JP6548423B2 - Vacuum insulation container - Google Patents

Vacuum insulation container Download PDF

Info

Publication number
JP6548423B2
JP6548423B2 JP2015069011A JP2015069011A JP6548423B2 JP 6548423 B2 JP6548423 B2 JP 6548423B2 JP 2015069011 A JP2015069011 A JP 2015069011A JP 2015069011 A JP2015069011 A JP 2015069011A JP 6548423 B2 JP6548423 B2 JP 6548423B2
Authority
JP
Japan
Prior art keywords
vacuum
cylinder
inner cylinder
outer cylinder
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069011A
Other languages
Japanese (ja)
Other versions
JP2016187470A (en
Inventor
正樹 部坂
正樹 部坂
Original Assignee
新光産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新光産業株式会社 filed Critical 新光産業株式会社
Priority to JP2015069011A priority Critical patent/JP6548423B2/en
Publication of JP2016187470A publication Critical patent/JP2016187470A/en
Application granted granted Critical
Publication of JP6548423B2 publication Critical patent/JP6548423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Description

本発明は、内筒及び外筒を有し、これら内筒及び外筒との間に真空断熱部を設けた真空断熱容器に関する。 The present invention relates to a vacuum insulation container having an inner cylinder and an outer cylinder, and a vacuum heat insulating portion provided between the inner cylinder and the outer cylinder.

従来、真空断熱容器として、ステンレス材を用いた内筒及び外筒を有し、その中間部に真空断熱部が形成されたものが一般に使用されていた。しかしながら、ステンレス材は重いので、例えば、特許文献1には、内筒及び外筒にチタン又はチタン合金を用いた補保温ポットが開示されている。
また、特許文献2には、真空二重容器の内筒と外筒をチタン又はチタン合金により形成し、チタン又はチタン合金の硬度(ビッカース硬度)を160以上とすることが記載されている。
Heretofore, as a vacuum insulation container, one having an inner cylinder and an outer cylinder using a stainless steel material and having a vacuum heat insulation portion formed in the middle thereof has been generally used. However, since stainless steel is heavy, for example, Patent Document 1 discloses a co-incubation pot using titanium or a titanium alloy for the inner cylinder and the outer cylinder.
Further, Patent Document 2 describes that the inner cylinder and the outer cylinder of the vacuum double container are formed of titanium or a titanium alloy, and the hardness (Vickers hardness) of titanium or a titanium alloy is 160 or more.

特開2001−198022号公報JP 2001-198022 A 特開平11−164784号公報JP-A-11-164784

特許文献1、2では、内筒及び外筒の材料を、チタン又はチタン合金としているが、チタン合金の種類は開示されておらず、強度を有するチタン合金を内筒及び外筒に使用することも開示されていない。
更に、特許文献1、2記載の真空断熱容器においては、内筒及び外筒によって構成される真空断熱部が、密閉構造であるので、内筒及び外筒を構成する金属からの放出ガスによって徐々に真空度が低下するという問題があった。
In Patent Documents 1 and 2, although the material of the inner cylinder and the outer cylinder is titanium or a titanium alloy, the type of titanium alloy is not disclosed, and a titanium alloy having strength is used for the inner cylinder and the outer cylinder. Nor is it disclosed.
Furthermore, in the vacuum heat insulating container described in Patent Documents 1 and 2, the vacuum heat insulating portion constituted by the inner cylinder and the outer cylinder has a sealed structure, and therefore the gas released from the metal constituting the inner cylinder and the outer cylinder is gradually There was a problem that the degree of vacuum decreased.

本発明はかかる事情に鑑みてなされたもので、軽量で十分な強度を有する真空断熱容器を提供することを第1の目的とし、真空断熱部に気体が入っても再度真空度を高めることが可能な真空断熱容器を提供することを第2の目的とする。 The present invention has been made in view of the above circumstances, and it is a first object of the present invention to provide a vacuum insulation container having a light weight and sufficient strength, and to increase the degree of vacuum again even if gas enters the vacuum insulation part. It is a second object to provide a possible vacuum insulation container.

