JP6551778B2 - Deterioration determination device and deterioration determination method for storage element - Google Patents

Deterioration determination device and deterioration determination method for storage element Download PDF

Info

Publication number
JP6551778B2
JP6551778B2 JP2015073389A JP2015073389A JP6551778B2 JP 6551778 B2 JP6551778 B2 JP 6551778B2 JP 2015073389 A JP2015073389 A JP 2015073389A JP 2015073389 A JP2015073389 A JP 2015073389A JP 6551778 B2 JP6551778 B2 JP 6551778B2
Authority
JP
Japan
Prior art keywords
storage element
deterioration
determination
resistance
quadratic function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073389A
Other languages
Japanese (ja)
Other versions
JP2016194415A (en
Inventor
雄太 柏
雄太 柏
和輝 古川
和輝 古川
落合 誠二郎
誠二郎 落合
井口 隆明
隆明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015073389A priority Critical patent/JP6551778B2/en
Publication of JP2016194415A publication Critical patent/JP2016194415A/en
Application granted granted Critical
Publication of JP6551778B2 publication Critical patent/JP6551778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

本発明は、抵抗から蓄電素子の容量劣化を判定できる蓄電素子の劣化判定装置及び劣化判定方法に関する。   The present invention relates to a deterioration determination device and a deterioration determination method of a storage element capable of determining the capacity deterioration of a storage element from resistance.

従来から、二次電池の性能(容量劣化率)を診断する二次電池の性能推定方法が知られている(特許文献1参照)。この性能推定方法は、二次電池のセル筐体をハンマーで打撃し、この打撃による前記セル筐体の振動の大きさを計測し、計測された振動を示す波形を解析して前記セル筐体の共振周波数を算出し、算出された共振周波数に基づいて前記二次電池の性能(容量劣化率)を推定する。   Conventionally, a secondary battery performance estimation method for diagnosing secondary battery performance (capacity deterioration rate) is known (see Patent Document 1). In this performance estimation method, the cell casing of the secondary battery is hit with a hammer, the magnitude of the vibration of the cell casing due to the hit is measured, and the waveform indicating the measured vibration is analyzed to analyze the cell casing. And the performance (capacity deterioration rate) of the secondary battery is estimated based on the calculated resonance frequency.

しかし、上記の二次電池の性能推定方法は、前記ハンマーで前記セル筐体を打撃する必要があるため、前記二次電池の性能を診断する度に、該二次電池を電源として使用している装置等から取り外す必要があり、煩雑であった。   However, since the method for estimating the performance of the secondary battery needs to hit the cell casing with the hammer, the secondary battery is used as a power source every time the performance of the secondary battery is diagnosed. It was necessary to remove it from the device etc., which was complicated.

特開2014−122817号公報JP 2014-122817 A

そこで、本発明は、蓄電素子を電源として使用する装置等から該蓄電素子を取り外すことなく、該蓄電素子の容量劣化を判定できる蓄電素子の劣化判定装置及び劣化判定方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a storage element deterioration determination device and a deterioration determination method capable of determining the capacity deterioration of a storage element without removing the storage element from a device that uses the storage element as a power source. To do.

蓄電素子では、複数の性能劣化モード、即ち、劣化モードAと、該劣化モードAと異なる劣化モードBとが存在する。この蓄電素子において、劣化モードAから劣化モードBへ移行した場合、蓄電素子の容量劣化が急激に進行する(図5参照)。このため、早期にこの変化(劣化モードBの発現)を検知し、蓄電素子が劣化したことを使用者に通知する必要がある。   In the electric storage element, there are a plurality of performance deterioration modes, that is, a deterioration mode A and a deterioration mode B different from the deterioration mode A. In this power storage element, when the deterioration mode A is shifted to the deterioration mode B, the capacity deterioration of the power storage element proceeds rapidly (see FIG. 5). For this reason, it is necessary to detect this change (development of the deterioration mode B) at an early stage and notify the user that the power storage element has deteriorated.

本発明の発明者らは、上記課題を解消すべく鋭意研究を行った結果、所定の充電状態(SOC)における蓄電素子の抵抗と温度との相関関係(即ち、抵抗の温度依存性)が二次関数と近似し、且つ、蓄電素子を放置することによって劣化モードBが該蓄電素子に発現すると、前記相関関係に近似する二次関数を表す二次曲線の形状が大きく変化する(例えば、図5、図7〜図9参照)ことを発見し、これらに基づくことで、蓄電素子の劣化を精度よく判定(即ち、所定量以上の容量劣化が生じているか否かを判定)できることを見出した。   The inventors of the present invention have intensively studied to solve the above problems, and as a result, there is a correlation between the resistance and temperature of the storage element in a predetermined state of charge (SOC) (that is, temperature dependence of resistance). When the deterioration mode B is developed in the storage element by approximating the function and leaving the storage element, the shape of the quadratic curve representing the quadratic function approximating the correlation changes greatly (for example, FIG. 5 and FIG. 7 to FIG. 9), and based on these, it was found that the deterioration of the storage element can be accurately determined (that is, whether or not the capacity deterioration of a predetermined amount or more has occurred). .

そこで、この知見に基づいて、前記発明者らは、所定の充電状態(SOC)における蓄電素子の抵抗と温度との相関関係(即ち、抵抗の温度依存性)に二次関数を近似させたときの、該二次関数(即ち、二次関数から得られる二次曲線の形状)に着目し、以下の構成の蓄電素子の劣化判定装置及び劣化判定方法を創作した。   Therefore, based on this knowledge, the inventors approximate a quadratic function to the correlation between the resistance and temperature of the storage element in a predetermined state of charge (SOC) (that is, temperature dependence of resistance). Focusing on the quadratic function (that is, the shape of the quadratic curve obtained from the quadratic function), the present inventors have created a deterioration determination device and a deterioration determination method for a storage element having the following configuration.

本発明に係る蓄電素子の劣化判定装置は、
所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出する検出部と、
前記検出部で検出した抵抗と温度との相関関係に近似させた二次関数を導出する式導出部と、
前記二次関数に基づいて前記蓄電素子の劣化を判定する判定部と、を備える。
According to the storage device deterioration determination device of the present invention,
A detection unit for detecting each of the resistances of the storage elements at different temperatures from the storage elements in a predetermined charge state;
An expression derivation unit for deriving a quadratic function approximated to the correlation between the resistance and temperature detected by the detection unit;
And a determination unit that determines deterioration of the storage element based on the quadratic function.

かかる構成によれば、異なる複数の温度での蓄電素子の抵抗をそれぞれ検出することで、蓄電素子の抵抗と温度との相関関係に近似させた二次関数が得られ、これにより、該蓄電素子において劣化モードBが発現しているか否かを精度よく判断することができる。このため、蓄電素子を電源として使用する装置等から該蓄電素子を取り外すことなく、該蓄電素子の劣化を精度よく判定することができる。   According to such a configuration, a quadratic function approximated to the correlation between the resistance of the power storage element and the temperature can be obtained by detecting the resistance of the power storage element at a plurality of different temperatures. Whether or not the degradation mode B is expressed can be accurately determined. Therefore, it is possible to accurately determine the deterioration of the power storage element without removing the power storage element from a device or the like that uses the power storage element as a power source.

具体的に、
前記式導出部によって導出される二次関数は、y=ax+bx+c(a、b、cは、係数)であり、
前記判定部は、前記二次関数の係数であるa、b、cの少なくとも一つに基づいて前記蓄電素子の劣化を判定してもよい。
Specifically,
The quadratic function derived by the equation deriving unit is y = ax 2 + bx + c (a, b, and c are coefficients),
The determination unit may determine deterioration of the power storage element based on at least one of a, b, and c that are coefficients of the quadratic function.

