JP2016187470A - Vacuum heat insulation container - Google Patents

Vacuum heat insulation container Download PDF

Info

Publication number
JP2016187470A
JP2016187470A JP2015069011A JP2015069011A JP2016187470A JP 2016187470 A JP2016187470 A JP 2016187470A JP 2015069011 A JP2015069011 A JP 2015069011A JP 2015069011 A JP2015069011 A JP 2015069011A JP 2016187470 A JP2016187470 A JP 2016187470A
Authority
JP
Japan
Prior art keywords
vacuum heat
heat insulation
inner cylinder
outer cylinder
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015069011A
Other languages
Japanese (ja)
Other versions
JP6548423B2 (en
Inventor
正樹 部坂
Masaki Busaka
正樹 部坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO SANGYO TRADING
Shinko Industries Co Ltd
Original Assignee
SHINKO SANGYO TRADING
Shinko Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO SANGYO TRADING, Shinko Industries Co Ltd filed Critical SHINKO SANGYO TRADING
Priority to JP2015069011A priority Critical patent/JP6548423B2/en
Publication of JP2016187470A publication Critical patent/JP2016187470A/en
Application granted granted Critical
Publication of JP6548423B2 publication Critical patent/JP6548423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermally Insulated Containers For Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-weight vacuum heat insulation container with sufficient strength.SOLUTION: In a vacuum heat insulation container 10 including an inner cylinder 12 and an outer cylinder 13 in which a vacuum heat insulation part 26 is formed between the inner cylinder 12 and the outer cylinder 13, and an opening is provided in the upper part of the inner cylinder 12, a titanium alloy (e.g., Ti-6Al-4V alloy) whose tensile strength is 895 MPa or more, and thermal conductivity is 0.02 cal/cm/sec/°C/cm or less is used as a material for the inner cylinder 12 and the outer cylinder 13.SELECTED DRAWING: Figure 1

Description

本発明は、内筒及び外筒を有し、これら内筒及び外筒との間に真空断熱部を設けた真空断熱容器に関する。 The present invention relates to a vacuum heat insulating container having an inner tube and an outer tube, and having a vacuum heat insulating portion provided between the inner tube and the outer tube.

従来、真空断熱容器として、ステンレス材を用いた内筒及び外筒を有し、その中間部に真空断熱部が形成されたものが一般に使用されていた。しかしながら、ステンレス材は重いので、例えば、特許文献1には、内筒及び外筒にチタン又はチタン合金を用いた補保温ポットが開示されている。
また、特許文献2には、真空二重容器の内筒と外筒をチタン又はチタン合金により形成し、チタン又はチタン合金の硬度(ビッカース硬度)を160以上とすることが記載されている。
Conventionally, as a vacuum heat insulating container, a container having an inner cylinder and an outer cylinder using a stainless material and having a vacuum heat insulating portion formed in the middle thereof has been generally used. However, since the stainless steel material is heavy, for example, Patent Document 1 discloses a supplementary warming pot using titanium or a titanium alloy for the inner cylinder and the outer cylinder.
Patent Document 2 describes that an inner cylinder and an outer cylinder of a vacuum double container are formed of titanium or a titanium alloy, and the hardness (Vickers hardness) of titanium or the titanium alloy is 160 or more.

特開2001−198022号公報Japanese Patent Laid-Open No. 2001-198022 特開平11−164784号公報JP 11-164784 A

特許文献1、2では、内筒及び外筒の材料を、チタン又はチタン合金としているが、チタン合金の種類は開示されておらず、強度を有するチタン合金を内筒及び外筒に使用することも開示されていない。
更に、特許文献1、2記載の真空断熱容器においては、内筒及び外筒によって構成される真空断熱部が、密閉構造であるので、内筒及び外筒を構成する金属からの放出ガスによって徐々に真空度が低下するという問題があった。
In Patent Documents 1 and 2, the material of the inner cylinder and the outer cylinder is titanium or a titanium alloy, but the type of the titanium alloy is not disclosed, and a strong titanium alloy is used for the inner cylinder and the outer cylinder. Is also not disclosed.
Furthermore, in the vacuum heat insulation containers described in Patent Documents 1 and 2, since the vacuum heat insulating portion constituted by the inner cylinder and the outer cylinder has a sealed structure, the gas is gradually released by the gas released from the metal constituting the inner cylinder and the outer cylinder. However, there was a problem that the degree of vacuum decreased.