前記目的に沿う本発明に係る真空断熱容器は、同心状に配置され、それぞれ円筒状の内筒及び外筒を有し、該外筒の上端部で該内筒に連結されて該内筒と該外筒の間に真空断熱部が形成され、前記内筒の上部には開口が設けられた真空断熱容器において、
前記内筒及び前記外筒の材料に、引張強さが895MPa以上で、熱伝導率が0.02cal/cm2 /sec/℃/cm以下のチタン合金を用い、前記内筒及び前記外筒を構成する前記チタン合金は、合金元素としてアルミニウム及びバナジウムを含むTi−6Al−4V合金又はTi−6Al−4V(ELI)合金であり
前記内筒の下部には凹部が下方に突出した内鏡板が設けられ、前記外筒の底部には、凹部が上方に突出し、下端が円形となって下部台座も兼用する外鏡板が、前記内鏡板とは隙間を有して設けられ、前記内鏡板と前記外鏡板との間前記真空断熱部に連通して前記内筒と前記外筒の熱膨張差を緩和する断熱材を用いた左右2つの緩衝機構が設けられ、かつ前記外筒の下部で前記外鏡板内には前記真空断熱部に通ずる真空ポンプ接続口を備え
前記各緩衝機構は、前記内鏡板の下部に設けられた円柱状の金具と、前記外鏡板の上に取付けられて前記断熱材が嵌入する管材とを有し、前記断熱材は前記金具の高さより深い嵌入穴を有して前記金具に装着され、前記管材の側部にはガス抜き孔を有して、前記内筒と前記内鏡板で形成される容器本体の左右方向の揺れと、上下方向の熱膨張差を吸収する。
なお、内筒及び外筒の下部には底板部が設けられているが、底板部が平面では圧力差によって変形し易いので、それぞれの底板部を、半球状、部分球状又は円錐台状の鏡板とするのが好ましい。真空断熱容器の蓋は、通常圧力は掛からないので、コルク、木材又はプラスチック製とすることができる。
The vacuum insulation container according to the present invention, which meets the above object, is concentrically arranged, and has cylindrical inner and outer cylinders, which are connected to the inner cylinder at the upper end of the outer cylinder and the inner cylinder A vacuum heat insulation container is formed between the outer cylinders, and a vacuum insulation container is provided with an opening at an upper portion of the inner cylinder,
The material of the inner cylinder and the outer cylinder, a tensile strength of at least 895MPa, thermal conductivity using 0.02cal / cm 2 / sec / ℃ / cm or less of titanium alloys, the inner cylinder and the outer cylinder the titanium alloy structure is the aluminum and vanadium including Ti-6Al-4V alloy or Ti-6Al-4V (ELI) alloy as an alloying element,
An inner end plate is provided at a lower portion of the inner cylinder, and an outer end plate having a recess protruding upward at the bottom of the outer cylinder and having a circular lower end and serving as a lower base is also provided. It provided a gap from the end plate, with a heat insulating material to reduce thermal expansion difference between the outer tube and the inner tube communicates with the vacuum adiabatic portion between the outer end plate and the inner end plate left Two buffer mechanisms are provided, and a vacuum pump connection port is provided in the outer mirror plate at a lower portion of the outer cylinder and connected to the vacuum heat insulating portion ,
Each of the buffer mechanisms has a cylindrical metal fitting provided at a lower portion of the inner mirror plate, and a pipe member mounted on the outer mirror plate and fitted with the heat insulating material, and the heat insulating material has a height of the metal bracket The fitting is mounted on the metal fitting with a deeper insertion hole, and a gas venting hole is provided on the side of the pipe material, and the swinging of the container body formed by the inner cylinder and the inner end plate in the lateral direction, It absorbs the thermal expansion difference direction.
Although the bottom plate is provided at the lower part of the inner and outer cylinders, the bottom plate is likely to be deformed by a pressure difference if it is flat, so each bottom plate may be hemispherical, partially spherical or truncated conical It is preferable to The lid of the vacuum insulation container can be made of cork, wood or plastic since it is not normally under pressure.