かかる構成によれば、判定部は、式導出部において導出された二次関数の係数に基づいて判定するため、蓄電素子の劣化を容易に且つ精度よく判定できる。   According to this configuration, since the determination unit determines based on the coefficient of the quadratic function derived by the equation deriving unit, it can easily and accurately determine the deterioration of the storage element.

この場合、
前記判定部は、前記係数の比であるb/a又はb/cが所定の閾値以上のときに、前記蓄電素子が劣化していると判定することが好ましい。
in this case,
The determination unit preferably determines that the storage element is deteriorated when b / a or b / c, which is a ratio of the coefficients, is equal to or greater than a predetermined threshold.

このように二次関数の係数の比を求めることで、二次曲線の形状の変化がより大きく現れるため、蓄電素子の劣化をより容易に且つより精度よく判断することができる。   By determining the ratio of the coefficients of the quadratic function in this manner, the change in the shape of the quadratic curve appears more greatly, so that deterioration of the power storage element can be determined more easily and more accurately.

また、本発明に係る蓄電素子の劣化判定装置は、
蓄電素子の劣化の有無の判定に用いられる判定データを格納する記憶部と、
前記記憶部の判定データを用いて前記蓄電素子の劣化の有無を判定する判定部と、を備え、
前記判定データは、前記蓄電素子の劣化状態毎において、該蓄電素子の抵抗と温度との相関関係に近似させた二次関数y=ax+bx+cが導出されたときの該蓄電素子の抵抗及び温度の組と、前記二次関数y=ax+bx+cの係数a、b、cの少なくとも一つに基づいて判定された劣化状態に基づく該蓄電素子の劣化の有無と、を関係づけたものであり、
前記判定部は、判定対象の蓄電素子から検出された抵抗及び温度が含まれる前記抵抗及び温度の組を前記判定データから見つけることによって、該判定対象の蓄電素子の劣化を判定する。
Moreover, the deterioration determination device of a storage element according to the present invention is:
A storage unit storing determination data used to determine the presence or absence of deterioration of the storage element;
A determination unit that determines presence or absence of deterioration of the storage element using the determination data of the storage unit;
The determination data includes the resistance and temperature of the storage element when a quadratic function y = ax 2 + bx + c approximated to the correlation between the resistance of the storage element and temperature is derived for each deterioration state of the storage element. And the presence or absence of deterioration of the electricity storage element based on the deterioration state determined based on at least one of the coefficients a, b, and c of the quadratic function y = ax 2 + bx + c. ,
The determination unit determines deterioration of the determination target storage element by finding from the determination data a combination of the resistance and temperature including the resistance and temperature detected from the determination target storage element.

かかる構成によれば、予め判定データ(蓄電素子の劣化状態毎において、該蓄電素子の抵抗と温度との相関関係に近似させた二次関数y=ax+bx+cが導出されたときの該蓄電素子の抵抗及び温度の組と、二次関数y=ax+bx+cの係数a、b、cの少なくとも一つに基づいて判定された劣化状態に基づく該蓄電素子の劣化の有無(即ち、使用に適さない程度まで劣化しているか否か)と、を関係づけたデータ)が記憶部に格納されているため、判定対象の蓄電素子から抵抗(抵抗値)と温度とを検出するだけで、該判定対象の蓄電素子の劣化状態(即ち、使用に適した状態か否か)を容易且つ確実に判定することができる。 According to this configuration, the determination data (the storage element when the quadratic function y = ax 2 + bx + c approximated to the correlation between the resistance of the storage element and the temperature for each deterioration state of the storage element is derived in advance. The presence or absence of deterioration of the electricity storage element based on the deterioration state determined based on at least one of the resistance and temperature pair and the coefficients a, b, and c of the quadratic function y = ax 2 + bx + c (ie, suitable for use) Is stored in the storage unit, the determination is made by simply detecting the resistance (resistance value) and the temperature from the determination target storage element. It is possible to easily and reliably determine the deterioration state of the target power storage element (that is, whether or not the state is suitable for use).

また、本発明に係る蓄電素子の劣化判定方法は、
所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出することと、
前記検出された抵抗と温度との相関関係に近似させた二次関数を導出することと、
前記導出された二次関数に基づいて前記蓄電素子の劣化を判定することと、を備える。
Further, the method of determining deterioration of a storage element according to the present invention is:
Detecting the resistance of the storage element at a plurality of different temperatures from the storage element in a predetermined charge state;
Deriving a quadratic function approximated to the correlation between the detected resistance and temperature;
Determining the deterioration of the storage element based on the derived quadratic function.

かかる構成によれば、異なる複数の温度での蓄電素子の抵抗をそれぞれ検出することで、蓄電素子の抵抗と温度との相関関係に近似させた二次関数が得られ、これにより、該蓄電素子において劣化モードBが発現しているか否かを精度よく判断することができる。このため、蓄電素子を電源として使用する装置等から該蓄電素子を取り外すことなく、該蓄電素子の劣化を精度よく判定することができる。   According to such a configuration, a quadratic function approximated to the correlation between the resistance of the power storage element and the temperature can be obtained by detecting the resistance of the power storage element at a plurality of different temperatures. It is possible to accurately determine whether or not the deterioration mode B is exhibited. Therefore, it is possible to accurately determine the deterioration of the power storage element without removing the power storage element from a device or the like that uses the power storage element as a power source.

以上より、本発明によれば、蓄電素子を電源として使用する装置等から該蓄電素子を取り外すことなく、該蓄電素子の容量劣化を判定できる蓄電素子の劣化判定装置及び劣化判定方法を提供することができる。   As described above, according to the present invention, there is provided a storage element deterioration determination device and a deterioration determination method capable of determining the capacity deterioration of a storage element without removing the storage element from a device that uses the storage element as a power source. Can do.

図1は、本実施形態に係る劣化判定装置による判定対象の蓄電素子の斜視図である。FIG. 1 is a perspective view of a storage element to be determined by the deterioration determination apparatus according to the present embodiment. 図2は、前記蓄電素子の分解斜視図である。FIG. 2 is an exploded perspective view of the power storage element. 図3は、前記蓄電素子の電極体を説明するための図である。FIG. 3 is a view for explaining an electrode body of the electricity storage element. 図4は、前記劣化判定装置の概略構成図である。FIG. 4 is a schematic configuration diagram of the deterioration determination apparatus. 図5は、蓄電素子の容量劣化と放置期間との関係を示す図である。FIG. 5 is a diagram showing the relationship between the capacity deterioration of the storage element and the leaving period. 図6は、所定のSOCの蓄電素子から検出された抵抗と温度との相関関係、及びこの相関関係に近似させた二次曲線を示す図である。FIG. 6 is a diagram showing a correlation between resistance and temperature detected from a storage element having a predetermined SOC and a quadratic curve approximated to this correlation. 図7は、前記二次曲線を規定する二次関数(y=ax+bx+c)の係数aと、蓄電素子の放置期間と、の関係を示す図である。FIG. 7 is a diagram showing the relationship between the coefficient a of the quadratic function (y = ax 2 + bx + c) defining the quadratic curve and the storage period of the storage element. 図8は、前記二次関数の係数bと、蓄電素子の放置期間と、の関係を示す図である。FIG. 8 is a diagram showing the relationship between the coefficient b of the quadratic function and the storage period of the storage element. 図9は、前記二次関数の係数cと、蓄電素子の放置期間と、の関係を示す図である。FIG. 9 is a diagram illustrating the relationship between the coefficient c of the quadratic function and the storage period of the storage element. 図10は、前記二次関数の係数の比b/aと、蓄電素子の放置期間と、の関係を示す図である。FIG. 10 is a diagram illustrating the relationship between the coefficient ratio b / a of the quadratic function and the storage period of the storage element. 図11は、前記二次関数の係数の比b/cと、蓄電素子の放置期間と、の関係を示す図である。FIG. 11 is a diagram showing the relationship between the coefficient ratio b / c of the quadratic function and the storage period of the storage element. 図12は、前記劣化判定装置による蓄電素子の劣化判定のフロー図である。FIG. 12 is a flowchart for determining deterioration of a storage element by the deterioration determination apparatus.

