JP6550863B2 - STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE - Google Patents

STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE Download PDF

Info

Publication number
JP6550863B2
JP6550863B2 JP2015074232A JP2015074232A JP6550863B2 JP 6550863 B2 JP6550863 B2 JP 6550863B2 JP 2015074232 A JP2015074232 A JP 2015074232A JP 2015074232 A JP2015074232 A JP 2015074232A JP 6550863 B2 JP6550863 B2 JP 6550863B2
Authority
JP
Japan
Prior art keywords
hole
current collector
cylindrical body
electrode terminal
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015074232A
Other languages
Japanese (ja)
Other versions
JP2016195036A (en
Inventor
悟 川上
悟 川上
朋子 西川
朋子 西川
武志 河原
河原  武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015074232A priority Critical patent/JP6550863B2/en
Publication of JP2016195036A publication Critical patent/JP2016195036A/en
Application granted granted Critical
Publication of JP6550863B2 publication Critical patent/JP6550863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電極体と、電極体に接続された集電体と、電極端子とを備える蓄電素子に関する。   The present invention relates to a storage element including an electrode body, a current collector connected to the electrode body, and an electrode terminal.

従来、電気自動車(EV)、プラグインハイブリッド電気自動車(PHEV)、ハイブリッド電気自動車(HEV)などの動力源として、リチウムイオン二次電池などの蓄電素子が用いられている。このような蓄電素子は、一般的に、電極体、電極体に接続された集電体、及び、電極端子等を備えている。   Conventionally, a power storage element such as a lithium ion secondary battery has been used as a power source for an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), a hybrid electric vehicle (HEV), and the like. Such an electricity storage element generally includes an electrode body, a current collector connected to the electrode body, an electrode terminal, and the like.

また、例えば、電極端子に固定されたリベットが、集電体に設けられた孔に挿入されてかしめられることで、集電体と電極端子とが電気的及び機械的に接続される。   Also, for example, a rivet fixed to the electrode terminal is inserted into a hole provided in the current collector and crimped, whereby the current collector and the electrode terminal are electrically and mechanically connected.

例えば特許文献1には、装置筐体を貫通する状態で集電体を装置筐体に固定するリベット部材であって、集電体と電気的に接続されて通電経路を構成するリベット部材が配置された蓄電装置について開示されている。この蓄電装置において、電極端子は、リベット部材の頭部と接続するための接続部と、他の装置と電気的に接続するための接続部とが、連結部で連結されている。   For example, Patent Document 1 is a rivet member that fixes a current collector to a device housing in a state of penetrating the device housing, and a rivet member that is electrically connected to the current collector to form a current path is disposed. The disclosed power storage device is disclosed. In this power storage device, the electrode terminal has a connecting portion for connecting to the head of the rivet member and a connecting portion for electrically connecting to another device connected by a connecting portion.

この構成によれば、リベット部材の貫通箇所に配置されるシール部材を可及的に保護しながら、リベット部材の回り止めの確実化が図られる。   According to this configuration, it is possible to ensure the prevention of rotation of the rivet member while protecting the seal member disposed at the penetration point of the rivet member as much as possible.

特開2014−222675号公報JP, 2014-222675, A

上述のように、集電体を貫通する金属部材をかしめることで、電極端子と集電体とを接続する場合、金属部材は、かしめられることで径方向に膨張し、これにより集電体の貫通孔を有する部分が径方向の圧力を受ける。その結果、集電体に変形が生じる可能性がある。集電体に生じる変形は、例えば、集電体と容器との間に配置された絶縁部材の変形または損傷等の要因ともなる。   As described above, when the electrode member and the current collector are connected by caulking the metal member penetrating the current collector, the metal member expands in the radial direction by being caulked, thereby the current collector. The portion having the through hole receives radial pressure. As a result, deformation may occur in the current collector. The deformation that occurs in the current collector also becomes a factor such as deformation or damage of the insulating member disposed between the current collector and the container.

また、例えば、集電体から延設された金属部材を、電極端子の貫通孔に挿入してかしめる場合も同様に、かしめに起因して電極端子に変形が生じ得る。電極端子に生じる変形は、例えば、電極端子とバスバー等の導電部材との接合の品質の低下の要因ともなる。   Further, for example, when a metal member extending from the current collector is inserted into the through hole of the electrode terminal and caulked, the electrode terminal can be deformed due to caulking. The deformation that occurs in the electrode terminal also causes deterioration in the quality of bonding between the electrode terminal and a conductive member such as a bus bar, for example.

本発明は、上記従来の課題を考慮し、集電体と電極端子とを接続する接続部を備える蓄電素子であって、信頼性の高い蓄電素子を提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a highly reliable power storage device including a connection portion that connects a current collector and an electrode terminal.

上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極体と、前記電極体に接続された集電体と、電極端子とを備える蓄電素子であって、前記集電体及び前記電極端子の一方から延設された接続部であって、前記集電体及び前記電極端子の他方に設けられた貫通孔を貫通し、端部が前記他方に接続されることで、前記集電体と前記電極端子とを電気的に接続する接続部と、前記接続部を挿通させる孔を有する筒体であって、軸方向の端部が前記貫通孔に挿入された筒体とを備える。   In order to achieve the above object, a power storage element according to one embodiment of the present invention is a power storage element including an electrode body, a current collector connected to the electrode body, and an electrode terminal, and the current collector And a connecting portion extending from one of the electrode terminals, passing through a through hole provided in the other of the current collector and the electrode terminal, and having an end connected to the other, A connecting portion that electrically connects the current collector and the electrode terminal, and a cylindrical body having a hole through which the connecting portion is inserted, the cylindrical body having an axial end inserted into the through hole. Prepare.

この構成によれば、集電体及び電極端子の一方から延設された接続部は、筒体に挿通され、かつ、集電体及び電極端子の他方に設けられた貫通孔を貫通して、当該他方と接続される。つまり、筒体は、例えば、接続部と、蓄電素子の容器等の他の部材との間の電気的な絶縁または気密の維持のための部材として機能することができる。   According to this configuration, the connection portion extending from one of the current collector and the electrode terminal is inserted through the cylindrical body, and passes through the through hole provided in the other of the current collector and the electrode terminal. It is connected with the other. That is, the cylinder can function as, for example, a member for maintaining electrical insulation or airtightness between the connection portion and another member such as a container of the storage element.

また、筒体は、集電体及び電極端子の他方に設けられた貫通孔に少なくともその一部が挿入される。そのため、例えば、蓄電素子の製造工程において、筒体を、集電体及び電極端子の他方の位置決め部材として用いることができる。従って、例えば、集電体または電極端子が正規の位置からずれた状態で、接続部に対するかしめ等の接続工程が行われることによる不具合の発生が抑制される。   Further, at least a part of the cylindrical body is inserted into the through hole provided in the other of the current collector and the electrode terminal. Therefore, for example, in the manufacturing process of the storage element, the cylindrical body can be used as the other positioning member of the current collector and the electrode terminal. Therefore, for example, occurrence of a defect due to the connection step such as caulking to the connection portion being performed in a state where the current collector or the electrode terminal is deviated from the normal position is suppressed.

以上のように、本態様の蓄電素子は、集電体と電極端子とを接続する接続部を備える蓄電素子であって、信頼性の高い蓄電素子である。   As described above, the storage element of this embodiment is a storage element including a connection portion connecting the current collector and the electrode terminal, and is a highly reliable storage element.

また、本発明の一態様に係る蓄電素子において、前記筒体の、前記貫通孔への挿入長さは、前記貫通孔の軸方向の長さよりも短いとしてもよい。   Further, in the storage element according to one aspect of the present invention, the insertion length of the cylindrical body into the through hole may be shorter than the axial length of the through hole.

この構成によれば、筒体は、集電体及び電極端子の他方に設けられた貫通孔に一部が挿入され、その長さ(挿入長さ)は、貫通孔の軸方向の長さよりも短い。つまり、貫通孔における筒体の軸方向の存在範囲は、貫通孔の途中までであり、残りの範囲は、かしめられた接続部の逃げ(肉逃げ)の空間として利用されている。そのため、接続部がかしめ等によって接続されることで生じ得る、接続部が他の部材に与える圧力が抑制される。その結果、例えば、貫通孔を有する集電体または電極端子等における変形の発生が抑制される。   According to this configuration, a part of the cylindrical body is inserted into the through hole provided in the other of the current collector and the electrode terminal, and the length (insertion length) is longer than the axial length of the through hole. short. In other words, the axial presence range of the cylindrical body in the through hole is up to the middle of the through hole, and the remaining range is used as a space for relief of the crimped connection portion (wall relief). Therefore, the pressure which the connection part gives to another member which may occur when the connection part is connected by caulking or the like is suppressed. As a result, for example, the occurrence of deformation in a current collector or an electrode terminal having a through hole is suppressed.

また、本発明の一態様に係る蓄電素子は、前記電極体及び前記集電体を収容する容器と、前記集電体と前記電極端子との間の前記容器の壁部と、前記集電体及び前記電極端子の少なくとも一方との間に配置された絶縁部材とを備え、前記筒体は、前記絶縁部材から延設されているとしてもよい。   The power storage device according to one embodiment of the present invention includes a container that houses the electrode body and the current collector, a wall portion of the container between the current collector and the electrode terminal, and the current collector. And an insulating member disposed between at least one of the electrode terminals, and the cylindrical body may extend from the insulating member.

この構成によれば、筒体は、例えば、絶縁部材と一体に形成された部材、または、絶縁部材に固定された別部材として蓄電素子に配置される。そのため、例えば、蓄電素子の製造(組み立て)を効率よく行うことができる。   According to this configuration, for example, the cylindrical body is arranged in the power storage element as a member formed integrally with the insulating member or as another member fixed to the insulating member. Therefore, for example, manufacturing (assembly) of the storage element can be efficiently performed.

また、絶縁部材から延設された筒体を、貫通孔を有する集電体または電極端子の、容器に対する位置決め部材としても機能させることができる。その結果、例えば、蓄電素子を精度よく製造することができる。   Moreover, the cylindrical body extended from the insulating member can be made to function also as a positioning member with respect to the container of the electrical power collector or electrode terminal which has a through-hole. As a result, for example, a storage element can be manufactured with high accuracy.

また、本発明の一態様に係る蓄電素子において、前記絶縁部材は、前記電極端子と前記容器の前記壁部との間に配置された上部絶縁部材、及び、前記集電体と前記容器の前記壁部との間に配置された下部絶縁部材を有し、前記筒体は、前記上部絶縁部材及び前記下部絶縁部材の一方から延設され、かつ、前記壁部、並びに、前記上部絶縁部材及び前記下部絶縁部材の他方を貫通した状態で配置されているとしてもよい。   In the energy storage device according to one embodiment of the present invention, the insulating member includes an upper insulating member disposed between the electrode terminal and the wall portion of the container, and the current collector and the container. A lower insulating member disposed between the wall portion, the cylindrical body extending from one of the upper insulating member and the lower insulating member, and the wall portion, the upper insulating member, and The lower insulating member may be disposed so as to pass through the other.

この構成によれば、筒体を、例えば、上部絶縁部材及び下部絶縁部材の一方に対する他方の位置決め部材としても機能させることができる。その結果、例えば、蓄電素子を精度よく製造することができる。   According to this configuration, the cylinder can also function as, for example, the other positioning member for one of the upper insulating member and the lower insulating member. As a result, for example, a storage element can be manufactured with high accuracy.

また、本発明の一態様に係る蓄電素子において、前記筒体の前記孔の内周面は、前記貫通孔に挿入された前記端部の開口に近づくほど内径が大きくなるテーパ状になっているとしてもよい。   Further, in the storage element according to one aspect of the present invention, the inner circumferential surface of the hole of the cylindrical body is tapered such that the inner diameter increases as it approaches the opening of the end portion inserted into the through hole. It may be

つまり、かしめ等の接続工程において径方向に膨張した接続部が、筒体の孔の内周面を径方向に押し広げるように作用した結果、当該内周面がテーパ状となり、例えば、筒体と、筒体の周囲の部材(容器等)との気密性が向上される。   That is, as a result of the radially expanded connection portion in the connection step such as caulking acting to radially spread the inner peripheral surface of the hole of the cylinder, the inner peripheral surface becomes tapered, for example, the cylinder And the airtightness with the member (container etc.) around a cylinder is improved.

