JP6555455B1 - Electric Sn plated steel sheet - Google Patents

Electric Sn plated steel sheet Download PDF

Info

Publication number
JP6555455B1
JP6555455B1 JP2019517105A JP2019517105A JP6555455B1 JP 6555455 B1 JP6555455 B1 JP 6555455B1 JP 2019517105 A JP2019517105 A JP 2019517105A JP 2019517105 A JP2019517105 A JP 2019517105A JP 6555455 B1 JP6555455 B1 JP 6555455B1
Authority
JP
Japan
Prior art keywords
electric
content
layer
plating
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019517105A
Other languages
Japanese (ja)
Other versions
JPWO2019088229A1 (en
Inventor
後藤 靖人
靖人 後藤
雄太 田島
雄太 田島
亜暢 小林
亜暢 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP6555455B1 publication Critical patent/JP6555455B1/en
Publication of JPWO2019088229A1 publication Critical patent/JPWO2019088229A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

この電気Snめっき鋼板は、母材鋼板と、母材鋼板上に配され、Sn層と合金層とを有し、所定の成分を含有する電気Snめっき層と、を備える。電気Snめっき層全体のPb含有量が50質量ppm以下である。電気Snめっき層の厚さをtとし、電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、表層領域のPb含有量が5質量ppm以上であり、かつ、表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも高い。The electric Sn-plated steel sheet includes a base material steel sheet, and an electric Sn plating layer that is disposed on the base material steel sheet, includes an Sn layer and an alloy layer, and contains a predetermined component. The Pb content of the entire electric Sn plating layer is 50 mass ppm or less. When the thickness of the electric Sn plating layer is t, and the region from the surface of the electric Sn plating layer to the (1/10) × t depth in the thickness direction is the surface layer region, the Pb content in the surface layer region is 5 ppm by mass. In addition, the Pb content in the surface layer region is higher than the Pb content in the entire electric Sn plating layer.

Description

本発明は、電気Snめっき鋼板、特に、電気Snめっき層全体のPb含有量が少ない電気Snめっき鋼板に関する。
本願は、2017年11月1日に、日本に出願された特願2017−211788号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an electric Sn plated steel sheet, and more particularly to an electric Sn plated steel sheet having a low Pb content in the entire electric Sn plated layer.
This application claims priority on November 1, 2017 based on Japanese Patent Application No. 2017-2111788 for which it applied to Japan, and uses the content for it here.

近年、健康被害への懸念や環境負荷への対策の面から、工業製品中のPb含有量に対する各種規制が強化されつつある。
食品用缶詰に使用されるSnめっき鋼板(いわゆるブリキ缶素材)についても例外ではない。例えば、南アフリカ共和国では、缶内に溶出するPb2+の規制の面から、Snめっき層中のPb含有量を100質量ppm以下とする必要があり、同様の規制は、欧州の一部や中国においても導入が検討されている。また、一部の需要家からも、上記と同様の要請がある。
In recent years, various regulations on Pb content in industrial products are being strengthened from the viewpoint of concerns about health damage and measures against environmental burdens.
An Sn-plated steel sheet (so-called tin can material) used for food canning is no exception. For example, in the Republic of South Africa, the Pb content in the Sn plating layer needs to be 100 mass ppm or less from the viewpoint of the regulation of Pb 2+ eluted in the can. Is also being considered for introduction. Some customers also request the same as above.

日本では、Snめっき鋼板のめっきに使用するSnインゴットは、東南アジア諸国から輸入したものが多い。原鉱石に含まれるPb含有量が多いため、東南アジア産のSnインゴットは、100質量ppm以上のPbを含んでいる。東南アジア産のSnインゴットをそのまま使用した場合には、製品であるSnめっき鋼板のSnめっき層中のPb含有量を100質量ppm以下とすることができない。そのため、東南アジア産のSnインゴットを使用する場合には、製造コストが増加するが、電解精製をさらに行うことで、現状の規制値を何とかクリアする水準を確保している。あるいは、輸送距離が長いため、輸送コストが増加するが、Pb含有量の少ない南米産のSnインゴットを購入することで、上記規制に対する問題に対処しているのが実情である。南米産のSnインゴットを使用してブリキを製造した場合のPb含有量は70質量ppm程度であり、現状の規制値を何とかクリアする水準である。   In Japan, many Sn ingots used for plating Sn-plated steel sheets are imported from Southeast Asian countries. Since the Pb content contained in the raw ore is large, the Sn ingot produced in Southeast Asia contains 100 mass ppm or more of Pb. When the Sn ingot produced in Southeast Asia is used as it is, the Pb content in the Sn plating layer of the Sn-plated steel sheet as the product cannot be made 100 mass ppm or less. Therefore, when using an Sn ingot produced in Southeast Asia, the manufacturing cost increases, but by further performing electrolytic purification, a level that somehow clears the current regulation value is secured. Alternatively, although the transportation distance is long, the transportation cost increases, but the fact is that the problem with respect to the above regulations is addressed by purchasing a South American Sn ingot with a low Pb content. When tin is produced using a South American Sn ingot, the Pb content is about 70 ppm by mass, which is a level that somehow clears the current regulation value.

特許文献1には、Sn鉱石やSn廃材から製造した粗Snからなるアノードを電解精製する際に、該アノードに含まれるPbの一部が、電解液中にPb2+として溶存し、これが原因で電解Sn中にPbが混入することを抑制するために、珪フッ酸または硫酸と珪フッ酸との混酸からなるSnの電解液を電解槽から抜き出し、この電解液にアルカリ土類金属炭酸塩を添加して液中のPbを沈殿させ、この沈殿を除去した電解液を電解槽に戻してSnの電解精製を行うことを特徴とする高純度Snの電解精製方法に関する発明が記載されている。しかし、特許文献1には、Snめっき鋼板およびSnめっき層中のPb含有量に関して記載されていない。In Patent Document 1, when electrolytically refining an anode made of crude Sn produced from Sn ore or Sn waste material, a part of Pb contained in the anode is dissolved as Pb 2+ in the electrolytic solution. In order to suppress the mixing of Pb into the electrolytic Sn, an Sn electrolytic solution made of silicic acid or a mixed acid of sulfuric acid and silicic acid is extracted from the electrolytic cell, and alkaline earth metal carbonate is added to the electrolytic solution. There is described an invention relating to an electrolytic purification method for high-purity Sn, characterized in that Pb in the solution is precipitated and the electrolytic solution from which the precipitate has been removed is returned to the electrolytic bath and Sn is subjected to electrolytic purification. However, Patent Document 1 does not describe the Pb content in the Sn plated steel sheet and the Sn plated layer.

特許文献2には、純金属あるいは合金からなる被処理物を加熱溶融して、この溶融物に、金属ハロゲン化物とオキシハロゲン化物の少なくとも一方を接触させて被処理物中のPbを除去する技術が記載されている。しかし、特許文献2には、具体的な被処理物としてPbフリーはんだが記載されているに過ぎず、Snめっき鋼板のSnめっき層中のPb含有量について記載されていない。   Patent Document 2 discloses a technique in which a workpiece made of a pure metal or an alloy is heated and melted, and at least one of a metal halide and an oxyhalide is brought into contact with the melt to remove Pb in the workpiece. Is described. However, Patent Document 2 merely describes Pb-free solder as a specific object to be processed, and does not describe the Pb content in the Sn plating layer of the Sn plated steel sheet.

特許文献3には、半導体装置のような電子部品にPbフリーのSnめっきを施した場合に生じやすいウィスカーの成長による端子間のショートを防止するために、Snめっき層における隣接する結晶粒界のなす角度を20°以下とする発明が記載されている。しかし、特許文献3には、そもそもPbを含むめっき浴からPb濃度が極めて低いSnめっきを製造する方法について記載されていない。   In Patent Document 3, in order to prevent short-circuiting between terminals due to whisker growth, which is likely to occur when Pb-free Sn plating is applied to an electronic component such as a semiconductor device, adjacent grain boundaries in the Sn plating layer are disclosed. An invention in which the formed angle is 20 ° or less is described. However, Patent Document 3 does not describe a method for producing Sn plating with an extremely low Pb concentration from a plating bath containing Pb in the first place.

日本国特開2003−183871号公報Japanese Unexamined Patent Publication No. 2003-183871 日本国特開2010−111912号公報Japanese Unexamined Patent Publication No. 2010-1111912 日本国特開2009−270154号公報Japanese Unexamined Patent Publication No. 2009-270154

本発明では、上記実情と、今後予測される更なるPb含有量規制値の厳格化とに鑑み、電気Snめっき層全体のPb含有量が50質量ppm以下であり、容器用鋼板に適用可能な電気Snめっき鋼板を提供することを課題とする。より詳細には、本発明は、容器用鋼板に適用した場合に、長寿命であり、且つ耐食性、塗膜密着性および耐ウィスカー性に優れる電気Snめっき鋼板を提供することを課題とする。   In the present invention, in view of the above situation and further stricter Pb content regulation values predicted in the future, the Pb content of the entire electric Sn plating layer is 50 mass ppm or less, and is applicable to a steel plate for containers. It is an object to provide an electric Sn-plated steel sheet. More specifically, an object of the present invention is to provide an electric Sn plated steel sheet that has a long life and is excellent in corrosion resistance, coating film adhesion and whisker resistance when applied to a steel sheet for containers.