以下、本発明の一実施形態について、図1〜図12を参照しつつ説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 12. In addition, the name of each component (each component) of this embodiment is a thing in this embodiment, and may differ from the name of each component (each component) in background art.

本実施形態の蓄電素子の劣化判定装置(以下、単に「判定装置」と称する。)は、例えば、エンジンとモータとによって駆動されるハイブリッド車両に搭載され、該ハイブリッド車両に搭載された蓄電素子の容量劣化を判定する。以下では、先ず、判定装置による容量劣化の判定対象である蓄電素子について説明する。   The storage element degradation determination device (hereinafter simply referred to as “determination device”) according to the present embodiment is mounted on, for example, a hybrid vehicle driven by an engine and a motor, and the storage element mounted on the hybrid vehicle Determine capacity degradation. Below, the electrical storage element which is the determination object of the capacity | capacitance deterioration by a determination apparatus is demonstrated first.

蓄電素子は、図1〜図3に示すように、正極123及び負極124を含む電極体102と、電極体102を収容するケース103と、ケース103の外側に配置される外部端子104と、を備える。また、蓄電素子100は、電極体102と外部端子104とを導通させる集電体105等も有する。   As shown in FIGS. 1 to 3, the power storage element includes an electrode body 102 including a positive electrode 123 and a negative electrode 124, a case 103 that houses the electrode body 102, and an external terminal 104 that is disposed outside the case 103. Prepare. In addition, the storage element 100 also includes a current collector 105 and the like that electrically connect the electrode body 102 to the external terminal 104.

電極体102は、巻芯121と、互いに絶縁された状態で巻芯121の周囲に巻回された正極123と負極124と、を備える。電極体102においてリチウムイオンが正極123と負極124との間を移動することにより、蓄電素子100が充放電する。   The electrode body 102 includes a winding core 121 and a positive electrode 123 and a negative electrode 124 wound around the winding core 121 in a state of being insulated from each other. As the lithium ions move between the positive electrode 123 and the negative electrode 124 in the electrode body 102, the power storage element 100 is charged and discharged.

正極123は、金属箔と、金属箔の上に形成された正極活物質層と、を有する。金属箔は帯状である。本実施形態の金属箔は、例えば、アルミニウム箔である。   The positive electrode 123 has a metal foil and a positive electrode active material layer formed on the metal foil. The metal foil is strip-shaped. The metal foil of this embodiment is an aluminum foil, for example.

負極124は、金属箔と、金属箔の上に形成された負極活物質層と、を有する。金属箔は帯状である。本実施形態の金属箔は、例えば、銅箔である。   The negative electrode 124 has a metal foil and a negative electrode active material layer formed on the metal foil. The metal foil is strip-shaped. The metal foil of this embodiment is a copper foil, for example.

本実施形態の電極体102では、以上のように構成される正極123と負極124とがセパレータ125によって絶縁された状態で巻回される。即ち、本実施形態の電極体102では、正極123、負極124、及びセパレータ125が積層された状態で巻回される。セパレータ125は、絶縁性を有する部材である。セパレータ125は、正極123と負極124との間に配置される。これにより、電極体102において、正極123と負極124とが互いに絶縁される。また、セパレータ125は、ケース103内において、電解液を保持する。これにより、蓄電素子100の充放電時において、リチウムイオンが、セパレータ125を挟んで交互に積層される正極123と負極124との間を移動する。   In the electrode body 102 of the present embodiment, the positive electrode 123 and the negative electrode 124 configured as described above are wound in a state where they are insulated by the separator 125. That is, in the electrode body 102 of this embodiment, the positive electrode 123, the negative electrode 124, and the separator 125 are wound in a stacked state. The separator 125 is an insulating member. The separator 125 is disposed between the positive electrode 123 and the negative electrode 124. Thereby, in the electrode body 102, the positive electrode 123 and the negative electrode 124 are mutually insulated. Further, the separator 125 holds the electrolytic solution in the case 103. Accordingly, during charging / discharging of the electricity storage element 100, lithium ions move between the positive electrode 123 and the negative electrode 124 that are alternately stacked with the separator 125 interposed therebetween.

ケース103は、開口を有するケース本体131と、ケース本体131の開口を塞ぐ(閉じる)蓋板132と、を有する。このケース103は、ケース本体131の開口周縁部136と、蓋板132の周縁部とを重ね合わせた状態で接合することによって形成される。このケース103は、ケース本体131と蓋板132とによって画定される内部空間を有する。そして、ケース103は、電極体102及び集電体105等と共に、電解液を内部空間に収容する。   The case 103 includes a case main body 131 having an opening and a cover plate 132 that closes (closes) the opening of the case main body 131. The case 103 is formed by joining the opening peripheral part 136 of the case main body 131 and the peripheral part of the cover plate 132 in a state of being overlapped. The case 103 has an internal space defined by a case body 131 and a cover plate 132. Then, the case 103 accommodates the electrolytic solution in the inner space together with the electrode body 102, the current collector 105, and the like.

ケース本体131は、矩形板状の閉塞部134と、閉塞部134の周縁に接続される角筒形状の胴部135とを備える。即ち、ケース本体131は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有している。   The case main body 131 includes a rectangular plate-shaped blocking part 134 and a rectangular tube-shaped body part 135 connected to the periphery of the blocking part 134. That is, the case main body 131 has a rectangular tube shape (that is, a bottomed rectangular tube shape) in which one end portion in the opening direction (Z-axis direction) is closed.

蓋板132は、ケース本体131の開口を塞ぐ板状の部材である。具体的に、蓋板132は、ケース本体131の開口周縁部136に対応した輪郭形状を有する。即ち、蓋板132は、矩形状の板材である。この蓋板132は、ケース本体131の開口を塞ぐように、蓋板132の周縁部がケース本体131の開口周縁部136に重ねられる。以下では、図1に示すように、蓋板132の長辺方向を直交座標におけるX軸方向とし、蓋板132の短辺方向を直交座標におけるY軸方向とし、蓋板132の法線方向を直交座標におけるZ軸方向とする。   The lid plate 132 is a plate-like member that closes the opening of the case main body 131. Specifically, the cover plate 132 has a contour shape corresponding to the opening peripheral edge 136 of the case main body 131. That is, the cover plate 132 is a rectangular plate material. In the lid plate 132, the periphery of the cover plate 132 is overlapped with the opening periphery 136 of the case body 131 so as to close the opening of the case body 131. In the following, as shown in FIG. 1, the long side direction of the cover plate 132 is the X-axis direction in the orthogonal coordinates, the short side direction of the cover plate 132 is the Y-axis direction in the orthogonal coordinates, and the normal direction of the cover plate 132 is the normal direction. It is set as the Z-axis direction in orthogonal coordinates.

外部端子104は、他の蓄電素子の外部端子又は外部機器等と電気的に接続される部位である。外部端子104は、導電性を有する部材によって形成される。例えば、外部端子104は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。   The external terminal 104 is a portion electrically connected to an external terminal of another storage element, an external device, or the like. The external terminal 104 is formed of a conductive member. For example, the external terminal 104 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or an aluminum alloy, or a copper-based metal material such as copper or a copper alloy.

集電体105は、ケース103内に配置され、電極体102と通電可能に直接又は間接に接続される。この集電体105は、導電性を有する部材によって形成され、ケース103の内面に沿って配置される。   The current collector 105 is disposed in the case 103 and is directly or indirectly connected to the electrode body 102 so as to be energized. The current collector 105 is formed of a conductive member and is disposed along the inner surface of the case 103.