表1に、純チタン、チタン合金(Ti−6Al−4V)、ステンレス鋼(この例は、18−8ステンレス鋼)の機械的性質を示す。ステンレス鋼の場合、合金種と熱処理によって、比較的高い引張強さを有するが、チタン及びチタン合金に比較して、比重(密度)が2倍程度に大きいので、この真空断熱容器の材料としては重くなり適用できない。 Table 1 shows mechanical properties of pure titanium, titanium alloy (Ti-6Al-4V), and stainless steel (in this example, 18-8 stainless steel). In the case of stainless steel, although it has relatively high tensile strength due to the alloy type and heat treatment, as the specific gravity (density) is twice as large as titanium and titanium alloys, the material of this vacuum insulation container is It is heavy and can not be applied.

Figure 0006548423
Figure 0006548423

表2に、純チタンとチタン合金の物理的性状を示す。純チタンでは比較的強度が小さいが、合金元素を加えると引張強さが895MPa以上のものが多数存在する Table 2 shows the physical properties of pure titanium and titanium alloys. Pure titanium has relatively low strength, but when alloying elements are added, there are many cases where the tensile strength is 895 MPa or more .

Figure 0006548423
Figure 0006548423

本発明に係る真空断熱容器は、前記外筒の下部に前記真空断熱部に通ずる真空ポンプ接続口を備えている。この場合、真空ポンプ接続口に長期間、真空封止できる逆止弁等を設けるのが好ましい。 The vacuum heat insulation container which concerns on this invention equips the lower part of the said outer cylinder with the vacuum pump connection port which leads to the said vacuum heat insulation part. In this case, it is preferable to provide a check valve or the like that can be vacuum sealed for a long time at the vacuum pump connection port.

そして、本発明に係る真空断熱容器は、前記真空断熱部の下部に、前記内筒前記外筒の熱膨張差を考慮した断熱材を用いた緩衝機構が設けられている。
この真空断熱容器の外径は例えば10〜100cm、高さは例えば30〜100cm程度である。この場合、外径が大きくなると、外筒及び内筒のそれぞれの厚みは、真空に耐える十分な強度が必要となるので更に厚くなる。真空断熱容器が小型の場合は把っ手を設けるが、大型の場合は据え置きとなる。
And the vacuum heat insulation container which concerns on this invention is provided with the buffer mechanism which used the heat insulating material which considered the thermal expansion difference of the said inner cylinder and the said outer cylinder in the lower part of the said vacuum heat insulation part.
The outer diameter of the vacuum insulation container is, for example, 10 to 100 cm, and the height is, for example, about 30 to 100 cm. In this case, when the outer diameter is increased, the thickness of each of the outer cylinder and the inner cylinder is further increased because sufficient strength to withstand a vacuum is required. If the vacuum insulation container is small, a handle will be provided, but if the vacuum insulation container is large, it will be stationary.

本発明に係る真空断熱容器は、表1、表2からも明らかなように、内筒及び外筒の材料に、引張強さが895MPa以上のチタン合金を用い、ステンレス鋼の引張強さ(520MPa、加工硬化した場合を除く)、純チタン2種の引張強さ(340〜510MPa)等に比較して大きいため、内筒及び外筒の厚みを薄く形成できる。これによって、同一サイズの従来の真空断熱容器に比べると板厚を薄くできる。また、材料の比重が約半値なので、より軽量な真空断熱容器となる。
また、熱伝導率が0.02cal/cm2 /sec/℃/cm以下のチタン合金を使用しているので、保温性あるいは保冷性が良好である。
As apparent from Tables 1 and 2, the vacuum insulation container according to the present invention uses a titanium alloy having a tensile strength of 895 MPa or more as a material of the inner cylinder and the outer cylinder, and the tensile strength of stainless steel (520 MPa Because it is large compared to the tensile strength (340 to 510 MPa) of two pure titanium types (except in the case of work hardening), the thickness of the inner cylinder and the outer cylinder can be thin. Thereby, the plate thickness can be made smaller than that of a conventional vacuum insulation container of the same size. In addition, since the specific gravity of the material is about half, it becomes a lighter vacuum insulation container.
Further, since a titanium alloy having a thermal conductivity of 0.02 cal / cm 2 / sec / ° C./cm or less is used, the heat retention property or the cold storage property is good.

