブルの一例を示す。 本実施形態に係るバイナリ化部112が図8に示す変換テーブルを用いて各商品の特徴ベクトルをバイナリベクトルに変換した例を示す。 本実施形態に係る選択モデル10の一例を示す。 本実施形態に係る処理装置100の変形例を示す。 本実施形態に係る推測部170が算出した各選択肢が選択される確率の一例を示す。 本実施形態に係る推測装置200の構成例を示す。 本実施形態に係る選択モデル10の第1の変形例を示す。 本実施形態に係る選択モデル10の第2の変形例を示す。 本実施形態に係る選択モデル10の第3の変形例を示す。 本実施形態に係る選択モデル10の第4の変形例を示す。 本実施形態に係る処理装置100および推測装置200として機能するコンピュータ1900のハードウェア構成の一例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
複数の選択肢を提示された人(消費者)および動物等の選択主体が、嗜好等に基づいて当該選択肢の中からいずれかを選択する行動において、当該選択行動の選択結果は、与えられた選択肢に応じて変化することが知られている。本実施形態において、このような選択行動の一例として、消費者が複数の商品から1つの商品を選択する場合を説明する。
消費者が複数の商品から1または複数の商品を選択する場合、当該消費者の選択行動には種々の認知バイアスが加わる。例えば、第1の商品と第2の商品を含む複数の商品をそれぞれ選択肢として消費者に提示した場合、当該消費者が第1の商品と第2の商品をそれぞれ選択する確率の比は、提示した複数の選択肢に含まれる他の商品に応じて異なることがある。この場合、提示した複数の選択肢に含まれる他の商品の存在が、消費者の選択行動に認知バイアスを加えたことになる。
図1は、本実施形態に係る認知バイアスの第1例を示す。図1は、本実施形態の認知バイアスであるシミラリティ効果(Similarity Effect)を説明する図である。図1において、商品A、B、およびSは、消費者に提示する選択肢である。図1のグラフは、商品の特徴の一例として、横軸に価格、縦軸に品質として商品A、B、およびSを示す。なお、横軸において+方向は価格が安くなることを示し、縦軸において+方向は品質が高くなることを示す。即ち、商品Aは、商品Bに比較して、価格および品質が高い商品である。また、商品Sは、商品Bに比較して、価格が高く品質も高い商品Aに類似した商品である。
ここでまず、市場(マーケット)に商品AおよびBの選択肢がある場合、消費者が商品AおよびBを選択するそれぞれの確率に応じて、商品AおよびBのシェアが定まる。そして、当該市場に商品Sを加えると、商品Sは商品Aと類似することから、商品Aのシェアを減少させて、商品AおよびBのシェアの比率に変化を与えることがある。即ち、この場合、商品AおよびBの選択肢に対して、商品Aに類似した商品Sの存在が、類似している商品同士でシェアを分け合うように、消費者の選択行動に認知バイアスを加える。このような認知バイアスの効果を、シミラリティ効果と呼ぶ。
図2は、本実施形態に係る認知バイアスの第2例を示す。図2は、本実施形態の認知バイアスであるコンプロマイズ効果(Compromise Effect)を説明する図である。図2において、商品A、B、およびCは、消費者に提示する選択肢である。図2のグラフは、図1と同様に、商品の特徴の一例として、横軸に価格、縦軸に品質として商品A、B、およびCを示す。即ち、商品Aは、商品Bに比較して、価格および品質が高い商品である。また、商品Cは、商品Bに比較して、価格が安く、品質も低い商品である。
ここでまず、市場に商品AおよびBの選択肢がある場合、消費者が商品AおよびBを選択するそれぞれの確率に応じて、商品AおよびBのシェアが定まる(初期状態)。そして、当該市場に商品Cを加えると、商品A、B、およびCは、この順に価格と品質の程度が並ぶことになり、価格も品質も高い商品Aのシェアを減少させて、商品AおよびBのシェアの比率に変化を与えることがある。
例えば、商品AおよびBの選択肢に対して、価格も品質も商品Bより低い商品Cの存在が、商品の価格および品質のバランスの順位を形成させ、価格も品質も高い商品Aとシェアを分け合い、結果として価格も品質も中間の商品Bのシェアが向上する。このような、商品Cによって消費者の選択行動に認知バイアスを加える効果を、コンプロマイズ効果と呼ぶ。
図3は、本実施形態に係る認知バイアスの第3例を示す。図3は、本実施形態の認知バイアスであるアトラクション効果(Attraction Effect)を説明する図である。図3において、商品A、B、およびDは、消費者に提示する選択肢である。図3のグラフは、図1と同様に、商品の特徴の一例として、横軸に価格、縦軸に品質として商品A、B、およびDを示す。即ち、商品Aは、商品Bに比較して、価格および品質が高い商品である。また、商品Dは、商品Bに比較して、価格が少し高く、品質が少し低い商品である。
ここでまず、市場に商品AおよびBの選択肢がある場合、消費者が商品AおよびBを選択するそれぞれの確率に応じて、商品AおよびBのシェアが定まる。そして、当該市場に商品Dを加えると、商品Bが相対的に商品Dより価格が安く品質も高いため、商品Bのシェアを増加させて、商品AおよびBのシェアの比率に変化を与えることがある。
即ち、この場合、商品AおよびBの選択肢に対して、価格も品質も商品Bに比べて少し劣る商品Cの存在が、商品Bの価格と品質に好ましい印象を与えるように、消費者の選択行動に認知バイアスを加える。このような認知バイアスの効果を、アトラクション効果と呼ぶ。
以上の3つの例のように、市場における消費者の選択行動には、種々の認知バイアスが加わり、その結果として、商品のシェア等が定まる。また、このような種々の認知バイアスは、商品の具体的な価格および商品の具体的な品質といった特徴量に応じて変化する。
したがって、例えば、消費者の消費行動を分析する場合、および消費者に商品を推薦する場合、当該認知バイアスを考慮したモデルを用いることが望ましい。また、認知バイアスがかかった消費者の選択行動を、商品の特徴量(例えば、価格がどれだけ高いか/安いか、品質がどのくらい高いか/低いか)まで考慮して、予測精度の高い学習可能なモデルで表現することがより望ましい。しかしながら、従来の学習モデルでこのようなモデルを表現することは困難であった。また、認知バイアスをモデル化しても、複雑なモデルとなってしまい、当該モデルを学習させることができなかった。
そこで、本実施形態の処理装置100は、消費者等に与えられた複数の選択肢を示す複数の入力特徴量から選択された選択項目を示す出力特徴量への写像を学習する問題として定式化することにより、商品の特徴量に基づいて認知バイアスが加わった消費者の選択行動を、学習可能なモデルで表現する。即ち、処理装置100は、提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する。
図4は、本実施形態に係る処理装置100の構成例を示す。処理装置100は、取得部110と、記憶部120と、入力合成部130と、出力合成部140と、学習処理部150とを備える。本実施形態において、処理装置100は、選択主体である消費者に、複数の商品を選択肢として提示し、当該消費者が1または複数の商品を選択する行動について説明する。
取得部110は、選択主体に提示された複数の入力選択肢の特徴を示す複数の入力特徴ベクトルと、複数の入力選択肢の中から選択主体によって選択された1または複数の選択肢である出力選択肢の特徴を示す出力特徴ベクトルと、を含む学習データを取得する。取得部110は、例えば、複数の商品のうち、消費者に与えられる入力選択肢と、当該入力選択肢に含まれる商品の特徴量とに応じた入力特徴ベクトルを学習データとして取得する。
また、取得部110は、例えば、入力選択肢のうちから消費者が選択した1または複数の商品である出力選択肢と、当該出力選択肢の特徴量とに応じた出力特徴ベクトルを学習データとして取得する。なお、処理装置100は、商品の特徴量を特徴パラメータとして取り扱う。特徴パラメータは、特徴量に応じた実数の数値またはバイナリ値が入力される。
取得部110は、データベース等の外部の記憶装置に予め定められた形式で記憶された学習データを読み出して取得してよい。また、取得部110は、ネットワーク等に接続され、処理装置100の本体とは異なる位置で学習データを取得し、当該ネットワークを介して本体に取得した学習データを供給してもよい。例えば、取得部110は、サーバ等にアクセスして、当該サーバに記憶された学習データを取得する。また、取得部110は、商品またはサービス等をウェブサイトで販売するEC(電子商取引)サイト等から、消費者に与えた商品の情報と、消費者が購入またはカート等に入れた経歴等の情報を学習データとして取得してよい。
また、取得部110は、個別の入力装置等によって実現され、処理装置100の本体の前処理として学習データを取得してもよい。取得部110は、取得した学習データを記憶部120に供給する。取得部110は、バイナリ化部112を有する。
バイナリ化部112は、複数の入力選択肢のそれぞれおよび複数の出力選択肢のそれぞれの選択肢が有する特徴パラメータをバイナリ化して複数の入力特徴ベクトルのそれぞれおよび複数の出力特徴ベクトルのそれぞれの特徴ベクトルを生成する。即ち、複数の入力特徴ベクトルおよび複数の出力特徴ベクトルのそれぞれは、バイナリ化部112によってバイナリベクトルとなる。バイナリ化部112は、より近い特徴パラメータ同士をより近い特徴ベクトル同士へと変換するようにバイナリ化する。
記憶部120は、取得部110に接続され、当該取得部110から受け取った学習データを記憶する。また、記憶部120は、処理装置100が生成する選択モデルを記憶してよい。また、記憶部120は、当該選択モデルを生成する過程で生成する(または利用する)中間データ、算出結果、およびパラメータ等をそれぞれ記憶してもよい。また、記憶部120は、処理装置100内の各部の要求に応じて、記憶したデータを要求元に供給してよい。
入力合成部130は、複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する。入力合成部130は、複数の入力選択肢に対し、入力選択肢の順序に依存せず同一値をとる入力合成ベクトルを生成する。入力合成部130は、例えば、複数の入力特徴ベクトルの平均に基づく入力合成ベクトルを生成する。