本発明の要旨は以下のとおりである。
[1]本発明の一態様に係る電気Snめっき鋼板は、母材鋼板と、前記母材鋼板上に配された電気Snめっき層と、を備え、前記電気Snめっき層は、Sn層と合金層とを有し、電気Snめっき層全体で、Sn:10〜100質量%、Fe:0〜90質量%、O:0〜0.5質量%を含有、前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする。
[2]上記[1]に記載の電気Snめっき鋼板は、前記電気Snめっき層の前記表層領域のPb含有量/(Sn含有量+Pb含有量)を前記電気Snめっき層の前記表層領域以外の領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上であってもよい。
[3]上記[1]または[2]に記載の電気Snめっき鋼板は、前記電気Snめっき層が、Ca:0.1〜10質量ppm、Sr:0.1〜10質量ppmおよびBa:0.1〜10質量ppmからなる群のうち1種または2種以上を更に含有してもよい。
[4]上記[1]〜[3]のいずれか一項に記載の電気Snめっき鋼板は、前記電気Snめっき層と前記母材鋼板との間に、Fe−Ni層、Ni−Sn層およびFe−Ni−Sn層の1種又は2種以上を更に備えてもよい。
The gist of the present invention is as follows.
[1] An electric Sn plated steel sheet according to an aspect of the present invention includes a base steel sheet and an electric Sn plated layer disposed on the base steel sheet, and the electric Sn plated layer includes an Sn layer and an alloy. and a layer, the entire electrical Sn plating layer, Sn: 10 to 100 wt%, Fe: 0 to 90 wt%, O: containing 0-0.5 wt%, of the total electrical Sn plating layer Pb The content is 50 mass ppm or less, the thickness of the electric Sn plating layer is t, and the region from the surface of the electric Sn plating layer to the (1/10) × t depth in the plate thickness direction is the surface layer region. The Pb content in the surface layer region is 5 ppm by mass or more, and the Pb content in the surface layer region is higher than the Pb content in the entire electric Sn plating layer.
[2] In the electric Sn plated steel sheet according to [1] above, the Pb content of the surface region of the electric Sn plating layer / (Sn content + Pb content) is other than the surface layer region of the electric Sn plating layer. The value divided by Pb content / (Sn content + Pb content) of the region may be 1.1 or more.
[3] In the electric Sn-plated steel sheet according to [1] or [2], the electric Sn plating layer has Ca: 0.1 to 10 mass ppm, Sr: 0.1 to 10 mass ppm, and Ba: 0. In the group consisting of 0.1 to 10 ppm by mass, one or more kinds may be further contained.
[4] The electric Sn-plated steel sheet according to any one of [1] to [3], wherein an Fe—Ni layer, an Ni—Sn layer, and an electric Sn-plated steel sheet are provided between the electric Sn-plated layer and the base steel sheet. You may further provide the 1 type (s) or 2 or more types of a Fe-Ni-Sn layer.

本発明に係る上記一態様によれば、電気Snめっき層全体のPb含有量が50質量ppm以下である、容器用鋼板に適用可能な電気Snめっき鋼板を提供することができる。   According to the said 1 aspect which concerns on this invention, the electric Sn plating steel plate applicable to the steel plate for containers whose Pb content of the whole electric Sn plating layer is 50 mass ppm or less can be provided.

本発明の一例として、実験室規模のクラウンエーテル法によるめっき浴中のPb2+濃度の変化を示すグラフである。As an example of the present invention, it is a graph showing changes in Pb 2+ concentration in a plating bath by a laboratory-scale crown ether method. 実施例のNo.16の電気Snめっき層のGD−MS解析結果を示すグラフである。No. of an Example. It is a graph which shows the GD-MS analysis result of 16 electric Sn plating layers. 実施例のNo.16のPb/(Sn+Pb)値の電気Snめっき層厚さ方向の変化を示すグラフである。No. of an Example. It is a graph which shows the change of the electric Sn plating layer thickness direction of 16 Pb / (Sn + Pb) value. 無処理のSnめっき液を用いて作製した電気Snめっき層のGD−MS解析結果を示すグラフである。It is a graph which shows the GD-MS analysis result of the electrical Sn plating layer produced using the unprocessed Sn plating solution. 本発明の一例として、クラウンエーテル法で処理したSnめっき液を用いて作製した電気Snめっき層のGD−MS解析結果を示すグラフである。It is a graph which shows the GD-MS analysis result of the electrical Sn plating layer produced using the Sn plating liquid processed by the crown ether method as an example of this invention.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
以下に記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「超」または「未満」と示す数値には、その値が数値範囲に含まれない。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
The numerical limit ranges described below include the lower limit value and the upper limit value. Numeric values indicated as “over” or “less than” are not included in the numerical range.

本実施形態に係る電気Snめっき鋼板は、母材鋼板と、前記母材鋼板上に配され、Sn層と合金層とを有し、Sn:10〜100質量%、Fe:0〜90質量%、O:0〜0.5質量%を含有する電気Snめっき層と、を備え、前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする。
まず、本発明者らが本実施形態に係る電気Snめっき鋼板を開発するに至った経緯について説明する。
The electric Sn plated steel sheet according to the present embodiment is disposed on the base steel sheet and has the Sn layer and the alloy layer, Sn: 10 to 100% by mass, Fe: 0 to 90% by mass. , O: an electric Sn plating layer containing 0 to 0.5 mass%, the Pb content of the entire electric Sn plating layer is 50 mass ppm or less, and the thickness of the electric Sn plating layer is t When the region from the surface of the electric Sn plating layer to the (1/10) × t depth in the plate thickness direction is a surface layer region, the Pb content of the surface layer region is 5 mass ppm or more, and The Pb content in the surface layer region is higher than the Pb content in the entire electric Sn plating layer.
First, how the inventors have developed the electric Sn-plated steel sheet according to this embodiment will be described.

本発明者らは、Snインゴットに含まれるPbが電気Snめっき層中に混入するメカニズムについて検討した。
本発明者らの検討の結果、電気Snめっき層について、その深さ方向の観察および定量測定から、Pbは、電気Snめっき層全体に金属Pbとして存在すること、即ち、PbはSnと共に電解析出(共析)しており、単なるSnめっき液の巻き込みによって電気Snめっき層に含有されるわけではないことが判明した。
The present inventors examined the mechanism by which Pb contained in the Sn ingot is mixed into the electric Sn plating layer.
As a result of the study by the present inventors, from the observation and quantitative measurement of the electric Sn plating layer in the depth direction, Pb exists as metal Pb in the entire electric Sn plating layer, that is, Pb is electroanalyzed together with Sn. It has been found that it has not been contained in the electric Sn plating layer simply by entrainment of the Sn plating solution.

本発明者らは、p−フェノールスルフォン酸と硫酸Sn(II)及び添加剤からなるSnめっき液(PSAめっき浴)と、これに酢酸Pbを加えたPb含有めっき液とを用意して、設定電位を変化させて電気Snめっき層を形成した。その結果、SnとPbとで析出電位にほとんど差異はなく、低Pb含有量のSnインゴット(50質量ppm程度)をSn源として使用すれば、電気Snめっき層中のPb含有量を100質量ppm以下(70質量ppm程度)とすることが可能であるが、高Pb含有量(100〜300質量ppm程度)のSnインゴットを使用する場合には、実操業に用いるSnめっき液の使用下で、電流密度等のめっき条件を変化させてPbの共析を抑制することは困難であることが判明した。   The present inventors prepared and set an Sn plating solution (PSA plating bath) comprising p-phenolsulfonic acid, Sn (II) sulfate and additives, and a Pb-containing plating solution obtained by adding Pb acetate thereto. An electric Sn plating layer was formed by changing the potential. As a result, there is almost no difference in the precipitation potential between Sn and Pb. If a Sn ingot (about 50 mass ppm) with a low Pb content is used as the Sn source, the Pb content in the electric Sn plating layer is 100 mass ppm. The following (about 70 mass ppm) is possible, but when using an Sn ingot with a high Pb content (about 100 to 300 mass ppm), under the use of the Sn plating solution used for actual operation, It has been found that it is difficult to suppress the eutectoid of Pb by changing the plating conditions such as current density.

電気Snめっき鋼板のめっき工程に使用するSnめっき液は、不溶性陽極を使用した硫酸浴の形態でSn2+を供給しており、20℃におけるSn、Pbの硫酸塩の溶解度は、以下の通りである。
SnSO:18.9g/100g−HO (易溶)
PbSO:0.003846g/100g−HO (難溶)
The Sn plating solution used in the plating process of the electric Sn-plated steel sheet supplies Sn 2+ in the form of a sulfuric acid bath using an insoluble anode. The solubility of Sn and Pb sulfate at 20 ° C. is as follows. is there.
SnSO 4: 18.9g / 100g-H 2 O ( easily soluble)
PbSO 4: 0.003846g / 100g-H 2 O ( sparingly soluble)

実操業におけるSnめっき液中では、上記のように僅かに溶解したPb2+が、Sn2+と共に電気的に還元されて、電気Snめっき層中に金属Pbとして混入するものと考えられる。上記のように僅かに溶解したPb2+を、Snめっき液中から除去する方法について本発明者らが検討した結果、クラウンエーテルを使用する除去方法が候補として挙げられた。In the Sn plating solution in actual operation, it is considered that Pb 2+ slightly dissolved as described above is electrically reduced together with Sn 2+ and mixed as metal Pb in the electric Sn plating layer. As a result of the present inventors' investigation on a method for removing Pb 2+ slightly dissolved as described above from the Sn plating solution, a removal method using crown ether was listed as a candidate.

クラウンエーテルは環状のポリエーテル鎖から成っており、いくつかの重金属イオンと選択的に相互作用することができる。クラウンエーテルは、分子内にエーテル酸素原子からなる空孔を有しており、この中に重金属イオンを取り込んで結合する。したがって、重金属イオンの大きさとクラウンエーテルの空孔の大きさとが一致する場合に選択的な相互作用が起こる。Snめっき液中の鉛イオン(Pb2+)を選択的に除去するためには、空孔の大きさを鉛イオンの大きさと一致するように調整したクラウンエーテルを用いれば良い。Crown ethers are composed of cyclic polyether chains and can selectively interact with several heavy metal ions. Crown ether has pores composed of ether oxygen atoms in the molecule, and takes in heavy metal ions and bonds them. Therefore, a selective interaction occurs when the size of heavy metal ions and the size of the vacancies in the crown ether match. In order to selectively remove lead ions (Pb 2+ ) in the Sn plating solution, a crown ether having a pore size adjusted to match the lead ion size may be used.

例えば、クラウンエーテルの一般構造式(−CH−CH−O−)nにおいて、n=6の、空孔の大きさを制御したクラウンエーテルを樹脂(特に限定するものではないが、例えばシリカゲル、メタクリレート、ポリスチレンから選ぶことができる。)に担持し、カラムに充填して、カラム中にSnめっき液を通過させることにより鉛イオン(Pb2+)の選択的な除去が可能である。For example, in the general structural formula of crown ether (—CH 2 —CH 2 —O—) n, n = 6 crown ether with controlled pore size is a resin (not particularly limited, for example, silica gel It is possible to selectively remove lead ions (Pb 2+ ) by loading them on a column and allowing the Sn plating solution to pass through the column.

次に、本発明者らは、実験室規模で、Snめっき液(PSAめっき浴)をクラウンエーテルで処理した場合の、Snめっき液中のPb2+の変化を観察した。
ベースとなるSnめっき液は、p−フェノールスルフォン酸:115g/L、EN−10(Ethoxylated α−Naphthol):5g/L、ENSA(Ethoxylated α−Naphthol Sulphonic Acid):5g/L、SnSO:36g/L(Sn2+換算で20g/L)からなり、これに、酢酸Pbの形態でPb2+換算で13mg/L(Pb/Sn換算で650ppm)となるように添加して、作製した。
クラウンエーテルを充填したカラム内に計200Lの上記Snめっき液を通過させ、通過させたSnめっき液20L毎について成分分析を行った。
Next, the inventors observed changes in Pb 2+ in the Sn plating solution when the Sn plating solution (PSA plating bath) was treated with crown ether on a laboratory scale.
The Sn plating solution used as a base is p-phenolsulfonic acid: 115 g / L, EN-10 (Ethoxylated α-Naphthol): 5 g / L, ENSA (Ethoxylated α-Naphthol Sulphonic Acid): 5 g / L, SnSO 4 : 36 g / L (20 g / L in terms of Sn 2+ ), and added thereto so as to be 13 mg / L in terms of Pb 2+ in the form of Pb acetate (650 ppm in terms of Pb / Sn).
A total of 200 L of the Sn plating solution was passed through a column filled with crown ether, and component analysis was performed for each 20 L of the Sn plating solution passed.