特に、本発明に係る真空断熱容器は、外筒の下部に真空断熱部に通ずる真空ポンプ接続口を備えているので、長期間の放置によって真空断熱部の内部に溜まった容器壁からの放出ガスを除去し、この真空断熱容器の再生を図ることができる。 In particular, since the vacuum insulation container according to the present invention is provided with the vacuum pump connection port passing through the vacuum insulation part at the lower part of the outer cylinder, the gas released from the container wall accumulated inside the vacuum insulation part after being left for a long time Can be removed to regenerate this vacuum insulation container.

(A)は本発明の一実施の形態に係る真空断熱容器の平面図、(B)は同真空断熱容器の正断面図である。(A) is a top view of the vacuum insulation container concerning one embodiment of the present invention, (B) is a front sectional view of the vacuum insulation container. (A)は図1の矢視A部の拡大図、(B)は図1の矢視B部の拡大図、(C)は図1の矢視C部の拡大図である。(A) is an enlarged view of arrow A in FIG. 1, (B) is an enlarged view of arrow B in FIG. 1, (C) is an enlarged view of arrow C in FIG. 図1における矢視D部の説明図である。It is explanatory drawing of the arrow D part in FIG. (A)は同真空断熱容器の蓋の平面図、(B)は同側断面図である。(A) is a plan view of the lid of the same vacuum insulation container, (B) is a side sectional view of the same.

続いて、添付した図面を参照しながら、本発明を具体化した実施の形態について説明する。
図1(A)、(B)に示すように、本発明の一実施の形態に係る真空断熱容器10は、内筒12と、内筒12に対して同心状に設けられた外筒13とを有している。上部が開口となった内筒12の下部には、下側に突出した内鏡板14が設けられ、外筒13の底部には、上方に突出して下端が円形となった下部台座も兼用する外鏡板15が設けられている。
Subsequently, embodiments of the present invention will be described with reference to the attached drawings.
As shown in FIGS. 1A and 1B, the vacuum insulation container 10 according to the embodiment of the present invention includes an inner cylinder 12 and an outer cylinder 13 provided concentrically with the inner cylinder 12. have. The lower part of the inner cylinder 12 whose upper part is open is provided with the inner end plate 14 which protrudes downward, and the bottom part of the outer cylinder 13 is also the lower pedestal which protrudes upward and also has a circular lower end. An end plate 15 is provided.

この実施の形態では、内筒12、外筒13、内鏡板14及び外鏡板15の材料として、引張強さが895MPa以上、熱伝導率が、0.02cal/cm2 /sec/℃/cm以下で、かつ比重が5以下のチタン合金が使用されている。この実施の形態では、チタン合金に、アルミニウム及びバナジウムを合金元素として含むTi−6Al−4V合金又はTi−6Al−4V(ELI)合金を使用している。なお、使用するチタン合金の例については、表2に記載されている。 In this embodiment, the materials of the inner cylinder 12, the outer cylinder 13, the inner mirror plate 14 and the outer mirror plate 15 have a tensile strength of 895 MPa or more and a thermal conductivity of 0.02 cal / cm 2 / sec / ° C./cm or less And a titanium alloy having a specific gravity of 5 or less is used. In this embodiment, a Ti-6Al-4V alloy or a Ti-6Al-4V (ELI) alloy containing aluminum and vanadium as alloy elements is used as a titanium alloy. In addition, about the example of the titanium alloy to be used, it describes in Table 2.

この実施の形態においては、例えば、円筒状の外筒13の外径は200mmであり、円筒状の内筒12の内径は186.3mmで、内筒12及び外筒13の厚みはそれぞれ0.8mmであるので、内筒12と外筒13との隙間が5.25mmとなる。なお、内筒12及び外筒13の外径が大きくなると、全体的な強度を保つように、必然的に板厚は厚くなる。内筒12、外筒13の高さは内鏡板14と外鏡板15の部分を除いて、360〜370mm、450〜470mmである。 In this embodiment, for example, the outer diameter of the cylindrical outer cylinder 13 is 200 mm, the inner diameter of the cylindrical inner cylinder 12 is 186.3 mm, and the thicknesses of the inner cylinder 12 and the outer cylinder 13 are both 0.. Since it is 8 mm, the gap between the inner cylinder 12 and the outer cylinder 13 is 5.25 mm. When the outer diameters of the inner cylinder 12 and the outer cylinder 13 increase, the plate thickness inevitably increases to maintain the overall strength. The heights of the inner cylinder 12 and the outer cylinder 13 are 360 to 370 mm and 450 to 470 mm, excluding the portions of the inner mirror plate 14 and the outer mirror plate 15.