また、本発明の一態様に係る蓄電素子の製造方法は、電極体と、前記電極体に接続された集電体と、電極端子と、前記集電体及び前記電極端子の一方から延設された接続部と、前記接続部を挿通させる孔を有する筒体とを備える蓄電素子を製造するための製造方法であって、前記接続部を、前記筒体の前記孔に挿通させる工程と、前記筒体の軸方向の端部を、前記集電体及び前記電極端子の他方に設けられた貫通孔に挿入することで、前記筒体を、前記集電体及び前記電極端子の他方に対して配置する工程と、前記接続部の、前記貫通孔を貫通した端部をかしめる工程とを含む。   The method for manufacturing a power storage device according to one embodiment of the present invention includes an electrode body, a current collector connected to the electrode body, an electrode terminal, and one of the current collector and the electrode terminal. A storage device comprising a connecting portion and a cylindrical body having a hole through which the connecting portion is inserted, the step of inserting the connecting portion into the hole of the cylindrical body, By inserting the axial end of the cylindrical body into a through hole provided in the other of the current collector and the electrode terminal, the cylindrical body is made to the other of the current collector and the electrode terminal. And disposing an end of the connection portion through the through hole.

この製造方法によれば、集電体及び電極端子の一方から延設された接続部を挿通させる孔を有する筒体は、貫通孔に少なくとも一部が挿入される。さらに、接続部の、貫通孔を貫通した端部がかしめられる。   According to this manufacturing method, at least a part of the cylindrical body having the hole through which the connection portion extended from one of the current collector and the electrode terminal is inserted is inserted into the through hole. Furthermore, the end of the connection portion which penetrates the through hole is crimped.

すなわち、例えば、接続部の端部をかしめる工程において、筒体を、集電体及び電極端子の他方の位置決め部材として用いることができる。従って、例えば、集電体または電極端子が正規の位置からずれた状態で、接続部に対するかしめ等の接続工程が行われることによる不具合の発生が抑制される。以上のように、本態様の蓄電素子の製造方法によれば、かしめられることで集電体と電極端子とを接続する接続部を備える蓄電素子であって、信頼性の高い蓄電素子を製造することができる。   That is, for example, in the step of crimping the end of the connection portion, the cylindrical body can be used as the other positioning member of the current collector and the electrode terminal. Therefore, for example, occurrence of a defect due to the connection step such as caulking to the connection portion being performed in a state where the current collector or the electrode terminal is deviated from the normal position is suppressed. As described above, according to the method of manufacturing the storage element of this aspect, the storage element includes the connection portion connecting the current collector and the electrode terminal by caulking, and the storage element having high reliability is manufactured. be able to.

また、本発明の一態様に係る蓄電素子の製造方法において、前記筒体を配置する工程では、前記筒体の、前記貫通孔への挿入長さが、前記貫通孔の軸方向の長さよりも短い状態で、前記筒体が、前記集電体及び前記電極端子の他方に対して配置されるとしてもよい。   Further, in the method for manufacturing an energy storage device according to one aspect of the present invention, in the step of arranging the cylinder, the insertion length of the cylinder into the through hole is longer than the axial length of the through hole. In the short state, the cylindrical body may be disposed with respect to the other of the current collector and the electrode terminal.

この製造方法によれば、貫通孔における筒体の軸方向の存在範囲は、貫通孔の途中まであり、残りの範囲を、かしめられた接続部の逃げ(肉逃げ)の空間として利用することができる。そのため、接続部がかしめ等によって接続されることで生じ得る、接続部が他の部材に与える圧力が抑制される。その結果、例えば、貫通孔を有する集電体または電極端子等における変形の発生が抑制される。   According to this manufacturing method, the axial presence range of the cylindrical body in the through hole is in the middle of the through hole, and the remaining range can be used as a space for relief of the crimped connection portion (a meat escape). it can. Therefore, the pressure which the connection part gives to another member which may occur when the connection part is connected by caulking or the like is suppressed. As a result, for example, the occurrence of deformation in a current collector or an electrode terminal having a through hole is suppressed.

また、本発明の一態様に係る蓄電素子の製造方法は、前記筒体の前記孔の内周面には、前記貫通孔に挿入された端部の開口に近づくほど内径が大きくなるテーパ面が形成されており、前記接続部の前記端部をかしめる工程では、前記筒体の孔に挿通され、かつ、前記貫通孔を貫通した前記端部がかしめられるとしてもよい。   Further, in the method of manufacturing the storage element according to one aspect of the present invention, the inner circumferential surface of the hole of the cylinder has a tapered surface whose inner diameter increases as it approaches the opening of the end portion inserted into the through hole. In the step of caulking the end portion of the connecting portion that is formed, the end portion that is inserted through the hole of the cylindrical body and penetrates the through hole may be caulked.

この製造方法によれば、例えば、かしめ時における、接続部の肉逃げがテーパ面を利用してスムーズに行われる。また、例えば、かしめた結果における、接続部と、集電体及び電極端子の他方との密着性が確保されるため、当該肉逃げに利用される空間によって、接続部と当該他方との導通が阻害されることが抑制される。   According to this manufacturing method, for example, when the caulking is performed, the flare of the connecting portion is smoothly performed using the tapered surface. Further, for example, the adhesion between the connection portion and the other of the current collector and the electrode terminal in the crimped result is secured, so that the connection between the connection portion and the other can be conducted by the space used for the metal escape. Inhibition is suppressed.

本発明によれば、かしめられることで集電体と電極端子とを接続する接続部を備える蓄電素子であって、信頼性の高い蓄電素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is an electrical storage element provided with the connection part which connects a collector and an electrode terminal by being crimped, Comprising: A reliable electrical storage element can be provided.

実施の形態に係る蓄電素子の外観を示す斜視図である。It is a perspective view which shows the external appearance of the electrical storage element which concerns on embodiment. 実施の形態に係る蓄電素子の容器の容器本体を分離して蓄電素子が備える各構成要素を示す斜視図である。It is a perspective view which isolate | separates the container main body of the container of the electrical storage element which concerns on embodiment, and shows each component with which an electrical storage element is equipped. 実施の形態に係る蓄電素子を分解した場合の各構成要素を示す分解斜視図である。It is a disassembled perspective view which shows each component at the time of decomposing the electrical storage element which concerns on embodiment. 実施の形態に係る蓄電素子の、筒体およびその周辺の構造を示す分解斜視図である。It is a disassembled perspective view which shows the cylinder of the electrical storage element which concerns on embodiment, and the structure of the periphery of it. 実施の形態に係る蓄電素子の、筒体およびその周辺の構造を示す第1の断面図である。FIG. 3 is a first cross-sectional view showing a structure of a cylindrical body and the periphery of the electric storage element according to the embodiment. 図5に対応する第2の断面図である。FIG. 6 is a second cross-sectional view corresponding to FIG. 5; 実施の形態の変形例1に係る蓄電素子の、筒体およびその周辺の構造を示す断面図である。It is sectional drawing which shows the cylinder of the electrical storage element which concerns on the modification 1 of embodiment, and the structure of the periphery of it. 実施の形態の変形例2に係る蓄電素子の、筒体およびその周辺の構造を示す断面図である。It is sectional drawing which shows the cylinder of the electrical storage element which concerns on the modification 2 of embodiment, and the structure of the periphery of it. 実施の形態の変形例3に係る蓄電素子の、筒体およびその周辺の構造を示す断面図である。It is sectional drawing which shows the cylinder of the electrical storage element which concerns on the modification 3 of embodiment, and the structure of the periphery of it.

以下、図面を参照しながら、本発明の実施の形態に係る蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。   Hereinafter, a storage element according to an embodiment of the present invention will be described with reference to the drawings. Each figure is a schematic view and is not necessarily strictly illustrated.

また、以下で説明する実施の形態及びその変形例は、いずれも包括的または具体的な例を示すものである。以下の実施の形態及び変形例で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態及び変形例における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。   In addition, the embodiment described below and the modifications thereof all show a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements and the like shown in the following embodiments and modifications are merely examples, and are not intended to limit the present invention. Moreover, among the components in the following embodiment and modification, components not described in the independent claim showing the highest level concept are described as optional components.

また、以下の説明及び図面中において、蓄電素子の電極体の巻回軸方向をX軸方向と定義する。つまり、X軸方向は、集電体もしくは電極端子の並び方向、または、容器の短側面の対向方向として定義できる。また、蓄電素子の上下方向をZ軸方向と定義する。つまり、Z軸方向は、集電体の脚が延びる方向、または、容器の短側面の長手方向として定義できる。また、X軸方向及びZ軸方向と交差する方向をY軸方向と定義する。つまり、Y軸方向は、容器の長側面の対向方向、容器の短側面の短手方向、または、容器の厚さ方向として定義できる。   Further, in the following description and drawings, the winding axis direction of the electrode body of the storage element is defined as the X-axis direction. That is, the X-axis direction can be defined as the direction in which the current collectors or the electrode terminals are arranged, or the opposing direction of the short side surfaces of the container. Further, the vertical direction of the storage element is defined as the Z-axis direction. That is, the Z-axis direction can be defined as the direction in which the legs of the current collector extend, or the longitudinal direction of the short side of the container. Further, a direction intersecting the X-axis direction and the Z-axis direction is defined as a Y-axis direction. That is, the Y-axis direction can be defined as the opposite direction of the long side of the container, the short direction of the short side of the container, or the thickness direction of the container.

図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の容器100の容器本体111を分離して蓄電素子10が備える各構成要素を示す斜視図である。図3は、実施の形態に係る蓄電素子10を分解した場合の各構成要素を示す分解斜視図である。なお、図3では、容器100の容器本体111の図示は省略されている。   FIG. 1 is a perspective view showing an appearance of a storage element 10 according to the embodiment. FIG. 2 is a perspective view showing components included in the electricity storage device 10 by separating the container body 111 of the container 100 of the electricity storage device 10 according to the embodiment. FIG. 3 is an exploded perspective view showing each component when the storage element 10 according to the embodiment is disassembled. In addition, illustration of the container main body 111 of the container 100 is abbreviate | omitted in FIG.

蓄電素子10は、電極体と、電極体に接続された集電体と、電極端子とを備える蓄電素子である。また、蓄電素子10はさらに、かしめられることで集電体と電極端子とを接続する接続部を備えている。本実施の形態に係る蓄電素子10は、具体的には以下のように説明される。   The storage element 10 is a storage element including an electrode body, a current collector connected to the electrode body, and an electrode terminal. Further, the storage element 10 further includes a connection portion for connecting the current collector and the electrode terminal by being crimped. Specifically, storage element 10 according to the present embodiment is described as follows.

蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。特に、蓄電素子10は、電気自動車(EV)、プラグインハイブリッド電気自動車(PHEV)、またはハイブリッド電気自動車(HEV)に適用される。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。   The power storage element 10 is a secondary battery that can charge electricity and discharge electricity, and more specifically, is a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. In particular, the electric storage element 10 is applied to an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), or a hybrid electric vehicle (HEV). In addition, the electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a capacitor may be sufficient as it.

これらの図に示すように、蓄電素子10は、容器100と、正極端子200と、負極端子300とを備えている。また、容器100の内方には、正極集電体120と、負極集電体130と、2つの電極体141及び142とが収容されている。正極端子200には、接続部の一例であるリベット部230が設けられており、負極端子300には、接続部の一例であるリベット部330が設けられている。   As shown in these drawings, the electricity storage device 10 includes a container 100, a positive electrode terminal 200, and a negative electrode terminal 300. Further, inside the container 100, a positive electrode current collector 120, a negative electrode current collector 130, and two electrode bodies 141 and 142 are accommodated. The positive electrode terminal 200 is provided with a rivet portion 230 that is an example of a connection portion, and the negative electrode terminal 300 is provided with a rivet portion 330 that is an example of a connection portion.

蓄電素子10はさらに、正極集電体120及び正極端子200の少なくとも一方と、容器100の、正極集電体120が配置される側面を形成する壁部(本実施の形態では蓋板110)との間に配置された絶縁部材250を備える。負極側にも同様に、負極集電体130及び負極端子300の少なくとも一方と、容器100の蓋板110との間に配置された絶縁部材350が備えられている。   The power storage element 10 further includes at least one of a positive electrode current collector 120 and a positive electrode terminal 200, and a wall portion (a cover plate 110 in the present embodiment) that forms a side surface of the container 100 where the positive electrode current collector 120 is disposed. And an insulating member 250 disposed between the two. Similarly, on the negative electrode side, an insulating member 350 disposed between at least one of the negative electrode current collector 130 and the negative electrode terminal 300 and the lid plate 110 of the container 100 is provided.

本実施の形態では、絶縁部材250及び350のそれぞれは、蓋板110を挟んで上下に配置された絶縁部材を有している。具体的には、絶縁部材250は、上部絶縁部材240と下部絶縁部材150とを有し、絶縁部材350は、上部絶縁部材340と、下部絶縁部材160とを有する。   In the present embodiment, each of the insulating members 250 and 350 has an insulating member arranged up and down across the cover plate 110. Specifically, the insulating member 250 includes an upper insulating member 240 and a lower insulating member 150, and the insulating member 350 includes an upper insulating member 340 and a lower insulating member 160.