Snめっき液中のPb2+濃度の変化を図1に示す。
図1に示すように、13mg/LであったPb2+は直ちに0.05mg/Lまで減少していることから、Snめっき浴中のPb2+がクラウンエーテルにより除去されたことが分かる。一方、図示していないが、Snめっき液中の他の成分(Sn2+、SO 2−、ENSA、EN)の濃度はほとんど変化していなかったことから、Pb2+だけが選択的に除去されたものと考えられる。
The change in the Pb 2+ concentration in the Sn plating solution is shown in FIG.
As shown in FIG. 1, since it is reduced to 13 mg / was L Pb 2+ immediately 0.05 mg / L, it can be seen that Pb 2+ in Sn plating bath has been removed by the crown ether. On the other hand, although not shown, since the concentrations of the other components (Sn 2+ , SO 4 2− , ENSA, EN) in the Sn plating solution were hardly changed, only Pb 2+ was selectively removed. It is thought that.

安定した生産性を確保するために、電気Snめっき層中の均一性を高めることが一般的であるため、電気Snめっき層中のPb含有量は深さ方向において均一に低減される。しかし、本発明者らは、従来技術とは異なり、電気Snめっき層全体のPb含有量を低減させることで黒変の発生が低減され、さらに表層領域にPbを濃化させることで耐ウィスカー性が向上することを新たに知見した。また、本発明者らは、電気Snめっき層中のPb含有量に勾配を付けることで、塗膜密着性が向上することも新たに知見した。   In order to ensure stable productivity, it is common to increase the uniformity in the electric Sn plating layer, so that the Pb content in the electric Sn plating layer is uniformly reduced in the depth direction. However, unlike the prior art, the present inventors reduce the occurrence of blackening by reducing the Pb content of the entire electric Sn plating layer, and further increase the whisker resistance by concentrating Pb in the surface layer region. It was newly discovered that improved. In addition, the present inventors have also newly found that coating film adhesion is improved by providing a gradient in the Pb content in the electric Sn plating layer.

本実施形態に係る電気Snめっき鋼板は、上記の知見に基づいてなされたものである。以下、本実施形態に係る電気Snめっき鋼板について詳細に説明する。   The electric Sn plated steel sheet according to the present embodiment is made based on the above knowledge. Hereinafter, the electric Sn plated steel sheet according to the present embodiment will be described in detail.

[母材鋼板]
本実施形態に係る電気Snめっき鋼板の母材鋼板は特に限定されず、JIS G 3303:2017に規定される一般的な容器用鋼板の母材鋼板として使用される鋼板を使用すればよい。本実施形態では、例えば、C:0.01〜0.06質量%、Al:0.001〜0.01質量%、Mn:0.01〜0.06質量%および残部Feおよび不純物からなる母材鋼板を使用することができる。
[Base steel sheet]
The base material steel plate of the electric Sn plated steel plate according to this embodiment is not particularly limited, and a steel plate used as a base material steel plate of a general steel plate for containers specified in JIS G 3303: 2017 may be used. In the present embodiment, for example, C: 0.01 to 0.06% by mass, Al: 0.001 to 0.01% by mass, Mn: 0.01 to 0.06% by mass, and the balance Fe and impurities. A steel plate can be used.

[電気Snめっき層]
本実施形態に係る電気Snめっき層は、電気Snめっき層の表面側に存在し、Snを多く含むSn層と、電気Snめっき層の母材鋼板側に存在し、母材鋼板のFeが電気Snめっき層中に拡散した合金層(Fe−Sn層)とを有する。電気Snめっき層、Sn層および合金層の定義については後述する。
[Electric Sn plating layer]
The electric Sn plating layer according to the present embodiment exists on the surface side of the electric Sn plating layer, exists in the Sn layer containing a large amount of Sn, and exists on the base steel plate side of the electric Sn plating layer, and Fe of the base metal steel plate is electrically And an alloy layer (Fe—Sn layer) diffused in the Sn plating layer. The definitions of the electric Sn plating layer, the Sn layer, and the alloy layer will be described later.

本実施形態では、電気Snめっき層全体のPb含有量が50質量ppm以下である。電気Snめっき層全体のPb含有量が50質量ppm超である場合、今後予測されるPb含有量規制値を満足できず、また容器用鋼板として所望される特性(長寿命、耐食性)を得ることができない。電気Snめっき層全体のPb含有量は、40質量ppm以下、30質量ppm以下、20質量ppm以下、または10質量ppm以下が好ましい。電気Snめっき層全体のPb含有量を5質量ppm未満とすることは可能であるが、実操業におけるコストの増加を引き起こすため、電気Snめっき層全体のPb含有量の下限を5質量ppmとしてもよい。   In this embodiment, the Pb content of the entire electric Sn plating layer is 50 mass ppm or less. When the Pb content of the entire electroplated Sn layer exceeds 50 mass ppm, the Pb content regulation value predicted in the future cannot be satisfied, and the desired properties (long life, corrosion resistance) as a steel plate for containers are obtained. I can't. The Pb content of the entire electric Sn plating layer is preferably 40 ppm by mass or less, 30 ppm by mass or less, 20 ppm by mass or less, or 10 ppm by mass or less. Although it is possible to make the Pb content of the entire electric Sn plating layer less than 5 ppm by mass, it causes an increase in cost in actual operation, so even if the lower limit of the Pb content of the entire electric Sn plating layer is set to 5 ppm by mass Good.

本実施形態に係る電気Snめっき層は、表層領域のPb含有量が5質量ppm以上であり、かつ、表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも高い。表層領域のPb含有量の上限は、60質量ppmとしてもよい。本実施形態において表層領域とは、電気Snめっき層の厚さをtとしたとき、電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域のことをいう。また、本実施形態では、電気Snめっき層の表層領域以外の領域を深部領域と呼称する。電気Snめっき層の深部領域は、還元すると、電気Snめっき層の厚さをtとしたとき、電気Snめっき層の表面から板厚方向に(1/10)×t深さ〜表面から板厚方向にt深さの領域である。
表層領域のPb含有量が電気Snめっき層全体のPb含有量と等しい場合、または表層領域のPb含有量が電気Snめっき層全体のPb含有量よりも低い場合は、電気Snめっき鋼板の塗膜密着性が劣化する。
In the electric Sn plating layer according to this embodiment, the Pb content in the surface layer region is 5 ppm by mass or more, and the Pb content in the surface layer region is higher than the Pb content in the entire electric Sn plating layer. The upper limit of the Pb content in the surface layer region may be 60 mass ppm. In the present embodiment, the surface layer region refers to a region from the surface of the electric Sn plating layer to (1/10) × t depth in the plate thickness direction, where t is the thickness of the electric Sn plating layer. In the present embodiment, a region other than the surface layer region of the electric Sn plating layer is referred to as a deep region. In the deep region of the electric Sn plating layer, when the thickness of the electric Sn plating layer is t, the thickness of the electric Sn plating layer is (1/10) × t depth to the plate thickness from the surface to the plate thickness direction. It is a region of depth t in the direction.
When the Pb content of the surface region is equal to the Pb content of the entire electric Sn plating layer, or when the Pb content of the surface region is lower than the Pb content of the entire electric Sn plating layer, the coating film of the electric Sn plated steel sheet Adhesion deteriorates.

本実施形態に係る電気Snめっき層は、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値を1.1以上としてもよい。電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値を1.1以上とすることで、電気Snめっき鋼板の塗膜密着性をより向上することができる。   The electric Sn plating layer according to the present embodiment has the following: Pb content / (Sn content + Pb content) in the surface layer region of the electric Sn plating layer / Pb content / (Sn content + Pb in the deep region of the electric Sn plating layer) The value divided by (content) may be 1.1 or more. A value obtained by dividing Pb content in the surface region of the electric Sn plating layer / (Sn content + Pb content) by Pb content in the deep region of the electric Sn plating layer / (Sn content + Pb content) is 1.1. By setting it as the above, the coating-film adhesiveness of an electrical Sn plating steel plate can be improved more.

本実施形態に係る電気Snめっき層は、Pb以外の元素として、Sn:10〜100質量%、Fe:0〜90質量%、O:0〜0.5質量%を含む。残部は不純物からなる。なお、本実施形態において不純物とは、原料としてのSnインゴットまたは製造環境等から混入されるものであって、本実施形態に係る電気Snめっき鋼板に悪影響を与えない範囲で許容されるものを意味する。
本実施形態に係る電気Snめっき層では、任意で、Ca:0.1〜10質量ppm、Sr:0.1〜10質量ppmおよびBa:0.1〜10質量ppmからなる群のうち1種または2種以上を更に含有してもよい。電気Snめっき層が上記群のうち1種または2種以上を含むことで、電気Snめっき層全体のPb含有量をより低減することができる。
The electric Sn plating layer according to the present embodiment includes Sn: 10 to 100% by mass, Fe: 0 to 90% by mass, and O: 0 to 0.5% by mass as elements other than Pb. The balance consists of impurities. In addition, in this embodiment, an impurity means what is permitted in the range which is mixed from Sn ingot as a raw material or a manufacturing environment etc., and does not have a bad influence on the electric Sn plating steel plate concerning this embodiment. To do.
In the electric Sn plating layer concerning this embodiment, it is 1 type in the group which consists of Ca: 0.1-10 mass ppm, Sr: 0.1-10 mass ppm, and Ba: 0.1-10 mass ppm arbitrarily. Or you may further contain 2 or more types. When the electric Sn plating layer contains one or more of the above groups, the Pb content of the entire electric Sn plating layer can be further reduced.