また、入力合成部130は、取得部110がバイナリベクトルである複数の入力特徴ベクトルを取得した場合、複数の入力特徴ベクトルの論理演算に基づく入力合成ベクトルを生成してよい。この場合、入力合成部130は、複数の入力特徴ベクトルの要素毎の論理OR(ビット単位の論理OR)に基づく入力合成ベクトルを生成する。入力合成部130は、生成した入力合成ベクトルを学習処理部150に供給する。
出力合成部140は、複数の入力選択肢の中から選択主体によって選択された複数の出力選択肢についての複数の出力特徴ベクトルを合成して、出力合成ベクトルを生成する。出力合成部140は、取得部110が1の出力特徴ベクトルを取得した場合、当該1の出力特徴ベクトルを出力合成ベクトルとする。出力合成部140は、複数の出力選択肢に対し、出力選択肢の順序に依存せず同一値をとる出力合成ベクトルを生成する。出力合成部140は、例えば、複数の出力特徴ベクトルの平均に基づく出力合成ベクトルを生成する。
また、出力合成部140は、取得部110がバイナリベクトルである複数の出力特徴ベクトルを取得した場合、複数の出力特徴ベクトルの論理演算に基づく出力合成ベクトルを生成してよい。この場合、出力合成部140は、複数の出力特徴ベクトルの要素毎の論理OR(ビット単位の論理OR)に基づく出力合成ベクトルを生成する。出力合成部140は、生成した入力合成ベクトルを学習処理部150に供給する。
学習処理部150は、入力合成部130および出力合成部140に接続され、入力合成ベクトルおよび出力合成ベクトルに基づいて、選択モデルを学習する。なお、学習処理部150は、取得部110が1の出力特徴ベクトルを取得した場合、入力合成ベクトルおよび当該1の出力特徴ベクトルに基づいて、選択モデルを学習する。学習処理部150は、選択主体の認知バイアスに応じた選択行動を含む選択モデルを学習する。即ち、学習処理部150は、消費者に与えられた複数の選択肢に応じて値が定まるバイアスパラメータを含むパラメータを用いて、選択モデルを学習する。学習処理部150は、学習した選択モデルを記憶部120に記憶する。
以上の本実施形態の処理装置100は、バイアスパラメータを含むパラメータを用いて入力合成ベクトルから出力合成ベクトルへの写像を学習し、与えられた選択肢に対する消費者の選択行動をモデル化した選択モデルを生成する。処理装置100の具体的な動作について、図5を用いて説明する。
図5は、本実施形態に係る処理装置100の動作フローを示す。本実施形態の処理装置100は、図5に示された動作フローを実行して、選択モデルを学習する学習装置として機能する。
まず、取得部110は、学習データを取得する(S200)。取得部110は、消費者に提示される可能性のあるJ個の商品またはサービス、提示した複数の選択肢(即ち、J個の商品のうちから選別されたD個の商品)、および消費者が複数の選択肢の中から選択したC個の商品等の情報を取得する。本実施形態において、取得部110が、5つの商品(A,B,C,D,S)を消費者に提示される可能性のある商品として取得した例を説明する。
図6は、本実施形態に係る学習データの一例を示す。図6の横軸は消費者に提示された商品の組を、縦軸は消費者が商品を選択した分布を示す。図6は、消費者に5通りの選択肢の組を提示した場合の選択結果を示す。
例えば、図6において、横軸に(A,B)と示されるグラフは、消費者に提示された商品がAおよびBである場合(選択肢組R1とする)に、消費者が選択した商品がAだった割合が0.5、選択した商品がBだった割合が0.5を示す。そして、一例として、市場における商品AおよびBのシェアは、消費者が選択した割合と略同一のパーセンテージになるとする。本実施形態において、このような選択肢組R1を提示した結果は、消費者に最初に商品を選択させる「初期状態」の学習データである。
また、(A,B,B)のグラフは、消費者に1つの商品Aおよび2つの商品Bを選択肢(選択肢組R2とする)として提示した場合に、消費者が商品Aを選択した割合が0.4、商品Bを選択した割合が0.6(一方の商品Bが0.3、他方の商品Bが0.3)の結果が得られたことを示す。即ち、(A,B,B)のグラフは、初期状態の選択肢組R1に商品Bを加えた場合の、消費者の選択行動の変化を示す。また、(A,B,S)のグラフは、消費者に商品A、B、およびSの3つの商品を選択肢(選択肢組R3とする)として提示した場合に、消費者が商品Aを選択した割合が0.4、商品Bを選択した割合が0.35、商品Sを選択した割合が0.25の結果が得られたことを示す。
また、(A,B,D)のグラフは、消費者に商品A、B、およびDの3つの商品を選択肢(選択肢組R4とする)として提示した場合に、消費者が商品Aを選択した割合が0.4、商品Bを選択した割合が0.6、商品Dを選択した割合が0の結果が得られたことを示す。また、(A,B,C)のグラフは、消費者に商品A、B、およびCの3つの商品を選択肢(選択肢組R5とする)として提示した場合に、消費者が商品Aを選択した割合が0.3、商品Bを選択した割合が0.6、商品Cを選択した割合が0.1の結果が得られたことを示す。
図7は、本実施形態に係る学習データにおける特徴量の一例を示す。図7は、商品の特徴量を示し、横軸は商品の価格の安さ、縦軸は商品の品質の高さを示す。即ち、本実施形態において、商品の特徴量を、商品の価格および品質といった2つの特徴パラメータで取り扱い、特徴ベクトルは当該特徴パラメータを要素とする例を説明する。当該2つの特徴パラメータは、それぞれ予め定められた値に規格化された実数でよい。図7は、商品EおよびFの値を用い、特徴パラメータの最大値が100、最小値が0となるように規格化した例を示す。即ち、特徴ベクトルを(価格,商品)で示すと、商品E(100,100)、商品F(0,0)となる。なお、図7において、商品A、B、C、D、およびSは、図6で説明した消費者に提示される可能性のある商品である。
即ち、商品Aは、商品Bに比較して、価格は高いが、品質が高い商品である。このような商品AおよびBを選択肢とした選択肢組R1におけるシェアは、図6のグラフ(A,B)より50:50となることがわかる。なお、この場合の入力特徴ベクトルは、商品AおよびBの特徴ベクトルを用い、例えば、商品A(価格,品質)および商品B(価格,品質)となる。また、消費者が1つの選択肢を選択する場合、出力特徴ベクトルは、商品A(価格,品質)または商品B(価格,品質)となる。
また、1つの商品Aおよび2つの商品Bを選択肢とした選択肢組R2のシェアは、図6のグラフ(A,B,B)より40:30:30である。これは、2つの同一の商品Bに存在が、同一の商品同士でシェアを分け合うように、消費者の選択行動に認知バイアスを加えた結果を示す学習データである。
また、商品Sは、商品Bに類似した商品である。このような商品A、B、およびSを選択肢とした選択肢組R3のシェアは、図6のグラフ(A,B,S)より40:35:20である。これは、商品Bに類似した商品Sの存在が、類似している商品同士でシェアを分け合うように、消費者の選択行動に認知バイアスを加えた結果(シミラリティ効果)を示す学習データである。
なお、この場合の入力特徴ベクトルは、商品A、B、およびSの特徴ベクトルであり、例えば、商品A(価格,品質)、商品B(価格,品質)、および商品S(価格,品質)となる。また、出力特徴ベクトルは、入力特徴ベクトルのうちのいずれか1つとなる。
また、商品Dは、商品Bに比較して、価格が少し高く、品質が少し低い商品である。このような商品A、B、およびDを選択肢とした選択肢組R4のシェアは、図6のグラフ(A,B,D)より40:60:0である。これは、価格も品質も商品Bに比べて少し劣る商品Dの存在が、商品Bの価格と品質に好ましい印象を与え、商品Bのシェアを向上させるように、消費者の選択行動に認知バイアスを加えた結果(アトラクション効果)を示す学習データである。
なお、この場合の入力特徴ベクトルは、商品A、B、およびDの特徴ベクトルであり、例えば、商品A(価格,品質)、商品B(価格,品質)、および商品D(価格,品質)となる。また、出力特徴ベクトルは、入力特徴ベクトルのうちのいずれか1つとなる。
また、商品Cは、商品Bに比較して、価格が安く、品質も低い商品である。このような商品A、B、およびCを選択肢とした選択肢組R5のシェアは、図6のグラフ(A,B,C)より30:60:10である。これは、価格が安く、品質も低い商品Cの存在が、商品の価格および品質のバランスの順位を形成させ、結果として価格も品質も中間の商品Bのシェアが向上させるように、消費者の選択行動に認知バイアスを加えた結果(コンプロマイズ効果)を示す学習データである。
なお、この場合の入力特徴ベクトルは、商品A、B、およびCの特徴ベクトルであり、例えば、商品A(価格,品質)、商品B(価格,品質)、および商品C(価格,品質)となる。また、出力特徴ベクトルは、入力特徴ベクトルのうちのいずれか1つとなる。取得部110は、以上のような学習データを取得して、記憶部120に記憶する。
次に、バイナリ化部112は、入力特徴ベクトルおよび出力特徴ベクトルの実数の各要素をそれぞれバイナリ化する(S210)。バイナリ化部112によるバイナリ変換の一例を、図8を用いて説明する。
図8は、本実施形態に係るバイナリ化部112が用いる変換テーブルの一例を示す。即ち、図8は、特徴ベクトルの各要素をバイナリ変換する変換テーブルの一例を示す。図8の横軸は0から200までの201個のノードIDを示し、縦軸は特徴パラメータの規格化された値(本実施例においては0から100の値)を示す。また、変換テーブルの白い領域は値が0となる領域を示し、斜線で示す領域は値が1となる領域を示す。
バイナリ化部112は、変換すべき特徴パラメータの値と一致する縦軸の値から横軸方向へと延びる直線と、ノードIDから縦軸方向に延びる直線との交点が含まれる領域の値を当該ノードIDのバイナリ値とする。バイナリ化部112は、例えば、価格0および品質0の商品Fの特徴パラメータに対して、いずれもノード0から100を0に、ノード101から200を1にしたバイナリ値に変換する。
なお、バイナリ化部112は、複数の特徴パラメータをそれぞれバイナリ値に変換した後、変換後の複数のバイナリ値を連結して、バイナリベクトルとする。即ち、バイナリ化部112は、商品F(0,0)に対して、ノード0から100を0に、ノード101から200を1に、ノード201から301を0に、ノード302から401を1にしたバイナリベクトルに変換する。同様に、バイナリ化部112は、商品E(100,100)に対して、ノード0から100を1に、ノード101から200を0に、ノード201から301を1に、ノード302から401を0にしたバイナリベクトルに変換する。