上部絶縁部材240は、正極端子200と蓋板110との間に配置される部材であり、下部絶縁部材150は、正極集電体120と蓋板110との間に配置される部材である。上部絶縁部材340は、負極端子300と蓋板110との間に配置される部材であり、下部絶縁部材160は、負極集電体130と蓋板110との間に配置される部材である。上部絶縁部材240、340及び下部絶縁部材150、160は、例えば、絶縁性を有する樹脂を成形することで作製される。   The upper insulating member 240 is a member disposed between the positive electrode terminal 200 and the lid plate 110, and the lower insulating member 150 is a member disposed between the positive electrode current collector 120 and the lid plate 110. The upper insulating member 340 is a member disposed between the negative electrode terminal 300 and the lid plate 110, and the lower insulating member 160 is a member disposed between the negative electrode current collector 130 and the lid plate 110. The upper insulating members 240 and 340 and the lower insulating members 150 and 160 are manufactured, for example, by molding a resin having an insulating property.

本実施の形態では、このように構成された絶縁部材250及び350によって、容器100の蓋板110と、電極端子(200、300)及び集電体(120、130)とが電気的に絶縁されている。   In the present embodiment, the cover plate 110 of the container 100, the electrode terminals (200, 300) and the current collectors (120, 130) are electrically insulated by the insulating members 250 and 350 configured in this manner. ing.

なお、また、上部絶縁部材240、340は、例えば上部パッキンと呼ばれる場合もあり、下部絶縁部材150、160は、例えば下部パッキンと呼ばれる場合もある。つまり、本実施の形態では、絶縁部材250及び350のそれぞれは、電極端子(200または300)と容器100との間を封止する機能も有している。   The upper insulating members 240 and 340 may be called, for example, an upper packing, and the lower insulating members 150 and 160 may be called, for example, a lower packing. That is, in the present embodiment, each of the insulating members 250 and 350 also has a function of sealing between the electrode terminal (200 or 300) and the container 100.

また、蓄電素子10の容器100の内部には電解液(非水電解液)などの液体が封入されているが、当該液体の図示は省略する。なお、容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく様々なものを選択することができる。   In addition, a liquid such as an electrolytic solution (non-aqueous electrolytic solution) is sealed inside the container 100 of the electricity storage element 10, but the illustration of the liquid is omitted. The type of the electrolytic solution sealed in the container 100 is not particularly limited as long as it does not impair the performance of the storage element 10, and various types can be selected.

容器100は、矩形筒状で底を備える容器本体111と、容器本体111の開口を閉塞する蓋板110とで構成されている。また、容器100は、電極体141及び142等を内部に収容後、蓋板110と容器本体111とが溶接等されることにより、内部を密封することができるものとなっている。なお、蓋板110及び容器本体111の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属であるのが好ましい。   The container 100 includes a container body 111 having a rectangular cylindrical shape and a bottom, and a lid plate 110 that closes an opening of the container body 111. Further, the container 100 can seal the inside by welding the lid plate 110 and the container body 111 after the electrode bodies 141 and 142 and the like are accommodated therein. The material of the lid plate 110 and the container body 111 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, aluminum alloy, for example.

蓋板110には、容器100内の圧力が上昇したときに、容器100内で発生したガスを放出し、当該圧力を開放するための安全弁110cが設けられている。また、蓋板110には、正極端子200から延設されたリベット部230が挿入される開口部110aと、負極端子300から延設されたリベット部330が挿入される開口部110bとが形成されている。   The cover plate 110 is provided with a safety valve 110c for releasing the gas generated in the container 100 and releasing the pressure when the pressure in the container 100 rises. In addition, the lid plate 110 is formed with an opening 110 a into which a rivet portion 230 extending from the positive electrode terminal 200 is inserted, and an opening 110 b into which a rivet portion 330 extending from the negative electrode terminal 300 is inserted. ing.

電極体141及び142は、並列に配置される2つの発電要素であり、ともに、正極集電体120及び負極集電体130と電気的に接続される。なお、本実施の形態では、電極体141と電極体142とは、同一の構成を有している。   The electrode bodies 141 and 142 are two power generation elements arranged in parallel, and both are electrically connected to the positive electrode current collector 120 and the negative electrode current collector 130. In the present embodiment, the electrode body 141 and the electrode body 142 have the same configuration.

具体的には、電極体141及び142は、正極と負極とセパレータとを備え、電気を蓄えることができる部材である。正極は、アルミニウムまたはアルミニウム合金などからなる長尺帯状の金属箔である正極基材層上に正極活物質層が形成されたものである。また、負極は、銅または銅合金などからなる長尺帯状の金属箔である負極基材層上に負極活物質層が形成されたものである。また、セパレータは、樹脂からなる微多孔性のシートである。   Specifically, the electrode bodies 141 and 142 include a positive electrode, a negative electrode, and a separator, and are members that can store electricity. In the positive electrode, a positive electrode active material layer is formed on a positive electrode base material layer which is a long strip-shaped metal foil made of aluminum or an aluminum alloy. Further, the negative electrode is obtained by forming a negative electrode active material layer on a negative electrode base material layer which is a long strip-like metal foil made of copper or copper alloy. The separator is a microporous sheet made of resin.

正極活物質層に用いられる正極活物質、または負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質または負極活物質であれば、適宜公知の材料を使用できる。   As the positive electrode active material used for the positive electrode active material layer or the negative electrode active material layer used for the negative electrode active material layer, any known material can be used as long as it is a positive electrode active material or negative electrode active material capable of occluding and releasing lithium ions. .

そして、電極体141及び142は、正極と負極との間にセパレータが挟み込まれるように層状に配置されたものが巻き回されて形成されている。なお、図2及び図3では、電極体141及び142の形状としては長円形状を示したが、円形状または楕円形状でもよい。   And the electrode bodies 141 and 142 are formed by winding what is arranged in layers so that the separator is sandwiched between the positive electrode and the negative electrode. 2 and 3, the electrode bodies 141 and 142 have an oval shape, but may have a circular shape or an oval shape.

ここで、電極体141及び142は、正極と負極とが、セパレータを介して、巻回軸(本実施の形態ではX軸方向に平行な仮想軸)の方向に互いにずらして巻回されている。そして、正極及び負極は、それぞれのずらされた方向の端縁部に、活物質が塗工されず基材層が露出した(活物質層が形成されていない)部分(未塗工部)を有している。なお、未塗工部は、「活物質層非形成部」とも表現される場合もある。   Here, in the electrode bodies 141 and 142, the positive electrode and the negative electrode are wound so as to be offset from each other in the direction of the winding axis (virtual axis parallel to the X-axis direction in this embodiment) via the separator. . Then, in the positive electrode and the negative electrode, the active material is not applied to the edge portion in the shifted direction, and the portion (uncoated portion) where the base material layer is exposed (the active material layer is not formed) Have. In addition, an uncoated part may be expressed also as a "active material layer non-formation part."

具体的には、電極体141は、巻回軸方向の一端(X軸方向プラス側の端部)に、正極の未塗工部が積層された正極側の端部141aを有している。また、同様に、電極体142は、X軸方向プラス側の端部に、正極の未塗工部が積層された正極側の端部142aを有している。また、電極体141及び142は、負極側にも同様に、負極の未塗工部が積層された端部を有している。   Specifically, the electrode body 141 has an end portion 141a on the positive electrode side in which the uncoated portion of the positive electrode is laminated at one end in the winding axial direction (end on the positive side in the X-axis direction). Similarly, the electrode body 142 has an end 142 a on the positive electrode side where the uncoated portion of the positive electrode is laminated at the end on the positive side in the X-axis direction. Similarly, the electrode bodies 141 and 142 also have end portions on which negative electrode uncoated portions are laminated on the negative electrode side.

また、本実施の形態では、電極体141及び142は、絶縁性のフィルムである絶縁フィルム143が周囲に巻きつけられて束ねられている。絶縁フィルム143は、長方形状のシート状の樹脂製の部材であり、電極体141及び142に巻きつけられて、巻き終わり部分を絶縁テープ144により留められることで、固定されている。   In the present embodiment, the electrode bodies 141 and 142 are bundled by winding an insulating film 143 that is an insulating film around the periphery. The insulating film 143 is a rectangular sheet-like resin member and is fixed by being wound around the electrode bodies 141 and 142 and holding the end portion of the winding with the insulating tape 144.

なお、蓄電素子10が備える電極体の数に特に限定はなく、1でもよく、また3以上でもよい。蓄電素子10が複数の電極体(本実施の形態では2つの電極体141及び142)を有する場合、同一体積(容積)の容器100に単数の電極体を収容する場合に比べ、例えば、以下の点で好ましい。   The number of electrode bodies included in the storage element 10 is not particularly limited, and may be one or three or more. When the storage element 10 has a plurality of electrode bodies (two electrode bodies 141 and 142 in the present embodiment), for example, the following may be compared to the case where a single electrode body is accommodated in the container 100 having the same volume (volume). It is preferable in point.

つまり、複数の電極体を用いることで、単数の電極体を用いる場合に比べ、容器100のコーナー部のデッドスペースが減り、電極体の占める割合が向上するため、蓄電素子10の蓄電容量アップにつながる。また、特に、高入出力(ハイレート)用の電極体では、高容量タイプの電極体に比べて、金属箔上の活物質の量を減らす必要があり、電極体における金属箔及びセパレータの割合が高まる。このため、単数の電極体を用いた場合は電極の巻き数が多くなり、その結果、硬くて柔軟性が低く容器100に挿入しづらくなる。しかし、複数の電極体を用いる場合は、1つの電極体における巻き数を少なくすることができるため、柔軟性が高い電極体を実現することができる。これにより、容器100におけるデッドスペースを比較的に小さくすることが可能である。   That is, by using a plurality of electrode bodies, the dead space at the corner portion of the container 100 is reduced and the ratio occupied by the electrode bodies is improved as compared to the case where a single electrode body is used. Connect. In addition, particularly in the case of an electrode body for high input / output (high rate), it is necessary to reduce the amount of active material on the metal foil as compared to the high capacity type electrode body, and the ratio of metal foil and separator in the electrode body is Increase. Therefore, when a single electrode body is used, the number of turns of the electrode is increased, and as a result, the electrode is hard and has low flexibility, making it difficult to insert it into the container 100. However, when a plurality of electrode bodies are used, the number of turns in one electrode body can be reduced, so that a highly flexible electrode body can be realized. Thereby, it is possible to make the dead space in the container 100 relatively small.

正極集電体120は、電極体141及び142の正極側(X軸方向プラス側)に配置され、正極端子200と電極体141及び142の正極とに電気的に接続される導電性と剛性とを備えた部材である。なお、正極集電体120は、電極体141及び142の正極基材層と同様、アルミニウムまたはアルミニウム合金などで形成されている。   The positive electrode current collector 120 is disposed on the positive electrode side (X-axis direction plus side) of the electrode bodies 141 and 142, and is electrically connected to the positive electrode terminal 200 and the positive electrodes of the electrode bodies 141 and 142. It is a member provided with. Note that the positive electrode current collector 120 is formed of aluminum or an aluminum alloy as in the case of the positive electrode base material layers of the electrode bodies 141 and 142.

具体的には、正極集電体120は、電極体141及び142の正極側の端部141a及び端部142aに溶接等によって接合されることで、電極体141及び142の正極と接続される。また、正極集電体120には、貫通孔120aが形成されており、貫通孔120aに、正極端子200に備えられたリベット部230が挿入されてかしめられることで、正極集電体120と正極端子200とが接続される。   Specifically, the positive electrode current collector 120 is connected to the positive electrode-side end portion 141 a and the end portion 142 a of the electrode bodies 141 and 142 by welding or the like, thereby being connected to the positive electrodes of the electrode bodies 141 and 142. In addition, the positive electrode current collector 120 has a through hole 120a, and the rivet portion 230 provided in the positive electrode terminal 200 is inserted into the through hole 120a and caulked, whereby the positive electrode current collector 120 and the positive electrode current collector 120 are The terminal 200 is connected.

負極集電体130は、電極体141及び142の負極側(X軸方向マイナス側)に配置され、負極端子300と電極体141及び142の負極とに電気的に接続される導電性と剛性とを備えた部材である。なお、負極集電体130は、電極体141及び142の負極基材層と同様、銅または銅合金などで形成されている。   The negative electrode current collector 130 is disposed on the negative electrode side (X-axis direction negative side) of the electrode bodies 141 and 142, and is electrically and rigidly connected to the negative electrode terminal 300 and the negative electrodes of the electrode bodies 141 and 142. It is a member provided with. Note that the negative electrode current collector 130 is formed of copper or a copper alloy or the like, similarly to the negative electrode base material layers of the electrode bodies 141 and 142.