蓄電素子100は、電極体102とケース103とを絶縁する絶縁部材106等を備える。本実施形態の絶縁部材106は、袋状である。この絶縁部材106は、ケース103(詳しくはケース本体131)と電極体102との間に配置される。本実施形態の絶縁部材106は、例えば、ポリプロピレン、ポリフェニレンスルフィド等の樹脂によって形成される。   The storage element 100 includes an insulating member 106 that insulates the electrode body 102 from the case 103. The insulating member 106 of this embodiment is bag-shaped. The insulating member 106 is disposed between the case 103 (specifically, the case main body 131) and the electrode assembly 102. The insulating member 106 of the present embodiment is formed of a resin such as polypropylene or polyphenylene sulfide, for example.

次に、蓄電素子100の容量劣化を判定する判定装置について、図4〜図12も参照しつつ説明する。   Next, a determination device for determining the capacity deterioration of the storage element 100 will be described with reference to FIGS. 4 to 12 as well.

判定装置は、図4に示すように、所定のSOC(充電状態)の蓄電素子100から、異なる複数の温度での該蓄電素子100の抵抗をそれぞれ検出する検出部2と、検出部2で検出した抵抗と温度との相関関係に近似させた二次関数を導出する式導出部3と、式導出部3で導出された二次関数に基づいて蓄電素子100の劣化を判定する判定部4と、を備える。また、判定装置1は、判定部4での判定結果を外部に出力する出力部5等も備える。本実施形態の判定装置1は、ハイブリッド車両に搭載された複数の蓄電素子100のそれぞれの容量劣化の判定を行う。尚、判定装置1は、検出部2を備えず、他の目的で設置されている計測器等から、前記抵抗及び前記温度を取得する構成であってもよい。   As shown in FIG. 4, the determination device detects a resistance of the storage element 100 at a plurality of different temperatures from the storage element 100 of a predetermined SOC (charged state), and the detection unit 2 detects the resistance. An equation deriving unit 3 for deriving a quadratic function approximated to the correlation between the resistance and temperature, and a determination unit 4 for determining deterioration of the storage element 100 based on the quadratic function derived by the equation deriving unit 3; . The determination device 1 also includes an output unit 5 and the like that output the determination result of the determination unit 4 to the outside. The determination device 1 according to the present embodiment determines the capacity deterioration of each of the plurality of power storage elements 100 mounted on the hybrid vehicle. In addition, the determination apparatus 1 may not have the detection unit 2 and may be configured to acquire the resistance and the temperature from a measuring instrument or the like installed for other purposes.

検出部2は、所定のSOCの蓄電素子100に対して該蓄電素子100の抵抗を検出する抵抗検出部21と、前記蓄電素子100の温度を検出する温度検出部22と、を有する。抵抗検出部21と温度検出部22とは、蓄電素子100の抵抗と温度とを同じタイミングで検出する。温度検出部22は、蓄電素子100のケース103の一部(例えば、蓋板132、閉塞部134、胴部135の長側面又は短側面等)の温度を検出する。本実施形態の抵抗検出部21及び温度検出部22は、複数の蓄電素子100のそれぞれに対して設けられている。尚、温度検出部22は、複数の蓄電素子100のうちの一部の蓄電素子100の温度を測定する構成でもよい。   The detection unit 2 includes a resistance detection unit 21 that detects the resistance of the storage element 100 having a predetermined SOC, and a temperature detection unit 22 that detects the temperature of the storage element 100. Resistance detection unit 21 and temperature detection unit 22 detect the resistance and temperature of storage element 100 at the same timing. The temperature detection unit 22 detects the temperature of a part of the case 103 of the power storage device 100 (for example, the cover plate 132, the blocking unit 134, the long side surface or the short side surface of the body unit 135). The resistance detection unit 21 and the temperature detection unit 22 of the present embodiment are provided for each of the plurality of storage elements 100. Note that the temperature detection unit 22 may be configured to measure the temperature of some of the plurality of power storage elements 100.

具体的に、抵抗検出部21は、所定のSOCの蓄電素子100に対し、時間間隔をあけて複数回、抵抗を検出する。本実施形態の抵抗検出部21は、蓄電素子100に生じる電流値及び各蓄電素子100の電圧値から、オームの法則に基づいて抵抗(抵抗値)を算出する。つまり、本実施形態の抵抗検出部21は、一つの電流計211と、蓄電素子100の数に対応した電圧計212と、を有する。また、温度検出部22は、抵抗検出部21と同じタイミングで、蓄電素子100の温度を検出する。このとき、異なる複数の温度での抵抗を検出するために、蓄電素子100の温度を変化させる。この蓄電素子100の温度の変化は、判定装置1に蓄電素子100の温度を変化させる構成を設けてもよく、他の装置等を用いてもよい。尚、検出部2は、温度検出部22が蓄電素子100の温度を検出し続け、蓄電素子100が異なる複数の温度のときに抵抗検出部21が抵抗をそれぞれ検出する構成であってもよい。   Specifically, the resistance detection unit 21 detects the resistance multiple times at intervals with respect to the storage element 100 having a predetermined SOC. The resistance detection unit 21 of the present embodiment calculates a resistance (resistance value) based on Ohm's law from the current value generated in the storage element 100 and the voltage value of each storage element 100. That is, the resistance detection unit 21 of this embodiment includes one ammeter 211 and voltmeters 212 corresponding to the number of power storage elements 100. Further, the temperature detection unit 22 detects the temperature of the storage element 100 at the same timing as the resistance detection unit 21. At this time, the temperature of the storage element 100 is changed in order to detect resistance at different temperatures. For the change of the temperature of the storage element 100, the determination device 1 may be provided with a configuration for changing the temperature of the storage element 100, or another device may be used. The detection unit 2 may be configured such that the temperature detection unit 22 continues to detect the temperature of the storage element 100, and the resistance detection unit 21 detects the resistance when the storage element 100 has a plurality of different temperatures.

抵抗検出部21は、検出した抵抗(抵抗値)を抵抗信号として式導出部3に出力する。また、温度検出部22は、検出した蓄電素子100の温度、詳しくは、抵抗検出部21によって電流が検出されたときの蓄電素子100の温度を温度信号として式導出部3に出力する。   The resistance detection unit 21 outputs the detected resistance (resistance value) to the formula derivation unit 3 as a resistance signal. Further, the temperature detection unit 22 outputs the detected temperature of the storage element 100, specifically, the temperature of the storage element 100 when the current is detected by the resistance detection unit 21 to the equation deriving unit 3 as a temperature signal.

式導出部3は、所定のSOCの蓄電素子100から検出される抵抗と温度との相関関係に近似させた二次関数:y=ax+bx+c(a、b、cは係数)を導出する。この式導出部3は、抵抗検出部21及び温度検出部22からの抵抗信号と温度信号とに基づいて二次関数(y=ax+bx+c)を導出する。本実施形態の式導出部3は、例えば、蓄電素子100から検出された複数の抵抗と各抵抗に対応する温度との関係をプロットしたグラフに近似する二次曲線を定め(図6参照)、この二次曲線を規定する二次関数(y=ax+bx+c)を導出する。そして、式導出部3は、導出した二次関数(y=ax+bx+c)を関数信号として判定部4に出力する。 The expression deriving unit 3 derives a quadratic function approximated to the correlation between the resistance detected from the storage element 100 having a predetermined SOC and the temperature: y = ax 2 + bx + c (a, b, and c are coefficients). The equation deriving unit 3 derives a quadratic function (y = ax 2 + bx + c) based on the resistance signal from the resistance detecting unit 21 and the temperature detecting unit 22 and the temperature signal. For example, the formula deriving unit 3 of the present embodiment determines a quadratic curve that approximates a graph plotting the relationship between a plurality of resistances detected from the storage element 100 and the temperature corresponding to each resistance (see FIG. 6). A quadratic function (y = ax 2 + bx + c) that defines this quadratic curve is derived. Then, the expression deriving unit 3 outputs the derived quadratic function (y = ax 2 + bx + c) to the determination unit 4 as a function signal.