外筒13の上部は図2(A)に示すように、内側に折り曲げられて環状部16が形成されていると共に、環状部16の内側には上方に折り曲げられた短筒部17が形成されている。短筒部17の上端部と内筒12の上端部が溶接されて、内筒12と外筒13の上側端部の完全シールが行われている。 The upper portion of the outer cylinder 13 is bent inward to form an annular portion 16 as shown in FIG. 2A, and a short cylindrical portion 17 bent upward is formed on the inside of the annular portion 16. ing. The upper end portion of the short cylinder portion 17 and the upper end portion of the inner cylinder 12 are welded to completely seal the upper end portions of the inner cylinder 12 and the outer cylinder 13.

図1に示すように、外筒13の上部位置で、円周方向に180度の角度を有して、把っ手受け18、19が対称に設けられ、ステンレス又はチタン製の把っ手20の両端が把っ手受け18、19を介して取付けられている。この把っ手20は円弧部(半円部)21とその両側の直線部22、23とを有し、把っ手受け18、19を中心に回動し、通常は外筒13の外側に当接して垂れ下がる。 As shown in FIG. 1, at the upper position of the outer cylinder 13, the grips 18 and 19 are provided symmetrically with an angle of 180 degrees in the circumferential direction, and a stainless steel or titanium grip 20 Both ends of the handle are attached via the grips 18 and 19. The handle 20 has a circular arc portion (semi-circular portion) 21 and straight portions 22 and 23 on both sides thereof, and rotates around the handle receivers 18 and 19, usually outside the outer cylinder 13. Abuts and hangs down.

外筒13の下部には、凹部が上向きの外鏡板15が設けられて、図2(B)に示すように、外筒13の下端部と、外鏡板15の下側の途中位置25が溶接されて、内筒12と外筒13とで形成される真空断熱部として作用する空間部26を完全にシールしている。この空間部26は真空であって内部に図示しない断熱材(スーパーインシュレーション(商品名))が配置されて、真空中の輻射による熱損失を防止している。
また、図2(C)に示すように、内鏡板14の中心には孔14bがあって、その上を蓋材14aで塞ぎ周囲を完全溶接している。この孔14bは内鏡板14の製作上必要な孔で、今後製作方法の変更などによって孔が付かなくてもよい場合がある。
An outer mirror plate 15 having a concave portion facing upward is provided at a lower portion of the outer cylinder 13, and as shown in FIG. 2B, the lower end portion of the outer cylinder 13 and the intermediate position 25 below the outer mirror plate 15 are welded Thus, the space portion 26 acting as a vacuum heat insulating portion formed by the inner cylinder 12 and the outer cylinder 13 is completely sealed. The space portion 26 is vacuum and a heat insulating material (super insulation (trade name)) (not shown) is disposed inside to prevent heat loss due to radiation in vacuum.
Further, as shown in FIG. 2C, a hole 14b is formed at the center of the inner mirror plate 14, and the hole 14b is closed on the hole 14b and a lid 14a is used to completely weld the periphery. The hole 14 b is a hole necessary for manufacturing the inner mirror plate 14 and may not have to be bored due to a change in manufacturing method or the like in the future.