具体的には、負極集電体130は、電極体141及び142の負極側の端部に溶接等によって接合されることで、電極体141及び142の負極と接続される。また、負極集電体130には、貫通孔130aが形成されており、貫通孔130aに、負極端子300に備えられたリベット部330が挿入されてかしめられることで、負極集電体130と負極端子300とが接続される。   Specifically, the negative electrode current collector 130 is connected to the negative electrodes of the electrode bodies 141 and 142 by joining the negative electrode side ends of the electrode bodies 141 and 142 by welding or the like. In addition, a through hole 130 a is formed in the negative electrode current collector 130, and the rivet portion 330 provided on the negative electrode terminal 300 is inserted into the through hole 130 a and crimped, whereby the negative electrode current collector 130 and the negative electrode are formed. The terminal 300 is connected.

なお、本実施の形態では、絶縁部材250(350)から延設された筒体が、貫通孔120a(130a)の途中まで挿入されており、その筒体に挿通されたリベット部230(330)がかしめられている点に特徴を有する。この特徴については、図4〜図6を用いて後述する。   In the present embodiment, the cylinder extending from the insulating member 250 (350) is inserted partway through the through hole 120a (130a), and the rivet portion 230 (330) inserted through the cylinder. It is characterized in that it is crimped. This feature will be described later with reference to FIGS. 4 to 6.

正極端子200及び負極端子300は、電極体141及び142に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体141及び142に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の電極端子である。   The positive electrode terminal 200 and the negative electrode terminal 300 lead the electricity stored in the electrode bodies 141 and 142 to the external space of the power storage element 10, and the internal space of the power storage element 10 to store the electricity in the electrode bodies 141 and 142. It is a metal electrode terminal for introducing electricity to the

また、正極端子200及び負極端子300は、電極体141及び142の上方に配置された蓋板110に取り付けられている。具体的には、図3に示すように、正極端子200には、正極端子200と正極集電体120とを電気的に接続するリベット部230が設けられている。   The positive electrode terminal 200 and the negative electrode terminal 300 are attached to a cover plate 110 disposed above the electrode bodies 141 and 142. Specifically, as shown in FIG. 3, the positive terminal 200 is provided with a rivet portion 230 that electrically connects the positive terminal 200 and the positive current collector 120.

リベット部230は、正極端子200から延設された部材であり、正極集電体120の貫通孔120aに挿入されてかしめられることで、正極端子200と正極集電体120とを接続する接続部である。具体的には、リベット部230は、上部絶縁部材240の開口部240aと蓋板110の開口部110aと下部絶縁部材150の開口部150aと正極集電体120の貫通孔120aとに挿入されてかしめられる。これにより、正極端子200は、上部絶縁部材240、下部絶縁部材150及び正極集電体120とともに蓋板110に固定される。   The rivet portion 230 is a member extending from the positive electrode terminal 200 and is inserted into the through hole 120 a of the positive electrode current collector 120 and caulked to thereby connect the positive electrode terminal 200 and the positive electrode current collector 120. It is. Specifically, rivet portion 230 is inserted into opening 240 a of upper insulating member 240, opening 110 a of lid plate 110, opening 150 a of lower insulating member 150, and through hole 120 a of positive electrode current collector 120. Squeezed. Thereby, the positive terminal 200 is fixed to the cover plate 110 together with the upper insulating member 240, the lower insulating member 150, and the positive electrode current collector 120.

リベット部330は、負極端子300から延設された部材であり、負極集電体130の貫通孔130aに挿入されてかしめられることで、負極端子300と負極集電体130とを接続する接続部である。具体的には、リベット部330は、上部絶縁部材340の開口部340aと蓋板110の開口部110bと下部絶縁部材160の開口部160aと負極集電体130の貫通孔130aとに挿入されてかしめられる。これにより、負極端子300は、上部絶縁部材340、下部絶縁部材160及び負極集電体130とともに蓋板110に固定される。   The rivet portion 330 is a member extended from the negative electrode terminal 300, and is inserted into the through hole 130 a of the negative electrode current collector 130 and crimped to connect the negative electrode terminal 300 and the negative electrode current collector 130. It is. Specifically, the rivet portion 330 is inserted into the opening 340 a of the upper insulating member 340, the opening 110 b of the cover plate 110, the opening 160 a of the lower insulating member 160, and the through hole 130 a of the negative electrode current collector 130. Squeezed. Thereby, the negative electrode terminal 300 is fixed to the cover plate 110 together with the upper insulating member 340, the lower insulating member 160 and the negative electrode current collector 130.

ここで、リベット部230は、正極端子200との一体物として形成されていてもよく、正極端子200とは別部品として作成されたリベット部230が、かしめまたは溶接などの手法によって正極端子200に固定されてもよい。リベット部330と負極集電体130との関係についても同じである。   Here, the rivet portion 230 may be formed as an integral part of the positive electrode terminal 200, and the rivet portion 230 created as a separate component from the positive electrode terminal 200 is formed on the positive electrode terminal 200 by a technique such as caulking or welding. It may be fixed. The same applies to the relationship between the rivet portion 330 and the negative electrode current collector 130.

次に、本実施の形態に係る蓄電素子10が備える、リベット部230の外周を覆うように配置された筒体について詳細に説明する。なお、負極側にもリベット部330の外周を覆うように配置された筒体が存在し、筒体およびその周辺の構造は、正極側と負極側とで共通する。そのため、以下では正極側の筒体およびその周辺の構造についての説明を行い、負極側の筒体およびその周辺の構造についての説明は省略する。   Next, the cylindrical body arranged to cover the outer periphery of the rivet portion 230 provided in the energy storage device 10 according to the present embodiment will be described in detail. Note that there is a cylindrical body arranged so as to cover the outer periphery of the rivet portion 330 on the negative electrode side, and the structure of the cylindrical body and its periphery is common to the positive electrode side and the negative electrode side. Therefore, in the following description, the positive electrode cylinder and its peripheral structure will be described, and the negative electrode cylinder and its peripheral structure will be omitted.

図4は、実施の形態に係る蓄電素子10の、筒体241およびその周辺の構造を示す分解斜視図である。図5は、実施の形態に係る蓄電素子10の、筒体241およびその周辺の構造を示す第1の断面図である。図6は、図5に対応する第2の断面図である。   FIG. 4 is an exploded perspective view showing a structure of a cylindrical body 241 and the periphery of the electric storage element 10 according to the embodiment. FIG. 5 is a first cross-sectional view showing a structure of the cylindrical body 241 and the periphery of the electric storage element 10 according to the embodiment. FIG. 6 is a second cross-sectional view corresponding to FIG.

具体的には、図5は、リベット部230のかしめ前における筒体241およびその周辺の構造を示す断面図であり、図6は、リベット部230のかしめ後における筒体241およびその周辺の構造を示す断面図である。なお、図5及び図6では、図2におけるV−V断面の一部が図示されている。   Specifically, FIG. 5 is a cross-sectional view showing the structure of the cylinder 241 and its surroundings before caulking of the rivet part 230, and FIG. 6 shows the structure of the cylinder 241 and its surroundings after caulking of the rivet part 230. It is sectional drawing which shows. 5 and 6, a part of the V-V cross section in FIG. 2 is illustrated.

図4〜図6に示すように、蓄電素子10は、リベット部230を挿通させる孔241aを有する筒体241であって、軸方向の端部が貫通孔120aに挿入された筒体241を備える。なお、リベット部230の軸方向、及び、貫通孔120aの軸方向は、本実施の形態ではともにZ軸方向である。また、本実施の形態では、筒体241の孔241aの上端は、上部絶縁部材240の開口部240aと接続されている。   As shown in FIGS. 4 to 6, the electricity storage device 10 includes a cylinder 241 having a hole 241 a through which the rivet portion 230 is inserted, and a cylinder 241 in which an end in the axial direction is inserted into the through hole 120 a. . The axial direction of the rivet portion 230 and the axial direction of the through hole 120a are both the Z-axis direction in the present embodiment. In the present embodiment, the upper end of the hole 241 a of the cylindrical body 241 is connected to the opening 240 a of the upper insulating member 240.

また、筒体241の貫通孔120aへの挿入長さは、貫通孔120aの軸方向の長さよりも短い。具体的には、図5に示すように、リベット部230がかしめられる前において、筒体241の貫通孔120aへの挿入長さL1は、貫通孔120aの軸方向の長さTよりも短い。さらに、図6に示すように、リベット部230がかしめられた後において、筒体241の貫通孔120aへの挿入長さL2は、貫通孔120aの軸方向の長さTよりも短い。   Moreover, the insertion length to the through-hole 120a of the cylinder 241 is shorter than the length of the through-hole 120a in the axial direction. Specifically, as shown in FIG. 5, before the rivet portion 230 is crimped, the insertion length L1 of the cylindrical body 241 into the through hole 120a is shorter than the axial length T of the through hole 120a. Furthermore, as shown in FIG. 6, after the rivet portion 230 is crimped, the insertion length L2 of the cylindrical body 241 into the through hole 120a is shorter than the axial length T of the through hole 120a.

より詳細には、本実施の形態では、リベット部230の一端を、正極集電体120が有する貫通孔120aに貫通させ、かつ、当該一端をかしめることで、正極端子200と正極集電体120とが接続されている。また、筒体241の貫通孔120aへの挿入長さ(L1、L2)は、正極集電体120における貫通孔120aが設けられた部分の厚み(T)よりも短い。例えば、Tが2mmである場合、L1は1mm程度であり、L2は、1mm以上であって、2mm未満である。   More specifically, in the present embodiment, one end of the rivet portion 230 is passed through the through-hole 120a of the positive electrode current collector 120, and the one end is caulked to thereby form the positive electrode terminal 200 and the positive electrode current collector. And 120 are connected. Further, the insertion length (L 1, L 2) of the cylindrical body 241 into the through hole 120 a is shorter than the thickness (T) of the portion of the positive electrode current collector 120 where the through hole 120 a is provided. For example, when T is 2 mm, L1 is about 1 mm, and L2 is 1 mm or more and less than 2 mm.

つまり、図5及び図6に示されるように、貫通孔120aにおける筒体241の存在範囲は、貫通孔120aの途中までであり、残りの範囲に対応する空間Sは、かしめられることで膨張するリベット部230の逃げ(肉逃げ)の空間として利用されている。   That is, as shown in FIG. 5 and FIG. 6, the existence range of the cylindrical body 241 in the through hole 120a is up to the middle of the through hole 120a, and the space S corresponding to the remaining range is expanded by being crimped. It is used as a space for relief (meat relief) of the rivet portion 230.

そのため、リベット部230がかしめられることで生じ得る、リベット部230周辺の部材に対する圧力が抑制される。その結果、例えば、貫通孔120aを有する正極集電体120または絶縁部材250等における変形の発生が抑制される。   Therefore, the pressure on the members around the rivet portion 230, which may be caused by the rivet portion 230 being crimped, is suppressed. As a result, for example, the occurrence of deformation in the positive electrode current collector 120 having the through holes 120 a or the insulating member 250 is suppressed.

ここで、正極集電体120の貫通孔120aが形成された部分は、例えば、電気的な絶縁の確実性の向上のために、下部絶縁部材150の周壁部151に囲まれている(図5及び図6参照)。そのため、正極集電体120の当該部分が、リベット部230のかしめの際のかしめ力によって、XY平面に平行な方向に延びた場合、周壁部151が、当該部分によって圧迫される可能性がある。しかしながら、上述のように、貫通孔120a内部にはリベット部230の肉逃げに利用される空間Sが形成されているため、正極集電体120の変形は抑制され、その結果、下部絶縁部材150に不要な力が与えられることが抑制される。   Here, the portion of the positive electrode current collector 120 where the through holes 120a are formed is surrounded by the peripheral wall 151 of the lower insulating member 150, for example, to improve the reliability of the electrical insulation (FIG. 5). And Figure 6). Therefore, when the portion of the positive electrode current collector 120 extends in a direction parallel to the XY plane due to the caulking force when the rivet portion 230 is caulked, the peripheral wall portion 151 may be compressed by the portion. . However, as described above, since the space S used for the heat escape of the rivet portion 230 is formed inside the through hole 120 a, the deformation of the positive electrode current collector 120 is suppressed, and as a result, the lower insulating member 150. Unnecessary power is suppressed.