このように、バイナリ化部112は、1つの特徴パラメータの値をノード数201のバイナリ値に変換し、2つのバイナリ値を連結することで、2つの特徴パラメータを有する1つの特徴ベクトルをノード数402のバイナリベクトルに変換する。図8に示す変換テーブルは、特徴パラメータの増減に対して、ノードの値の領域が連続的に変化するので、値が近接する(類似の)特徴パラメータ同士は近接する(類似の)特徴ベクトル同士に変換させる。
図9は、本実施形態に係るバイナリ化部112が図8に示す変換テーブルを用いて各商品の特徴ベクトルをバイナリベクトルに変換した例を示す。図9の横軸は0から401までの402個のノードIDを示し、縦軸は各商品を示す。また、図中の白い領域はノードの値が0となる領域を示し、斜線で示す領域は値が1となる領域を示す。
ここで、商品A、B、C、D、Sに対応するバイナリベクトルを、要素数402のベクトルa=(ai=1,・・・,402、b=(bi=1,・・・,402、c=(ci=1,・・・,402、d=(di=1,・・・,402、s=(si=1,・・・,402とする。バイナリ化部112は、例えば、選択肢組R1に対して、入力特徴ベクトルをaおよびbとし、出力特徴ベクトルをaまたはbとする。このようにして、バイナリ化部112は、入力特徴ベクトルおよび出力特徴ベクトルをK次元(本実施形態では402次元)のバイナリベクトルに変換する。
次に、入力合成部130は、入力特徴ベクトルを合成する(S220)。本実施形態において、入力合成部130は入力特徴ベクトルの要素ごとの平均を算出することにより、入力特徴量を合成する例を説明する。即ち、入力合成部130は、例えば、選択肢組R1の入力Aの特徴ベクトルaおよびBの特長ベクトルbを合成した、要素数402の入力合成ベクトルxR1=(xR1 i=1,・・・,402を次式のように算出する。
(数1)
R1 ={a+b}/2 i=1,2,・・・,402
同様に、入力合成部130は、選択肢組R2からR5の入力特徴ベクトルを合成した入力合成ベクトルxRn(xRn i=1,・・・,402を次式のように算出する。このように、入力合成部130は、各要素が実数となる入力合成ベクトルを生成して学習処理部150に供給する。
(数2)
R2 ={a+2b}/3
R3 ={a+b+s}/3
R4 ={a+b+d}/3
R5 ={a+b+c}/3
次に、出力合成部140は、出力特徴ベクトルを合成する(S230)。なお、本実施形態において、消費者が与えられた複数の選択肢のうち、1の選択肢を選択する場合、出力特徴ベクトルの個数は1である。この場合、出力合成部140は、出力特徴ベクトルをそのまま出力合成ベクトルとする。即ち、出力合成部140は、例えば、選択肢組R1に対して消費者が商品Aを選択した場合、要素数402の出力特徴ベクトルaを出力合成ベクトルyR1A(yR1A j=1,・・・,402として出力する。また、出力合成部140は、選択肢組R1に対して消費者が商品Bを選択した場合、要素数402の出力特徴ベクトルbを出力合成ベクトルyR1B(yR1B j=1,・・・,402として出力する。
出力合成部140は、一例として、各選択肢組に対する出力合成ベクトルyRnM(yRnM j=1,・・・,402を、次式のように生成して学習処理部150に供給する。即ち、出力合成ベクトルyRnMは、商品Mを含む選択肢組Rnから消費者がMを選択した場合を示す。
(数3)
R1A =a
R1B =b
R2A =a
R2B =b
R3A =a
R3B =b
R3S =s
R4A =a
R4B =b
R4D =d
R5A =a
R5B =b
R5C =c j=i=1,2,・・・,402
次に、学習処理部150は、学習用の入力合成ベクトルおよび出力合成ベクトルを用いて、選択モデルの学習を実行する(S240)。本実施形態の学習データにおいて、例えば、初期状態の商品Aと商品Bの選択割合の比(0.5/0.5)は、シミラリティ効果の結果によって、異なる比(0.4/0.35)となる。同様に、当該比は、コンプロマイズ効果の結果による当該比(0.3/0.6)、およびアトラクション効果の結果による当該比(0.4/0.6)のように、選択肢に応じてそれぞれ異なる比となる。
従来、このような消費者に提示する複数の選択肢に応じて、当該複数の選択肢に含まれる商品の選択割合の比が変化する選択行動は、モデル化することが困難であった。また、選択肢の特徴量を含めてモデル化することは、知られていなかった。そこで、本実施形態の学習処理部150は、消費者の選択行動を、入力合成ベクトルから出力合成ベクトルへの写像を学習する問題として定式化して、入力選択肢に含まれる選択肢同士の選択割合の比が入力選択肢に含まれる他の選択肢の組合せと選択肢の特徴量に応じて異なりうる選択モデルを学習する。
図10は、本実施形態に係る選択モデル10の一例を示す。選択モデル10は、入力層12と、出力層14と、中間層16とを有する。入力層12は入力合成ベクトルに、出力層14は出力合成ベクトルにそれぞれ対応し、それぞれK個の入力ノードを有し、中間層16はL個の入力ノードを有する。即ち、選択モデル10は、入力合成ベクトルに含まれる複数の入力特徴量に対応する複数の入力ノードと、出力合成ベクトルに含まれる複数の出力特徴量に対応する複数の出力ノードと、複数の中間ノードとを備える。
入力ノードは、K次元実数ベクトルの要素にそれぞれ対応し、各ノードの値が入力合成ベクトルの要素の値と略同一となる。例えば、入力層12は、入力合成ベクトルxRn(xni)に対応して、入力ノードxの値をxni−1とする(i=1,2,・・・,K)。同様に、出力ノードは、K次元実数ベクトルの要素にそれぞれ対応し、各ノードの値が出力合成ベクトルの要素の値と略同一となる。例えば、出力層14は、出力合成ベクトルyRnM(ynMj)に対応して、出力ノードyの値をynMj−1とする(j=1,2,・・・,K)。
中間層16の中間ノードhの数Lは、1以上の自然数であり、入力ノードの数(出力ノードの数)Kと同一の数でもよい。また、中間ノードhの値は、一例として、非零の値(例えば1)または0とする。ここで、中間層16は、選択モデルの入出力特性を表現すべく用いた隠れ層である。当該中間層16が有する中間ノードhの値は、結果として1または0の値が一意に求まらなくてもよく、1または0の値となる確率の分布等が得られてもよい。中間ノードhの値は、次式で示される。
(数4)
∈{0,1}, l∈{1,2,・・・,L}
選択モデル10が表現できる入出力特性は、中間ノードの数Lに応じて複雑さを増減できるので、より表現したい特性を増加させるには中間ノードの数Lを増加させることが好ましい。その一方で、選択モデル10の学習に必要な計算量は、中間ノードの数Lの増加に応じて増加するので、学習をより高速に実行させるには中間ノードの数Lを減少させることが好ましい。これらを考慮し、処理装置100の使用者等は、予め中間ノードの数Lを適度な値に設定してよい。
また、選択モデル10は、複数の入力ノードおよび複数の中間ノードの間、および複数の出力ノードおよび複数の中間ノードの間に複数の重みパラメータが設けられる。即ち、各入力ノードxおよび各中間ノードhの間に各第1ウェイト値Wilが設定される。各入力ノードxおよび各中間ノードhは、それぞれ接続され、当該接続によるデータの流れに第1ウェイトWilがそれぞれ付加される。また、選択モデル10は、各中間ノードhおよび各出力ノードyの間に各第2ウェイト値Ujlが設定される。即ち、各中間ノードhおよび各出力ノードyは、それぞれ接続され、当該接続によるデータの流れに第2ウェイトUilがそれぞれ付加される。
第1ウェイト値Wilおよび第2ウェイト値Ujlは、データの伝達方向によらず一定のウェイトを当該流れに付加する対称ウェイトである。ここで、各層内のノード同士は、接続されない。また、各入力ノードxおよび各出力ノードyは、それぞれ接続してもしなくてもよい。本実施形態においては、各入力ノードxおよび各出力ノードyを接続しない例を説明する。
また、選択モデル10は、入力層12、中間層16、および出力層14に含まれる各ノードに対して入力バイアス、中間バイアス、および出力バイアスが更に設定される。即ち、入力層12の各入力ノードxには、入力バイアスb がそれぞれ設定される。同様に、出力層14の各出力ノードyには出力バイアスb が、中間層16の各中間ノードhには中間バイアスb が、それぞれ設定される。
学習処理部150は、各入力ノードxおよび各中間ノードhの間の各第1ウェイト値Wilと、各中間ノードhおよび各出力ノードyの間の各第2ウェイト値Ujlとを学習する。また、学習処理部150は、入力層12の各入力バイアスb 、中間層16の各中間バイアスb 、および出力層14の各出力バイアスb を更に学習する。即ち、学習処理部150は、第1ウェイト値Wik、第2ウェイト値Ujk、入力バイアスb 、中間バイアスb 、および出力バイアスb をパラメータとして学習する。学習処理部150は、一例として、当該パラメータをベクトルθの要素とし、当該パラメータベクトルθ(Wil,Ujl,b ,b ,b )を用いて学習する。
学習処理部150は、このような、制約付ボルツマンマシン(Restricted Bolzmann Machine)に基づく選択モデルを学習する。ボルツマンマシンは、確率的に動作する確率的素子によって構成され、入力を固定して動作させても確率に応じて様々な値を出力し、当該出力の観測系列(例えば時間系列)から各出力の出現確率(出現頻度)を得るシステムである。ここで、確率的素子のそれぞれが確率的平衡状態に落ち着いている場合、即ち、確率的素子のそれぞれの状態の出現確率が略一定となる場合、状態αの出現確率はボルツマン分布(exp{−E(α)/T})に比例する。
即ち、確率的平衡状態におけるボルツマンマシンの状態の出現確率は入力から一意に定まる。なお、ボルツマンマシンは、初期値に応じて、出現確率が時間的に変動する過渡期を生じさせる場合があるが、当該初期値の影響が低減するまで十分に長い時間動作させることにより、出現確率は時間的に略一定の値に収束する。本実施形態においては、このような確率的平衡状態におけるボルツマンマシンに基づいて、選択モデルを学習する例を説明する。
学習処理部150は、入力合成ベクトルおよび出力合成ベクトルの要素を含む入出力サンプルベクトルslm=(x,ylm)(または入出力サンプル列、入出力サンプル配列等)を生成する。ここで、学習処理部150は、消費者の選択結果である選択割合に応じた数の入出力サンプルベクトルを生成してよい。本実施形態において、学習処理部150が、選択割合に比例した数の入出力サンプルベクトルを生成する例を説明する。