本発明はかかる事情に鑑みてなされたもので、軽量で十分な強度を有する真空断熱容器を提供することを第1の目的とし、真空断熱部に気体が入っても再度真空度を高めることが可能な真空断熱容器を提供することを第2の目的とする。 The present invention has been made in view of such circumstances. The first object of the present invention is to provide a vacuum insulated container that is lightweight and has sufficient strength, and it is possible to increase the degree of vacuum again even if gas enters the vacuum insulated part. A second object is to provide a possible vacuum insulation container.

前記目的に沿う本発明に係る真空断熱容器は、内筒及び外筒を有し、該内筒と該外筒の間に真空断熱部が形成され、前記内筒の上部には開口が設けられた真空断熱容器において、
前記内筒及び前記外筒の材料に、引張強さが895MPa以上で、熱伝導率が、0.02cal/cm2/sec/℃/cm以下のチタン合金を用いた。
なお、内筒及び外筒の下部には底板部が設けられているが、底板部が平面では圧力差によって変形し易いので、それぞれの底板部を、半球状、部分球状又は円錐台状の鏡板とするのが好ましい。真空断熱容器の蓋は、通常圧力は掛からないので、コルク、木材又はプラスチック製とすることができる。
A vacuum heat insulating container according to the present invention that meets the above object has an inner tube and an outer tube, a vacuum heat insulating portion is formed between the inner tube and the outer tube, and an opening is provided in the upper portion of the inner tube. In a vacuum insulated container,
A titanium alloy having a tensile strength of 895 MPa or more and a thermal conductivity of 0.02 cal / cm 2 / sec / ° C./cm or less was used for the material of the inner cylinder and the outer cylinder.
In addition, although the bottom plate part is provided in the lower part of the inner cylinder and the outer cylinder, the bottom plate part is easily deformed by a pressure difference when it is flat. Is preferable. The lid of the vacuum insulation container is normally not under pressure and can be made of cork, wood or plastic.

表1に、純チタン、チタン合金(Ti−6Al−4V)、ステンレス鋼(この例は、18−8ステンレス鋼)の機械的性質を示す。ステンレス鋼の場合、合金種と熱処理によって、比較的高い引張強さを有するが、チタン及びチタン合金に比較して、比重(密度)が2倍程度に大きいので、この真空断熱容器の材料としては重くなり適用できない。 Table 1 shows the mechanical properties of pure titanium, titanium alloy (Ti-6Al-4V), and stainless steel (in this example, 18-8 stainless steel). In the case of stainless steel, it has a relatively high tensile strength due to the alloy type and heat treatment, but its specific gravity (density) is about twice as large as that of titanium and titanium alloy. It becomes too heavy to apply.

Figure 2016187470
Figure 2016187470

表2に、純チタンとチタン合金の物理的性状を示す。純チタンでは比較的強度が小さいが、合金元素を加えると引張強さが895MPa以上のものが多数存在する。
本発明に係る真空断熱容器において、前記チタン合金は、合金元素としてアルミニウム及びバナジウムを含むのが好ましく、例えば、前記チタン合金は、Ti−6Al−4V合金、Ti−6Al−4V(ELI)合金であるのがより好ましい。
Table 2 shows the physical properties of pure titanium and titanium alloys. Pure titanium has a relatively low strength, but when an alloy element is added, many have a tensile strength of 895 MPa or more.
In the vacuum heat insulating container according to the present invention, the titanium alloy preferably contains aluminum and vanadium as alloy elements. For example, the titanium alloy is a Ti-6Al-4V alloy or a Ti-6Al-4V (ELI) alloy. More preferably.