内鏡板14の突出部27と、外鏡板15の突出部28は向かい合って形成されているが、中間部(即ち、真空断熱部(空間部26)の下部)には、図1(B)、図3に示すように、緩衝機構30、30aが設けられている。この緩衝機構30(30aも同じ)は、内鏡板14の下部に設けられている円柱状の金具31と、この金具31に装着され、内筒12と外筒13の熱膨張差を考慮した断熱材(クッション材)32と、外鏡板15の上に取付けられて、断熱材32が嵌入する管材33とを有して構成され、内筒12と内鏡板14で形成される容器本体34の揺れを分担して支持している。即ち、内筒12の下部(内鏡板14)が断熱材32を介して外筒13の底部を構成する外鏡板15(台座)に固定されることになる。 Although the protrusion 27 of the inner mirror plate 14 and the protrusion 28 of the outer mirror plate 15 are formed to face each other, the middle portion (that is, the lower portion of the vacuum heat insulation portion (space portion 26)) is shown in FIG. As shown in FIG. 3, buffer mechanisms 30, 30a are provided. The buffer mechanism 30 (30a is also the same) is mounted on the cylindrical metal fitting 31 provided at the lower part of the inner mirror plate 14 and the metal fitting 31, and heat insulation taking into consideration the thermal expansion difference between the inner cylinder 12 and the outer cylinder 13. Material (cushion material) 32 and the tube member 33 mounted on the outer mirror plate 15 and fitted with the heat insulating material 32, and the swing of the container main body 34 formed by the inner cylinder 12 and the inner mirror plate 14 Share and support. That is, the lower portion (inner mirror plate 14) of the inner cylinder 12 is fixed to the outer mirror plate 15 (base) which constitutes the bottom of the outer cylinder 13 via the heat insulating material 32.

なお、管材33の側部にはガス抜き孔33aを有する。管材33の深さは断熱材32の高さと略同一となって、断熱材32の嵌入穴32aの深さは、金具31の高さより深くとってあり、緩衝機構30、30aは左右方向の揺れを主として吸収し、上下方向の熱膨張差を吸収するようになっている。 In addition, the side of the pipe 33 has a gas venting hole 33a. The depth of the pipe 33 is approximately the same as the height of the heat insulating material 32, and the depth of the insertion hole 32a of the heat insulating material 32 is deeper than the height of the metal fitting 31, and the buffer mechanisms 30, 30a swing in the left-right direction. To absorb the difference in thermal expansion in the vertical direction.

図4(A)、(B)には、この容器本体34の蓋35を示すが、内筒12の上端部及び短筒部17が嵌入する円形溝36が形成されていると共に、中心位置から偏心して空気抜き孔37が設けられている。この蓋35は断熱性の高いコルク等で構成されている。 4A and 4B show the lid 35 of the container main body 34, the circular groove 36 into which the upper end portion of the inner cylinder 12 and the short cylindrical portion 17 are fitted is formed, and from the center position An air vent hole 37 is provided eccentrically. The lid 35 is made of high heat insulating cork or the like.

外鏡板15の中央(頂部)には、空間部26に通じる真空ポンプ接続口39を有している。この真空ポンプ接続口39は、真空吸引終了後、真空封止がそのままできる構造にしてある。 At the center (top) of the outer mirror plate 15, a vacuum pump connection port 39 leading to the space 26 is provided. The vacuum pump connection port 39 has a structure capable of vacuum sealing as it is after completion of vacuum suction.

この真空断熱容器10を使用する場合は、蓋35を開けて対象物を(例えば、液体窒素)入れて蓋35をする。搬送時には、外筒13の上部外側に設けられている把っ手20を使用する。
この真空断熱容器10の内筒12は、断熱されているので、内筒13の内側を所定温度に長時間維持できる。
When this vacuum insulation container 10 is used, the lid 35 is opened, the object is put (for example, liquid nitrogen), and the lid 35 is put on. At the time of conveyance, a handle 20 provided on the upper outside of the outer cylinder 13 is used.
Since the inner cylinder 12 of the vacuum insulation container 10 is thermally insulated, the inside of the inner cylinder 13 can be maintained at a predetermined temperature for a long time.

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。 The present invention is not limited to the above-described embodiment, and the configuration can be changed without departing from the scope of the present invention.