例えば、学習処理部150は、初期状態の選択肢組R1の提示に対して消費者が商品Aを選択した結果が50%であることに応じて、対応する入出力サンプルベクトルsR1Aを10個生成する。この場合、学習処理部150は、選択肢組R1の提示に対して商品Bを選択した結果が50%であることに応じて、対応する入出力サンプルベクトルsR1Bを10個生成する。学習処理部150は、一例として、入出力サンプルベクトルslmを次式のように生成する。なお、次式には、学習処理部150が各ベクトルを生成する数も示す。
(数5)
R1A=(xR1,yR1A):10個
R1B=(xR1,yR1B):10個
R2A=(xR2,yR2A):8個
R2B=(xR2,yR2B):12個
R3A=(xR3,yR3A):8個
R3B=(xR3,yR3B):7個
R3S=(xR3,yR3S):4個
R4A=(xR4,yR4A):8個
R4B=(xR4,yR4B):12個
R4D=(xR4,yR4D):0個
R5A=(xR5,yR5A):6個
R5B=(xR5,yR5B):12個
R5D=(xR5,yR5C):2個
学習処理部150は、(数5)式で示した合計100の入出力サンプルベクトルを学習用サンプルとして選択モデル10を学習する。ここで、学習処理部150は、合計100の入出力サンプルベクトルをランダムにシャッフルしたデータセットを学習用サンプルとして用いてよい。
そして、学習処理部150は、入出力サンプルベクトル毎に、p(y|x)が高くなるように、パラメータベクトルθを更新する。ここで、p(y|x)は、入力合成ベクトルがxとなった場合における、出力合成ベクトルがyとなる条件付き確率を示す。
学習処理部150は、例えば、学習用の選択行動を示す入出力サンプルベクトルのそれぞれについて、入力合成ベクトルに応じて出力合成ベクトルが取得される確率(即ち、条件付き確率p(y|x))を高めるように、パラメータを更新する。この場合、学習処理部150は、条件付き確率p(y|x)を確率的に大きくする勾配方向にパラメータを更新する。即ち、学習処理部150は、図10に示された選択モデル10に基づく条件付き確率p(y|x)のパラメータベクトルθに対する勾配を求め、当該条件付き確率p(y|x)が大きくなる方向にパラメータベクトルθの要素をそれぞれ増減させて更新する。
ここで、図10に示された選択モデル10に基づく条件付き確率p(y|x)は、次式で示すエネルギー関数E(x,y,h;θ)と、自由エネルギーF(x,y;θ)を用いて示すことができる。ここで、パラメータθを有するxの確率分布を、p(x;θ)と表記した。
Figure 0006558765
Figure 0006558765
(数6)および(数7)式より、条件付き確率p(y|x)は、次式で示される。このような、選択モデル10に基づき、ボルツマンマシンのエネルギー関数および自由エネルギーを用いて条件付き確率p(y|x)を算出する具体的な方法は既知である。
Figure 0006558765
学習処理部150は、条件付き確率p(y|x)のパラメータベクトルθに対する勾配を、(数6)から(数8)式より算出される次式から算出する。
Figure 0006558765
ここで、(数9)式におけるC(x)は、入力合成ベクトルxで1となる要素を、one−hot コーディング(1つの要素を1とし、他の要素は全て0としたベクトルによって表現するコーディング方法)で表現したベクトルを含むセットである。
学習処理部150は、パラメータベクトルθを、(数9)式を用いて、予め定められた初期値から入出力サンプルベクトル毎に更新する。学習処理部150は、一例として、初期値を代入した(数9)式の勾配の増加(プラス)方向に、予め定められた値(ΔW,ΔU,Δb,Δb,Δb)だけ、初期値のパラメータベクトルθの各要素を増加させる。そして、学習処理部150は、例えば、条件付き確率p(y|x)の増減が予め定められた範囲内に収束するまで当該更新を繰り返す。これに代えて、学習処理部150は、予め定められた回数の更新を繰り返してもよい。
また、学習処理部150は、複数の初期値からパラメータベクトルθの更新をそれぞれ繰り返してよい。この場合、学習処理部150は、一例として、パラメータベクトルθの要素のそれぞれが、予め定められた範囲内に収束するまで当該更新を繰り返す。これによって、学習処理部150は、より確度の高いパラメータベクトルθを定めることができる。
ここで、学習処理部150は、条件付き確率p(y|x)の増減が収束しない場合、パラメータベクトルθの要素の一部または全部が収束しない場合等は、初期値を変更してもよい。このように、条件付き確率p(y|x)を大きくするように、条件付き確率p(y|x)の勾配を算出し、勾配方向にパラメータを更新する具体的な方法は、「discriminative training」として既知である。
以上のように、本実施形態の学習処理部150は、認知バイアスがかかった消費者の選択行動を選択肢の特徴量を用いてモデル化した選択モデル10を、制約付ボルツマンマシンに基づいて学習することができる。また、学習処理部150は、複雑で特殊なアルゴリズムを用いることなく、既知の学習アルゴリズムによって、選択モデル10を学習することができる。学習処理部150は、学習した選択モデル10のパラメータベクトルθを記憶部120に記憶する。また、処理装置100は、学習処理部150が学習した選択モデル10を外部の推測装置、記憶部等に供給してよい。
以上の本実施形態に係る処理装置100において、消費者が複数の選択肢の中から1つの選択肢を選択する例を説明した。これに代えて、消費者は、複数の選択肢の中から複数の選択肢を選択してもよい。この場合、出力合成部140は、消費者によって選択された複数の選択肢に対応する複数の出力特徴ベクトルを合成する。出力合成部140は、入力合成部130が複数の入力特徴ベクトルを合成する動作と同様に合成してよい。これにより、選択モデル10の出力ノードに入力される値は、入力ノードに入力される値と同様に、実数値となる。
なお、本実施形態に係る入力合成部130は、入力特徴ベクトルの要素ごとの平均を算出して、入力合成ベクトルを生成する例を説明した。これに代えて、入力合成部130は、入力特徴ベクトルの要素毎の論理OR(ビット単位の論理OR)を算出してもよい。なお、入力合成部130は、入力特徴ベクトルに基づき、消費者に提示した入力選択肢の特徴を示す入力合成ベクトルを生成するので、入力特徴ベクトルの要素の並びの並び替えに対して不変な写像として入力合成ベクトルを算出できればよく、当該算出方法は算術平均および論理ORに限定されるものではない。
また、本実施形態に係るバイナリ化部112は、図8に示す変換テーブルを用いて各商品の特徴ベクトルをバイナリベクトルに変換する例を説明した。バイナリ化部112は、より近い特徴パラメータ同士をより近い特徴ベクトル同士へと変換するようにバイナリ化して、商品の特徴の類似度等を表現すればよく、例えば、ハミング距離に反映されるようにバイナリ化してよいので、変換テーブルは図8に示すテーブルに限定されるものではない。
また、バイナリ化部112のバイナリ変換動作は、変換テーブルを用いる動作に限定されるものでもない。バイナリ化部112は、例えば、Locally sensitive hashing(LSH)、特に、LSHの1つであるSimHash、Deep learningとして既知の変換方法を用いてもよい。なお、Deep learningは、画像、音、音楽、および自然言語等もバイナリ化することができるので、バイナリ化部112が当該Deep learningの機能を搭載することにより、処理装置100は、選択主体に画像、音、音楽、および自然言語を含む入力選択肢を提示した場合の選択行動を学習することができる。
図11は、本実施形態に係る処理装置100の変形例を示す。本変形例の処理装置100において、図4に示された本実施形態に係る処理装置100の動作と略同一のものには同一の符号を付け、説明を省略する。本変形例の処理装置100は、選択部160と推測部170とを更に備え、図4に示された本実施形態に係る処理装置100の選択主体の選択動作の学習機能に加え、選択主体の選択行動を予測する機能を有する。
本変形例の処理装置100の学習動作は、図4から図10を用いて説明した動作と略同一なので、ここでは省略する。本変形例の処理装置100が選択主体の選択行動を予測する場合、取得部110は、選択主体に提示される複数の入力選択肢に対応する複数の入力特徴ベクトルを取得する。取得部110は、例えば、選択肢組R1を消費者に提示した後の選択行動を予測する場合、当該選択肢組R1に含まれる商品AおよびBの特徴ベクトル(商品A(価格,品質)、商品B(価格,品質))を取得する。入力合成部130は、複数の入力特徴ベクトルを合成して入力合成ベクトルを生成し、当該入力特徴ベクトルを選択部160に供給する。
選択部160は、複数の入力選択肢に対応する複数の入力特徴ベクトルの中から、選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する。選択部160は、例えば、消費者が1つの商品を選択する可能性を全て推測すべく、入力選択肢に含まれる複数の選択肢を、順に1つずつ選択して、複数の出力選択肢としてよい。また、選択部160は、例えば、消費者がC個の商品を選択する可能性を全て推測すべく、入力選択肢に含まれる複数の選択肢のうち、C個の選択肢の全ての組み合わせを順に1組ずつ選択して、複数の出力選択肢としてよい。
推測部170は、入力合成ベクトルおよび出力特徴ベクトルに基づいて、選択モデルにおいて出力選択肢が選択される可能性を推測する。推測部170は、学習された選択モデルに基づき、入力合成ベクトルに対して出力合成ベクトルが選択される確率を算出する。なお、消費者に提示した入力選択肢のうち、当該消費者が1の選択肢を出力選択肢とする場合、出力合成ベクトルは出力特徴ベクトルと略同一となる。
これに代えて、消費者に提示した入力選択肢のうち、当該消費者が複数の選択肢を出力選択肢とする場合、出力合成部140は、当該消費者によって選択される可能性を推測する複数の出力選択肢に対応する複数の出力特徴ベクトルを合成して出力合成ベクトルを生成し、当該出力合成ベクトルを選択部160に供給する。この場合、推測部170は、入力合成ベクトルおよび出力合成ベクトルに基づいて、選択モデルにおいて出力選択肢が選択される可能性を推測する。