Figure 2016187470
Figure 2016187470

本発明に係る真空断熱容器において、前記外筒の下部に前記真空断熱部に通ずる真空ポンプ接続口を備えているのが好ましい。この場合、真空ポンプ接続口に長期間、真空封止できる逆止弁等を設けるのが好ましい。 The vacuum heat insulation container which concerns on this invention WHEREIN: It is preferable to provide the vacuum pump connection port connected to the said vacuum heat insulation part in the lower part of the said outer cylinder. In this case, it is preferable to provide a check valve or the like that can be vacuum-sealed for a long time at the vacuum pump connection port.

そして、本発明に係る真空断熱容器において、前記真空断熱部の下部は、前記内筒及び前記外筒の熱膨張差を考慮した断熱材を用いた緩衝機構が設けられているのが好ましい。
この真空断熱容器の外径は例えば10〜100cm、高さは例えば30〜100cm程度である。この場合、外径が大きくなると、外筒及び内筒のそれぞれの厚みは、真空に耐える十分な強度が必要となるので更に厚くなる。真空断熱容器が小型の場合は把っ手を設けるが、大型の場合は据え置きとなる。
And the vacuum heat insulation container which concerns on this invention WHEREIN: It is preferable that the lower part of the said vacuum heat insulation part is provided with the buffer mechanism using the heat insulating material which considered the thermal expansion difference of the said inner cylinder and the said outer cylinder.
The outer diameter of the vacuum heat insulating container is, for example, 10 to 100 cm, and the height is, for example, about 30 to 100 cm. In this case, when the outer diameter is increased, the thicknesses of the outer cylinder and the inner cylinder are further increased because sufficient strength to withstand vacuum is required. If the vacuum insulation container is small, a handle is provided, but if it is large, it is stationary.

本発明に係る真空断熱容器は、表1、表2からも明らかなように、内筒及び外筒の材料に、引張強さが895MPa以上のチタン合金を用い、ステンレス鋼の引張強さ(520MPa、加工硬化した場合を除く)、純チタン2種の引張強さ(340〜510MPa)等に比較して大きいため、内筒及び外筒の厚みを薄く形成できる。これによって、同一サイズの従来の真空断熱容器に比べると板厚を薄くできる。また、材料の比重が約半値なので、より軽量な真空断熱容器となる。
また、熱伝導率が0.02cal/cm2/sec/℃/cm以下のチタン合金を使用しているので、保温性あるいは保冷性が良好である。
As is clear from Tables 1 and 2, the vacuum heat insulating container according to the present invention uses a titanium alloy having a tensile strength of 895 MPa or more as the material of the inner cylinder and the outer cylinder, and has a tensile strength (520 MPa) of stainless steel. The thickness of the inner cylinder and the outer cylinder can be reduced because it is larger than the tensile strength (340 to 510 MPa) of two types of pure titanium. As a result, the plate thickness can be reduced compared to a conventional vacuum heat insulating container of the same size. In addition, since the specific gravity of the material is about half the value, the vacuum insulation container is lighter.
In addition, since a titanium alloy having a thermal conductivity of 0.02 cal / cm 2 / sec / ° C./cm or less is used, the heat retaining property or the cold retaining property is good.

特に、本発明に係る真空断熱容器において、外筒の下部に真空断熱部に通ずる真空ポンプ接続口を備えている場合は、長期間の放置によって真空断熱部の内部に溜まった容器壁からの放出ガスを除去し、この真空断熱容器の再生を図ることができる。 In particular, in the vacuum heat insulating container according to the present invention, when a vacuum pump connection port leading to the vacuum heat insulating part is provided at the lower part of the outer cylinder, the discharge from the container wall accumulated inside the vacuum heat insulating part by leaving for a long time The gas can be removed and the vacuum insulation container can be regenerated.

(A)は本発明の一実施の形態に係る真空断熱容器の平面図、(B)は同真空断熱容器の正断面図である。(A) is a top view of the vacuum heat insulation container which concerns on one embodiment of this invention, (B) is a front sectional view of the vacuum heat insulation container. (A)は図1の矢視A部の拡大図、(B)は図1の矢視B部の拡大図、(C)は図1の矢視C部の拡大図である。(A) is an enlarged view of the arrow A part of FIG. 1, (B) is an enlarged view of the arrow B part of FIG. 1, (C) is an enlarged view of the arrow C part of FIG. 図1における矢視D部の説明図である。It is explanatory drawing of the arrow D part in FIG. (A)は同真空断熱容器の蓋の平面図、(B)は同側断面図である。(A) is a top view of the lid | cover of the same vacuum heat insulation container, (B) is the same sectional side view.