なお、筒体241の、貫通孔120aの内部に挿入された部分は、リベット部230がかしめられた場合に、リベット部230が膨張することで押圧され、これにより、筒体241の軸方向に伸びる(挿入長さがL1からL2に増加する)場合がある。つまり、リベット部230のかしめ前において貫通孔120aの内部に存在する空間Sの一部は、筒体241自体の肉逃げの空間として利用される場合がある。しかし、この場合であっても、筒体241の変形については、リベット部230が径方向への膨張による径方向の押圧力が支配的となり、かしめ後における筒体241の挿入長さL2は、貫通孔120aの長さ(正極集電体120の厚みT)を超えない。また、筒体241が、径方向に広げられるように押圧されることで、例えば、筒体241と、貫通孔120aの内面及び下部絶縁部材150の開口部150aの内面との密着性が向上する。これにより、例えば、容器100の、筒体241の部分における気密性が向上される。   The portion of the cylindrical body 241 inserted into the through-hole 120a is pressed by the rivet portion 230 expanding when the rivet portion 230 is caulked, thereby causing the cylindrical body 241 to move in the axial direction. In some cases, the insertion length increases (the insertion length increases from L1 to L2). That is, a part of the space S existing inside the through hole 120a before caulking the rivet portion 230 may be used as a space for the meat escape of the cylinder 241 itself. However, even in this case, with respect to the deformation of the cylindrical body 241, the radial pressing force due to the rivet portion 230 expanding in the radial direction becomes dominant, and the insertion length L2 of the cylindrical body 241 after caulking is: It does not exceed the length of the through hole 120a (the thickness T of the positive electrode current collector 120). Further, by pressing the cylindrical body 241 so as to be expanded in the radial direction, for example, adhesion between the cylindrical body 241 and the inner surface of the through hole 120a and the inner surface of the opening 150a of the lower insulating member 150 is improved. . Thereby, the airtightness in the part of the cylinder 241 of the container 100 is improved, for example.

ここで、リベット部230がかしめられた場合に、貫通孔120aが形成された部分を変形させないように、筒体241を配置せずに、貫通孔120aの内径を大きくすることも考えられる。しかしながら、この場合、例えば、リベット部230と、貫通孔120aを有する正極集電体120との間において、いわゆる“遊び”が大きくなる。その結果、例えば、蓄電素子10の製造時における正極集電体120の位置決めをどのようにするかの問題が生じる。   Here, when the rivet portion 230 is caulked, it is also conceivable to increase the inner diameter of the through hole 120a without arranging the cylindrical body 241 so that the portion where the through hole 120a is formed is not deformed. However, in this case, for example, so-called “play” increases between the rivet portion 230 and the positive electrode current collector 120 having the through hole 120a. As a result, for example, there arises a problem of how to position the positive electrode current collector 120 at the time of manufacturing the power storage element 10.

その点、本実施の形態に係る蓄電素子10では、正極集電体120が有する貫通孔120aに、リベット部230が挿通された筒体241の一部が挿入され、かつ、リベット部230の肉逃げの空間として利用される空間Sが存在する。また、筒体241は、容器100に取り付けられた絶縁部材250から延設されている。従って、筒体241の存在により形成された空間Sによって正極集電体120の変形を抑制しつつ、筒体241を、正極集電体120の、容器100に対する位置決め部材として機能させることができる。その結果、例えば、蓄電素子10を精度よく製造することができる。   In that respect, in the electricity storage device 10 according to the present exemplary embodiment, a part of the cylindrical body 241 through which the rivet portion 230 is inserted is inserted into the through hole 120a of the positive electrode current collector 120, and the meat of the rivet portion 230 is inserted. There is a space S that is used as an escape space. The cylindrical body 241 extends from the insulating member 250 attached to the container 100. Therefore, the cylindrical body 241 can function as a positioning member for the container 100 with respect to the container 100 while suppressing deformation of the positive electrode current collector 120 by the space S formed by the presence of the cylindrical body 241. As a result, for example, the power storage element 10 can be manufactured with high accuracy.

また、筒体241は、絶縁部材250に対して固定された部材であるため、例えば、容器100への絶縁部材250の配置によって、筒体241の容器100への配置も完了する。このことは、例えば、蓄電素子10の製造の効率化にとって有利である。   Further, since the cylindrical body 241 is a member fixed to the insulating member 250, for example, the arrangement of the cylindrical body 241 in the container 100 is also completed by the arrangement of the insulating member 250 in the container 100. This is advantageous, for example, for increasing the efficiency of manufacturing the power storage element 10.

また、リベット部230が、筒体241を介さずに、例えば下部絶縁部材150の開口部150aの内面と接触する場合を想定する。この場合、リベット部230がかしめられることで径方向に膨張した場合、リベット部230から受ける力に起因して、下部絶縁部材150の開口部150aの周縁に割れ等の損傷が発生する可能性もある。このような損傷が蓄電素子10に生じた場合、その蓄電素子10は、例えば出荷前に不良品として処分される。   Moreover, the case where the rivet part 230 contacts the inner surface of the opening part 150a of the lower insulating member 150 without using the cylinder 241 is assumed. In this case, when the rivet portion 230 is caulked to expand in the radial direction, there is a possibility that damage such as cracking may occur in the peripheral edge of the opening 150 a of the lower insulating member 150 due to the force received from the rivet portion 230. is there. When such damage occurs in the power storage element 10, the power storage element 10 is disposed of as a defective product before shipment, for example.

その点、本実施の形態に係る蓄電素子10では、リベット部230の外周を覆うように筒体241が配置されており、かつ、上述のように、空間S(図5参照)の一部が、筒体241の肉逃げの空間として利用される。そのため、リベット部230がかしめられることに起因する下部絶縁部材150の損傷の発生は抑制される。   In that respect, in the storage element 10 according to the present embodiment, the cylindrical body 241 is disposed so as to cover the outer periphery of the rivet portion 230, and as described above, a part of the space S (see FIG. 5) It is used as a space for fleshing the cylinder 241. Therefore, the occurrence of damage to the lower insulating member 150 due to the rivet portion 230 being caulked is suppressed.

さらに、本実施の形態では、図4〜図6に示されるように、筒体241は、上部絶縁部材240から延設され、かつ、容器100の蓋板110、及び、下部絶縁部材150を貫通した状態で配置されている。従って、筒体241を、例えば、上部絶縁部材240及び下部絶縁部材150の一方に対する他方の位置決め部材としても機能させることができる。このことは、蓄電素子10の精度のよい製造にとって有利である。   Furthermore, in the present embodiment, as shown in FIGS. 4 to 6, the cylindrical body 241 is extended from the upper insulating member 240 and penetrates the lid plate 110 of the container 100 and the lower insulating member 150. It is arranged in the state of Therefore, the cylindrical body 241 can function as the other positioning member with respect to one of the upper insulating member 240 and the lower insulating member 150, for example. This is advantageous for accurate manufacture of the electricity storage device 10.

また、正極端子200から延設されたリベット部230の端部を、正極集電体120の貫通孔120aに貫通させた状態でかしめているため、例えば、正極端子200の表面(図6における上面)のほぼ全域をフラットに形成することができる。これにより、例えば正極端子200における、バスバー等の導電部材との接合可能面積が増加される。   Further, since the end portion of the rivet portion 230 extending from the positive electrode terminal 200 is caulked in a state of passing through the through hole 120a of the positive electrode current collector 120, for example, the surface of the positive electrode terminal 200 (the upper surface in FIG. ) Can be formed flat. As a result, for example, the area where the positive electrode terminal 200 can be bonded to a conductive member such as a bus bar is increased.

また、本実施の形態では、図5に示すように、かしめ前において、筒体241の孔241aの内周面には、貫通孔120aに挿入される端部の開口に近づくほど内径が大きくなるテーパ面241bが形成されている。つまり、リベット部230の端部をかしめる工程では、開口近傍にテーパ面241bが形成された孔241aに挿通され、かつ、貫通孔120aを貫通した端部がかしめられる。その結果、例えば、かしめ時における、リベット部230の肉逃げがテーパ面241bを利用してスムーズに行われる。また、例えば、かしめ後における、リベット部230と正極集電体120との密着性が確保される。そのため、リベット部230の肉逃げに利用される空間Sによって、リベット部230と正極集電体120との導通が阻害されることが抑制される。   In the present embodiment, as shown in FIG. 5, the inner diameter of the inner peripheral surface of the hole 241a of the cylindrical body 241 increases toward the opening of the end inserted into the through hole 120a before caulking. A tapered surface 241b is formed. That is, in the step of caulking the end portion of the rivet portion 230, the end portion that is inserted into the hole 241a having the tapered surface 241b formed in the vicinity of the opening and penetrates the through hole 120a is caulked. As a result, for example, during the caulking, the rivet portion 230 is smoothly evacuated using the tapered surface 241b. Further, for example, adhesion between the rivet portion 230 and the positive electrode current collector 120 after caulking is ensured. Therefore, it is suppressed that the conduction | electrical_connection with the rivet part 230 and the positive electrode collector 120 is inhibited by the space S utilized for the metal escape of the rivet part 230. FIG.

また、本実施の形態では、図6に示すように、かしめ後において、筒体241の孔241aの内周面は、貫通孔120aに挿入された端部の開口に近づくほど内径が広がるテーパ状になっている。つまり、かしめ工程において径方向に膨張したリベット部230が、筒体241の孔241aの内周面を径方向に押し広げるように作用した結果、当該内周面がテーパ状となり、例えば、筒体241と、蓋板110との気密性が向上される。   Further, in the present embodiment, as shown in FIG. 6, after caulking, the inner peripheral surface of the hole 241a of the cylindrical body 241 is tapered such that the inner diameter spreads closer to the opening of the end portion inserted into the through hole 120a. It has become. That is, as a result of the rivet portion 230 that has expanded in the radial direction in the caulking process acting so as to expand the inner peripheral surface of the hole 241a of the cylindrical body 241 in the radial direction, the inner peripheral surface becomes a tapered shape. The airtightness between 241 and the cover plate 110 is improved.

なお、本実施の形態係る蓄電素子10の製造方法は、例えば以下の各工程を含む。すなわち、電極体141及び142と、電極体141及び142に接続された正極集電体120と、正極端子200と、正極集電体120及び正極端子200の一方から延設されたリベット部230と、リベット部230を挿通させる孔241aを有する筒体241とを備える蓄電素子10を製造するための製造方法であって、リベット部230を、筒体241の孔241aに挿通させる工程と、筒体241の軸方向の端部を、正極集電体120及び正極端子200の他方に設けられた貫通孔(本実施の形態では正極集電体120の貫通孔120a)に挿入することで、筒体241を、正極集電体120及び正極端子200の他方に対して配置する工程と、リベット部230の、貫通孔120aを貫通した端部をかしめる工程とを含む。   In addition, the manufacturing method of the electrical storage element 10 according to the present embodiment includes, for example, the following steps. That is, the electrode bodies 141 and 142, the positive electrode current collector 120 connected to the electrode bodies 141 and 142, the positive electrode terminal 200, and the rivet portion 230 extending from one of the positive electrode current collector 120 and the positive electrode terminal 200, A method of manufacturing the storage element 10 including the cylindrical body 241 having the hole 241 a through which the rivet portion 230 is inserted, and inserting the rivet portion 230 into the hole 241 a of the cylindrical body 241; A cylindrical body is obtained by inserting the end portion in the axial direction of 241 into a through hole provided in the other of the positive electrode current collector 120 and the positive electrode terminal 200 (in this embodiment, the through hole 120a of the positive electrode current collector 120). And a step of disposing the end portion of the rivet portion 230 through the through hole 120a.

具体的には、筒体241を配置する工程では、筒体241の、貫通孔120aへの挿入長さが、貫通孔120aの軸方向の長さ(T)よりも短い状態で、筒体241が、正極集電体120及び正極端子200の他方に対して配置される。   Specifically, in the step of arranging the cylindrical body 241, the cylindrical body 241 is inserted in a state in which the insertion length of the cylindrical body 241 into the through hole 120a is shorter than the axial length (T) of the through hole 120a. Is disposed with respect to the other of the positive electrode current collector 120 and the positive electrode terminal 200.

より詳細には、例えば、以下の一例の作業が行われる。筒体241が、蓋板110の開口部110a(図3参照)に挿入されるように上部絶縁部材240が配置され、その状態の筒体241にリベット部230が挿入されるように正極端子200が配置される。さらに、これらの部材を一体として上下を反転させ、筒体241が、下部絶縁部材150の開口部150aに挿入されるように、下部絶縁部材150が配置される。その後、正極集電体120の貫通孔120aに、下部絶縁部材150から露出した、筒体241の端部を挿入し、貫通孔120aを貫通した状態の、リベット部230の端部がかしめられる。   More specifically, for example, the following example work is performed. The upper insulating member 240 is disposed so that the cylindrical body 241 is inserted into the opening 110a (see FIG. 3) of the lid plate 110, and the positive terminal 200 is inserted so that the rivet section 230 is inserted into the cylindrical body 241 in that state. Is placed. Further, the lower insulating member 150 is disposed such that these members are integrally turned upside down and the cylindrical body 241 is inserted into the opening 150 a of the lower insulating member 150. Thereafter, the end of the cylindrical body 241 exposed from the lower insulating member 150 is inserted into the through hole 120 a of the positive electrode current collector 120, and the end of the rivet portion 230 passing through the through hole 120 a is crimped.