本実施形態に係る電気Snめっき鋼板は、電気Snめっき層と母材鋼板との間に、厳密には合金層(Fe−Sn層)と母材鋼板との間に、Fe−Ni層、Ni−Sn層およびFe−Ni−Sn層の1種又は2種以上を更に備えてもよい。電気Snめっき層がこれらの層の1種又は2種以上を更に備えることで、電気Snめっき鋼板を飲料缶または食缶として使用した場合の缶寿命を長くすることができ、かつ緻密な合金層生成によりバリア効果があるため耐食性を向上することができる。   The electric Sn-plated steel sheet according to the present embodiment includes an Fe—Ni layer, Ni between the electric Sn plating layer and the base steel sheet, strictly between the alloy layer (Fe—Sn layer) and the base steel sheet. You may further provide the 1 type (s) or 2 or more types of -Sn layer and Fe-Ni-Sn layer. When the electric Sn plating layer further includes one or more of these layers, the can life when the electric Sn plating steel plate is used as a beverage can or a food can can be extended, and a dense alloy layer Corrosion resistance can be improved because it has a barrier effect.

次に、本実施形態に係る電気Snめっき層の成分の分析方法について図2Aおよび図2Bを参照しつつ説明する。電気Snめっき層の成分は、GD−MS(Glow Discharge−Mass Spectrometry)解析により分析することができる。GD−MS解析は、放電時間の経過と共に、めっき層の表面から深さ方向への組成の変化を追跡する分析方法である。図2Aは、実施例のNo.16の電気Snめっき鋼板についてGD−MS解析して得られたグラフである。   Next, a method for analyzing the components of the electric Sn plating layer according to the present embodiment will be described with reference to FIGS. 2A and 2B. The components of the electric Sn plating layer can be analyzed by GD-MS (Glow Discharge-Mass Spectrometry) analysis. The GD-MS analysis is an analysis method that tracks the change in composition from the surface of the plating layer in the depth direction as the discharge time elapses. FIG. It is the graph obtained by GD-MS analysis about 16 electric Sn plating steel plates.

図2Aのグラフは、Fe、Sn、Pb及びOの含有量の、横軸左端側の電気Snめっき層の表面側から右端側の母材鋼板側に向かっての変化を表したものである。縦軸の質量ppmは、FeおよびSnについては左側の目盛であり、PbおよびOについては右側の目盛である。
図2Bのグラフは、図2AのSn含有量およびPb含有量を取り出して、Pb/(Sn+Pb)値を計算し、電気Snめっき層の表面から深さ方向への変化をグラフ化したものである。
The graph of FIG. 2A represents a change in the content of Fe, Sn, Pb, and O from the surface side of the electric Sn plating layer on the left end side of the horizontal axis toward the base steel plate side on the right end side. The mass ppm on the vertical axis is a scale on the left side for Fe and Sn, and a scale on the right side for Pb and O.
The graph of FIG. 2B is obtained by taking out the Sn content and the Pb content of FIG. 2A, calculating the Pb / (Sn + Pb) value, and graphing the change from the surface of the electric Sn plating layer to the depth direction. .

本実施形態では、電気Snめっき鋼板の任意の位置からサンプルを採取し、そのサンプルについて板厚方向にGD−MS解析した際に、表面〜Sn含有量が100000ppm以上の領域を電気Snめっき層と定義する。なお、図2Aでは、放電してから数分間は元素が検出されていないが、この領域は電気Snめっき層には含めない。また、電気Snめっき層のうち、Sn含有量がFe含有量よりも多い領域をSn層と定義し、電気Snめっき層のうちSn層以外の領域を合金層(Fe−Sn層)と定義する(図2A参照)。また、Feが10〜90質量%、Niが10〜90質量%である領域をFe−Ni層と定義し、Niが10〜90質量%、Snが10〜90質量%である領域をNi−Sn層と定義し、Feが10〜80質量%、Niが10〜80質量%、Snが10〜80質量%である領域をFe−Ni−Sn層と定義する。   In this embodiment, when a sample is taken from an arbitrary position of the electric Sn-plated steel sheet, and the GD-MS analysis is performed on the sample in the thickness direction, an area having a surface content of Sn of 100,000 ppm or more is defined as an electric Sn plating layer. Define. In FIG. 2A, no element is detected for several minutes after the discharge, but this region is not included in the electric Sn plating layer. Further, in the electric Sn plating layer, a region where the Sn content is larger than the Fe content is defined as an Sn layer, and a region other than the Sn layer in the electric Sn plating layer is defined as an alloy layer (Fe-Sn layer). (See FIG. 2A). Further, a region where Fe is 10 to 90% by mass and Ni is 10 to 90% by mass is defined as an Fe—Ni layer, and a region where Ni is 10 to 90% by mass and Sn is 10 to 90% by mass is Ni—. The region where Fe is defined as the Sn layer and Fe is 10 to 80% by mass, Ni is 10 to 80% by mass, and Sn is 10 to 80% by mass is defined as the Fe—Ni—Sn layer.

電気Snめっき層全体のPb含有量は、GD−MS解析により得られた、Sn層および合金層を含む電気Snめっき層全体のPb含有量である。表層領域のPb含有量は、GD−MS解析により得られた、電気Snめっき層の表面から(1/10)×t深さまでの領域のPb含有量である。   The Pb content of the entire electric Sn plating layer is the Pb content of the entire electric Sn plating layer including the Sn layer and the alloy layer obtained by GD-MS analysis. The Pb content in the surface region is the Pb content in the region from the surface of the electric Sn plating layer to (1/10) × t depth obtained by GD-MS analysis.

電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)は、表層領域のPb含有量(質量%)を、表層領域のSn含有量(質量%)およびPb含有量(質量%)の和で除して得る。同様に、電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)は、深部領域のPb含有量(質量%)を、深部領域のSn含有量(質量%)およびPb含有量(質量%)の和で除して得る。   The Pb content / (Sn content + Pb content) of the surface layer region of the electric Sn plating layer is the Pb content (% by mass) of the surface layer region, the Sn content (% by mass) and the Pb content (mass by mass). %). Similarly, the Pb content / (Sn content + Pb content) in the deep region of the electric Sn plating layer is the Pb content (% by mass) in the deep region, the Sn content (% by mass) and the Pb content in the deep region. It is obtained by dividing by the sum of the amount (mass%).

電気Snめっき層中のCa含有量、Sr含有量およびBa含有量は、インヒビターを入れた酸を用いて電気Snめっき層を溶解し、溶解して得られた溶液をICP−MS(Inductively Coupled Plasma−Mass Spectrometry)により分析することで得る。   The Ca content, the Sr content and the Ba content in the electric Sn plating layer were determined by dissolving the electric Sn plating layer using an acid containing an inhibitor and dissolving the resulting solution into an ICP-MS (Inductively Coupled Plasma). -Obtain by analysis by Mass Spectrometry).

[製造方法]
本実施形態に係る電気Snめっき鋼板の製造方法の一例について説明する。
[Production method]
An example of the manufacturing method of the electric Sn plating steel plate concerning this embodiment is explained.

まず、上述した化学組成を有する母材鋼板に電気Snめっきを施す。本実施形態では、クラウンエーテル法によりPb2+濃度を低減したSnめっき液を用いて電気Snめっきを行う。電気Snめっきを行う前に、電解脱脂を行ってもよい。複数の電極間(10パス)を高速通板させる電気Snめっき工程では、1〜9パス目の電流密度を一定とし、10パス目(最終パス)の電流密度を上げて電気Snめっきを施す。10パス目の電流密度の上げ幅を調整することにより、電気Snめっき層の表層領域のPb含有量を調整することができる。電気Snめっき工程の後は、母材鋼板にフラックスを塗布した後、Snめっき液の10倍希釈液に浸漬し、ローラー絞り後、冷風乾燥し、リフロー操作として、通電加熱とクエンチ(80℃)を実施する。
以上の方法により、本実施形態に係る電気Snめっき鋼板を製造することができる。
First, electric Sn plating is applied to the base steel plate having the above-described chemical composition. In the present embodiment, electric Sn plating is performed using an Sn plating solution whose Pb 2+ concentration is reduced by the crown ether method. Electrolytic degreasing may be performed before electro Sn plating. In the electric Sn plating step of passing between a plurality of electrodes (10 passes) at a high speed, the current density in the first to ninth passes is made constant, and the current density in the 10th pass (final pass) is increased. The Pb content in the surface region of the electric Sn plating layer can be adjusted by adjusting the current density increase width in the 10th pass. After the electric Sn plating process, after flux is applied to the base steel plate, it is immersed in a 10-fold dilution of Sn plating solution, squeezed with rollers, dried with cold air, and heated and quenched (80 ° C) as a reflow operation. To implement.
With the above method, the electric Sn-plated steel sheet according to this embodiment can be manufactured.

本実施形態では、Snめっき液にアルカリ土類金属(Ca、Sr、Ba)の炭酸塩を添加してもよい。これにより、クラウンエーテル法によるPb2+除去の収率を向上させることができ、電気Snめっき層全体のPb含有量をより低減することができる。In the present embodiment, an alkaline earth metal (Ca, Sr, Ba) carbonate may be added to the Sn plating solution. Thereby, the yield of Pb 2+ removal by the crown ether method can be improved, and the Pb content of the entire electric Sn plating layer can be further reduced.

また、本実施形態では、電気Snめっきの前処理として、NiプレめっきまたはFe−Niプレめっきを施してもよい。これにより、母材鋼板と電気Snめっき層との間にFe−Ni層、Ni−Sn層またはFe−Ni−Sn層の1種または2種以上を形成させることができる。   In the present embodiment, Ni pre-plating or Fe—Ni pre-plating may be performed as a pretreatment for electric Sn plating. Thereby, 1 type, or 2 or more types of a Fe-Ni layer, a Ni-Sn layer, or a Fe-Ni-Sn layer can be formed between a base material steel plate and an electric Sn plating layer.

以下に本発明の実施例について説明するが、実施例での条件は本発明の実施可能性及び効果を確認するために採用した例に過ぎず、本発明はこの条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Examples of the present invention will be described below. However, the conditions in the examples are only examples adopted for confirming the feasibility and effects of the present invention, and the present invention is not limited to these example conditions. Absent. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

[実施例1]
実操業規模で、クラウンエーテル法による電気Snめっき層中のPb含有量の低下の効果を調査した。
Snめっき液の成分はSn2+:20g/L、Pb2+:5mg/L(Pb/Sn換算で250ppm)、EN:5g/L、ENSA:5g/L、PSA:100g/Lで、温度:45℃であった。
クラウンエーテルが担持された樹脂(本実施例ではシリカゲルを用いた)をカラム中に充填し、Snめっき液を通過させた。このSnめっき液はめっきセルに移り、めっきセル内を循環した後にカラムに戻った。これが繰り返された。このときのSnめっき液の通液速度(L/hr)は樹脂体積(L)に依存するが、予備検討の結果、樹脂1Lに対し、Snめっき液の通液速度は60L/hrと設定した。
[Example 1]
The effect of lowering the Pb content in the electric Sn plating layer by the crown ether method was investigated at the actual operation scale.
The components of the Sn plating solution are Sn 2+ : 20 g / L, Pb 2+ : 5 mg / L (250 ppm in terms of Pb / Sn), EN: 5 g / L, ENSA: 5 g / L, PSA: 100 g / L, temperature: 45 ° C.
A resin loaded with crown ether (silica gel was used in this example) was packed in a column, and an Sn plating solution was allowed to pass through. This Sn plating solution moved to the plating cell, returned to the column after circulating in the plating cell. This was repeated. The flow rate (L / hr) of the Sn plating solution at this time depends on the resin volume (L), but as a result of preliminary examination, the flow rate of the Sn plating solution was set to 60 L / hr with respect to 1 L of the resin. .