続いて、添付した図面を参照しながら、本発明を具体化した実施の形態について説明する。
図1(A)、(B)に示すように、本発明の一実施の形態に係る真空断熱容器10は、内筒12と、内筒12に対して同心状に設けられた外筒13とを有している。上部が開口となった内筒12の下部には、下側に突出した内鏡板14が設けられ、外筒13の底部には、上方に突出して下端が円形となった下部台座も兼用する外鏡板15が設けられている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1A and 1B, a vacuum heat insulating container 10 according to an embodiment of the present invention includes an inner cylinder 12 and an outer cylinder 13 provided concentrically with the inner cylinder 12. have. The lower end of the inner cylinder 12 having an opening at the top is provided with an inner end plate 14 that protrudes downward, and the bottom of the outer cylinder 13 is an outer portion that also serves as a lower pedestal that protrudes upward and has a circular lower end. An end plate 15 is provided.

この実施の形態では、内筒12、外筒13、内鏡板14及び外鏡板15の材料として、引張強さが895MPa以上、熱伝導率が、0.02cal/cm2/sec/℃/cm以下で、かつ比重が5以下のチタン合金が使用されている。この実施の形態では、チタン合金に、アルミニウム及びバナジウムを合金元素として含むTi−6Al−4V合金又はTi−6Al−4V(ELI)合金を使用している。なお、使用するチタン合金の例については、表2に記載されている。 In this embodiment, as the material of the inner cylinder 12, the outer cylinder 13, the inner end plate 14 and the outer end plate 15, the tensile strength is 895 MPa or more and the thermal conductivity is 0.02 cal / cm 2 / sec / ° C./cm or less. In addition, a titanium alloy having a specific gravity of 5 or less is used. In this embodiment, a Ti-6Al-4V alloy or Ti-6Al-4V (ELI) alloy containing aluminum and vanadium as alloy elements is used as the titanium alloy. Examples of titanium alloys to be used are listed in Table 2.

この実施の形態においては、例えば、円筒状の外筒13の外径は200mmであり、円筒状の内筒12の内径は186.3mmで、内筒12及び外筒13の厚みはそれぞれ0.8mmであるので、内筒12と外筒13との隙間が5.25mmとなる。なお、内筒12及び外筒13の外径が大きくなると、全体的な強度を保つように、必然的に板厚は厚くなる。内筒12、外筒13の高さは内鏡板14と外鏡板15の部分を除いて、360〜370mm、450〜470mmである。 In this embodiment, for example, the outer diameter of the cylindrical outer cylinder 13 is 200 mm, the inner diameter of the cylindrical inner cylinder 12 is 186.3 mm, and the thicknesses of the inner cylinder 12 and the outer cylinder 13 are each 0.00 mm. Since it is 8 mm, the gap between the inner cylinder 12 and the outer cylinder 13 is 5.25 mm. When the outer diameters of the inner cylinder 12 and the outer cylinder 13 are increased, the plate thickness is inevitably increased so as to maintain the overall strength. The heights of the inner cylinder 12 and the outer cylinder 13 are 360 to 370 mm and 450 to 470 mm, excluding the portions of the inner end plate 14 and the outer end plate 15.

外筒13の上部は図2(A)に示すように、内側に折り曲げられて環状部16が形成されていると共に、環状部16の内側には上方に折り曲げられた短筒部17が形成されている。短筒部17の上端部と内筒12の上端部が溶接されて、内筒12と外筒13の上側端部の完全シールが行われている。 As shown in FIG. 2 (A), the upper portion of the outer cylinder 13 is bent inward to form an annular portion 16, and a short cylindrical portion 17 bent upward is formed inside the annular portion 16. ing. The upper end part of the short cylinder part 17 and the upper end part of the inner cylinder 12 are welded, and the upper end part of the inner cylinder 12 and the outer cylinder 13 is completely sealed.