推測部170は、複数の入力ノードおよび複数の中間ノードの間、および複数の出力ノードおよび複数の中間ノードの間に設けられる複数の重みパラメータを用いて、入力合成ベクトルを複数の入力ノードに与え、出力合成ベクトルを複数の出力ノードに与えた場合における選択モデルの状態に基づいて、複数の出力選択肢が選択される可能性を推測する。推測部170は、記憶部120に接続され、学習に用いた選択モデルおよび学習により定まったパラメータを当該記憶部120から読み出す。
推測部170は、入力選択肢に応じてそれぞれの選択肢が選択される確率を、各第1ウェイト値、各第2ウェイト値、各入力バイアス、各中間バイアス、および各出力バイアスを含むパラメータベクトルθに基づき算出する。ここで、推測部170は、(数8)式を用いて各選択肢が選択される確率を算出してよい。
図12は、本実施形態に係る推測部170が算出した各選択肢が選択される確率の一例を示す。図12は、図6に示した学習データをターゲットとして、選択モデル10を学習した結果の一例である。即ち、図12の横軸、縦軸、および各棒グラフがそれぞれ示す内容は、図6と略同一である。
図12と図6を比較することにより、本変形例の処理装置100は、ターゲットである学習データと略同一の傾向の確率を算出することができることがわかる。また、初期状態の商品Aと商品Bの選択確率の比が、消費者に提示する選択肢の特徴量に応じて変化することも再現できることがわかる。これより、処理装置100は、選択モデル10を用いてシミラリティ効果、コンプロマイズ効果、およびアトラクション効果等の認知バイアスが加わった消費者の消費行動を表現でき、また、当該選択モデル10を既知の学習アルゴリズムで学習できることを確認できた。
このように、本変形例の処理装置100は、学習した学習モデルに基づき、認知バイアスが加わった消費者の消費行動を推測することができるので、予め定められた出力選択肢の選択確率を向上させる入力選択肢の組み合わせを推測することもできる。この場合、取得部110は、消費者に選択させたい選択肢を含む入力選択肢の複数の組み合わせに対応する入力特徴ベクトルの組み合わせを取得し、選択部160は、当該消費者に選択させたい選択肢を予め定められた出力選択肢とする。なお、消費者に選択させたい選択肢、および入力選択肢の複数の組み合わせは、ユーザ等から入力または指定されてよい。
推測部170は、取得部110が取得した複数の入力特徴ベクトルの組み合わせを変えながら選択モデルにおいて予め定められた出力選択肢が選択される可能性を推測する。推測部170は、予め定められた選択肢が選択される確率を順次算出し、算出結果のうち最も高い確率に対応する入力特徴ベクトルの組み合わせを、予め定められた出力選択肢が選択される可能性を最大化する複数の入力特徴ベクトルの組み合わせとして出力する。これによって、本変形例の処理装置100は、例えば、複数の入力選択肢のうち、販売を促進する商品またはサービスに応じた選択肢が選択される確率を、より高くする入力選択肢を予測することができる。
以上の本変形例の処理装置100において、取得部110は、ウェブサイト上で提示された選択肢の中からユーザが選択した選択肢を含む学習データを取得してもよい。即ち、本例において、対象はユーザであり、選択肢はウェブサイト上で当該ユーザに提示される。これによって、処理装置100は、例えば、インターネットを介してショッピングをする消費者の選択行動をモデル化することができる。また、処理装置100は、当該消費者の購買行動を学習することができ、また、販売促進する商品等を含めた適切な選択肢を当該消費者にウェブサイトを介して提示することもできる。
また、本実施形態の処理装置100は、消費者に提示する選択肢と選択肢の特徴量に応じて、当該選択肢に含まれるそれぞれの商品が選択される確率を算出することができる。そこで、処理装置100は、食堂およびレストラン等の飲食店が消費者に提示するメニューに応じて、当該メニューに含まれるメニューアイテムが選択される確率を算出することもできる。これによって、処理装置100は、飲食店等が提示するメニューに応じて準備すべきメニューアイテムの数および材料等を予測することもできる。
以上の本実施形態の処理装置100において、学習処理部150は、1つの選択モデル10を生成して学習することを説明した。これに代えて、学習処理部150は、複数の選択モデル10を生成し、別個独立にそれぞれ学習してもよい。学習処理部150は、例えば、複数の消費者グループに対応付けて、複数の選択モデル10を生成し、それぞれの消費者グループ毎に選択モデル10を学習する。ここで、消費者グループは一人以上の消費者を含むグループである。これによって、消費者の選択行動を、消費者毎により細かく分析することができる。
図13は、本実施形態に係る推測装置200の構成例を示す。推測装置200は、提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて選択主体の選択行動を推測する。即ち、推測装置200は、図4に示される本実施形態に係る処理装置100が学習した学習モデルの学習結果を用いて、選択主体の選択行動を推測する。本実施形態に係る推測装置200において、図11に示された本実施形態に係る処理装置100の変形例の動作と略同一のものには同一の符号を付け、説明を省略する。
推測装置200の取得部110は、ネットワーク等に接続され、処理装置100が学習に用いた選択モデルおよび学習により定まったパラメータを取得して、記憶部120に記憶する。また、取得部110は、選択主体に提示される複数の入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する。
推測装置200は、取得した複数の入力特徴ベクトルと、取得した選択モデルおよびパラメータベクトルθを用いて、選択主体の選択行動を推測する。なお、推測装置200の選択主体の選択行動を推測する動作は、図11に示す本実施形態に係る処理装置100の変形例の動作で説明した動作と略同一であるので、ここでは省略する。以上の本実施形態に係る処理装置100および推測装置200の組み合わせによれば、選択主体の選択行動の学習および推測を実行することができる。
以上の本実施形態に係る処理装置100は、図10に示す選択モデル10を用いて選択主体の選択行動の学習および推測を実行することを説明したが、当該選択モデル10に限定されるものではない。処理装置100は、図14から図17に示すように、種々の選択モデルを用いて選択主体の選択行動の学習および推測を実行してよい。
図14は、本実施形態に係る選択モデル10の第1の変形例を示す。本実施形態に係る選択モデル10において、図10に示された本実施形態に係る選択モデル10の動作と略同一のものには同一の符号を付け、説明を省略する。選択モデル10は、D個の入力層12と、C個の出力層14を有する。各入力ノードxdiおよび各中間ノードhの間に各第1ウェイト値Wdilが設定され、当該第1ウェイト値Wdilは、Wil/Dに等しいとする。即ち、D個の入力層12は、全体として、各層における同一ノードに対応する入力特徴量を平均化した値を中間層16に供給することになる。
したがって、D個の入力層12は、入力合成部130が複数の入力特徴ベクトルの平均を入力合成ベクトルとする場合の図10に示された選択モデル10の1つの入力層12と等価である。同様に、C個の出力層14は、出力合成部140が複数の出力特徴ベクトルの平均を出力合成ベクトルとする場合の図10に示された選択モデル10の1つの出力層14と等価である。即ち、処理装置100は、図14に示す第1の変形例の選択モデル10を用いる場合、入力合成部130および出力合成部140がなくてよい。
図15は、本実施形態に係る選択モデル10の第2の変形例を示す。本実施形態に係る選択モデル10において、図10に示された本実施形態に係る選択モデル10の動作と略同一のものには同一の符号を付け、説明を省略する。第2の変形例の選択モデル10は、各入力ノードx、各中間ノードh、および各出力ノードyの間に各ウェイト値Vijlが設定される。各入力ノードx、各中間ノードh、および各出力ノードyは、それぞれ接続され、当該接続によるデータの流れにウェイトVijlがそれぞれ付加される。処理装置100は、このような選択モデル10を用いても、次式に示すエネルギー関数を用いることで、図10に示す選択モデル10と略同様に選択主体の選択行動の学習および推測を実行することができる。
Figure 0006558765
図16は、本実施形態に係る選択モデル10の第3の変形例を示す。本実施形態に係る選択モデル10において、図10に示された本実施形態に係る選択モデル10の動作と略同一のものには同一の符号を付け、説明を省略する。第3の変形例の選択モデル10は、各入力ノードx、各中間ノードh、および各出力ノードyの間に各ウェイト値Ugx、Ugh、およびUgyが設定される。各入力ノードx、各中間ノードh、および各出力ノードyは、それぞれ接続され、当該接続によるデータの流れにウェイトUgx、Ugh、およびUgyがそれぞれ付加される。処理装置100は、このような選択モデル10を用いても、次式に示すエネルギー関数を用いることで、図10に示す選択モデル10と略同様に選択主体の選択行動の学習および推測を実行することができる。
Figure 0006558765
図17は、本実施形態に係る選択モデル10の第4の変形例を示す。本実施形態に係る選択モデル10において、図10に示された本実施形態に係る選択モデル10の動作と略同一のものには同一の符号を付け、説明を省略する。第4の変形例の選択モデル10は、各入力ノードx、各中間ノードh、および各出力ノードyの間に各ウェイト値Wxg、Wgh、およびWgyが設定される。各入力ノードx、各中間ノードh、および各出力ノードyは、それぞれ接続され、当該接続によるデータの流れにウェイトWxg、Wgh、およびWgyがそれぞれ付加される。処理装置100は、このような選択モデル10を用いても、次式に示すエネルギー関数を用いることで、図10に示す選択モデル10と略同様に選択主体の選択行動の学習および推測を実行することができる。
Figure 0006558765
図18は、本実施形態に係る処理装置100および推測装置200として機能するコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、および表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、およびDVDドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フレキシブルディスク・ドライブ2050、および入出力チップ2070を有するレガシー入出力部と、を備える。
ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000およびグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010およびRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。
入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、DVDドライブ2060を接続する。通信インターフェイス2030は、ネットワークを介して他の装置と通信する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラムおよびデータを格納する。DVDドライブ2060は、DVD−ROM2095からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。
また、入出力コントローラ2084には、ROM2010と、フレキシブルディスク・ドライブ2050、および入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、および/または、コンピュータ1900のハードウェアに依存するプログラム等を格納する。フレキシブルディスク・ドライブ2050は、フレキシブルディスク2090からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フレキシブルディスク・ドライブ2050を入出力コントローラ2084へと接続すると共に、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。
RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フレキシブルディスク2090、DVD−ROM2095、またはICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。
プログラムは、コンピュータ1900にインストールされ、コンピュータ1900を取得部110、記憶部120、入力合成部130、出力合成部140、学習処理部150、選択部160、および推測部170等として機能させる。
プログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段である取得部110、記憶部120、入力合成部130、出力合成部140、学習処理部150、選択部160、および推測部170等として機能する。そして、この具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算または加工を実現することにより、使用目的に応じた特有の処理装置100および推測装置200が構築される。
一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フレキシブルディスク2090、またはDVD−ROM2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置または通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030または記憶装置へとデータを書き込むことにより送受信データを転送してもよい。
また、CPU2000は、ハードディスクドライブ2040、DVDドライブ2060(DVD−ROM2095)、フレキシブルディスク・ドライブ2050(フレキシブルディスク2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、および/または記憶装置に含まれるものとする。
また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすかどうかを判断し、条件が成立した場合(または不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。
また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。
以上に示したプログラムまたはモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、フレキシブルディスク2090、DVD−ROM2095の他に、DVD、Blu−ray(登録商標)、またはCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークまたはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 選択モデル、12 入力層、14 出力層、16 中間層、100 処理装置、110 取得部、112 バイナリ化部、120 記憶部、130 入力合成部、140 出力合成部、150 学習処理部、160 選択部、170 推測部、200 推測装置、1900 コンピュータ、2000 CPU、2010 ROM、2020 RAM、2030 通信インターフェイス、2040 ハードディスクドライブ、2050 フレキシブルディスク・ドライブ、2060 DVDドライブ、2070 入出力チップ、2075 グラフィック・コントローラ、2080 表示装置、2082 ホスト・コントローラ、2084 入出力コントローラ、2090 フレキシブルディスク、2095 DVD−ROM

Claims (23)

  1. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する処理装置であって、
    前記選択主体に提示された複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルと、前記複数の入力選択肢の中から前記選択主体によって選択された選択肢である出力選択肢の特徴を示す出力特徴ベクトルとを含む学習データを取得する取得部と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記選択モデルを学習する学習処理部と、
    を備える処理装置。
  2. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する処理装置であって、
    前記選択主体に提示された複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルと、前記複数の入力選択肢の中から前記選択主体によって選択された選択肢である出力選択肢の特徴を示す出力特徴ベクトルとを含む学習データを取得する取得部と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記複数の入力選択肢の特徴から前記出力選択肢の特徴へ写像する前記選択モデルを学習する学習処理部と、
    を備える処理装置。
  3. 前記複数の入力選択肢の中から前記選択主体によって選択された複数の前記出力選択肢についての複数の前記出力特徴ベクトルを合成して出力合成ベクトルを生成する出力合成部を更に備え、
    前記学習処理部は、前記入力合成ベクトルおよび前記出力合成ベクトルに基づいて、前記選択モデルを学習する
    請求項1または2に記載の処理装置。
  4. 前記選択モデルは、前記入力合成ベクトルに含まれる複数の入力特徴量に対応する複数の入力ノードと、前記出力合成ベクトルに含まれる複数の出力特徴量に対応する複数の出力ノードと、複数の中間ノードとを備え、
    前記学習処理部は、前記複数の入力ノードおよび前記複数の中間ノードの間、および前記複数の出力ノードおよび前記複数の中間ノードの間に設けられる複数の重みパラメータを学習する
    請求項に記載の処理装置。
  5. 前記複数の入力特徴ベクトルおよび前記複数の出力特徴ベクトルのそれぞれは、バイナリベクトルである請求項またはに記載の処理装置。
  6. 前記取得部は、前記複数の入力選択肢のそれぞれおよび前記複数の出力選択肢のそれぞれの選択肢が有する特徴パラメータをバイナリ化して前記複数の入力特徴ベクトルのそれぞれおよび前記複数の出力特徴ベクトルのそれぞれの特徴ベクトルを生成するバイナリ化部を有する請求項に記載の処理装置。
  7. 前記バイナリ化部は、より近い特徴パラメータ同士をより近い特徴ベクトル同士へと変換する請求項に記載の処理装置。
  8. 前記入力合成部は、前記複数の入力選択肢に対し、前記入力選択肢の順序に依存せず同一値をとる前記入力合成ベクトルを生成し、
    前記出力合成部は、前記複数の出力選択肢に対し、前記出力選択肢の順序に依存せず同一値をとる前記出力合成ベクトルを生成する
    請求項からのいずれか一項に記載の処理装置。
  9. 前記入力合成部および前記出力合成部は、前記複数の入力特徴ベクトルの平均および前記複数の出力特徴ベクトルの平均に基づく前記入力合成ベクトルおよび前記出力合成ベクトルを生成する請求項に記載の処理装置。
  10. 前記取得部は、バイナリベクトルである前記複数の入力特徴ベクトルおよび前記複数の出力特徴ベクトルを取得し、
    前記入力合成部および前記出力合成部は、前記複数の入力特徴ベクトルの論理演算および前記複数の出力特徴ベクトルの論理演算に基づく前記入力合成ベクトルおよび前記出力合成ベクトルを生成する請求項に記載の処理装置。
  11. 前記入力合成部および前記出力合成部は、前記複数の入力特徴ベクトルの要素毎の論理ORおよび前記複数の出力特徴ベクトルの要素毎の論理ORに基づく前記入力合成ベクトルおよび前記出力合成ベクトルを生成する請求項10に記載の処理装置。
  12. 前記選択主体の選択行動を予測する場合において、前記取得部は、前記選択主体に提示される前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルを取得し、
    前記入力合成部は、前記複数の入力特徴ベクトルを合成して前記入力合成ベクトルを生成し、
    当該処理装置は、
    前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルの中から、前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択部と、