実験室規模では、相当の効果が認められたが、実操業規模ではPb2+:0.1mg/Lまでにしか低減しなかった。
この原因は、実操業ラインでは、既存のスラッジ(SnOが主成分)が多量に存在することから、クラウンエーテルの特性がやや低下したと本発明者らは推測した。しかしながら、通液速度やクラウンエーテルの交換頻度の調整により十分に実操業ラインでも効果を発現することが判明した。
At the laboratory scale, a considerable effect was observed, but at the actual operation scale, it was reduced only to Pb 2+ : 0.1 mg / L.
The present inventor presumed that the cause was that the properties of the crown ether were somewhat deteriorated due to the presence of a large amount of existing sludge (SnO 2 as a main component) in the actual operation line. However, it has been found that the effect can be sufficiently exhibited even in the actual operation line by adjusting the liquid flow rate and the exchange frequency of the crown ether.

さらに、クラウンエーテル法によりPb2+を低減したSnめっき液により作製された電気Snめっき層を分析した。
クラウンエーテル法によりPb2+:0.1mg/LとなったSnめっき液にて作製した電気Snめっき層をGD−MS解析した結果を図3Bに示し、無処理のSnめっき液を用いて作製した電気Snめっき層(比較例)をGD−MS解析した結果を図3Aに示す。
Furthermore, the electric Sn plating layer produced with the Sn plating solution in which Pb 2+ was reduced by the crown ether method was analyzed.
FIG. 3B shows the result of GD-MS analysis of the electrical Sn plating layer prepared with the Sn plating solution having a Pb 2+ of 0.1 mg / L by the crown ether method, and was prepared using the untreated Sn plating solution. FIG. 3A shows the result of GD-MS analysis of the electric Sn plating layer (comparative example).

図3Aに示すように比較例である無処理のSnめっき液で作製した電気Snめっき層からは、Snと共に表面近傍から高い濃度のPbが検出された。一方、クラウンエーテル法で処理したSnめっき液で作製しためっき層からは、図3Bに示すように、Pbが極僅かしか検出されなかった。   As shown in FIG. 3A, a high concentration of Pb was detected from the vicinity of the surface together with Sn from the electric Sn plating layer produced with the untreated Sn plating solution as a comparative example. On the other hand, as shown in FIG. 3B, only a very small amount of Pb was detected from the plating layer produced with the Sn plating solution treated by the crown ether method.

[実施例2]
飲料缶材料および食缶材料としてのブリキの製造に、本発明に係る電気Snめっき鋼板を適用することを想定して、以下の実験を行った。
[Example 2]
The following experiment was conducted on the assumption that the electric Sn-plated steel sheet according to the present invention was applied to the production of tin as a beverage can material and a food can material.

母材鋼板として、C:0.03質量%、Al:0.005質量%、Mn:0.03質量%および残部Feおよび不純物からなる鋼板を使用した。
Snめっき液の成分は、Sn2+:20g/L、Pb2+:5mg/L(Pb/Sn換算で250ppm)、EN:5g/L、ENSA:5g/L、PSA:100g/Lであり、温度:45℃であった。このSnめっき液のPb2+濃度をクラウンエーテル法により低減し、任意のPb2+濃度で逐次、後述する電気Snめっき工程を経て、電気Snめっき層を形成した。Pb2+濃度は、実験室規模では0.05mg/Lまで低減できた。
As a base steel plate, a steel plate made of C: 0.03% by mass, Al: 0.005% by mass, Mn: 0.03% by mass, the balance Fe and impurities was used.
The components of the Sn plating solution are Sn 2+ : 20 g / L, Pb 2+ : 5 mg / L (250 ppm in terms of Pb / Sn), EN: 5 g / L, ENSA: 5 g / L, PSA: 100 g / L, temperature : 45 ° C. The Pb 2+ concentration of this Sn plating solution was reduced by the crown ether method, and an electric Sn plating layer was formed sequentially through an electric Sn plating step described later at an arbitrary Pb 2+ concentration. The Pb 2+ concentration could be reduced to 0.05 mg / L on the laboratory scale.

電気Snめっき層を形成するための前処理として、鋼板の電解脱脂工程を、60℃の10%NaOH溶液にて10A/dm×10secの電流を鋼板がカソード側となるようにして流した。その後、常温の10%HSOに10sec浸漬して酸洗した後、♯25ブリキ(片面Sn付着量2.8g/m)狙いで、上記Snめっき液を用いて5A/dmにて電気Snめっきを行った。As a pretreatment for forming the electric Sn plating layer, an electrolytic degreasing step of the steel sheet was performed with a 10% NaOH solution at 60 ° C. so that a current of 10 A / dm 2 × 10 sec was supplied to the cathode side. After that, after dipping in 10% H 2 SO 4 at room temperature for 10 sec and pickling, aiming at # 25 tin (single-side Sn adhesion amount 2.8 g / m 2 ), the Sn plating solution is used to achieve 5 A / dm 2 . Electro Sn plating was performed.

電気Snめっき工程において、本実施例では、10パス中の最終パスの電流密度を変化させ、Pbの分布状態を制御した電気Snめっき層を形成した。すなわち、表層領域にPbを濃化させる場合は最終パスの電流密度を上げ、逆に表層領域のPb含有量を電気Snめっき層全体のPb含有量より低減させる場合は最終パスの電流密度を下げた。本実施例では、最終パス以外は電流密度20A/dmとし、最終パスでは電流密度を30〜60A/dmに上げて電気Snめっきした。ただし、表1のNo.11およびNo.14については、最終パスのみ電流密度を下げ、No.37およびNo.38については、電流密度を一定とした。In the electric Sn plating step, in this example, the electric Sn plating layer in which the current density of the final pass in 10 passes was changed and the distribution state of Pb was controlled was formed. That is, when Pb is concentrated in the surface layer region, the current density of the final pass is increased, and conversely, when the Pb content in the surface layer region is reduced from the Pb content of the entire electroplated Sn layer, the current density of the final pass is decreased. It was. In this example, the current density was set to 20 A / dm 2 except for the final pass, and in the final pass, the current density was increased to 30 to 60 A / dm 2 and electroplated with Sn. However, no. 11 and no. For No. 14, the current density was lowered only in the final pass. 37 and no. For 38, the current density was constant.

一部のSnめっき液については、アルカリ土類金属(Ca、Sr、Ba)の炭酸塩を投入した。   For some Sn plating solutions, carbonates of alkaline earth metals (Ca, Sr, Ba) were added.

電気Snめっき工程に次いで、フラックス塗布後、上述の電気Snめっき液の10倍希釈液に浸漬し、ローラー絞り後、冷風乾燥したものに、リフロー操作として、通電加熱とクエンチ(80℃)を実施した。以上の方法により、電気Snめっき鋼板を得た。   Following the electric Sn plating step, after applying flux, immersion in a 10-fold diluted solution of the above-mentioned electric Sn plating solution, roller squeezing, and cooling air drying, conducting reheating and energizing heating and quenching (80 ° C) did. By the above method, an electric Sn plated steel sheet was obtained.

一部の電気Snめっき鋼板については、電気Snめっき工程の前処理として、Niプレめっき、Fe−20mass%Niプレめっきを各々Ni:20mg/mの付着量となるように施し、その後リフローにより、Fe−Ni層、Ni−Sn層(NiSn主体)、またはFe−Ni−Sn層を形成した。For some electric Sn-plated steel sheets, Ni pre-plating and Fe-20mass% Ni pre-plating are applied so as to have an adhesion amount of Ni: 20 mg / m 2 respectively, as a pretreatment of the electric Sn plating step, and then by reflow , Fe—Ni layer, Ni—Sn layer (Ni 3 Sn 4 main body), or Fe—Ni—Sn layer was formed.

電気Snめっき層の成分分析は上述の方法により行った。なお、GD−MS解析は、電気Snめっき鋼板の端部から30mm離れた位置から30mm×15mmの短冊形のサンプルを採取し、そのサンプルの2箇所についてGD−MS解析を行った。アルカリ土類金属(Ca、Sr、Ba)の微量元素分析はICP−MSにより測定した。電気Snめっき層は、表1に示すPb、Ca、SrおよびBaを含み、Sn:10〜100質量%、Fe:0〜90質量%、O:0〜0.5質量%および残部不純物からなる電気Snめっき層であった。
表1の「めっき層全体Pb含有量/質量ppm」は電気Snめっき層全体のPb含有量であり、「表層Pb含有量/質量ppm」は電気Snめっき層の表層領域のPb含有量である。表1の「Pb/(Sn+Pb)(表層領域/深部領域)」の欄には、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を電気Snめっき層の表層領域以外の領域(深部領域)のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上である場合に「○」と記載し、上記値が1.1未満である場合に「×」と記載した。
表1において、発明例および比較例を含む全ての実施例が、電気Snめっき層中にSn層および合金層を有していた。
The component analysis of the electric Sn plating layer was performed by the method described above. In the GD-MS analysis, a 30 mm × 15 mm strip sample was taken from a position 30 mm away from the end of the electric Sn-plated steel sheet, and GD-MS analysis was performed on two locations of the sample. Trace element analysis of alkaline earth metals (Ca, Sr, Ba) was measured by ICP-MS. The electric Sn plating layer contains Pb, Ca, Sr and Ba shown in Table 1, and consists of Sn: 10 to 100% by mass, Fe: 0 to 90% by mass, O: 0 to 0.5% by mass and the remaining impurities. It was an electric Sn plating layer.
“Pb content of entire plating layer / mass ppm” in Table 1 is the Pb content of the entire electric Sn plating layer, and “Surface layer Pb content / mass ppm” is the Pb content of the surface region of the electric Sn plating layer. . In the column of “Pb / (Sn + Pb) (surface layer region / deep region)” in Table 1, Pb content / (Sn content + Pb content) of the surface layer region of the electric Sn plating layer is the surface layer region of the electric Sn plating layer. When the value divided by the Pb content / (Sn content + Pb content) of the region other than (the deep region) is 1.1 or more, it is described as “◯”, and the above value is less than 1.1 "X" is described.
In Table 1, all the examples including the inventive example and the comparative example had the Sn layer and the alloy layer in the electric Sn plating layer.