図1に示すように、外筒13の上部位置で、円周方向に180度の角度を有して、把っ手受け18、19が対称に設けられ、ステンレス又はチタン製の把っ手20の両端が把っ手受け18、19を介して取付けられている。この把っ手20は円弧部(半円部)21とその両側の直線部22、23とを有し、把っ手受け18、19を中心に回動し、通常は外筒13の外側に当接して垂れ下がる。 As shown in FIG. 1, grip receivers 18 and 19 are provided symmetrically at an upper position of the outer cylinder 13 with an angle of 180 degrees in the circumferential direction, and a handle 20 made of stainless steel or titanium. Both ends of the are attached via grip holders 18 and 19. The handle 20 has an arc portion (semicircle portion) 21 and straight portions 22 and 23 on both sides thereof, and rotates around the handle receivers 18 and 19, usually on the outside of the outer cylinder 13. It touches and hangs down.

外筒13の下部には、凹部が上向きの外鏡板15が設けられて、図2(B)に示すように、外筒13の下端部と、外鏡板15の下側の途中位置25が溶接されて、内筒12と外筒13とで形成される真空断熱部として作用する空間部26を完全にシールしている。この空間部26は真空であって内部に図示しない断熱材(スーパーインシュレーション(商品名))が配置されて、真空中の輻射による熱損失を防止している。
また、図2(C)に示すように、内鏡板14の中心には孔14bがあって、その上を蓋材14aで塞ぎ周囲を完全溶接している。この孔14bは内鏡板14の製作上必要な孔で、今後製作方法の変更などによって孔が付かなくてもよい場合がある。
An outer end plate 15 with a concave portion facing upward is provided at the lower portion of the outer cylinder 13, and the lower end portion of the outer cylinder 13 and the intermediate position 25 on the lower side of the outer end plate 15 are welded as shown in FIG. Thus, the space 26 that functions as a vacuum heat insulating portion formed by the inner cylinder 12 and the outer cylinder 13 is completely sealed. This space portion 26 is vacuum, and a heat insulating material (super insulation (trade name)) (not shown) is disposed therein to prevent heat loss due to radiation in the vacuum.
Further, as shown in FIG. 2C, a hole 14b is formed at the center of the inner end plate 14, and the upper part is closed with a lid member 14a to completely weld the periphery. This hole 14b is a hole necessary for manufacturing the inner end plate 14, and may not be provided due to a change in the manufacturing method in the future.

内鏡板14の突出部27と、外鏡板15の突出部28は向かい合って形成されているが、中間部(即ち、真空断熱部(空間部26)の下部)には、図1(B)、図3に示すように、緩衝機構30、30aが設けられている。この緩衝機構30(30aも同じ)は、内鏡板14の下部に設けられている円柱状の金具31と、この金具31に装着され、内筒12と外筒13の熱膨張差を考慮した断熱材(クッション材)32と、外鏡板15の上に取付けられて、断熱材32が嵌入する管材33とを有して構成され、内筒12と内鏡板14で形成される容器本体34の揺れを分担して支持している。即ち、内筒12の下部(内鏡板14)が断熱材32を介して外筒13の底部を構成する外鏡板15(台座)に固定されることになる。 The protruding portion 27 of the inner end plate 14 and the protruding portion 28 of the outer end plate 15 are formed so as to face each other, but in the intermediate portion (that is, the lower portion of the vacuum heat insulating portion (space portion 26)), FIG. As shown in FIG. 3, buffer mechanisms 30 and 30a are provided. The buffer mechanism 30 (the same applies to 30a) includes a columnar metal fitting 31 provided at the lower portion of the inner end plate 14, and heat insulation in consideration of a difference in thermal expansion between the inner cylinder 12 and the outer cylinder 13 attached to the metal fitting 31. The container body 34 formed by the inner cylinder 12 and the inner end plate 14 is configured to include a material (cushion member) 32 and a pipe member 33 which is attached on the outer end plate 15 and into which the heat insulating material 32 is fitted. Is shared and supported. That is, the lower portion (inner end plate 14) of the inner tube 12 is fixed to the outer end plate 15 (pedestal) constituting the bottom of the outer tube 13 through the heat insulating material 32.