判定部4は、二次関数(y=ax+bx+c)の係数a、b、cの少なくとも一つに基づいて蓄電素子100の劣化を判定する。本実施形態の判定部4は、蓄電素子100の容量劣化を判定する。この判定部4は、式導出部3からの関数信号に基づき蓄電素子100の劣化を判定する。具体的に、判定部4は、二次関数の係数の比b/a又はb/cに基づいて蓄電素子100の劣化を判定する。本実施形態の判定部4は、例えば、二次関数の係数の比b/aが所定の閾値(本実施形態の例では、−5.7)以上のときに、蓄電素子100が劣化していると判定する。一方、判定部4は、二次関数の係数の比b/aが閾値より小さいときに、蓄電素子100が劣化していないと判定する。この判定の具体的な原理(理由)は、以下の通りである。 The determination unit 4 determines the deterioration of the storage element 100 based on at least one of the coefficients a, b and c of the quadratic function (y = ax 2 + bx + c). The determination unit 4 of the present embodiment determines the capacity deterioration of the storage element 100. The determination unit 4 determines the deterioration of the storage element 100 based on the function signal from the equation derivation unit 3. Specifically, the determination unit 4 determines the deterioration of the power storage element 100 based on the ratio b / a or b / c of the quadratic function coefficient. For example, when the ratio b / a of the quadratic function coefficient is equal to or greater than a predetermined threshold value (−5.7 in the example of the present embodiment), the determination unit 4 of the present embodiment deteriorates the power storage element 100. It is determined that there is. On the other hand, when the ratio b / a of the quadratic function coefficient is smaller than the threshold value, the determination unit 4 determines that the power storage element 100 has not deteriorated. The specific principle (reason) of this determination is as follows.

蓄電素子100には、複数の劣化モード、即ち、劣化モードAと、該劣化モードAと異なる劣化モードBとがある。この蓄電素子100において、該蓄電素子100の劣化が大きくなると、通常の使用時における劣化モード(劣化モードA)とは異なる劣化モードBが発現するため、該蓄電素子100の劣化が急速に進む(図5参照)。   The storage element 100 has a plurality of deterioration modes, that is, a deterioration mode A and a deterioration mode B different from the deterioration mode A. In this power storage element 100, when the deterioration of the power storage element 100 increases, a deterioration mode B different from the deterioration mode (deterioration mode A) during normal use appears, and therefore the deterioration of the power storage element 100 proceeds rapidly ( (See FIG. 5).

この蓄電素子100を長期間放置している場合において、該蓄電素子100劣化モードAとは異なる劣化モードBが発現すると、所定のSOCの蓄電素子100から得られた抵抗と温度との相関関係に基づき導出した二次関数(前記抵抗と温度との相関関係に近似させた二次関数(y=ax+bx+c):図6参照)の係数a、b、cも、それぞれ急激に変化する(図7〜図9参照)、換言すると、二次関数(y=ax+bx+c)によって規定される二次曲線の形状が大きく変化する。このため、図7〜図9における係数a、b、cの変化率(図7〜図9におけるグラフの傾き)や、係数a、b、cが所定の閾値を超えたか否かによって、蓄電素子100において劣化モードBが発現しているか否かを容易に判断することができる。 When the storage element 100 is left for a long period of time, when a deterioration mode B different from the deterioration mode A of the storage element 100 appears, the correlation between the resistance obtained from the storage element 100 of a predetermined SOC and the temperature is obtained. Coefficients a, b, and c of the quadratic function derived based on the quadratic function approximated to the correlation between the resistance and temperature (y = ax 2 + bx + c: see FIG. 6) also change abruptly (see FIG. 7 to 9), in other words, the shape of the quadratic curve defined by the quadratic function (y = ax 2 + bx + c) changes significantly. For this reason, the storage element depends on the rate of change of the coefficients a, b, c in FIGS. 7-9 (the slopes of the graphs in FIGS. 7-9) and whether the coefficients a, b, c exceed a predetermined threshold. At 100, it can be easily judged whether the degradation mode B is expressed.

また、図7〜図9に示すように、二次関数(y=ax+bx+c)の係数a、b、cのそれぞれが、蓄電素子100において劣化モードBが発現した後、急激に変化するため、これらの比(係数の比)b/a又はb/cでは、図10及び図11に示すように、劣化モードBが発現した後の変化がより大きくなる。従って、この二次関数(y=ax+bx+c)の係数の比b/a又はb/cを用いることで、蓄電素子100における劣化モードBの発現の有無を、より精度よく且つ確実に判断することができる。 Further, as shown in FIGS. 7 to 9, the coefficients a, b, and c of the quadratic function (y = ax 2 + bx + c) change abruptly after the deterioration mode B appears in the power storage device 100. With these ratios (ratios of coefficients) b / a or b / c, as shown in FIGS. 10 and 11, the change after the occurrence of the degradation mode B becomes larger. Therefore, by using the coefficient ratio b / a or b / c of the quadratic function (y = ax 2 + bx + c), the presence or absence of the deterioration mode B in the power storage element 100 is determined more accurately and reliably. be able to.

このようにして蓄電素子100の劣化(容量劣化)を判定した判定部4は、判定結果を結果信号として出力部5に出力する。   The determination unit 4 that has determined the deterioration (capacity deterioration) of the storage element 100 in this way outputs the determination result to the output unit 5 as a result signal.

出力部5は、判定部4からの結果信号に基づいて判定部4での判定結果を外部に出力する。本実施形態の出力部5は、モニター等の表示装置であり、蓄電素子100が劣化しているか否かを表示する。尚、出力部5は、画像によって判定結果を外部に出力する構成に限定されず、蓄電素子100が劣化していると判定されたときにブザー等の警告音を出力するスピーカー等の音出力装置でもよく、文字等をプリントアウトするプリンター等の文字出力装置等でもよい。また、出力部5は、例えば、画像及び音によって判定部4の判定結果を出力する等、複数の出力方法を有する構成でもよい。   The output unit 5 outputs the determination result of the determination unit 4 to the outside based on the result signal from the determination unit 4. The output unit 5 of the present embodiment is a display device such as a monitor and displays whether or not the power storage element 100 has deteriorated. The output unit 5 is not limited to the configuration that outputs the determination result to the outside according to an image, and is a sound output device such as a speaker that outputs a warning sound such as a buzzer when it is determined that the storage element 100 is degraded. It may be a character output device such as a printer that prints out characters and the like. The output unit 5 may be configured to have a plurality of output methods, for example, outputting the determination result of the determination unit 4 using an image and sound.

次に、判定装置1による蓄電素子100の劣化の判定について、図12も参照しつつ説明する。   Next, determination of deterioration of the storage element 100 by the determination device 1 will be described with reference to FIG.

蓄電素子100が所定のSOCのときに、検出部2によって複数の温度での蓄電素子100の抵抗を検出し(ステップS1)、検出結果を式導出部3に出力する。本実施形態の判定装置1は、例えば、SOC50%未満の所定のSOC(低SOC)のときに、蓄電素子100の抵抗と温度とを検出する。   When the storage element 100 has a predetermined SOC, the detection unit 2 detects the resistance of the storage element 100 at a plurality of temperatures (step S1), and outputs the detection result to the equation deriving unit 3. For example, the determination device 1 of the present embodiment detects the resistance and temperature of the power storage element 100 when the SOC is lower than 50% SOC (low SOC).