電気Snめっき鋼板について、以下の試験を実施した。
なお、耐硫化黒変試験(レトルト試験)では、電気Snめっき鋼板の端部から30mm離れた位置から所定の大きさのサンプルを採取し、このサンプルに、50℃の2クロム酸ナトリウム・二水和物の25g/L溶液中で、Pb−Snアノードを用いて5A/dm、10mg/dm狙いで電流を流した(♯311処理)。
The following tests were conducted on the electric Sn plated steel sheet.
In the sulfide blackening resistance test (retort test), a sample of a predetermined size was taken from a position 30 mm away from the end of the electric Sn-plated steel sheet, and this sample was mixed with sodium dichromate / dihydrate at 50 ° C. In a 25 g / L solution of the Japanese product, a current was applied with a Pb—Sn anode to 5 A / dm 2 and 10 mg / dm 2 (# 311 treatment).

ATC試験(Alloy−Tin Couple Test)
ATC試験により、電気Snめっき鋼板を飲料缶または食缶に適用した場合の缶寿命を評価した。ATC試験では、リフロー後に脱錫し合金層(Fe−Sn層)を露出した電気Snめっき鋼板とリフロー後に脱錫していない電気Snめっき鋼板をATC試験液(1.5%NaCl+1.5%くえん酸溶液)中に浸漬し、両極間を流れる腐食電流を測定した。試験片は130mm×15mmの短冊形であり、これを5%NaOH溶液中において電解剥離し、5mm×40mmの試験面を残して他を完全にシールし電流が漏洩しないようにした。試験液は窒素雰囲気中で2分間沸騰させ、室温まで冷却した。試験槽中に、リフロー後に脱錫し合金層(Fe−Sn層)を露出した電気Snめっき鋼板と、リフロー後に脱錫していない電気Snめっき鋼板とを接続し組み込んだ。試験槽の底に塩化第一錫(Sn2+換算で100ppm)を入れ、事前に試験槽内を窒素雰囲気にした。ATC試験液を空気に触れないように試験槽に移し、リフロー後に脱錫し合金層(Fe−Sn層)を露出した電気Snめっき鋼板とリフロー後に脱錫していない電気Snめっき鋼板とを浸漬すると同時に30分間ATC試験液を撹拌し、塩化第一錫を溶解した。窒素雰囲気(ATC試験液)中において20時間浸漬した後、脱錫した電気Snめっき鋼板と脱錫していない電気Snめっき鋼板との間の電流値を測定し、これをATC値とした。ATC値が低いほど缶寿命が良好であることを示す。
ATC test (Alloy-Tin Couple Test)
By the ATC test, the can life when the electric Sn plated steel sheet was applied to a beverage can or a food can was evaluated. In the ATC test, an electric Sn-plated steel sheet that was stripped after reflow and exposed the alloy layer (Fe-Sn layer) and an electric Sn-plated steel sheet that was not stripped after reflow were tested using an ATC test solution (1.5% NaCl + 1.5% It was immersed in an acid solution) and the corrosion current flowing between the two electrodes was measured. The test piece was a 130 mm × 15 mm strip, and this was electrolytically stripped in a 5% NaOH solution, leaving the 5 mm × 40 mm test surface completely sealed to prevent leakage of current. The test solution was boiled for 2 minutes in a nitrogen atmosphere and cooled to room temperature. An electric Sn-plated steel sheet that was stripped after reflow and exposed the alloy layer (Fe-Sn layer) and an electric Sn-plated steel sheet that was not stripped after reflow were connected and incorporated in a test tank. Stannous chloride (100 ppm in terms of Sn 2+ ) was added to the bottom of the test tank, and the inside of the test tank was previously put in a nitrogen atmosphere. Move the ATC test solution to the test chamber so that it does not come into contact with air, and immerse the Sn-plated steel sheet that has been stripped after reflow and exposed the alloy layer (Fe-Sn layer) and the Sn-plated steel sheet that has not been stripped after reflow. At the same time, the ATC test solution was stirred for 30 minutes to dissolve the stannous chloride. After being immersed in a nitrogen atmosphere (ATC test solution) for 20 hours, the current value between the electrotinned steel plate that had been stripped and the electroplated steel plate that had not been tinned was measured, and this was used as the ATC value. A lower ATC value indicates a better can life.

本実施例では、上記の方法で測定したATC値(μA/cm)で
優 4点:0.1μA/cm未満
3点:0.1μA/cm以上、0.2μA/cm未満
2点:0.2μA/cm以上、0.3μA/cm未満
劣 1点:0.3μA/cm以上、
の4段階で評点をつけた。なお、2点以上で容器用鋼板として使用することが可能であるため、2点以上を合格と判定した。
In this embodiment, ATC value measured by the above method (.mu.A / cm 2) at Yu 4 points: 0.1 .mu.A / cm 2 less than 3 points: 0.1 .mu.A / cm 2 or more, 0.2 .mu.A / cm 2 less than 2 Point: 0.2 μA / cm 2 or more, less than 0.3 μA / cm 2 1 point: 0.3 μA / cm 2 or more,
The score was given in four stages. In addition, since it can be used as a steel plate for containers with two or more points, two or more points were determined to be acceptable.

耐硫化黒変試験(レトルト試験)
耐硫化黒変試験により、電気Snめっき鋼板の耐食性を評価した。耐硫化黒変試験には、0.1%チオ硫酸ナトリウム水溶液と0.1N硫酸とを体積比で1:2に混合した耐食性試験液を用いた。前述の#311処理を行った電気Snめっき鋼板をφ35mmに切り出して試験片とし、この試験片を、耐食性試験液を入れた耐熱瓶の口に乗せて固定した。その後、耐熱瓶を逆さにして、試験片と耐食性試験液とが接触するようにした。121℃で60分の熱処理を行った後、耐食性試験液が上記試験片に触れる面積(耐熱瓶の開口部面積)のうち、腐食した部分の割合で耐食性を評価した。
試験片が耐食性試験液と接触する面積に対する腐食面積の割合で1〜5点の評点をつけた。なお、3点以上で容器用鋼板として使用することが可能であるため、3点以上を合格と判定した。
優 評点5:面積10%未満
評点4:面積10%以上、25%未満
評点3:面積25%以上、40%未満
評点2:面積40%以上、55%未満
劣 評点1:面積55%以上
Anti-sulfur blackening test (retort test)
The corrosion resistance of the electric Sn-plated steel sheet was evaluated by an anti-sulfur blackening test. In the sulfide blackening test, a corrosion resistance test solution in which a 0.1% sodium thiosulfate aqueous solution and 0.1N sulfuric acid were mixed at a volume ratio of 1: 2 was used. The electric Sn-plated steel plate subjected to the above-mentioned # 311 treatment was cut into a diameter of 35 mm to obtain a test piece, and this test piece was placed on the mouth of a heat-resistant bottle containing a corrosion resistance test solution and fixed. Thereafter, the heat-resistant bottle was turned upside down so that the test piece and the corrosion resistance test solution were in contact with each other. After heat treatment at 121 ° C. for 60 minutes, the corrosion resistance was evaluated based on the ratio of the corroded portion in the area where the corrosion resistance test solution touches the test piece (opening area of the heat-resistant bottle).
A score of 1 to 5 was given by the ratio of the corrosion area to the area where the test piece was in contact with the corrosion resistance test solution. In addition, since it was possible to use it as a steel plate for containers with 3 points or more, 3 points or more were determined to be acceptable.
Excellent rating 5: Less than 10% area Score 4: 10% or more area, less than 25% Rating 3: 25% area or more, less than 40% Score 2: Less than 40% area, less than 55% Score 1: 55% area or more

塗膜密着性評価試験
電気Snめっき鋼板の任意の位置からサンプルを採取し、電気Snめっき層の表面にアクリル系塗膜を焼き付け塗装し、室温まで冷却後、テープ剥離試験を行った。剥離試験後のテープ面を観察し、電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の5%未満であった場合を塗膜密着性に優れるとして合格と判定した。電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の5%以上であった場合を塗膜密着性に劣るとして不合格と判定した。また、合格と判定した例のうち、電気Snめっきの付着面が、テープ面(電気Snめっき層とテープとの接着面)の3%未満であった場合は、特に塗膜密着性に優れると判断した。表1には、合格と判定したものは「△」と記載し、合格と判定した例のうち特に塗膜密着性に優れるものは「○」と記載し、不合格と判定したものは「×」と記載した。
Coating Film Adhesion Evaluation Test A sample was taken from an arbitrary position of the electric Sn plated steel sheet, an acrylic coating film was baked on the surface of the electric Sn plated layer, cooled to room temperature, and then subjected to a tape peeling test. The tape surface after the peel test was observed, and the surface where the adhesion surface of the electric Sn plating was less than 5% of the tape surface (adhesion surface between the electric Sn plating layer and the tape) Judged. The case where the adhesion surface of the electric Sn plating was 5% or more of the tape surface (adhesion surface between the electric Sn plating layer and the tape) was determined to be unacceptable as being inferior in coating film adhesion. Moreover, when the adhesion surface of electrical Sn plating is less than 3% of the tape surface (adhesion surface of an electrical Sn plating layer and a tape) among the examples determined to be acceptable, the coating film adhesion is particularly excellent. It was judged. In Table 1, what was determined to be acceptable is described as “△”, and among the examples determined to be acceptable, especially those having excellent coating film adhesion are described as “◯”, and those determined to be unacceptable are “×”. ".

耐ウィスカー性評価試験
電気Snめっき鋼板の任意の位置からサンプルを採取し、このサンプルを5T曲げで40℃、50%RH環境下で1000h放置した後、曲げ部の外側をSEMで10mm×5mmの範囲を観察し、3視野観察して、50μm以上のウィスカーの個数を数え、その個数を観察面積で除して個数密度を得た。観察されたウィスカーが1mmあたり10個以下の場合を耐ウィスカー性に優れるとして合格と判定し、10個超の場合を不合格と判定した。表1には、合格と判定したものは「○」と記載し、不合格と判定したものは「×」と記載した。
Whisker resistance evaluation test A sample was taken from an arbitrary position of the electric Sn-plated steel sheet, and this sample was left at 40 ° C. in a 50% RH environment for 5 hours by 5T bending, and then the outside of the bent portion was 10 mm × 5 mm by SEM. The range was observed, and 3 fields of view were observed. The number of whiskers of 50 μm or more was counted, and the number was divided by the observation area to obtain the number density. When the number of observed whiskers was 10 or less per 1 mm 2, the whisker resistance was determined to be excellent, and the case of more than 10 was determined to be unacceptable. In Table 1, what was determined to be acceptable was described as “◯”, and what was determined to be unacceptable was described as “x”.