なお、管材33の側部にはガス抜き孔33aを有する。管材33の深さは断熱材32の高さと略同一となって、断熱材32の嵌入穴32aの深さは、金具31の高さより深くとってあり、緩衝機構30、30aは左右方向の揺れを主として吸収し、上下方向の熱膨張差を吸収するようになっている。 Note that a gas vent hole 33 a is provided on the side of the pipe member 33. The depth of the pipe material 33 is substantially the same as the height of the heat insulating material 32, the depth of the insertion hole 32a of the heat insulating material 32 is deeper than the height of the metal fitting 31, and the shock absorbing mechanisms 30, 30a swing in the left-right direction. Is mainly absorbed, and the thermal expansion difference in the vertical direction is absorbed.

図4(A)、(B)には、この容器本体34の蓋35を示すが、内筒12の上端部及び短筒部17が嵌入する円形溝36が形成されていると共に、中心位置から偏心して空気抜き孔37が設けられている。この蓋35は断熱性の高いコルク等で構成されている。 4 (A) and 4 (B) show a lid 35 of the container main body 34. A circular groove 36 into which the upper end portion of the inner cylinder 12 and the short cylinder portion 17 are fitted is formed, and from the center position. An air vent hole 37 is provided eccentrically. The lid 35 is made of cork having a high heat insulating property.

外鏡板15の中央(頂部)には、空間部26に通じる真空ポンプ接続口39を有している。この真空ポンプ接続口39は、真空吸引終了後、真空封止がそのままできる構造にしてある。 At the center (top portion) of the outer mirror plate 15, there is a vacuum pump connection port 39 that leads to the space portion 26. The vacuum pump connection port 39 has a structure in which the vacuum sealing can be performed as it is after the vacuum suction is completed.

この真空断熱容器10を使用する場合は、蓋35を開けて対象物を(例えば、液体窒素)入れて蓋35をする。搬送時には、外筒13の上部外側に設けられている把っ手20を使用する。
この真空断熱容器10の内筒12は、断熱されているので、内筒13の内側を所定温度に長時間維持できる。
When using this vacuum heat insulation container 10, the lid | cover 35 is opened, a target object (for example, liquid nitrogen) is put, and the lid | cover 35 is carried out. At the time of conveyance, a grip 20 provided on the outer side of the upper portion of the outer cylinder 13 is used.
Since the inner cylinder 12 of the vacuum heat insulating container 10 is insulated, the inside of the inner cylinder 13 can be maintained at a predetermined temperature for a long time.

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。 The present invention is not limited to the above-described embodiment, and the configuration thereof can be changed without changing the gist of the present invention.

10:真空断熱容器、12:内筒、13:外筒、14:内鏡板、14a:蓋材、14b:孔、15:外鏡板、16:環状部、17:短筒部、18、19:把っ手受け、20:把っ手、21:円弧部、22、23:直線部、25:途中位置、26:空間部、27、28:突出部、30、30a:緩衝機構、31:金具、32:断熱材、32a:嵌入穴、33:管材、33a:ガス抜き孔、34:容器本体、35:蓋、36:円形溝、37:空気抜き孔、39:真空ポンプ接続口 10: vacuum heat insulating container, 12: inner cylinder, 13: outer cylinder, 14: inner end plate, 14a: lid member, 14b: hole, 15: outer end plate, 16: annular portion, 17: short tube portion, 18, 19: Handle holder, 20: Handle, 21: Arc part, 22, 23: Straight line part, 25: Midway position, 26: Space part, 27, 28: Projection part, 30, 30a: Buffer mechanism, 31: Metal fitting 32: heat insulating material, 32a: insertion hole, 33: pipe material, 33a: gas vent hole, 34: container body, 35: lid, 36: circular groove, 37: air vent hole, 39: vacuum pump connection port

Claims (5)