10:真空断熱容器、12:内筒、13:外筒、14:内鏡板、14a:蓋材、14b:孔、15:外鏡板、16:環状部、17:短筒部、18、19:把っ手受け、20:把っ手、21:円弧部、22、23:直線部、25:途中位置、26:空間部、27、28:突出部、30、30a:緩衝機構、31:金具、32:断熱材、32a:嵌入穴、33:管材、33a:ガス抜き孔、34:容器本体、35:蓋、36:円形溝、37:空気抜き孔、39:真空ポンプ接続口 10: Vacuum insulation container, 12: inner cylinder, 13: outer cylinder, 14: inner end plate, 14a: lid member, 14b: hole, 15: outer end plate, 16: annular portion, 17: short tube portion, 18, 19: Handle receiver 20: Handle 21: arc part 22, 23: straight part 25: halfway position 26: space part 27, 28: projection part 30, 30a: buffer mechanism 31: metal fitting , 32: heat insulating material, 32a: insertion hole, 33: tube, 33a: gas vent, 34: container body, 35: lid, 36: circular groove, 37: air vent, 39: vacuum pump connection port

Claims (2)

同心状に配置され、それぞれ円筒状の内筒及び外筒を有し、該外筒の上端部で該内筒に連結されて該内筒と該外筒の間に真空断熱部が形成され、前記内筒の上部には開口が設けられた真空断熱容器において、
前記内筒及び前記外筒の材料に、引張強さが895MPa以上で、熱伝導率が0.02cal/cm2/sec/℃/cm以下のチタン合金を用い、前記内筒及び前記外筒を構成する前記チタン合金は、合金元素としてアルミニウム及びバナジウムを含むTi−6Al−4V合金又はTi−6Al−4V(ELI)合金であり
前記内筒の下部には凹部が下方に突出した内鏡板が設けられ、前記外筒の底部には、凹部が上方に突出し、下端が円形となって下部台座も兼用する外鏡板が、前記内鏡板とは隙間を有して設けられ、前記内鏡板と前記外鏡板との間前記真空断熱部に連通して前記内筒と前記外筒の熱膨張差を緩和する断熱材を用いた左右2つの緩衝機構が設けられ、かつ前記外筒の下部で前記外鏡板内には前記真空断熱部に通ずる真空ポンプ接続口を備え
前記各緩衝機構は、前記内鏡板の下部に設けられた円柱状の金具と、前記外鏡板の上に取付けられて前記断熱材が嵌入する管材とを有し、前記断熱材は前記金具の高さより深い嵌入穴を有して前記金具に装着され、前記管材の側部にはガス抜き孔を有して、前記内筒と前記内鏡板で形成される容器本体の左右方向の揺れと、上下方向の熱膨張差を吸収することを特徴とする真空断熱容器。
Concentrically arranged, each having a cylindrical inner cylinder and an outer cylinder, the upper end of the outer cylinder is connected to the inner cylinder to form a vacuum heat insulating portion between the inner cylinder and the outer cylinder, In a vacuum insulation container provided with an opening at an upper portion of the inner cylinder,
The material of the inner cylinder and the outer cylinder, a tensile strength of at least 895MPa, thermal conductivity using 0.02cal / cm 2 / sec / ℃ / cm or less of titanium alloys, the inner cylinder and the outer cylinder the titanium alloy structure is the aluminum and vanadium including Ti-6Al-4V alloy or Ti-6Al-4V (ELI) alloy as an alloying element,
An inner end plate is provided at a lower portion of the inner cylinder, and an outer end plate having a recess protruding upward at the bottom of the outer cylinder and having a circular lower end and serving as a lower base is also provided. It provided a gap from the end plate, with a heat insulating material to reduce thermal expansion difference between the outer tube and the inner tube communicates with the vacuum adiabatic portion between the outer end plate and the inner end plate left Two buffer mechanisms are provided, and a vacuum pump connection port is provided in the outer mirror plate at a lower portion of the outer cylinder and connected to the vacuum heat insulating portion ,
Each of the buffer mechanisms has a cylindrical metal fitting provided at a lower portion of the inner mirror plate, and a pipe member mounted on the outer mirror plate and fitted with the heat insulating material, and the heat insulating material has a height of the metal bracket The fitting is mounted on the metal fitting with a deeper insertion hole, and a gas venting hole is provided on the side of the pipe material, and the swinging of the container body formed by the inner cylinder and the inner end plate in the lateral direction, vacuum insulated container characterized that you absorb the thermal expansion difference direction.
請求項記載の真空断熱容器において、前記真空ポンプ接続口は逆止弁を備えていることを特徴とする真空断熱容器。 The vacuum insulation container according to claim 1 , wherein the vacuum pump connection port includes a check valve.
JP2015069011A 2015-03-30 2015-03-30 Vacuum insulation container Active JP6548423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069011A JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069011A JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Publications (2)