検出部2によって複数の温度での蓄電素子100の抵抗が検出されると、式導出部3が、検出された抵抗と温度との相関関係に近似させた二次関数(y=ax+bx+c:a、b、cは係数)を導出し(ステップS2)、導出結果を判定部4に出力する。 When the resistance of the electricity storage element 100 at a plurality of temperatures is detected by the detection unit 2, the equation deriving unit 3 approximates a correlation between the detected resistance and temperature (y = ax 2 + bx + c: A, b, c are coefficients) are derived (step S2), and the derivation result is output to the determination unit 4.

続いて、判定部4が、式導出部3によって導出された二次関数(y=ax+bx+c)の係数a、b、cに基づいて蓄電素子100が劣化しているか否かを判定する。本実施形態の判定部4は、係数の比b/aが閾値(本実施形態の例では、−5.7)以上か否かによって、蓄電素子100の容量劣化を判定し(ステップS3)、判定結果を出力部5に出力する。具体的に、判定部4は、係数の比b/aが閾値以上のときに、蓄電素子100の容量劣化が該蓄電素子100の使用に適しない状態まで進行していると判断して、蓄電素子100が劣化しているとの判定結果を出力部5に出力する。一方、判定部4は、係数の比b/aが閾値より小さいときに、蓄電素子100の容量劣化が該蓄電素子100の使用に適しない状態まで進行していないと判断し、蓄電素子100が劣化していないとの判定結果を出力部5に出力する。 Subsequently, the determination unit 4 determines whether or not the power storage element 100 has deteriorated based on the coefficients a, b, and c of the quadratic function (y = ax 2 + bx + c) derived by the equation deriving unit 3. The determination unit 4 of the present embodiment determines the capacity deterioration of the power storage element 100 based on whether or not the coefficient ratio b / a is greater than or equal to a threshold value (−5.7 in the example of the present embodiment) (step S3). The determination result is output to the output unit 5. Specifically, the determination unit 4 determines that when the coefficient ratio b / a is equal to or greater than the threshold value, the capacity deterioration of the power storage element 100 has progressed to a state not suitable for use of the power storage element 100, and The determination result that the element 100 is deteriorated is output to the output unit 5. On the other hand, when the ratio b / a of the coefficient is smaller than the threshold value, the determination unit 4 determines that the capacity deterioration of the power storage element 100 has not progressed to a state that is not suitable for use of the power storage element 100, and the power storage element 100 The determination result that it has not deteriorated is output to the output unit 5.

出力部5は、判定部4による判定結果を画像として表示(外部に出力)する(ステップS4)。この表示に基づいて、運転手等は、蓄電素子100の使用を続けるか、蓄電素子を交換するかを判断する。   The output unit 5 displays (outputs to the outside) the determination result by the determination unit 4 as an image (step S4). Based on this display, the driver or the like determines whether to continue using the storage element 100 or replace the storage element.

以上の蓄電素子の劣化判定装置1及び劣化判定方法によれば、異なる複数の温度での蓄電素子100の抵抗をそれぞれ検出することで、蓄電素子100の抵抗と温度との相関関係に近似させた二次関数(y=ax+bx+c:a、b、cは係数)が得られ、これにより、該蓄電素子100において劣化モードBが発現しているか否かを精度よく判断することができる。このため、蓄電素子100を電源として使用するハイブリッド車両等の装置から該蓄電素子100を取り外すことなく、該蓄電素子100の劣化を精度よく判定することができる。 According to the above-described degradation determination device 1 and degradation determination method for an electrical storage element, the resistance of the electrical storage element 100 at a plurality of different temperatures is detected to approximate the correlation between the resistance of the electrical storage element 100 and the temperature. A quadratic function (y = ax 2 + bx + c: a, b, and c are coefficients) is obtained, whereby it is possible to accurately determine whether or not the deterioration mode B is manifested in the power storage element 100. Therefore, without removing the storage element 100 from a device such as a hybrid vehicle that uses the storage element 100 as a power supply, deterioration of the storage element 100 can be determined with high accuracy.

また、上記実施形態の判定装置1では、判定部4は、式導出部3において導出された二次関数(y=ax+bx+c)の係数a、b、cに基づいて判定するため、蓄電素子100の劣化を容易に且つ精度よく判定できる。 In the determination apparatus 1 of the above embodiment, the determination unit 4 determines based on the coefficients a, b, and c of the quadratic function (y = ax 2 + bx + c) derived by the equation deriving unit 3, so that the storage element The deterioration of 100 can be determined easily and accurately.

しかも、判定部4は、二次曲線の形状の変化がより大きく現れる係数の比b/aを用いることで(具体的には、係数の比b/aと閾値(−5.7)とを比較することで)蓄電素子100の劣化を判定しているため、蓄電素子100の劣化をより容易に且つより精度よく判断することができる。   In addition, the determination unit 4 uses the coefficient ratio b / a in which the change in the shape of the quadratic curve appears larger (specifically, the coefficient ratio b / a and the threshold (−5.7)). Since the deterioration of the storage element 100 is determined (by comparison), the deterioration of the storage element 100 can be determined more easily and more accurately.

尚、本発明の蓄電素子の劣化判定装置及び劣化判定方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。   It should be noted that the storage element deterioration determination device and the deterioration determination method of the present invention are not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention. For example, the configuration of another embodiment can be added to the configuration of a certain embodiment, and a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment. Furthermore, a part of the configuration of an embodiment can be deleted.

上記実施形態の劣化判定装置1では、判定部4は、二次関数(y=ax+bx+c)の係数の比b/aと閾値(上記実施形態の例では−5.7)との比較によって蓄電素子100の劣化を判定しているが、この構成に限定されない。劣化モードBが蓄電素子100に現れると、二次関数(y=ax+bx+c)の係数a、b、cが大きく変化する(即ち、二次関数(y=ax+bx+c)によって規定される二次曲線の形状が大きく変化する:図7〜図9参照)ため、判定部4は、二次関数(y=ax+bx+c)の係数a、b、cのうちの少なくとも一つに基づいて判定すればよい。 In the degradation determination device 1 of the above embodiment, the determination unit 4 compares the coefficient ratio b / a of the quadratic function (y = ax 2 + bx + c) with a threshold value (−5.7 in the example of the above embodiment). Although the deterioration of the storage element 100 is determined, the present invention is not limited to this configuration. When degraded mode B appears in the capacitor 100, the two defined by the quadratic function (y = ax 2 + bx + c) coefficient a, b, c greatly changes (i.e., a quadratic function (y = ax 2 + bx + c) Since the shape of the quadratic curve greatly changes (see FIGS. 7 to 9), the determination unit 4 determines based on at least one of the coefficients a, b, and c of the quadratic function (y = ax 2 + bx + c). do it.

また、図10及び図11に示すように、係数の比b/cも、係数の比b/aと同様に蓄電素子100において劣化モードBが発現して以降に急激に変化するため、判定部4は、係数の比b/cを劣化の判定に用いる構成でもよい。   Also, as shown in FIGS. 10 and 11, the coefficient ratio b / c also changes abruptly after the deterioration mode B appears in the power storage device 100, similarly to the coefficient ratio b / a. 4 may be configured to use the coefficient ratio b / c for determination of deterioration.

また、劣化判定装置1が搭載(配置)される装置等は、ハイブリッド車両に限定されない。劣化判定装置1が搭載(配置)される装置等は、蓄電素子100を充放電可能に搭載(配置)しているものであればよい。また、劣化判定装置1は、前記装置等に搭載されずに、単独で使用される構成であってもよい。   Moreover, the apparatus etc. in which the degradation determination apparatus 1 is mounted (arranged) are not limited to a hybrid vehicle. An apparatus or the like on which the degradation determination apparatus 1 is mounted (arranged) may be any apparatus that mounts (arranges) the storage element 100 so as to be chargeable / dischargeable. In addition, the deterioration determination device 1 may be configured to be used alone without being mounted on the device or the like.