内筒及び外筒を有し、該内筒と該外筒の間に真空断熱部が形成され、前記内筒の上部には開口が設けられた真空断熱容器において、
前記内筒及び前記外筒の材料に、引張強さが895MPa以上で、熱伝導率が、0.02cal/cm2/sec/℃/cm以下のチタン合金を用いたことを特徴とする真空断熱容器。
In a vacuum heat insulating container having an inner cylinder and an outer cylinder, a vacuum heat insulating portion is formed between the inner cylinder and the outer cylinder, and an opening is provided in an upper portion of the inner cylinder.
A vacuum heat insulation characterized by using a titanium alloy having a tensile strength of 895 MPa or more and a thermal conductivity of 0.02 cal / cm 2 / sec / ° C./cm or less as the material of the inner cylinder and the outer cylinder. container.
請求項1記載の真空断熱容器において、前記チタン合金は、合金元素としてアルミニウム及びバナジウムを含むことを特徴とする真空断熱容器。 2. The vacuum heat insulation container according to claim 1, wherein the titanium alloy contains aluminum and vanadium as alloy elements. 請求項1記載の真空断熱容器において、前記チタン合金は、Ti−6Al−4V合金又はTi−6Al−4V(ELI)合金であることを特徴とする真空断熱容器。 2. The vacuum heat insulation container according to claim 1, wherein the titanium alloy is a Ti-6Al-4V alloy or a Ti-6Al-4V (ELI) alloy. 請求項1〜3のいずれか1記載の真空断熱容器において、前記外筒の下部に前記真空断熱部に通ずる真空ポンプ接続口を備えていることを特徴とする真空断熱容器。 The vacuum heat insulation container of any one of Claims 1-3 WHEREIN: The vacuum pump connection port connected to the said vacuum heat insulation part is provided in the lower part of the said outer cylinder, The vacuum heat insulation container characterized by the above-mentioned. 請求項1〜4のいずれか1記載の真空断熱容器において、前記真空断熱部の下部は前記内筒及び前記外筒の熱膨張差を考慮した断熱材を用いた緩衝機構が設けられていることを特徴とすることを特徴とする真空断熱容器。 The vacuum heat insulation container of any one of Claims 1-4 WHEREIN: The lower part of the said vacuum heat insulation part is provided with the buffer mechanism using the heat insulating material which considered the thermal expansion difference of the said inner cylinder and the said outer cylinder. A vacuum insulation container characterized by the above.
JP2015069011A 2015-03-30 2015-03-30 Vacuum insulation container Active JP6548423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069011A JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069011A JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Publications (2)

Publication Number Publication Date
JP2016187470A true JP2016187470A (en) 2016-11-04
JP6548423B2 JP6548423B2 (en) 2019-07-24

Family

ID=57240696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069011A Active JP6548423B2 (en) 2015-03-30 2015-03-30 Vacuum insulation container

Country Status (1)

Country Link
JP (1) JP6548423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458938A (en) * 2021-01-26 2022-05-10 张家港富瑞特种装备股份有限公司 Low-temperature liquid storage gas cylinder

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666223A (en) * 1979-11-05 1981-06-04 Anelva Corp Metal magic pot and production thereof
JPH0727430U (en) * 1993-11-02 1995-05-23 象印マホービン株式会社 Metal vacuum double container
JPH09301443A (en) * 1996-05-16 1997-11-25 Yoshinobu Toyomura Simplified heat-retaining container and air vent used therefor
JPH11164784A (en) * 1997-12-03 1999-06-22 Nippon Sanso Kk Metallic vacuum double container
JP2001197992A (en) * 2000-01-19 2001-07-24 Leben Co Ltd Drinking cup made of titanium
JP2001252780A (en) * 2000-03-09 2001-09-18 Laser Oyo Kogaku Kenkyusho:Kk Method of joining by laser beam for cylinders of different kinds of metals
JP2002122359A (en) * 2000-10-12 2002-04-26 Mamoru Yamamoto Vacuum heat insulated tank
JP2003310451A (en) * 2002-04-25 2003-11-05 Isamu Tekkosho:Kk Liquid-storing container
JP2003310450A (en) * 2002-04-23 2003-11-05 Tiger Vacuum Bottle Co Ltd Heat-insulated double container
CN200973644Y (en) * 2006-11-10 2007-11-14 陈先凯 Vacuum cup and bucket in adjustable interlayer
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
CN104210768A (en) * 2013-05-31 2014-12-17 膳魔师(江苏)家庭制品有限公司 Plastic heat preservation utensil and manufacturing method of plastic heat preservation utensil