Publication Number Publication Date
JP2016187470A JP2016187470A (en) 2016-11-04
JP6548423B2 true JP6548423B2 (en) 2019-07-24

Family

ID=57240696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069011A Active JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Country Status (1)

Country Link
JP (1) JP6548423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815225A (en) * 2021-01-26 2021-05-18 张家港富瑞特种装备股份有限公司 Low-temperature liquid storage gas cylinder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666223A (en) * 1979-11-05 1981-06-04 Anelva Corp Metal magic pot and production thereof
JP2601123Y2 (en) * 1993-11-02 1999-11-08 象印マホービン株式会社 Metal vacuum double container
JPH09301443A (en) * 1996-05-16 1997-11-25 Yoshinobu Toyomura Simplified heat-retaining container and air vent used therefor
JPH11164784A (en) * 1997-12-03 1999-06-22 Nippon Sanso Kk Metallic vacuum double container
JP2001197992A (en) * 2000-01-19 2001-07-24 Leben Co Ltd Drinking cup made of titanium
JP2001252780A (en) * 2000-03-09 2001-09-18 Laser Oyo Kogaku Kenkyusho:Kk Method of joining by laser beam for cylinders of different kinds of metals
JP2002122359A (en) * 2000-10-12 2002-04-26 Mamoru Yamamoto Vacuum heat insulated tank
JP3698114B2 (en) * 2002-04-23 2005-09-21 タイガー魔法瓶株式会社 Insulated double container
JP3696840B2 (en) * 2002-04-25 2005-09-21 株式会社勇鉄工所 Liquid storage container
CN200973644Y (en) * 2006-11-10 2007-11-14 陈先凯 Vacuum cup and bucket in adjustable interlayer
US9255316B2 (en) * 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
CN104210768A (en) * 2013-05-31 2014-12-17 膳魔师(江苏)家庭制品有限公司 Plastic heat preservation utensil and manufacturing method of plastic heat preservation utensil

Also Published As

Publication number Publication date
JP2016187470A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
US20220047119A1 (en) Container and Method of Forming a Container
CN109153489A (en) Container and the method for forming container
US20150053679A1 (en) Vacuum insulation cup lid
JP2004154338A (en) Double vacuum vessel
JP6548423B2 (en) Vacuum insulation container
CN103282138A (en) Metallic beverage can end closure with offset countersink
JP5534116B1 (en) Metal sealed double container
JPH11164784A (en) Metallic vacuum double container
JP6177752B2 (en) Beverage container
RU2672017C1 (en) Vacuum insulated container
CN218105661U (en) Special-shaped double-layer metal thermos bottle
JP5637429B2 (en) Titanium hydrogen storage container
JP2015146929A (en) Holder for metal heat insulation cup
CN204127644U (en) High strength steel cylinder
CN209622478U (en) A kind of base support means for high vacuum refrigerated storage tank
JP6590408B2 (en) Vacuum insulated container
JP2023073309A (en) Method for manufacturing portable thermos bottle
CN208360744U (en) A kind of double-layer beverage container
JP5229552B2 (en) Synthetic resin round frame
JP5380670B2 (en) Vacuum double bottle
CN207275320U (en) A kind of preserving jar with automatic sealing function
ES2970802T3 (en) Non-monolithic vacuum chamber to run vacuum applications and/or to house vacuum components
CN214284352U (en) Double-deck heat preservation glass cup of evacuation of making an uproar falls
CN102797942A (en) Specially-shaped high-temperature resistance vacuum heat insulation laminboard and preparation method thereof
JP2005312498A (en) Thermally insulated container using stainless-steel vacuum double container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190625

R150 Certificate of patent or registration of utility model

Ref document number: 6548423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250