上記の測定結果及び試験結果を表1に示す。なお、表1の下線は本発明の範囲外、または好ましくない特性であることを示す。   The measurement results and test results are shown in Table 1. The underline in Table 1 indicates that the characteristics are out of the scope of the present invention or are not preferable.

Figure 0006555455
Figure 0006555455

No.1、No.2、No.3は電気Snめっき層全体のPb含有量が50質量ppm超であり、ATC試験および耐硫化黒変試験の評点が低かった例である。硫化黒変はSnとSとの結合に起因するものであり、レトルト処理で高温にさらされることにより変色が促進される。電気Snめっき層全体のPb含有量が高いと、局所的に融点が下がる部位ができ、変色の反応点が増えるため、マクロな黒変という外観変化につながったと推定された。   No. 1, no. 2, no. No. 3 is an example in which the Pb content of the entire electric Sn plating layer was more than 50 ppm by mass, and the scores of the ATC test and the sulfide blackening test were low. The blackening of sulfide is caused by the combination of Sn and S, and the discoloration is promoted by being exposed to a high temperature by retorting. When the Pb content of the entire electroplated Sn layer is high, a part where the melting point is locally lowered is generated, and the reaction point of discoloration is increased. Therefore, it was presumed that this led to an appearance change such as macro blackening.

一方、本発明例は電気Snめっき層全体のPb含有量が50質量ppm以下であり、表層領域のPb含有量が5ppm以上でありかつ電気Snめっき層全体のPb含有量よりも高いため、ATC試験、耐硫化黒変試験、塗膜密着性評価試験および耐ウィスカー性評価試験のいずれの試験結果も良好であった。
詳細に見ると、電気Snめっき層全体のPb含有量が30質量ppm以下(No.6)で耐食性がより良好であり、20質量ppm以下(No.7、No.8、No.16〜No.18)で極めて良好な耐食性を示した。また、電気Snめっき層の表層領域のPb含有量/(Sn含有量+Pb含有量)を電気Snめっき層の深部領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上である発明例は、塗膜密着性評価試験において特に良好な結果を示した。
On the other hand, according to the present invention, the Pb content of the entire electric Sn plating layer is 50 mass ppm or less, the Pb content of the surface layer region is 5 ppm or more and higher than the Pb content of the entire electric Sn plating layer. All the test results of the test, the sulfide blackening test, the coating adhesion evaluation test and the whisker resistance evaluation test were good.
When it sees in detail, Pb content of the whole electric Sn plating layer is 30 mass ppm or less (No. 6), and corrosion resistance is more favorable, and 20 mass ppm or less (No. 7, No. 8, No. 16-No. .18) showed very good corrosion resistance. The value obtained by dividing the Pb content in the surface region of the electric Sn plating layer / (Sn content + Pb content) by the Pb content in the deep region of the electric Sn plating layer / (Sn content + Pb content) is 1. The invention examples of 1 or more showed particularly good results in the coating film adhesion evaluation test.

No.19〜23はNo.10に相当するSnめっき液に炭酸カルシウムを0.01〜1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.19〜23の電気Snめっき層全体のPb含有量は2割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
No.24〜28はNo.10に相当するSnめっき液に炭酸ストロンチウムを0.01〜1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.24〜28の電気Snめっき層全体のPb含有量は3割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
No.29〜33はNo.10に相当するSnめっき液に炭酸バリウムを0.01〜1g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.29〜33の電気Snめっき層全体のPb含有量は1割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
No.34は、No.10に相当するSnめっき液に、炭酸カルシウムを0.07g/L、および炭酸ストロンチウムを0.05g/L添加して作製した電気Snめっき鋼板である。No.10と比較すると、No.34の電気Snめっき層全体のPb含有量は3.5割程度低下しており、クラウンエーテル法によるPb2+収率が向上したことが示唆された。
No. Nos. 19 to 23 are No. 10 is an electric Sn plated steel sheet prepared by adding 0.01 to 1 g / L of calcium carbonate to a Sn plating solution corresponding to No. 10. No. No. 10 and No. 10 The Pb content in the entire electroplated Sn plating layer of 19 to 23 was reduced by about 20%, suggesting that the Pb 2+ yield by the crown ether method was improved.
No. Nos. 24-28 are No. 10 is an electric Sn-plated steel sheet produced by adding 0.01 to 1 g / L of strontium carbonate to an Sn plating solution corresponding to No. 10. No. No. 10 and No. 10 The Pb content of the entire 24-28 electro Sn plating layer was reduced by about 30%, suggesting that the Pb 2+ yield by the crown ether method was improved.
No. 29-33 are No. 10 is an electric Sn-plated steel sheet produced by adding 0.01 to 1 g / L of barium carbonate to an Sn plating solution corresponding to No. 10. No. No. 10 and No. 10 The Pb content of the entire 29 to 33 electro Sn plating layer was reduced by about 10%, suggesting that the Pb 2+ yield by the crown ether method was improved.
No. 34, No. 34. 10 is an Sn electroplated steel sheet produced by adding 0.07 g / L of calcium carbonate and 0.05 g / L of strontium carbonate to a Sn plating solution corresponding to No. 10. No. No. 10 and No. 10 The Pb content of the entire 34 electric Sn plating layer was reduced by about 3.5%, suggesting that the Pb 2+ yield by the crown ether method was improved.

No.35〜38はNo.9に相当する電気Snめっきに先立ち、プレNiめっき、プレFe−20%Niめっきを施した例である。発明例であるNo.35およびNo.36では、Ni−Fe層、Ni−Sn層、Ni−Fe−Sn層の1種又は2種以上が形成されたため、電気Snめっき層と上記Ni−Fe層、Ni−Sn層、Ni−Fe−Sn層との間の電位差が小さくなり、ATC値が向上したことが分かる。   No. 35-38 are No. This is an example in which pre-Ni plating and pre-Fe-20% Ni plating are performed prior to electrical Sn plating corresponding to 9. Inventive example No. 35 and No. 36, since one or more of a Ni—Fe layer, a Ni—Sn layer, and a Ni—Fe—Sn layer were formed, the electric Sn plating layer and the Ni—Fe layer, the Ni—Sn layer, and the Ni—Fe layer were formed. It can be seen that the potential difference with the -Sn layer was reduced and the ATC value was improved.

上記実施例(No.16)により作製した電気Snめっき鋼板にリフロー処理を施した後の電気Snめっき層について、GD−MS解析した結果を図2Aおよび図2Bに示す。
図2Aのグラフは、Fe、Sn、Pb及びOの含有量割合を横軸左端側の電気Snめっき層の表面から横軸右端側の母材鋼板側に向かっての変化を表したものである。縦軸の質量ppmは、FeとSnについては左側の目盛、Pb及びOについては右側の目盛による。図2Aによると、Pbについては最表面で25質量ppm程度が検出されるに過ぎないことが判る。
2A and 2B show the results of GD-MS analysis of the electric Sn plating layer after the reflow treatment was performed on the electric Sn plating steel sheet produced in the above example (No. 16).
The graph of FIG. 2A represents the change in the content ratio of Fe, Sn, Pb, and O from the surface of the electric Sn plating layer on the left end side of the horizontal axis toward the base metal plate side on the right end side of the horizontal axis. . The mass ppm on the vertical axis is on the left scale for Fe and Sn, and on the right scale for Pb and O. 2A shows that only about 25 ppm by mass is detected on the outermost surface of Pb.

図2Bのグラフは、図2AのSn含有量とPb含有量とを取り出して、Pb/(Sn+Pb)値を計算し、電気Snめっき層の表面からの深さ方向への変化をグラフ化したものである。
このとき、電気Snめっき層の表層領域(表面から板厚方向に(1/10)×t深さまでの領域(図2Bにおいて、矩形で囲まれた部分))で、Pb/(Sn+Pb)の値が上昇、即ち、表面近傍でPbの濃縮現象が発生していることが分かる。
The graph of FIG. 2B is obtained by taking out the Sn content and the Pb content of FIG. 2A, calculating the Pb / (Sn + Pb) value, and graphing the change in the depth direction from the surface of the electric Sn plating layer. It is.
At this time, the value of Pb / (Sn + Pb) in the surface layer region of the electric Sn plating layer (region from the surface to the (1/10) × t depth in the plate thickness direction (portion surrounded by a rectangle in FIG. 2B)) It can be seen that the Pb concentration phenomenon occurs near the surface.

図2Bの例では、電気Snめっき層全体における平均Pb/(Sn+Pb)値が15質量ppm程度であるのに対して、表層領域における最大Pb/(Sn+Pb)値は25質量ppm程度であり、現状、及び今後予測されるPb含有量の規制値以下の値であり、実質的に問題は無いものであった。
本発明が規定する、電気Snめっき層全体でPb含有量が50質量ppmの上限値の場合には、表層領域でのPb含有量の上限値は、60質量ppmとなる。
In the example of FIG. 2B, the average Pb / (Sn + Pb) value in the entire electric Sn plating layer is about 15 mass ppm, whereas the maximum Pb / (Sn + Pb) value in the surface layer region is about 25 mass ppm. , And a value below the regulation value of the Pb content predicted in the future, and there was substantially no problem.
When the Pb content is the upper limit of 50 mass ppm in the entire electric Sn plating layer defined by the present invention, the upper limit of the Pb content in the surface layer region is 60 mass ppm.

本発明では、電気Snめっき層全体のPb含有量を低下させるために、クラウンエーテルによるPb2+イオンの錯体形成捕獲除去法で、低Pb含有量とした電気Snめっき鋼板としたが、クラウンエーテルによるPb2+イオンの錯体形成捕獲除去法以外の利用を排除するものではない。In the present invention, in order to reduce the Pb content of the entire electric Sn plating layer, an electric Sn plated steel sheet having a low Pb content is obtained by a complex formation capture removal method of Pb 2+ ions with crown ether. This does not exclude the use other than the complex formation capture removal method of Pb 2+ ions.

本実施形態に係る電気Snめっき鋼板は、電気Snめっき層全体のPb含有量が50質量ppm以下である、容器用鋼板に適用可能な電気Snめっき鋼板を提供することができる。また、本実施形態によれば、高コストの低Pb含有量のSnインゴットを使用することなく、従前の東南アジア産等の、比較的Pb含有量の高いSnインゴットを使用しながら、低コストで低Pb含有量とすることができる。そのため、今後、世界中でPbフリー化等の規制が強化されても、対応することができる産業上の意義の大きい発明である。   The electric Sn-plated steel sheet according to the present embodiment can provide an electric Sn-plated steel sheet applicable to a steel sheet for containers, in which the Pb content of the entire electric Sn plating layer is 50 mass ppm or less. In addition, according to the present embodiment, a low-cost and low-priced Sn ingot is used without using a high-cost and low-Pb-content Sn ingot, while using a relatively high Pb-content Sn ingot made in Southeast Asia. The Pb content can be set. Therefore, it is an invention of great industrial significance that can be dealt with even if regulations such as Pb-free are strengthened around the world in the future.