また、上記実施形態の劣化判定装置1では、二次関数(y=ax+bx+c)を導出し、その係数a、b、cの少なくとも一つに基づいて蓄電素子100の劣化を判定しているが、この構成に限定されない。例えば、劣化判定装置1は、マップ、テーブル等の判定データを記憶部(ハードディスク、メモリ等)に格納しておき、この判定データに基づいて蓄電素子100の劣化(使用に適するか否か)を判定する構成であってもよい。 Further, in the deterioration determination device 1 of the above embodiment, a quadratic function (y = ax 2 + bx + c) is derived, and deterioration of the power storage element 100 is determined based on at least one of the coefficients a, b, and c. However, it is not limited to this configuration. For example, the deterioration determination device 1 stores determination data such as a map and a table in a storage unit (hard disk, memory, etc.), and determines deterioration (whether it is suitable for use) of the power storage element 100 based on the determination data. It may be configured to determine.

例えば具体的に、劣化判定装置は、蓄電素子の劣化の有無の判定に用いられる判定データを格納する記憶部と、前記記憶部の判定データを用いて前記蓄電素子の劣化の有無を判定する判定部と、を備える。この劣化判定装置において、記憶部に格納されている判定データは、蓄電素子の劣化状態毎において、該蓄電素子の抵抗と温度との相関関係に近似させた二次関数(y=ax+bx+c)が導出されたときの該蓄電素子の抵抗及び温度の組と、二次関数(y=ax+bx+c)の係数a、b、cの少なくとも一つに基づいて判定された劣化状態に基づく該蓄電素子の使用の可否と、を関係づけたものである。そして、判定部は、判定対象の蓄電素子100から検出された抵抗及び温度が含まれる前記抵抗及び温度の組を記憶部に格納されている判定データから見つけ、この抵抗及び温度の組に対応する蓄電素子の劣化の有無から、判定対象の蓄電素子100の劣化の有無を判定する。 For example, specifically, the deterioration determination device includes a storage unit that stores determination data used for determining whether or not the storage element has deteriorated, and a determination that determines whether or not the storage element has deteriorated using the determination data of the storage unit. And a unit. In this deterioration determination device, the determination data stored in the storage unit is a quadratic function (y = ax 2 + bx + c) approximated to the correlation between the resistance of the storage element and the temperature for each deterioration state of the storage element. The electrical storage based on the degradation state determined based on at least one of the combination of the resistance and temperature of the electrical storage element and the coefficients a, b, and c of the quadratic function (y = ax 2 + bx + c) It relates the availability of the element. Then, the determination unit finds the combination of the resistance and temperature including the resistance and temperature detected from the determination target storage element 100 from the determination data stored in the storage unit, and corresponds to the combination of the resistance and temperature. From the presence or absence of deterioration of the storage element, the presence or absence of the deterioration of the storage element 100 to be determined is determined.

かかる構成によれば、予め判定データが記憶部に格納されているため、判定対象の蓄電素子から抵抗(抵抗値)と温度とを検出するだけで、該判定対象の蓄電素子の劣化状態(即ち、使用に適した状態か否か)を容易且つ確実に判定することができる。   According to such a configuration, since the determination data is stored in the storage unit in advance, the deterioration state (that is, the determination target storage element (that is, the resistance value) and the temperature are detected only from the determination target storage element (that is, the determination target storage element) Can be determined easily and reliably.

また、劣化判定装置は、例えば、蓄電素子100(又は蓄電素子100を備えた蓄電装置)と共に車両等に搭載される場合に蓄電素子(判定対象の蓄電素子)100が劣化していると判定すると、蓄電素子100がそれ以上劣化しないように、蓄電素子100の動作条件を変更(限定)等する構成であってもよい。詳しくは、劣化判定装置は、蓄電素子100が劣化していく方向に進みつつある(蓄電素子100内において(起こって欲しくない)化学反応が進行する)と判断したときに、それを回避するように蓄電素子100の動作条件を変更(限定)する。また、劣化判定装置は、前記劣化していく方向に進みつつあると判断したときに、ユーザー、ディーラー等に連絡する(或いは、車両メーカーのデータセンター等にデータ送信する)構成であってもよい。   In addition, for example, when the deterioration determination device is mounted on a vehicle or the like together with the power storage element 100 (or a power storage device including the power storage element 100), it is determined that the power storage element (determination target power storage element) 100 is deteriorated. The operation condition of the electricity storage device 100 may be changed (limited) so that the electricity storage device 100 does not deteriorate any more. Specifically, when the deterioration determination device determines that the electric storage element 100 is progressing in the direction of deterioration (a chemical reaction progresses (not desired to occur) in the electric storage element 100), the deterioration determination device avoids the deterioration. The operating conditions of the storage element 100 are changed (limited). In addition, the deterioration determination device may be configured to contact a user, a dealer, or the like (or transmit data to a vehicle manufacturer's data center or the like) when it is determined that the deterioration is proceeding in the direction of deterioration. .

1…劣化判定装置、2…検出部、21…抵抗検出部、211…電流計、212…電圧計、22…温度検出部、3…式導出部、4…判定部、5…出力部、100…蓄電素子、102…電極体、103…ケース、104…外部端子、105…集電体、106…絶縁部材、121…巻芯、123…正極、124…負極、125…セパレータ、131…ケース本体、132…蓋板、134…閉塞部、135…胴部、136…開口周縁部   DESCRIPTION OF SYMBOLS 1 ... Degradation determination apparatus, 2 ... Detection part, 21 ... Resistance detection part, 211 ... Ammeter, 212 ... Voltmeter, 22 ... Temperature detection part, 3 ... Formula derivation part, 4 ... Determination part, 5 ... Output part, 100 DESCRIPTION OF SYMBOLS ... Storage element, 102 ... Electrode body, 103 ... Case, 104 ... External terminal, 105 ... Current collector, 106 ... Insulating member, 121 ... Core, 123 ... Positive electrode, 124 ... Negative electrode, 125 ... Separator, 131 ... Case body , 132: lid plate, 134: closing portion, 135: body portion, 136: opening peripheral portion

Claims (7)