ここで、上記の、リベット部230を孔241aに挿通させる工程と、筒体241を配置する工程とは、リベット部230の端部をかしめる工程の前に実行されるのであれば、どちらが先に実行されてもよく、同時に実行されてもよい。つまり、筒体241を正極集電体120及び正極端子200の他方に対して配置する工程を行う際に、筒体241の孔241aに、リベット部230が挿通された状態であるか否かはいずれであってもよい。   Here, if the step of inserting the rivet portion 230 into the hole 241a and the step of arranging the cylindrical body 241 are executed before the step of caulking the end portion of the rivet portion 230, which is the first step. May be executed simultaneously, or may be executed simultaneously. That is, whether or not the rivet portion 230 is inserted into the hole 241a of the cylindrical body 241 when performing the step of arranging the cylindrical body 241 with respect to the other of the positive electrode current collector 120 and the positive electrode terminal 200. It may be any.

以上のように、本実施の形態に係る蓄電素子10では、リベット部230が挿通された筒体241の一部が、正極集電体120の貫通孔120aに挿入されている。そのため、例えば、蓄電素子10の製造工程において、筒体241を正極集電体120の位置決め部材として用いることができる。従って、例えば、正極集電体120が正規の位置からずれた状態で、リベット部230がかしめられることよる不具合の発生が抑制される。   As described above, in the storage element 10 according to the present embodiment, a part of the cylindrical body 241 through which the rivet portion 230 is inserted is inserted into the through hole 120 a of the positive electrode current collector 120. Therefore, for example, the cylindrical body 241 can be used as a positioning member of the positive electrode current collector 120 in the manufacturing process of the power storage element 10. Therefore, for example, occurrence of a defect due to the rivet portion 230 being crimped is suppressed while the positive electrode current collector 120 is shifted from the normal position.

従って、本実施の形態に係る蓄電素子10は、正極集電体120と正極端子200とを接続する接続部(リベット部230)を備える蓄電素子10であって、信頼性の高い蓄電素子10である。   Therefore, the power storage device 10 according to the present embodiment is a power storage device 10 including a connection portion (rivet portion 230) that connects the positive electrode current collector 120 and the positive electrode terminal 200, and is a highly reliable power storage device 10. is there.

また、本実施の形態では、例えば、リベット部230がかしめられた後における、筒体241の、貫通孔120aへの挿入長さ(筒体241の貫通孔120aに挿入されている長さ(図6におけるL2))は、貫通孔120aの軸方向の長さよりも短い。つまり、筒体241は、貫通孔120aの途中まで挿入された状態であり、残りの範囲(空間S)は、かしめられたリベット部230の肉逃げのための空間として利用されている。   In the present embodiment, for example, the insertion length of the cylindrical body 241 into the through hole 120a (the length inserted into the through hole 120a of the cylindrical body 241 (see FIG. 6 is shorter than the length of the through hole 120a in the axial direction. That is, the cylindrical body 241 is inserted to the middle of the through hole 120a, and the remaining range (space S) is used as a space for escape of the caulked rivet portion 230.

そのため、リベット部230がかしめられることで生じ得る、リベット部230の周辺の部材に対する圧力が抑制される。その結果、例えば、貫通孔120aを有する正極集電体120における変形の発生が抑制される。また、リベット部230が貫通する絶縁部材250の変形または損傷の発生が抑制される。   Therefore, the pressure with respect to the member of the periphery of the rivet part 230 which may arise when the rivet part 230 is caulked is suppressed. As a result, for example, the occurrence of deformation in the positive electrode current collector 120 having the through hole 120a is suppressed. Further, the deformation or damage of the insulating member 250 through which the rivet portion 230 passes is suppressed.

なお、筒体241は、例えば、下部絶縁部材150から延設されていてもよい。また、正極集電体120と正極端子200とを接続する接続部は、正極集電体120から正極端子200の方向に延設されていてもよい。つまり、蓄電素子10における筒体241およびその周辺の構造は、図4〜図6に示す構造以外の構造であってもよい。そこで、蓄電素子10における筒体241およびその周辺の構造についての各種の変形例を、上記実施の形態との差分を中心に説明する。   In addition, the cylinder 241 may be extended from the lower insulating member 150, for example. Further, the connection portion connecting the positive electrode current collector 120 and the positive electrode terminal 200 may be extended from the positive electrode current collector 120 in the direction of the positive electrode terminal 200. That is, the structure of the cylindrical body 241 and its periphery in the electricity storage element 10 may be a structure other than the structure shown in FIGS. Therefore, various modified examples of the cylindrical body 241 and its peripheral structure in the electricity storage element 10 will be described focusing on differences from the above embodiment.

(変形例1)
図7は、実施の形態の変形例1に係る蓄電素子10aの、筒体155およびその周辺の構造を示す断面図である。なお、図7に示す断面図は、図2におけるV−V断面に相当する断面の一部を示す図である。このことは、後述する図8及び図9においても同じである。
(Modification 1)
FIG. 7 is a cross-sectional view showing the structure of cylindrical body 155 and its periphery of power storage element 10a according to Modification 1 of the embodiment. In addition, the cross-sectional view shown in FIG. 7 is a figure which shows a part of cross section corresponded to the VV cross section in FIG. The same applies to FIGS. 8 and 9 described later.

図7に示す、実施の形態の変形例1に係る蓄電素子10aでは、絶縁部材250から筒体155が延設されており、この点では、上記実施の形態に係る蓄電素子10と共通する。しかし、変形例1に係る蓄電素子10aでは、筒体155は、下部絶縁部材150から延設されている点で、上記実施の形態に係る蓄電素子10とは異なる。   In a storage element 10a according to the first modification of the embodiment shown in FIG. 7, a cylindrical body 155 is extended from the insulating member 250, and in this point, it is common to the storage element 10 according to the above embodiment. However, in the storage element 10 a according to the first modification, the cylindrical body 155 is different from the storage element 10 according to the above-described embodiment in that the cylindrical body 155 is extended from the lower insulating member 150.

この場合であっても、筒体155の貫通孔120aへの挿入長さL2は、貫通孔120aの軸方向の長さTよりも短い。つまり、貫通孔120aにおける筒体155の軸方向の存在範囲は、貫通孔120aの途中までであり、残りの範囲(空間S(図5参照、以下同じ))は、かしめられたリベット部230の肉逃げの空間として利用されている。そのため、例えば、貫通孔120aを有する正極集電体120における変形の発生が抑制される。また、リベット部230が貫通する絶縁部材250の変形または損傷の発生が抑制される。   Even in this case, the insertion length L2 of the cylindrical body 155 into the through hole 120a is shorter than the axial length T of the through hole 120a. That is, the axial range of the cylindrical body 155 in the through hole 120a is up to the middle of the through hole 120a, and the remaining range (space S (see FIG. 5; the same applies hereinafter)) is the caulking rivet portion 230. It is used as a space for meat escape. Therefore, for example, the occurrence of deformation in the positive electrode current collector 120 having the through hole 120a is suppressed. Further, the deformation or damage of the insulating member 250 through which the rivet portion 230 passes is suppressed.

また、例えば、下部絶縁部材150が蓋板110に配置され、かつ、リベット部230が筒体155の孔155aに挿通された状態であれば、筒体155による、正極集電体120の位置決め機能も発揮される。   Also, for example, if the lower insulating member 150 is disposed on the lid plate 110 and the rivet portion 230 is inserted through the hole 155 a of the cylindrical body 155, the positioning function of the positive electrode current collector 120 by the cylindrical body 155 Is also exhibited.

また、本変形例において、筒体155は、蓋板110の開口部110a(図3参照)を貫通し、上部絶縁部材240の開口部240a(図3参照)に挿入される部分を有している。つまり、本変形例に係る下部絶縁部材150は、上下双方向に延設された筒体155を有している。この場合、筒体155は、上記実施の形態に係る筒体241と同じく、リベット部230と蓋板110とを絶縁する部材としても機能する。また、筒体155は、正極集電体120の位置決めだけでなく、上部絶縁部材240の位置決めを行う部材としても機能する。   Further, in the present modification, the cylindrical body 155 has a portion which penetrates the opening 110a (see FIG. 3) of the lid plate 110 and is inserted into the opening 240a (see FIG. 3) of the upper insulating member 240. There is. That is, the lower insulating member 150 according to this modification has a cylindrical body 155 that extends in both the upper and lower directions. In this case, the cylindrical body 155 also functions as a member that insulates the rivet portion 230 and the cover plate 110 from the cylindrical body 241 according to the above embodiment. Further, the cylindrical body 155 functions not only as a positioning of the positive electrode current collector 120 but also as a member for positioning the upper insulating member 240.

従って、本変形例に係る蓄電素子10aは、正極集電体120と正極端子200とを接続するリベット部230を備える蓄電素子10aであって、信頼性の高い蓄電素子10aである。   Therefore, the power storage element 10a according to the present modification is a power storage element 10a including the rivet portion 230 that connects the positive electrode current collector 120 and the positive electrode terminal 200, and is a highly reliable power storage element 10a.

(変形例2)
図8は、実施の形態の変形例2に係る蓄電素子10bの、筒体156およびその周辺の構造を示す断面図である。図8に示す、実施の形態の変形例2に係る蓄電素子10bでは、筒体156の孔156aにリベット部125が挿通され、かつ、筒体156が、蓋板110を貫通した状態で配置されている。この点では、上記実施の形態に係る蓄電素子10と共通する。しかし、変形例2に係る蓄電素子10bでは、筒体156は、その一部が、正極端子200に設けられた貫通孔200aに挿入されている点で、上記実施の形態に係る蓄電素子10とは異なる。
(Modification 2)
FIG. 8 is a cross-sectional view showing a structure of cylindrical body 156 and its periphery of power storage element 10b according to Modification 2 of the embodiment. In the electric storage element 10b according to the second modification of the embodiment shown in FIG. 8, the rivet portion 125 is inserted through the hole 156a of the cylinder 156, and the cylinder 156 is disposed in a state of penetrating the lid plate 110. ing. In this point, it is common to the storage element 10 according to the above embodiment. However, in the electricity storage device 10b according to the modified example 2, the cylindrical body 156 is partially inserted into the through-hole 200a provided in the positive electrode terminal 200, and the electricity storage device 10b according to the above embodiment is different from the electricity storage device 10b according to the second embodiment. Is different.

また、本変形例では、正極集電体120と正極端子200とを接続する接続部であるリベット部125は、正極集電体120から延設されており、かつ、筒体156は、下部絶縁部材150から、正極端子200の方向に延設されている。つまり、簡単にいうと、本変形例に係る蓄電素子10bでは、筒体156およびその周辺の構造が、上記実施の形態における構造(例えば図6参照)とは逆になっている。   Further, in this modification, the rivet portion 125 that is a connecting portion that connects the positive electrode current collector 120 and the positive electrode terminal 200 extends from the positive electrode current collector 120, and the cylindrical body 156 has a lower insulation. The member 150 extends in the direction of the positive electrode terminal 200. That is, to put it simply, in the electric storage device 10b according to the present modification, the structure of the cylindrical body 156 and the periphery thereof is opposite to the structure (see, for example, FIG. 6) in the above embodiment.

この場合であっても、筒体156の貫通孔200aへの挿入長さは、正極端子200における貫通孔200aが設けられた部分の厚みよりも短い。具体的には、図8に示すように、筒体156の貫通孔200aへの挿入長さL2は、正極端子200における貫通孔200aが設けられた部分の厚みTよりも短い。   Even in this case, the insertion length of the cylindrical body 156 into the through hole 200 a is shorter than the thickness of the portion of the positive electrode terminal 200 provided with the through hole 200 a. Specifically, as shown in FIG. 8, the insertion length L2 of the cylindrical body 156 into the through hole 200 a is shorter than the thickness T of the portion of the positive electrode terminal 200 provided with the through hole 200 a.

つまり、貫通孔200aにおける筒体156の軸方向の存在範囲は、貫通孔200aの途中までであり、残りの範囲は、かしめられたリベット部125の肉逃げの空間として利用されている。そのため、例えば、貫通孔200aを有する正極端子200における変形の発生が抑制される。その結果、正極端子200の表面(図8における上面)の歪みが抑制されるため、例えば、当該表面と、バスバー等の導電部材との接合(例えば、超音波溶接)を精度よく行うことができる。また、リベット部125が貫通する絶縁部材250の変形または損傷の発生が抑制される。   That is, the axial range of the cylindrical body 156 in the through-hole 200a is up to the middle of the through-hole 200a, and the remaining range is used as a space for escape of the caulked rivet portion 125. Therefore, for example, the occurrence of deformation in the positive electrode terminal 200 having the through hole 200a is suppressed. As a result, since distortion of the surface (upper surface in FIG. 8) of positive electrode terminal 200 is suppressed, for example, bonding (for example, ultrasonic welding) between the surface and a conductive member such as a bus bar can be performed accurately. . Further, the deformation or damage of the insulating member 250 through which the rivet portion 125 passes is suppressed.