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666223A (en) * 1979-11-05 1981-06-04 Anelva Corp Metal magic pot and production thereof
JPH0727430U (en) * 1993-11-02 1995-05-23 象印マホービン株式会社 Metal vacuum double container
JPH09301443A (en) * 1996-05-16 1997-11-25 Yoshinobu Toyomura Simplified heat-retaining container and air vent used therefor
JPH11164784A (en) * 1997-12-03 1999-06-22 Nippon Sanso Kk Metallic vacuum double container
JP2001197992A (en) * 2000-01-19 2001-07-24 Leben Co Ltd Drinking cup made of titanium
JP2001252780A (en) * 2000-03-09 2001-09-18 Laser Oyo Kogaku Kenkyusho:Kk Method of joining by laser beam for cylinders of different kinds of metals
JP2002122359A (en) * 2000-10-12 2002-04-26 Mamoru Yamamoto Vacuum heat insulated tank
JP2003310450A (en) * 2002-04-23 2003-11-05 Tiger Vacuum Bottle Co Ltd Heat-insulated double container
JP2003310451A (en) * 2002-04-25 2003-11-05 Isamu Tekkosho:Kk Liquid-storing container
CN200973644Y (en) * 2006-11-10 2007-11-14 陈先凯 Vacuum cup and bucket in adjustable interlayer
JP2013533386A (en) * 2010-07-19 2013-08-22 エイティーアイ・プロパティーズ・インコーポレーテッド Alpha / beta titanium alloy processing
CN104210768A (en) * 2013-05-31 2014-12-17 膳魔师(江苏)家庭制品有限公司 Plastic heat preservation utensil and manufacturing method of plastic heat preservation utensil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458938A (en) * 2021-01-26 2022-05-10 张家港富瑞特种装备股份有限公司 Low-temperature liquid storage gas cylinder
CN114458938B (en) * 2021-01-26 2023-12-08 张家港富瑞新能源科技有限公司 Low-temperature liquid storage gas bottle

Also Published As

Publication number Publication date
JP6548423B2 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
CA3072166A1 (en) Joint configurations for vacuum-insulated articles
US20140339205A1 (en) Vacuum sealing method for heat insulating vessel
JP2004154338A (en) Double vacuum vessel
JP2016187470A (en) Vacuum heat insulation container
JP2000505340A (en) Thermal insulation container having double metal wall and method of manufacturing the same
JP2022513763A (en) Support device and storage container for liquefied gas
JP3202289U (en) Travel bag pull handle
JP2012220147A (en) Gas-liquid separator for compressor
JPH11164784A (en) Metallic vacuum double container
RU2672017C1 (en) Vacuum insulated container
JPWO2014027412A1 (en) Metal sealed double container
CN206072745U (en) The interlayer supporting construction of vacuum insulation double-jacket container
US20190145578A1 (en) Transport container
CN110002117A (en) A kind of the vacuum sealing interlayer and preparation method of titanium heat-insulated container
CN209622478U (en) A kind of base support means for high vacuum refrigerated storage tank
US1033398A (en) Metallic vessel for liquefied gases.
KR20150110344A (en) Vacuum Insulating Metal Container
JP5637429B2 (en) Titanium hydrogen storage container
CN204127644U (en) High strength steel cylinder
JP6834787B2 (en) Insulated wall structure
JP6590408B2 (en) Vacuum insulated container
CN205350841U (en) Low temperature container vacuum adsorption equipment for intermediate layer
JP2023073309A (en) Method for manufacturing portable thermos bottle
JP3199647U (en) Multi-sided vacuum bottle
JP2017006598A (en) Double heat insulation container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190625

R150 Certificate of patent or registration of utility model

Ref document number: 6548423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250