所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出する検出部と、
前記検出部で検出した抵抗の対数と温度の逆数のプロットにフィッティングする二次関数を導出する式導出部と、
前記二次関数によって規定される二次曲線の形状の変化に基づいて前記蓄電素子の劣化を判定する判定部と、を備える、蓄電素子の劣化判定装置。
A detection unit for detecting each of the resistances of the storage elements at different temperatures from the storage elements in a predetermined charge state;
An equation deriving unit for deriving a quadratic function fitted to a plot of the logarithm of the resistance detected by the detection unit and the inverse of the temperature;
And a determination unit that determines deterioration of the storage element based on a change in the shape of a quadratic curve defined by the quadratic function.
前記式導出部によって導出される二次関数は、y=ax+bx+c(a、b、cは、係数)であり、
前記判定部は、前記二次関数の係数であるa、b、cの少なくとも一つに基づいて前記蓄電素子の劣化を判定する、請求項1に記載の蓄電素子の劣化判定装置。
The quadratic function derived by the equation deriving unit is y = ax 2 + bx + c (a, b, and c are coefficients),
The storage element deterioration determination device according to claim 1, wherein the determination unit determines the deterioration of the storage element based on at least one of a, b, and c that are coefficients of the quadratic function.
前記判定部は、前記係数の比であるb/a又はb/cが所定の閾値以上のときに、前記蓄電素子が劣化していると判定する、請求項2に記載の蓄電素子の劣化判定装置。   The determination unit according to claim 2, wherein the determination unit determines that the storage element is deteriorated when b / a or b / c, which is a ratio of the coefficients, is equal to or greater than a predetermined threshold. apparatus. 蓄電素子の劣化の有無の判定に用いられる判定データを格納する記憶部と、
前記記憶部の判定データを用いて前記蓄電素子の劣化の有無を判定する判定部と、を備え、
前記判定データは、前記蓄電素子の劣化状態毎において、該蓄電素子の抵抗と温度との相関関係に近似させた二次関数y=ax+bx+cが導出されたときの該蓄電素子の抵抗及び温度の組と、前記二次関数y=ax+bx+cの係数a、b、cの少なくとも一つに基づいて判定された劣化状態に基づく該蓄電素子の劣化の有無と、を関係づけたものであり、
前記判定部は、判定対象の蓄電素子から検出された抵抗及び温度が含まれる前記抵抗及び温度の組を前記判定データから見つけることによって、該判定対象の蓄電素子の劣化を判定する、蓄電素子の劣化判定装置。
A storage unit storing determination data used to determine the presence or absence of deterioration of the storage element;
A determination unit that determines presence or absence of deterioration of the storage element using the determination data of the storage unit;
The determination data includes the resistance and temperature of the storage element when a quadratic function y = ax 2 + bx + c approximated to the correlation between the resistance of the storage element and temperature is derived for each deterioration state of the storage element. And the presence or absence of deterioration of the electricity storage element based on the deterioration state determined based on at least one of the coefficients a, b, and c of the quadratic function y = ax 2 + bx + c. ,
The determination unit determines deterioration of the determination target storage element by finding a combination of the resistance and temperature including the resistance and temperature detected from the determination target storage element from the determination data. Deterioration judging device.
所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出する検出部と、
前記検出部で検出した抵抗と温度との相関関係に近似させた二次関数を導出する式導出部と、
前記二次関数に基づいて前記蓄電素子の劣化を判定する判定部と、を備え
前記式導出部によって導出される二次関数は、y=ax +bx+c(a、b、cは、係数)であり、
前記判定部は、前記係数の比であるb/a又はb/cが所定の閾値以上のときに、前記蓄電素子が劣化していると判定する、蓄電素子の劣化判定装置。
A detection unit for detecting each of the resistances of the storage elements at different temperatures from the storage elements in a predetermined charge state;
An expression derivation unit for deriving a quadratic function approximated to the correlation between the resistance and temperature detected by the detection unit;
A determination unit that determines the deterioration of the storage element based on the quadratic function ;
The quadratic function derived by the equation deriving unit is y = ax 2 + bx + c (a, b, and c are coefficients),
The determination unit, when a ratio of the coefficient b / a or b / c is not smaller than a predetermined threshold value, you determined that the electric storage device is deteriorated, the deterioration determination device of the storage element.
所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出することと、
前記検出された抵抗と温度との相関関係に近似させた二次関数を導出することと、
前記導出された二次関数に基づいて前記蓄電素子の劣化を判定することと、を備え
導出される前記二次関数は、y=ax +bx+c(a、b、cは、係数)であり、
前記判定では、前記係数の比であるb/a又はb/cが所定の閾値以上のときに、前記蓄電素子が劣化していると判定する、
蓄電素子の劣化判定方法。
Detecting the resistance of the storage element at a plurality of different temperatures from the storage element in a predetermined charge state;
Deriving a quadratic function approximated to the correlation between the detected resistance and temperature;
Determining the deterioration of the storage element based on the derived quadratic function .
The derived quadratic function is y = ax 2 + bx + c (a, b, and c are coefficients),
In the above determination, when the ratio of the coefficient b / a or b / c is not smaller than a predetermined threshold value, it determined that the electric storage device is deteriorated,
Method of determining deterioration of storage element.
所定の充電状態の蓄電素子から、異なる複数の温度での該蓄電素子の抵抗をそれぞれ検出することと、
前記検出された抵抗の対数と温度の逆数とのプロットにフィッティングする二次関数を導出することと、
前記導出された二次関数によって規定される二次曲線の形状の変化に基づいて前記蓄電素子の劣化を判定することと、を備える、蓄電素子の劣化判定方法。
Detecting the resistance of the storage element at a plurality of different temperatures from the storage element in a predetermined charge state;
Deriving a quadratic function that fits a plot of the logarithm of the detected resistance and the inverse of temperature;
Determining the deterioration of the storage element based on a change in the shape of a quadratic curve defined by the derived quadratic function.
JP2015073389A 2015-03-31 2015-03-31 Deterioration determination device and deterioration determination method for storage element Active JP6551778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073389A JP6551778B2 (en) 2015-03-31 2015-03-31 Deterioration determination device and deterioration determination method for storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073389A JP6551778B2 (en) 2015-03-31 2015-03-31 Deterioration determination device and deterioration determination method for storage element

Publications (2)

Publication Number Publication Date
JP2016194415A JP2016194415A (en) 2016-11-17
JP6551778B2 true JP6551778B2 (en) 2019-07-31

Family

ID=57322714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073389A Active JP6551778B2 (en) 2015-03-31 2015-03-31 Deterioration determination device and deterioration determination method for storage element

Country Status (1)

Country Link
JP (1) JP6551778B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4215171B2 (en) * 2001-08-13 2009-01-28 日立マクセル株式会社 Battery capacity detection method
JP4199574B2 (en) * 2003-03-31 2008-12-17 古河電池株式会社 Method for measuring internal impedance of storage battery
JP4015092B2 (en) * 2003-09-18 2007-11-28 古河電気工業株式会社 Secondary battery deterioration state determination method, secondary battery deterioration state determination device, and power supply system
JP4488714B2 (en) * 2003-10-24 2010-06-23 株式会社オートネットワーク技術研究所 Vehicle mounted state management device for vehicle lead storage battery and method for detecting deterioration state of vehicle lead storage battery
TWI362129B (en) * 2008-06-27 2012-04-11 Kinpo Elect Inc Battery protection circuit and protection method thereof
JP5558941B2 (en) * 2010-06-30 2014-07-23 三洋電機株式会社 How to detect battery internal resistance

Also Published As

Publication number Publication date
JP2016194415A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
EP2700966B1 (en) Apparatus and method for estimating battery state
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
CN108886163B (en) Secondary battery and life prediction device thereof
JP6607255B2 (en) Battery degradation degree estimation apparatus and estimation method
JP6019368B2 (en) Power storage device state estimation method
US20180321326A1 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
WO2014156869A1 (en) Battery life estimation method and battery life estimation device
EP3605127B1 (en) Device and method for estimating battery resistance
JP6701938B2 (en) Deterioration determination device, computer program, and deterioration determination method
KR20160004077A (en) Method and apparatus for estimating state of battery
WO2009093684A1 (en) Lithium-ion secondary battery, assembled battery, vehicle, battery-equipped device, battery system, and method for detecting deterioration of lithium-ion secondary battery
US10976370B2 (en) SOC estimation device of energy storage device, energy storage apparatus, and SOC estimation method of energy storage device
JP6171128B2 (en) Battery control system, vehicle control system
WO2013132907A1 (en) Lithium-ion secondary cell system, method for testing lithium-ion secondary cell, and method for controlling lithium-ion secondary cell
JP5888193B2 (en) Impedance detection system, monitoring system, and lithium secondary battery with monitoring function including the monitoring system
WO2023008061A1 (en) Battery-monitoring device
JP5058959B2 (en) Secondary battery deterioration state diagnosis device
JP6513528B2 (en) Battery state measuring method and battery state measuring device
JP4954791B2 (en) Voltage prediction method for power storage devices
JP6375215B2 (en) Method for determining presence / absence of memory effect and apparatus for determining presence / absence of memory effect
KR20220094464A (en) Battery diagnosis system, battery diagnosis method, battery pack, and electric vehicle
JP6551778B2 (en) Deterioration determination device and deterioration determination method for storage element
US10634729B2 (en) Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
JP6365820B2 (en) Secondary battery abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190620

R150 Certificate of patent or registration of utility model

Ref document number: 6551778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150