Claims (4)

母材鋼板と、
前記母材鋼板上に配された電気Snめっき層と、を備え、
前記電気Snめっき層は、Sn層と合金層とを有し、電気Snめっき層全体で、Sn:10〜100質量%、Fe:0〜90質量%、O:0〜0.5質量%を含有
前記電気Snめっき層全体のPb含有量が50質量ppm以下であり、
前記電気Snめっき層の厚さをtとし、前記電気Snめっき層の表面から板厚方向に(1/10)×t深さまでの領域を表層領域としたとき、前記表層領域のPb含有量が5質量ppm以上であり、かつ、前記表層領域のPb含有量が前記電気Snめっき層全体の前記Pb含有量よりも高いことを特徴とする電気Snめっき鋼板。
A base steel plate;
An electric Sn plating layer disposed on the base steel plate ,
The electric Sn plating layer has an Sn layer and an alloy layer, and Sn: 10 to 100 mass%, Fe: 0 to 90 mass%, O: 0 to 0.5 mass% in the entire electric Sn plating layer. contain,
Pb content of the entire electric Sn plating layer is 50 ppm by mass or less,
When the thickness of the electric Sn plating layer is t and the region from the surface of the electric Sn plating layer to the depth of (1/10) × t in the thickness direction is the surface layer region, the Pb content of the surface layer region is An electric Sn-plated steel sheet having a Pb content of 5 mass ppm or more and higher than the Pb content of the entire electric Sn plating layer.
前記電気Snめっき層の前記表層領域のPb含有量/(Sn含有量+Pb含有量)を前記電気Snめっき層の前記表層領域以外の領域のPb含有量/(Sn含有量+Pb含有量)で除した値が1.1以上であることを特徴とする請求項1に記載の電気Snめっき鋼板。   Divide Pb content in the surface region of the electric Sn plating layer / (Sn content + Pb content) by Pb content in regions other than the surface layer region of the electric Sn plating layer / (Sn content + Pb content) The electric Sn-plated steel sheet according to claim 1, wherein the obtained value is 1.1 or more. 前記電気Snめっき層が、
Ca:0.1〜10質量ppm、
Sr:0.1〜10質量ppmおよび
Ba:0.1〜10質量ppmからなる群のうち1種または2種以上を更に含有することを特徴とする請求項1又は2に記載の電気Snめっき鋼板。
The electric Sn plating layer is
Ca: 0.1-10 mass ppm,
The electric Sn plating according to claim 1 or 2, further comprising one or more of Sr: 0.1 to 10 ppm by mass and Ba: 0.1 to 10 ppm by mass. steel sheet.
前記電気Snめっき層と前記母材鋼板との間に、Fe−Ni層、Ni−Sn層およびFe−Ni−Sn層の1種又は2種以上を更に備えることを特徴とする請求項1〜3のいずれか1項に記載の電気Snめっき鋼板。   1 or 2 or more types of Fe-Ni layer, Ni-Sn layer, and Fe-Ni-Sn layer are further provided between the said electrical Sn plating layer and the said base material steel plate. 4. The electric Sn-plated steel sheet according to any one of 3 above.
JP2019517105A 2017-11-01 2018-11-01 Electric Sn plated steel sheet Active JP6555455B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017211788 2017-11-01
JP2017211788 2017-11-01
PCT/JP2018/040727 WO2019088229A1 (en) 2017-11-01 2018-11-01 Electrolytically sn-plated steel sheet

Publications (2)

Publication Number Publication Date
JP6555455B1 true JP6555455B1 (en) 2019-08-07
JPWO2019088229A1 JPWO2019088229A1 (en) 2019-11-14

Family

ID=66331998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517105A Active JP6555455B1 (en) 2017-11-01 2018-11-01 Electric Sn plated steel sheet

Country Status (5)

Country Link
EP (1) EP3705608B1 (en)
JP (1) JP6555455B1 (en)
KR (1) KR102412968B1 (en)
CN (1) CN111164239B (en)
WO (1) WO2019088229A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493880A (en) * 2020-04-08 2021-10-12 上海梅山钢铁股份有限公司 Ultra-low-lead cold-rolled electrotinning steel plate and manufacturing method thereof
CN113740321A (en) * 2020-05-29 2021-12-03 上海梅山钢铁股份有限公司 Method for detecting barium content in coating of cold-rolled electroplated tin steel plate
CN114277416A (en) * 2020-09-28 2022-04-05 上海梅山钢铁股份有限公司 Production method and equipment of low-lead-content tin plate with methanesulfonic acid coating of insoluble anode
CN113564644A (en) * 2021-06-29 2021-10-29 武汉钢铁有限公司 Tin electroplating solution for improving coating adhesion, preparation method and tin plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314750A (en) * 2004-04-28 2005-11-10 Ishihara Chem Co Ltd Method for plating tin or tin alloy
JP2006519311A (en) * 2003-02-17 2006-08-24 コミツサリア タ レネルジー アトミーク Surface coating process
JP2017523300A (en) * 2014-05-14 2017-08-17 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method for coating a metal surface of a substrate and articles coated by this method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103732A (en) * 1987-05-25 1988-12-14 北京无线电仪器二厂 Tin-cerium-cobalt electroplating solution and compound method thereof
JPH0678594B2 (en) * 1987-09-14 1994-10-05 日本鋼管株式会社 Method for producing steel plate with lead-tin alloy having excellent corrosion resistance
JPH03191097A (en) * 1989-12-19 1991-08-21 Nippon Steel Corp Composite electroplated steel sheet
US5346607A (en) * 1992-09-30 1994-09-13 Weirton Steel Corporation Electrolytic tinplating and product
WO1994008075A1 (en) * 1992-10-05 1994-04-14 Usx Engineers And Consultants, Inc. Method of reducing the lead content of electrodeposited tin coatings
US5614328A (en) * 1995-01-19 1997-03-25 The Furukawa Electric Co. Ltd. Reflow-plated member and a manufacturing method therefor
JPH10158886A (en) * 1996-12-04 1998-06-16 Furukawa Electric Co Ltd:The Solder plated lead and its production
JP3882608B2 (en) 2001-12-14 2007-02-21 三菱マテリアル株式会社 Method and apparatus for electrolytic purification of high purity tin
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP5210103B2 (en) 2007-09-28 2013-06-12 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2009270154A (en) 2008-05-07 2009-11-19 Toyota Motor Corp PLATED BASE MATERIAL HAVING Sn-PLATING LAYER AND METHOD FOR SUPPRESSING THE GROWTH OF ACICULAR WHISKER FROM THE PLATING LAYER
JP4949353B2 (en) 2008-11-06 2012-06-06 株式会社タムラ製作所 How to remove lead
EP2221396A1 (en) * 2008-12-31 2010-08-25 Rohm and Haas Electronic Materials LLC Lead-Free Tin Alloy Electroplating Compositions and Methods
KR101829087B1 (en) * 2010-10-06 2018-03-29 타타 스틸 이즈무이덴 베.뷔. Process for producing an iron-tin alloy layer on a packaging steel substrate
CN104512923A (en) * 2013-09-30 2015-04-15 上海梅山钢铁股份有限公司 Preparation method of nano-barium sulfate
JP6146541B2 (en) * 2014-11-10 2017-06-14 新日鐵住金株式会社 Plated steel sheet and manufacturing method thereof
JP6666555B2 (en) 2016-05-25 2020-03-18 富士通株式会社 Information processing apparatus, job submission method, and job submission program
CN110885997A (en) * 2018-09-10 2020-03-17 上海梅山钢铁股份有限公司 Manufacturing method of cold-rolled electroplated tin steel plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519311A (en) * 2003-02-17 2006-08-24 コミツサリア タ レネルジー アトミーク Surface coating process
JP2005314750A (en) * 2004-04-28 2005-11-10 Ishihara Chem Co Ltd Method for plating tin or tin alloy
JP2017523300A (en) * 2014-05-14 2017-08-17 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH Method for coating a metal surface of a substrate and articles coated by this method

Also Published As

Publication number Publication date
KR20200044915A (en) 2020-04-29
KR102412968B1 (en) 2022-06-24
WO2019088229A1 (en) 2019-05-09
JPWO2019088229A1 (en) 2019-11-14
EP3705608B1 (en) 2024-05-22
EP3705608A1 (en) 2020-09-09
EP3705608A4 (en) 2021-08-11
CN111164239A (en) 2020-05-15
CN111164239B (en) 2021-11-19

Similar Documents

Publication Publication Date Title
JP6555455B1 (en) Electric Sn plated steel sheet
EP3538688B1 (en) Method for electroplating an uncoated steel strip with a plating layer
US20160122891A1 (en) Steel sheet for containers, and method for producing steel sheet for containers
TWI518210B (en) Electrolytic copper foil and method for manufacturing the same and surface-treated copper foil using the electrolytic copper foil
US10865491B2 (en) Sn-based alloy plated steel sheet
ES2745576T3 (en) Chemical conversion treated steel sheet, and method of producing chemical conversion treated steel sheet
CN110885997A (en) Manufacturing method of cold-rolled electroplated tin steel plate
TWI633211B (en) Tin plated steel sheet
KR101982426B1 (en) METHOD FOR MANUFACTURING STEEL PLANT FOR CONTAINER
CN112899738B (en) Steel matrix direct cyanide-free copper plating electroplating solution under strong acid condition and preparation method thereof
EP3760763A1 (en) Sn-plated steel sheet and method for manufacturing sn-plated steel sheet
JP4612572B2 (en) Manufacturing method of high purity Ni diffusion plated steel sheet
JP2011026632A (en) Hot-dip galvanized steel
JPS5843473B2 (en) Surface treatment method for tin-plated steel sheets
EP3434813A1 (en) Chemical conversion treated steel plate, and method for producing chemical conversion treated steel plate
KR102524705B1 (en) Method of producing surface-treated steel sheet and surface-treated steel sheet
US11686007B2 (en) Tin-indium alloy electroplating solution
JP6066030B2 (en) Steel plate for container and method for producing steel plate for container
CN116463696A (en) Electroplating processing method for preventing silver layer from changing color
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
CN114829675A (en) Sn-based plated steel sheet
WO2014136296A1 (en) Production method for electrolytic copper
JPS6286199A (en) Pretreatment for tin plate having excellent corrosion resistance
JP2015120979A (en) Galvanized steel pipe
JP2015196882A (en) Tinned and galvanized steel sheet and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190328

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151