さらに、例えば、筒体156が正極端子200の貫通孔200aに挿入されるため、筒体156による、正極端子200位置決め機能も発揮される。また、下部絶縁部材150から延設された筒体156が、上部絶縁部材240を貫通している。そのため、筒体241は、下部絶縁部材150及び上部絶縁部材240の一方の他方に対する位置決め部材としても機能する。   Furthermore, for example, since the cylindrical body 156 is inserted into the through hole 200 a of the positive electrode terminal 200, the positive electrode terminal 200 positioning function by the cylindrical body 156 is also exhibited. Further, a cylinder 156 extending from the lower insulating member 150 passes through the upper insulating member 240. Therefore, the cylindrical body 241 also functions as a positioning member for one of the lower insulating member 150 and the upper insulating member 240.

また、例えば、接続部であるリベット部125の、かしめられた端部が正極集電体120側に存在しない。その結果、例えば、容器100内における電極体141及び142の配置空間として利用できる割合を、より大きくすることができる。このことは、例えば、蓄電素子10bにおける蓄電容量の増加の観点から有利である。   Further, for example, the crimped end portion of the rivet portion 125 that is a connection portion does not exist on the positive electrode current collector 120 side. As a result, for example, the ratio that can be used as the arrangement space of the electrode bodies 141 and 142 in the container 100 can be increased. This is advantageous, for example, from the viewpoint of increasing the storage capacity of the storage element 10b.

従って、本変形例に係る蓄電素子10bは、正極集電体120と正極端子200とを接続するリベット部125を備える蓄電素子10bであって、信頼性の高い蓄電素子10bである。   Therefore, the power storage element 10b according to the present modification is a power storage element 10b including the rivet portion 125 that connects the positive electrode current collector 120 and the positive electrode terminal 200, and is a highly reliable power storage element 10b.

(変形例3)
図9は、実施の形態の変形例3に係る蓄電素子10cの、筒体246およびその周辺の構造を示す断面図である。図9に示す、実施の形態の変形例3に係る蓄電素子10cでは、リベット部125が正極集電体120から正極端子200の方向に延設されている。また、蓄電素子10cでは、筒体246は、上部絶縁部材240から延設されている。
(Modification 3)
FIG. 9 is a cross-sectional view showing a structure of cylindrical body 246 and its periphery of power storage element 10c according to Modification 3 of the embodiment. In the storage element 10 c according to the third modification of the embodiment shown in FIG. 9, the rivet portion 125 is extended in the direction from the positive electrode current collector 120 to the positive electrode terminal 200. Further, in the storage element 10c, the cylindrical body 246 is extended from the upper insulating member 240.

具体的には、上部絶縁部材240から延設された筒体246の孔246aには、正極集電体120から延設されたリベット部125が挿通されており、かつ、筒体246の一部は、正極端子200に設けられた貫通孔200aに挿入されている。また、正極端子200の貫通孔200aを貫通した、リベット部125の端部がかしめられている。   Specifically, a rivet portion 125 extending from the positive electrode current collector 120 is inserted into a hole 246a of the cylindrical body 246 extending from the upper insulating member 240 and a part of the cylindrical body 246 is inserted. Is inserted into a through hole 200 a provided in the positive electrode terminal 200. Further, the end portion of the rivet portion 125 passing through the through hole 200a of the positive electrode terminal 200 is caulked.

この場合であっても、筒体246の、貫通孔200aへの挿入長さL2は、貫通孔200aの軸方向の長さTよりも短い。つまり、貫通孔200aにおける筒体246の軸方向の存在範囲は、貫通孔200aの途中までであり、残りの範囲は、かしめられたリベット部125の肉逃げの空間として利用されている。そのため、例えば、貫通孔200aを有する正極端子200における変形の発生が抑制される。また、リベット部125が貫通する絶縁部材250の変形または損傷の発生が抑制される。   Even in this case, the insertion length L2 of the cylindrical body 246 into the through hole 200a is shorter than the axial length T of the through hole 200a. In other words, the axial range of the cylindrical body 246 in the through hole 200a is up to the middle of the through hole 200a, and the remaining range is used as a space for escape of the caulked rivet portion 125. Therefore, for example, the occurrence of deformation in the positive electrode terminal 200 having the through hole 200a is suppressed. Further, the deformation or damage of the insulating member 250 through which the rivet portion 125 passes is suppressed.

また、例えば、上部絶縁部材240が蓋板110に配置され、かつ、リベット部125が筒体246の孔246aに挿通された状態であれば、筒体246による、正極端子200の位置決め機能も発揮される。   In addition, for example, when the upper insulating member 240 is disposed on the lid plate 110 and the rivet portion 125 is inserted through the hole 246 a of the cylindrical body 246, the positioning function of the positive electrode terminal 200 by the cylindrical body 246 is also exhibited. Be done.

また、リベット部125の、かしめられた端部が正極集電体120側に存在しないため、上記変形例2に係る蓄電素子10bと同じく、蓄電容量の増加という効果を得ることができる。   Further, since the crimped end portion of the rivet portion 125 does not exist on the positive electrode current collector 120 side, the effect of increasing the storage capacity can be obtained as in the storage element 10b according to the second modification.

また、本変形例において、筒体246は、蓋板110の開口部110a(図3参照)を貫通し、下部絶縁部材150の開口部150a(図3参照)に挿入される部分を有している。つまり、本変形例に係る上部絶縁部材240は、上下双方向に延設された筒体246を有している。この場合、筒体246は、上記実施の形態に係る筒体241と同じく、リベット部125と蓋板110とを絶縁する部材としても機能する。また、筒体246は、正極端子200の位置決めだけでなく、下部絶縁部材150の位置決めを行う部材としても機能する。   Further, in the present modification, the cylindrical body 246 has a portion which penetrates the opening 110a (see FIG. 3) of the lid plate 110 and is inserted into the opening 150a (see FIG. 3) of the lower insulating member 150. There is. That is, the upper insulating member 240 according to this modification has a cylindrical body 246 that extends in both the up and down directions. In this case, the cylindrical body 246 also functions as a member that insulates the rivet portion 125 and the lid plate 110 from the cylindrical body 241 according to the above embodiment. Further, the cylindrical body 246 functions not only as a positioning of the positive electrode terminal 200 but also as a member for positioning the lower insulating member 150.

従って、本変形例に係る蓄電素子10cは、正極集電体120と正極端子200とを接続するリベット部125を備える蓄電素子10cであって、信頼性の高い蓄電素子10cである。   Therefore, the power storage element 10c according to the present modification is a power storage element 10c including the rivet portion 125 that connects the positive electrode current collector 120 and the positive electrode terminal 200, and is a highly reliable power storage element 10c.

(その他)
以上、本発明に係る蓄電素子について、実施の形態及びその変形例に基づいて説明した。しかしながら、本発明は、実施の形態及びその変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態またはその変形例に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Others)
In the above, the electrical storage element which concerns on this invention was demonstrated based on embodiment and its modification. However, the present invention is not limited to the embodiment and the modification thereof. Without departing from the spirit of the present invention, various modifications conceived by those skilled in the art may be applied to the embodiment or its modifications, or a structure constructed by combining a plurality of the above-described constituent elements may be applied to the present invention. It is included in the range.

例えば、蓄電素子10が備える筒体241は、絶縁部材250とは別部品として配置されてもよい。例えば、上部絶縁部材240とは別部品である筒体241を、上部絶縁部材240に固定または仮固定した後に、例えば図5に示すように、蓋板110に対して配置してもよい。この場合であっても、例えば、かしめられることで膨張するリベット部230の圧力によって、筒体241と上部絶縁部材240との間の気密性は確保される。   For example, the cylindrical body 241 included in the power storage element 10 may be arranged as a separate component from the insulating member 250. For example, after fixing or temporarily fixing the cylindrical body 241 which is a separate component to the upper insulating member 240 to the upper insulating member 240, for example, as shown in FIG. Even in this case, for example, the airtightness between the cylindrical body 241 and the upper insulating member 240 is secured by the pressure of the rivet portion 230 which expands by being crimped.

また、蓄電素子10は、例えば、絶縁部材250の一部である下部絶縁部材150を備えなくてもよい。この場合、正極集電体120と蓋板110とが電気的に接続されることで、容器100を電極体141及び142の正極と同電位にすることができる。   The power storage element 10 may not include the lower insulating member 150 that is a part of the insulating member 250, for example. In this case, the container 100 can be brought to the same potential as the positive electrodes of the electrode bodies 141 and 142 by electrically connecting the positive electrode current collector 120 and the lid plate 110.

また、上記実施の形態および各変形例において、正極端子200と正極集電体120とを接続する接続部として、リベットを例示したが、接続部はリベット以外で実現されてもよい。例えば、外周面の少なくとも一部にネジ山が形成された棒体(雄ネジ)が、正極端子200または正極集電体120から延設された接続部として採用されてもよい。   Moreover, although a rivet was illustrated as a connection part which connects the positive electrode terminal 200 and the positive electrode collector 120 in the said embodiment and each modification, a connection part may be implement | achieved other than a rivet. For example, a rod (male thread) in which a screw thread is formed on at least a part of the outer peripheral surface may be adopted as a connection portion extended from the positive electrode terminal 200 or the positive electrode current collector 120.

例えば、上記実施の形態において、正極端子200から延設された雄ネジが、筒体241に挿通され、かつ、正極集電体120の貫通孔120aを貫通し、この状態で、雄ネジとナットとを螺合させてナットを締めてもよい。つまり、雄ネジと螺合するナットを締めることで、正極端子200、絶縁部材250、及び正極集電体120を、蓋板110に固定してもよい。この場合であっても、例えば、当該固定の工程において、正極集電体120を筒体241によって位置決めすることができる。これにより、例えば、正極集電体120が正規の位置からずれた状態でナットが締められることに起因する、正極集電体120の変形等の不具合が抑制される。また、例えば、筒体241の先端付近に形成される空間S(図5参照)が、ナットに押圧される正極集電体120の肉逃げの空間として利用される。   For example, in the above embodiment, the male screw extended from the positive electrode terminal 200 is inserted into the cylindrical body 241 and penetrates the through hole 120a of the positive electrode current collector 120, and in this state, the male screw and the nut And the nut may be tightened. That is, the positive electrode terminal 200, the insulating member 250, and the positive electrode current collector 120 may be fixed to the lid plate 110 by tightening a nut screwed with the male screw. Even in this case, for example, the positive electrode current collector 120 can be positioned by the cylindrical body 241 in the fixing step. As a result, for example, a defect such as deformation of the positive electrode current collector 120 caused by tightening of the nut in a state where the positive electrode current collector 120 is deviated from the normal position is suppressed. In addition, for example, a space S (see FIG. 5) formed in the vicinity of the tip of the cylindrical body 241 is used as a space for relief of the positive electrode current collector 120 pressed by the nut.

さらに、筒体241等の筒体は、正極端子200及び負極端子300のそれぞれに対応して配置される必要はなく、例えば、正極端子200及び負極端子300のいずれか一方のみに対応して配置されてもよい。   Furthermore, the cylindrical body such as the cylindrical body 241 does not need to be disposed corresponding to each of the positive electrode terminal 200 and the negative electrode terminal 300, for example, disposed corresponding to only one of the positive electrode terminal 200 and the negative electrode terminal 300. It may be done.

また、例えば、蓄電素子10が備える電極体141及び142の構造は巻回型でなくてもよく、平板状の正極と負極とがセパレータを挟んで交互に積層された構造であってもよい。また、電極体141及び142は、長尺帯状の正極と負極とがセパレータを挟んで蛇腹状に折り畳まれた構造であってもよい。   For example, the structures of the electrode bodies 141 and 142 included in the power storage element 10 may not be a winding type, and may be a structure in which flat positive electrodes and negative electrodes are alternately stacked with separators interposed therebetween. The electrode bodies 141 and 142 may have a structure in which a long strip-shaped positive electrode and a negative electrode are folded in a bellows shape with a separator interposed therebetween.

また、正極端子200及び負極端子300は、例えば図1に示すように、表面がフラットな形状であるが、正極端子200または負極端子300の形状に特に限定はない。例えば、外周面にネジ山が形成された棒体が、正極端子200と一体に、または、正極端子200とは別部材として、正極端子200に設けられてもよい。この場合、バスバー等の導電部材を、ナットを用いて正極端子200に締結することができる。   In addition, although the positive electrode terminal 200 and the negative electrode terminal 300 have a flat surface, for example, as shown in FIG. 1, the shape of the positive electrode terminal 200 or the negative electrode terminal 300 is not particularly limited. For example, a rod having a screw thread formed on the outer peripheral surface may be provided to the positive electrode terminal 200 integrally with the positive electrode terminal 200 or as a separate member from the positive electrode terminal 200. In this case, a conductive member such as a bus bar can be fastened to the positive electrode terminal 200 using a nut.