    前記入力合成ベクトルおよび前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルに基づいて、前記選択モデルにおいて前記選択主体によって選択される可能性を推測する選択肢である出力選択肢が選択される可能性を推測する推測部と、
    を備える請求項1から11のいずれか一項に記載の処理装置。
  13. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて前記選択主体の選択行動を推測する推測装置であって、
    前記選択主体に提示される複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する取得部と、
    前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルの中から、前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択部と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記選択モデルにおいて前記出力選択肢が選択される可能性を推測する推測部と、
    を備える推測装置。
  14. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて前記選択主体の選択行動を推測する推測装置であって、
    前記選択主体に提示される複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する取得部と、
    前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルの中から、前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択部と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成部と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記複数の入力選択肢の特徴から前記出力選択肢の特徴へ写像する前記選択モデルにおいて前記出力選択肢が選択される可能性を推測する推測部と、
    を備える推測装置。
  15. 前記選択主体によって選択される可能性を推測する複数の前記出力選択肢を合成して出力合成ベクトルを生成する出力合成部を更に備え、
    前記推測部は、前記入力合成ベクトルおよび前記出力合成ベクトルに基づいて、前記選択モデルにおいて複数の前記出力選択肢が選択される可能性を推測する
    請求項13または14に記載の推測装置。
  16. 前記選択モデルは、前記入力合成ベクトルに含まれる複数の入力特徴量に対応する複数の入力ノードと、前記出力合成ベクトルに含まれる複数の出力特徴量に対応する複数の出力ノードと、複数の中間ノードとを備え、
    前記推測部は、前記複数の入力ノードおよび前記複数の中間ノードの間、および前記複数の出力ノードおよび前記複数の中間ノードの間に設けられる複数の重みパラメータを用いて、前記入力合成ベクトルを前記複数の入力ノードに与え、前記出力合成ベクトルを前記複数の出力ノードに与えた場合における前記選択モデルの状態に基づいて、複数の前記出力選択肢が選択される可能性を推測する
    請求項15に記載の推測装置。
  17. 前記推測部は、
    前記複数の入力特徴ベクトルの組み合わせを変えながら前記選択モデルにおいて予め定められた前記出力選択肢が選択される可能性を推測し、
    前記予め定められた出力選択肢が選択される可能性を最大化する前記複数の入力特徴ベクトルの組み合わせを出力する
    請求項15または16に記載の推測装置。
  18. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する処理方法であって、
    前記選択主体に提示された複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルと、前記複数の入力選択肢の中から前記選択主体によって選択された選択肢である出力選択肢の特徴を示す出力特徴ベクトルとを含む学習データを取得する取得段階と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成段階と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記選択モデルを学習する学習処理段階と、
    を備える処理方法。
  19. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを生成する処理方法であって、
    前記選択主体に提示された複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルと、前記複数の入力選択肢の中から前記選択主体によって選択された選択肢である出力選択肢の特徴を示す出力特徴ベクトルとを含む学習データを取得する取得段階と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成段階と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記複数の入力選択肢の特徴から前記出力選択肢の特徴へ写像する前記選択モデルを学習する学習処理段階と、
    を備える処理方法。
  20. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて前記選択主体の選択行動を推測する推測方法であって、
    前記選択主体に提示される複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する取得段階と、
    前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルの中から、前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択段階と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成段階と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記選択モデルにおいて前記出力選択肢が選択される可能性を推測する推測段階と、
    を備える推測方法。
  21. 提示された入力選択肢の中から少なくとも1つの選択肢を選択する選択主体の選択行動をモデル化した選択モデルを用いて前記選択主体の選択行動を推測する推測方法であって、
    前記選択主体に提示される複数の前記入力選択肢の特徴を示す複数の入力特徴ベクトルを取得する取得段階と、
    前記複数の入力選択肢に対応する前記複数の入力特徴ベクトルの中から、前記選択主体によって選択される可能性を推測する選択肢である出力選択肢の出力特徴ベクトルを選択する選択段階と、
    前記複数の入力特徴ベクトルを合成して入力合成ベクトルを生成する入力合成段階と、
    前記入力合成ベクトルおよび前記出力特徴ベクトルに基づいて、前記複数の入力選択肢の特徴から前記出力選択肢の特徴へ写像する前記選択モデルにおいて前記出力選択肢が選択される可能性を推測する推測段階と、
    を備える推測方法。
  22. コンピュータに、請求項1から12のいずれか一項に記載の処理装置として機能させるプログラム。
  23. コンピュータに、請求項13から17のいずれか一項に記載の推測装置として機能させるプログラム。
JP2014256104A 2014-12-18 2014-12-18 処理装置、処理方法、推測装置、推測方法、およびプログラム Expired - Fee Related JP6558765B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014256104A JP6558765B2 (ja) 2014-12-18 2014-12-18 処理装置、処理方法、推測装置、推測方法、およびプログラム
US14/974,467 US10579933B2 (en) 2014-12-18 2015-12-18 Processing apparatus, processing method, estimating apparatus, estimating method, and program
US16/792,472 US11227228B2 (en) 2014-12-18 2020-02-17 Processing apparatus, processing method, estimating apparatus, estimating method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256104A JP6558765B2 (ja) 2014-12-18 2014-12-18 処理装置、処理方法、推測装置、推測方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2016115316A JP2016115316A (ja) 2016-06-23
JP6558765B2 true JP6558765B2 (ja) 2019-08-14

Family

ID=56129850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256104A Expired - Fee Related JP6558765B2 (ja) 2014-12-18 2014-12-18 処理装置、処理方法、推測装置、推測方法、およびプログラム

Country Status (2)

Country Link
US (2) US10579933B2 (ja)
JP (1) JP6558765B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909685B2 (ja) * 2017-09-15 2021-07-28 ヤフー株式会社 生成装置、生成方法、及び生成プログラム
CN111259222B (zh) * 2020-01-22 2023-08-22 北京百度网讯科技有限公司 物品推荐方法、系统、电子设备及存储介质