本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。   The present invention is applicable to power storage elements such as lithium ion secondary batteries.

10、10a、10b、10c 蓄電素子
100 容器
110 蓋板
110a、110b、150a、160a、240a、340a 開口部
110c 安全弁
111 容器本体
120 正極集電体
120a、130a、200a 貫通孔
125、230、330 リベット部
130 負極集電体
141、142 電極体
141a、142a 端部
143 絶縁フィルム
144 絶縁テープ
150、160 下部絶縁部材
151 周壁部
155、156、241、246 筒体
155a、241a、246a、 孔
200 正極端子
240、340 上部絶縁部材
241b テーパ面
250、350 絶縁部材
300 負極端子
10, 10a, 10b, 10c Storage Element 100 Container 110 Lid Plate 110a, 110b, 150a, 160a, 240a, 340a Opening 110c Safety Valve 111 Container Body 120 Positive Current Collector 120a, 130a, 200a Through Hole 125, 230, 330 Rivet Part 130 Negative electrode current collector 141, 142 Electrode body 141a, 142a End part 143 Insulating film 144 Insulating tape 150, 160 Lower insulating member 151 Peripheral wall part 155, 156, 241, 246 Tube body 155a, 241a, 246a, hole 200 Positive terminal 240, 340 Upper insulating member 241b Tapered surface 250, 350 Insulating member 300 Negative terminal

Claims (6)

電極体と、前記電極体に接続された集電体と、電極端子とを備える蓄電素子であって、
前記集電体及び前記電極端子の一方から延設された接続部であって、前記集電体及び前記電極端子の他方に設けられた貫通孔を貫通し、端部が前記他方に接続されることで、前記集電体と前記電極端子とを電気的に接続する接続部と、
前記接続部を挿通させる孔を有する筒体であって、軸方向の端部が前記貫通孔に挿入された筒体とを備え、
前記筒体の、前記貫通孔への挿入長さは、前記貫通孔の軸方向の長さよりも短い、
蓄電素子。
A storage element comprising an electrode body, a current collector connected to the electrode body, and an electrode terminal,
A connecting portion extended from one of the current collector and the electrode terminal, which penetrates a through hole provided in the other of the current collector and the electrode terminal, and an end is connected to the other A connection portion electrically connecting the current collector and the electrode terminal;
A cylindrical body having a hole for inserting the connecting portion, e Bei an axial end portion inserted cylindrical body in the through hole,
The insertion length of the cylindrical body into the through hole is shorter than the axial length of the through hole,
Power storage element.
電極体と、前記電極体に接続された集電体と、電極端子とを備える蓄電素子であって、
前記集電体及び前記電極端子の一方から延設された接続部であって、前記集電体及び前記電極端子の他方に設けられた貫通孔を貫通し、端部が前記他方に接続されることで、前記集電体と前記電極端子とを電気的に接続する接続部と、
前記接続部を挿通させる孔を有する筒体であって、軸方向の端部が前記貫通孔に挿入された筒体とを備え、
前記筒体の前記孔の内周面は、前記貫通孔に挿入された前記端部の開口に近づくほど内径が大きくなるテーパ状になっている
蓄電素子。
A storage element comprising an electrode body, a current collector connected to the electrode body, and an electrode terminal,
A connecting portion extended from one of the current collector and the electrode terminal, which penetrates a through hole provided in the other of the current collector and the electrode terminal, and an end is connected to the other A connection portion electrically connecting the current collector and the electrode terminal;
A cylindrical body having a hole for inserting the connecting portion, e Bei an axial end portion inserted cylindrical body in the through hole,
The inner peripheral surface of the hole of the cylindrical body has a tapered shape in which the inner diameter increases as it approaches the opening of the end inserted into the through hole .
Power storage element.
前記電極体及び前記集電体を収容する容器と、
前記集電体と前記電極端子との間の前記容器の壁部と、前記集電体及び前記電極端子の少なくとも一方との間に配置された絶縁部材とを備え、
前記筒体は、前記絶縁部材から延設されている、
請求項1または2に記載の蓄電素子。
A container for housing the electrode body and the current collector;
It has a wall portion of the container between the current collector and the electrode terminal, and an insulating member disposed between at least one of the current collector and the electrode terminal.
The cylindrical body extends from the insulating member,
The electrical storage element of Claim 1 or 2.
前記絶縁部材は、前記電極端子と前記容器の前記壁部との間に配置された上部絶縁部材、及び、前記集電体と前記容器の前記壁部との間に配置された下部絶縁部材を有し、
前記筒体は、前記上部絶縁部材及び前記下部絶縁部材の一方から延設され、かつ、前記壁部、並びに、前記上部絶縁部材及び前記下部絶縁部材の他方を貫通した状態で配置されている、
請求項3記載の蓄電素子。
The insulating member is an upper insulating member disposed between the electrode terminal and the wall of the container, and a lower insulating member disposed between the current collector and the wall of the container. Have
The cylindrical body extends from one of the upper insulating member and the lower insulating member, and is disposed so as to penetrate the other of the wall portion and the upper insulating member and the lower insulating member.
The electricity storage device according to claim 3.
電極体と、前記電極体に接続された集電体と、電極端子と、前記集電体及び前記電極端子の一方から延設された接続部と、前記接続部を挿通させる孔を有する筒体とを備える蓄電素子を製造するための製造方法であって、
前記接続部を、前記筒体の前記孔に挿通させる工程と、
前記筒体の軸方向の端部を、前記集電体及び前記電極端子の他方に設けられた貫通孔に挿入することで、前記筒体を、前記集電体及び前記電極端子の他方に対して配置する工程と、
前記接続部の、前記貫通孔を貫通した端部をかしめる工程と、を含み、
前記筒体を配置する工程では、前記筒体の、前記貫通孔への挿入長さが、前記貫通孔の軸方向の長さよりも短い状態で、前記筒体が、前記集電体及び前記電極端子の他方に対して配置される、
蓄電素子の製造方法。
A cylinder having an electrode body, a current collector connected to the electrode body, an electrode terminal, a connection portion extended from one of the current collector and the electrode terminal, and a hole through which the connection portion is inserted A manufacturing method for manufacturing a storage element comprising
Inserting the connection portion into the hole of the cylinder;
By inserting the axial end of the cylindrical body into the through hole provided in the other of the current collector and the electrode terminal, the cylindrical body is opposed to the other of the current collector and the electrode terminal. And arranging the process,
The step of caulking the end of the connection portion through the through hole ;
In the step of arranging the cylindrical body, the cylindrical body includes the current collector and the electrode in a state where the insertion length of the cylindrical body into the through hole is shorter than the axial length of the through hole. Arranged against the other of the terminals,
A method for manufacturing a storage element.
電極体と、前記電極体に接続された集電体と、電極端子と、前記集電体及び前記電極端子の一方から延設された接続部と、前記接続部を挿通させる孔を有する筒体とを備える蓄電素子を製造するための製造方法であって、
前記接続部を、前記筒体の前記孔に挿通させる工程と、
前記筒体の軸方向の端部を、前記集電体及び前記電極端子の他方に設けられた貫通孔に挿入することで、前記筒体を、前記集電体及び前記電極端子の他方に対して配置する工程と、
前記接続部の、前記貫通孔を貫通した端部をかしめる工程と、を含み、
前記筒体の前記孔の内周面には、前記貫通孔に挿入された端部の開口に近づくほど内径が大きくなるテーパ面が形成されており、
前記接続部の前記端部をかしめる工程では、前記筒体の孔に挿通され、かつ、前記貫通孔を貫通した前記端部がかしめられる、
蓄電素子の製造方法。
A cylinder having an electrode body, a current collector connected to the electrode body, an electrode terminal, a connection portion extended from one of the current collector and the electrode terminal, and a hole through which the connection portion is inserted A manufacturing method for manufacturing an electricity storage device comprising:
Inserting the connecting portion into the hole of the cylindrical body;
By inserting the axial end of the cylindrical body into the through hole provided in the other of the current collector and the electrode terminal, the cylindrical body is opposed to the other of the current collector and the electrode terminal. And arranging the process,
A step of caulking an end portion of the connecting portion penetrating the through hole ,
On the inner peripheral surface of the hole of the cylindrical body, a tapered surface is formed, the inner diameter of which becomes larger as it approaches the opening of the end portion inserted into the through hole,
In the step of caulking the end portion of the connection portion, the end portion which is inserted into the hole of the cylindrical body and penetrates the through hole is caulked.
A method for manufacturing a storage element.
JP2015074232A 2015-03-31 2015-03-31 STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE Active JP6550863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015074232A JP6550863B2 (en) 2015-03-31 2015-03-31 STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015074232A JP6550863B2 (en) 2015-03-31 2015-03-31 STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE

Publications (2)

Publication Number Publication Date
JP2016195036A JP2016195036A (en) 2016-11-17
JP6550863B2 true JP6550863B2 (en) 2019-07-31

Family

ID=57323856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074232A Active JP6550863B2 (en) 2015-03-31 2015-03-31 STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE

Country Status (1)

Country Link
JP (1) JP6550863B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062379A1 (en) 2016-09-30 2018-04-05 ミツミ電機株式会社 Humidity sensor
JP7081929B2 (en) * 2018-01-31 2022-06-07 日東精工株式会社 Manufacturing method of external terminal for battery
ES2973526T3 (en) * 2021-01-19 2024-06-20 Lg Energy Solution Ltd Electrode terminal, cylindrical battery cell, battery pack and vehicle
CN219123348U (en) * 2021-10-22 2023-06-02 株式会社Lg新能源 Cylindrical battery, battery pack including the same, and automobile
EP4376130A1 (en) * 2021-11-08 2024-05-29 Lg Energy Solution, Ltd. Current collector for secondary battery and cylindrical battery cell comprising same
WO2023085893A1 (en) * 2021-11-12 2023-05-19 주식회사 엘지에너지솔루션 Separator, electrode assembly, cylindrical battery cell, and battery pack and vehicle including same
CN218939960U (en) * 2021-11-24 2023-04-28 株式会社Lg新能源 Electrode terminal fixing structure, battery comprising same, battery pack and automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831402A (en) * 1994-07-13 1996-02-02 A T Battery:Kk Sealed electrode terminal structure
US7807285B1 (en) * 2004-04-07 2010-10-05 Quallion Llc Battery connection structure and method
WO2011096035A1 (en) * 2010-02-05 2011-08-11 パナソニック株式会社 Rectangular battery
JP5987320B2 (en) * 2011-02-03 2016-09-07 株式会社Gsユアサ Electricity storage element
JP5930033B2 (en) * 2012-06-29 2016-06-08 トヨタ自動車株式会社 battery

Also Published As

Publication number Publication date
JP2016195036A (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6550863B2 (en) STORAGE DEVICE AND METHOD FOR MANUFACTURING STORAGE DEVICE
US11050092B2 (en) Method for manufacturing prismatic secondary battery
JP6731831B2 (en) Electrochemical cell
JP6522417B2 (en) Square secondary battery and assembled battery using the same
JP7064695B2 (en) Sealed battery, assembled battery, manufacturing method of sealed battery and manufacturing method of assembled battery
JP6599129B2 (en) Rectangular secondary battery, assembled battery using the same, and manufacturing method thereof
US10998538B2 (en) Energy storage device, energy storage apparatus and method of manufacturing energy storage device
US20160336545A1 (en) Prismatic secondary battery, assembled battery using the same and method of producing the same
JP2009259524A (en) Lid of battery case, battery, and method of manufacturing the same
US11837700B2 (en) Energy storage device
WO2017131168A1 (en) Capacitor element
JP7069606B2 (en) Power storage element and manufacturing method of power storage element
JP2019067762A (en) Manufacturing method of power storage element, power storage element, and power storage device
JP2019009045A (en) Power storage element
US11081752B2 (en) Square secondary battery and method of manufacturing same
JP2018101568A (en) Square secondary battery and manufacturing method thereof
JP6447015B2 (en) Power storage device and method for manufacturing power storage device
JP6086210B2 (en) Method for manufacturing power storage element
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP6156728B2 (en) Power storage element and power storage device
JP2019061740A (en) Power storage element
WO2019131356A1 (en) Electricity storage device
JP6364752B2 (en) Sealing member cap, power storage element, and method for manufacturing power storage element
JP6777202B2 (en) Manufacturing method of polygonal secondary battery
JP7259261B2 (en) Storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6550863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150