CN117390515B (zh) * 2023-11-01 2024-04-12 江苏君立华域信息安全技术股份有限公司 基于深度学习和SimHash的数据分类方法及系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346915A (ja) 1992-01-30 1993-12-27 Ricoh Co Ltd 学習機械並びにニューラルネットワークおよびデータ分析装置並びにデータ分析方法
US7155401B1 (en) * 1994-12-23 2006-12-26 International Business Machines Corporation Automatic sales promotion selection system and method
US6430539B1 (en) 1999-05-06 2002-08-06 Hnc Software Predictive modeling of consumer financial behavior
WO2002033628A2 (en) * 2000-10-18 2002-04-25 Johnson & Johnson Consumer Companies, Inc. Intelligent performance-based product recommendation system
EP1334458A2 (en) * 2000-11-10 2003-08-13 Affinnova, Inc. Method and apparatus for dynamic, real-time market segmentation
US7308418B2 (en) * 2004-05-24 2007-12-11 Affinova, Inc. Determining design preferences of a group
JP5175515B2 (ja) 2007-10-02 2013-04-03 株式会社東芝 モデル構築装置並びにモデル構築のための方法およびプログラム
US8364528B2 (en) * 2008-05-06 2013-01-29 Richrelevance, Inc. System and process for improving product recommendations for use in providing personalized advertisements to retail customers
JP5248227B2 (ja) 2008-07-15 2013-07-31 株式会社東芝 地物確率モデル装置、地物確率モデル処理方法およびコンピュータプログラム
JP5304429B2 (ja) 2008-08-19 2013-10-02 日本電気株式会社 顧客状態推定システム、顧客状態推定方法および顧客状態推定プログラム
US8497770B2 (en) * 2010-01-29 2013-07-30 Matthew Stevens Staffanou Low profile flexible light bar tachometer
US20120078681A1 (en) * 2010-09-24 2012-03-29 Fair Isaac Corporation Multi-hierarchical customer and product profiling for enhanced retail offerings
US9376768B2 (en) * 2011-04-04 2016-06-28 Koninklijke Philips N.V. Steam iron
US20120259676A1 (en) * 2011-04-07 2012-10-11 Wagner John G Methods and apparatus to model consumer choice sourcing
JP5743029B2 (ja) * 2012-05-30 2015-07-01 三菱電機株式会社 エレベーターの巻上機台及びエレベーター装置
US20130332406A1 (en) 2012-05-31 2013-12-12 Wuhu, Llc Method and System for Modeling Consumer Behavior Using N-Dimensional Decision Factor Categorization with Quantifiers and Qualifiers
JP6055391B2 (ja) * 2012-11-05 2016-12-27 株式会社デンソーアイティーラボラトリ 関連性判定装置、関連性判定プログラム、及び関連性判定方法
JP6193779B2 (ja) * 2013-06-03 2017-09-06 株式会社デンソーアイティーラボラトリ 特徴量変換装置、学習装置、認識装置、及び特徴量変換プログラム
US9489699B2 (en) * 2013-07-10 2016-11-08 Excalibur Ip, Llc Influence maximization with viral product design
JP5950284B2 (ja) 2013-12-13 2016-07-13 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 処理装置、処理方法、およびプログラム
JP6516406B2 (ja) 2013-12-13 2019-05-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 処理装置、処理方法、およびプログラム
US20150278681A1 (en) 2014-04-01 2015-10-01 Boise State University Memory controlled circuit system and apparatus
US10074130B2 (en) * 2014-07-10 2018-09-11 Bank Of America Corporation Generating customer alerts based on indoor positioning system detection of physical customer presence
US10223727B2 (en) 2014-10-20 2019-03-05 Oath Inc. E-commerce recommendation system and method

Also Published As

Publication number Publication date
US20160180251A1 (en) 2016-06-23
JP2016115316A (ja) 2016-06-23
US11227228B2 (en) 2022-01-18
US10579933B2 (en) 2020-03-03
US20200184360A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP6523498B1 (ja) 学習装置、学習方法および学習プログラム
JP2018190396A (ja) ネットワークレーティング予測エンジン
JP6443858B2 (ja) 算出装置、算出方法、学習装置、学習方法、及びプログラム
JP6516406B2 (ja) 処理装置、処理方法、およびプログラム
US11227228B2 (en) Processing apparatus, processing method, estimating apparatus, estimating method, and program
Johnston et al. Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python
CN111967924A (zh) 商品推荐方法、商品推荐装置、计算机设备和介质
Ben-Shimon et al. An ensemble method for top-N recommendations from the SVD
JP5950284B2 (ja) 処理装置、処理方法、およびプログラム
JP6573272B2 (ja) 生成装置、生成方法、及び、プログラム
JP6366031B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP7168062B2 (ja) 商品特徴スコア推定装置、方法およびプログラム
JP6910873B2 (ja) 特定装置および特定方法
KR20130046688A (ko) 개인화 서비스를 위한 아이템 추천 시스템 및 방법
JP7310899B2 (ja) ユーザ・商品マップ推定装置、方法およびプログラム
CN115344794A (zh) 一种基于知识图谱语义嵌入的旅游景点推荐方法
JP2023550510A (ja) 推薦方法、装置、電子機器及び記憶媒体
JP6132288B2 (ja) 生成装置、選択装置、生成方法、選択方法、及び、プログラム
JP7309673B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2020154464A (ja) 推定装置、推定方法及び推定プログラム
JP7210792B2 (ja) 情報処理方法、情報処理装置および情報処理プログラム
JP7275350B2 (ja) 情報処理方法、情報処理装置および情報処理プログラム
JP7262654B1 (ja) 情報処理方法、情報処理装置および情報処理プログラム
JP7311700B1 (ja) 情報処理方法、情報処理装置および情報処理プログラム
WO2023175977A1 (ja) 学習装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20180808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20190619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190710

R150 Certificate of patent or registration of utility model

Ref document number: 6558765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees