JP6546544B2 - Objective lens and microscope - Google Patents

Objective lens and microscope Download PDF

Info

Publication number
JP6546544B2
JP6546544B2 JP2016029579A JP2016029579A JP6546544B2 JP 6546544 B2 JP6546544 B2 JP 6546544B2 JP 2016029579 A JP2016029579 A JP 2016029579A JP 2016029579 A JP2016029579 A JP 2016029579A JP 6546544 B2 JP6546544 B2 JP 6546544B2
Authority
JP
Japan
Prior art keywords
objective lens
light
optical
light shielding
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016029579A
Other languages
Japanese (ja)
Other versions
JP2016085480A5 (en
JP2016085480A (en
Inventor
向井 香織
香織 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2016029579A priority Critical patent/JP6546544B2/en
Publication of JP2016085480A publication Critical patent/JP2016085480A/en
Publication of JP2016085480A5 publication Critical patent/JP2016085480A5/ja
Application granted granted Critical
Publication of JP6546544B2 publication Critical patent/JP6546544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、対物レンズ及び顕微鏡に関する。   The present invention relates to an objective lens and a microscope.

落射暗視野照明(「エピダーク照明」とも称される)とは、落射照明型顕微鏡において標本からの反射光を結像するレンズ系の周囲から当該レンズ系の光軸に中心が一致するリング状光束を供給し、この光束をレンズ系の先端付近に設けられた集光部材(例えば穴あき放物面鏡)によって標本上に導く落射暗視野観察のための照明である。ここでは、暗視野用照明光学系も含んだ全体を「対物レンズ」と称し、結像に寄与する内側のレンズ系を「対物光学系」と称する。近年では、対物レンズの高開口数化や長作動距離化が進んでおり、これに伴って対物光学系のレンズの外径がより大きくなる傾向にあるため、従来の落射照明型顕微鏡において標準的に装備されている照明系(リング状光束の供給系)では有効な落射暗視野照明を行うことが難しい。そこで、大口径を有する対物光学系に対応した落射暗視野照明を可能にすべく、対物光学系の光軸と同心円状に配置された外方偏向部材、内方偏向部材、及び集光部材を備えた落射暗視野照明用の対物レンズが開示されている(例えば、特許文献1参照)。   In the case of an epi-illumination dark field illumination (also referred to as “epi-dark illumination”), a ring-shaped luminous flux whose center coincides with the optical axis of the lens system from the periphery of the lens system that forms an image of reflected light from a specimen , And guides the luminous flux onto the sample by a condensing member (for example, a perforated paraboloid mirror) provided near the tip of the lens system. Here, the whole including the dark field illumination optical system is referred to as an "objective lens", and the inner lens system contributing to image formation is referred to as an "objective optical system". In recent years, the objective lens has been increasing in numerical aperture and working distance, and the outer diameter of the lens of the objective optical system tends to be larger along with this, so that it is standard in the conventional epi-illumination type microscope It is difficult to perform effective dark field illumination with the illumination system (ring light flux supply system) equipped with the Therefore, an outward deflection member, an inward deflection member, and a light collection member, which are disposed concentrically with the optical axis of the objective optical system, can be provided to enable incident dark field illumination corresponding to the objective optical system having a large aperture. An objective lens for incident dark field illumination is disclosed (see, for example, Patent Document 1).

また、対物光学系は高開口数や長作動距離化のためその径が太くなっているが、外側の鏡筒は制限があるので、暗視野用の光束に使える空間は制限されるため、狭い空間に暗視野用照明光学系の光学部材を配置する必要があり、配置が困難であるとともに、対物光学系の周囲に配置する光学部材(偏向部材、集光部材)間での光路中で入射角度を持つ光線(入射時に光軸に平行な光束以外の光線)が光学部材の周囲に設けられた鏡筒の内壁面に当たって光路外へ反射されることで光量ロスが生じる。特に暗視野用照明光学系では入射光束の瞳位置は対物レンズから離れた位置にあることが一般的で、例えば、照明光と結像光を分離する穴あきミラー近辺にある絞りが開口絞りに相当することが多い。この場合、径方向のアフォーカル系では瞳位置が離れているため、角度を持つ光線は広がってしまい、光量ロスになりやすい。   In addition, although the objective optical system has a large diameter for high numerical aperture and long working distance, the outer lens barrel has limitations, so the space that can be used for light flux for dark field is limited. It is necessary to dispose the optical member of the dark field illumination optical system in the space, and the placement is difficult, and the light is incident in the optical path between the optical members (deflection member, light collecting member) disposed around the objective optical system. The light beam having an angle (a light beam other than a light beam parallel to the optical axis at the time of incidence) strikes the inner wall surface of a lens barrel provided around the optical member and is reflected to the outside of the light path to cause loss of light quantity. In particular, in the dark field illumination optical system, the pupil position of the incident light beam is generally located at a distance from the objective lens. For example, a diaphragm in the vicinity of a perforated mirror that separates the illumination light and the imaging light It often corresponds. In this case, since the pupil position is apart in the radial afocal system, the light beam having the angle spreads, and the light amount loss easily occurs.

特公平4−048203号公報Japanese Examined Patent Publication No. 4-048203

顕微鏡における暗視野観察では、その観察方法の特性上、強い照明光を供給することが必要となるため、照明光の光量を十分に確保できないと、良好な落射暗視野観察ができなくなるという課題がある。   In the dark-field observation with a microscope, it is necessary to supply strong illumination light because of the characteristics of the observation method. Therefore, if the light quantity of the illumination light can not be secured sufficiently, the problem is that good dark-field observation can not be performed. is there.

本発明は、このような課題に鑑みてなされたものであり、高開口数、長作動距離の対物光学系に対しても、光量ロスを低減して有効な落射暗視野照明を供給することが可能な構成の対物レンズ、及び、この対物レンズを備えた顕微鏡を提供することを目的とする。   The present invention has been made in view of such problems, and it is also possible to reduce the light quantity loss and supply effective epi-illumination dark-field illumination to an objective optical system having a high numerical aperture and a long working distance. It is an object of the present invention to provide an objective lens of a possible configuration and a microscope provided with this objective lens.

前記課題を解決するために、本発明に係る対物レンズは、対物光学系と、遮光部材と、対物レンズ筐体と、暗視野光学系と、を有する対物レンズであって、前記暗視野光学系は、第1光学部材と、第2光学部材と、を有し、前記第1光学部材は、入射した光を前記第1光学部材と前記第2光学部材との間の集光位置で集光させ、前記第2光学部材は、前記集光位置より発散光となった光を偏向して標本に照射し、前記遮光部材は、第1遮光部と、前記第1遮光部よりも前記標本側に設けられた第2遮光部と、を有し、前記第2遮光部の前記対物レンズ筐体に対向する面は、前記第1遮光部の前記対物レンズ筐体に対向する面よりも、前記対物レンズ筐体側に設けられ、前記第1光学部材は、前記第1遮光部と前記対物レンズ筐体との間の空間に配置されている。
また、本発明に係る顕微鏡は、上述した対物レンズを有することを特徴とする。
In order to solve the above problems, an objective lens according to the present invention is an objective lens having an objective optical system, a light shielding member, an objective lens case, and a dark field optical system, wherein the dark field optical system Has a first optical member and a second optical member, and the first optical member condenses incident light at a condensing position between the first optical member and the second optical member And the second optical member deflects the light diverging from the light collecting position and irradiates the specimen with the light shielding member, the first light shielding portion and the first light shielding portion with respect to the specimen side. The second light-shielding portion provided in the second light-shielding portion, and the surface of the second light-shielding portion facing the objective lens housing is smaller than the surface of the first light shielding portion facing the objective lens housing Provided on an objective lens housing side, the first optical member is a space between the first light shielding portion and the objective lens housing It is located.
A microscope according to the present invention is characterized by having the above-described objective lens.

本発明によると、高開口数、長作動距離の対物光学系に対しても、光量ロスを低減して有効な落射暗視野照明を供給することが可能な構成の対物レンズ、及び、この対物レンズを備えた顕微鏡を提供することができる。   According to the present invention, an objective lens configured to be capable of providing effective incident dark field illumination with reduced light amount loss even for a high numerical aperture, long working distance objective optical system, and this objective lens Can be provided with a microscope.

顕微鏡の構成を示す説明図である。It is an explanatory view showing composition of a microscope. 顕微鏡の構成の一部を示す説明図である。It is an explanatory view showing a part of composition of a microscope. 第1実施例に係る対物レンズの構成を示す説明図である。It is explanatory drawing which shows the structure of the objective lens which concerns on 1st Example. 第1光学部材の構成を示す説明図であって、(a)は正面図を示し、(b)はIIIb−IIIb断面図を示す。It is explanatory drawing which shows the structure of a 1st optical member, Comprising: (a) shows a front view, (b) shows IIIb-IIIb sectional drawing. 第2実施例に係る対物レンズの構成を示す説明図である。It is explanatory drawing which shows the structure of the objective lens which concerns on 2nd Example. 第3実施例に係る暗視野照明系の構成を示す説明図である。It is explanatory drawing which shows the structure of the dark field illumination system which concerns on 3rd Example.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1及び図2に示すように、本実施形態に係る顕微鏡1は、光源が格納されたランプハウス11と、照明光学系12と、レボルバー19と、このレボルバー19に取り付けられた対物レンズ30と、この対物レンズ30に格納された対物光学系31及び第2対物レンズ23を有する結像光学系17と、照明光学系12と結像光学系17との間の光路に挿脱可能に配置された暗視野用レンズ21及び暗視野観察用のミラーを含むミラーブロック13(以下、「暗視野ブロック13」と呼ぶ)と、結像光学系17により結像された像を観察する接眼レンズ18と、標本16が載置されるステージ15と、を有して構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the microscope 1 according to the present embodiment includes a lamp house 11 storing a light source, an illumination optical system 12, a revolver 19, and an objective lens 30 attached to the revolver 19. , And an imaging optical system 17 having an objective optical system 31 and a second objective lens 23 stored in the objective lens 30, and an optical path between the illumination optical system 12 and the imaging optical system 17 so as to be insertable and removable. A mirror block 13 including a dark field lens 21 and a dark field observation mirror (hereinafter referred to as "dark field block 13"), and an eyepiece lens 18 for observing an image formed by the imaging optical system 17. , And a stage 15 on which the sample 16 is placed.

図2に示すように、ランプハウス11からの照明光は照明光学系12と暗視野ブロック13に含まれる暗視野用レンズ21によりリング状の光束に変換され、暗視野用中空ミラー22に入射する。そして、この暗視野用中空ミラー22で反射された光束は、対物レンズ30内の対物光学系31を囲むように配置された暗視野用照明光学系35を介して対物レンズ30の先端部から、標本16に対して外周部から斜めに照射される。また、標本16からの観察光は、対物光学系31により略平行光束となり、第2対物レンズ23で集光されて一次像面24上に結像され、さらに、接眼レンズ18により観察される。なお、暗視野ブロック13の代わりに、ハーフミラー42を有する明視野観察用のミラーブロック41をこの顕微鏡1に取り付けることにより、明視野観察が可能となる。   As shown in FIG. 2, the illumination light from the lamp house 11 is converted into a ring-shaped luminous flux by the illumination optical system 12 and the dark field lens 21 included in the dark field block 13 and enters the dark field hollow mirror 22. . The light beam reflected by the dark field hollow mirror 22 is transmitted from the tip of the objective lens 30 through the dark field illumination optical system 35 disposed so as to surround the objective optical system 31 in the objective lens 30. The specimen 16 is obliquely irradiated from the outer peripheral portion. The observation light from the sample 16 is collimated by the objective optical system 31 into a substantially parallel light beam, condensed by the second objective lens 23, imaged on the primary image plane 24, and observed by the eyepiece lens 18. Incidentally, by attaching a mirror block 41 for bright field observation having a half mirror 42 to the microscope 1 instead of the dark field block 13, bright field observation becomes possible.

それでは、このような対物レンズ30、及び、この対物レンズ30内に配置された暗視野用照明光学系35の構成について、図3〜図5を合わせて用いて説明する。本実施形態に係る対物レンズ30は、図2、図3及び図5に示すように、内部に対物光学系31が格納された円筒形状の遮光部材32と、遮光部材32を囲むように配置され、この遮光部材32の周りに空間(以下、「暗視野用光路33」と呼ぶ)を形成する対物レンズ筐体34と、暗視野用光路33内に配置された暗視野用照明光学系35と、から構成される。また、暗視野用照明光学系35は、光源側に配置された第1光学部材36と、標本側先端部に配置された第2光学部材37と、から構成されている。上述した暗視野用中空ミラー22で反射されたリング状の照明光束は、この対物レンズ30の光源側から暗視野用光路33内に導かれ、暗視野用照明光学系35の第1光学部材36に入射する。   Now, the configuration of such an objective lens 30 and the dark field illumination optical system 35 disposed in the objective lens 30 will be described using FIG. 3 to FIG. 5 together. The objective lens 30 according to the present embodiment is disposed so as to surround the cylindrical light shielding member 32 in which the objective optical system 31 is stored, and the light shielding member 32, as shown in FIGS. An objective lens housing 34 for forming a space (hereinafter, referred to as “dark-field optical path 33”) around the light shielding member 32, and a dark-field illumination optical system 35 disposed in the dark-field optical path 33 , Composed of In addition, the dark field illumination optical system 35 is configured of a first optical member 36 disposed on the light source side and a second optical member 37 disposed on the sample side tip. The ring-shaped illumination light beam reflected by the dark field hollow mirror 22 described above is guided from the light source side of the objective lens 30 into the dark field optical path 33, and the first optical member 36 of the dark field illumination optical system 35. Incident to

第1光学部材36は、図4(a)に示すように、光源側から見たときにリング状であって、対物レンズ30の対物光学系31の光軸AX(結像光学系17の光軸でもある)を含む断面において、光軸AXを円の中心とするときに、この円の径方向に広がる2つの面R1,R2のうちの少なくとも一方の面が正の屈折力を有するように構成されており、全体として正の屈折力を持っている。例えば、これらの面R1,R2は、図4(b)においては、対物光学系31の光軸AXから距離h2離れて略平行に延びる対称軸SAX上に頂点を持つ2つの円弧で構成され、これらの円弧を光軸AXを中心に回転させた軌跡として形成されるトロイダルレンズが用いられる。また、図3に示す第1光学部材36は、光源側の面が凸面で、標本側の面が平面に形成されている場合を示している。これ以外にも、光源側の面を凸面にし、標本側の面を凹面とする、或いは光源側の面を凹面にし、標本側の面を凸面としても良い。さらに、この第1光学部材36の面R1,R2の断面形状は、円弧以外でも軸SAXに対して線対称であればよく、双曲線や放物線、楕円形状、高次非球面形状であれば良い。   The first optical member 36 has a ring shape when viewed from the light source side as shown in FIG. 4A, and the optical axis AX of the objective optical system 31 of the objective lens 30 (the light of the imaging optical system 17 So that at least one of the two surfaces R1 and R2 extending in the radial direction of the circle has a positive refracting power when the optical axis AX is at the center of the circle in the section including the axis) It is constructed and has positive refractive power as a whole. For example, in FIG. 4B, these surfaces R1 and R2 are formed by two arcs having vertices on a symmetry axis SAX extending substantially in parallel from the optical axis AX of the objective optical system 31 at a distance h2. A toroidal lens formed as a locus obtained by rotating these circular arcs about the optical axis AX is used. The first optical member 36 shown in FIG. 3 has a convex surface on the light source side and a flat surface on the sample side. Besides this, the surface on the light source side may be convex, and the surface on the sample side may be concave, or the surface on the light source side may be concave and the surface on the sample side may be convex. Furthermore, the cross-sectional shape of the surfaces R1 and R2 of the first optical member 36 may be any line other than a circular arc as long as it is line symmetrical with respect to the axis SAX, and may be a hyperbolic curve, a parabola, an elliptical shape, or a high order aspheric surface.

このように、第1光学部材36は、少なくとも対物光学系31の光軸AXを中心とする円の径方向に正の屈折力を有し、暗視野光路33に入射した照明光束(リング状の光束)を、径方向に集光する。なお、この第1光学部材36は、図4(b)に示す断面形状を光軸を中心に回転させた軌跡の形状を有しているため、その周方向の屈折力は無い(焦点距離が無限大)。ここで、本実施形態に係る対物レンズ30は、図3に示すように、照明光束の大部分が、リング状の第1光学部材36の内側部分(光軸側の部分)を通過するように構成されている。すなわち、距離h2が、リング状の光束の中心半径(光軸AXからリング状光束の中心までの距離)より大きくなるように構成されている。そのため、この第1光学部材36は、対物光学系31の光軸AXを含む任意の断面において、光束のうち最も光軸AX側の光を、最も光軸AXから離れた光よりも大きく径方向に屈折させるとともに、最も光軸側(内側)の光を光軸AXから離れるように径方向に屈折させる。これにより、図3または図5に示すように、対物光学系31の中間部分に口径の大きいレンズが配置されている場合などの理由により、遮光部材32が二重円筒形状に形成されて段差32aがあり、暗視野光路33が狭くなっていたとしても、光束は、この段差32aと干渉することなく、狭くなった暗視野用光路33を通過させることが可能となる。   As described above, the first optical member 36 has a positive refractive power in the radial direction of a circle centered on at least the optical axis AX of the objective optical system 31, and the illumination light flux (ring shape Light flux) in the radial direction. Since the first optical member 36 has a shape of a locus obtained by rotating the cross-sectional shape shown in FIG. 4B about the optical axis, there is no refractive power in the circumferential direction (the focal length is Infinity). Here, as shown in FIG. 3, in the objective lens 30 according to the present embodiment, most of the illumination light flux passes through the inner portion (portion on the optical axis side) of the ring-shaped first optical member 36. It is configured. That is, the distance h2 is configured to be larger than the central radius of the ring-like light beam (the distance from the optical axis AX to the center of the ring-like light beam). Therefore, in an arbitrary cross section including the optical axis AX of the objective optical system 31, the first optical member 36 has the light beam on the side closest to the optical axis AX among the light fluxes in the radial direction larger than the light farthest from the optical axis AX. And light in the most optical axis side (inner side) is radially refracted away from the optical axis AX. Thereby, as shown in FIG. 3 or FIG. 5, the light shielding member 32 is formed in a double cylindrical shape, for example, when a lens with a large aperture is disposed in the middle part of the objective optical system 31. Even if the dark field optical path 33 is narrowed, the light flux can pass through the narrowed dark field optical path 33 without interfering with the step 32a.

一方、第2光学部材37は、第1光学部材36から出射した光束を光軸AXの方向に偏向して標本16の標本面16a上の光軸AXを含む所定の照明領域に照射するように構成されている。この第2光学部材37は、図3に示すように、対物光学系31の光軸AXを中心軸とする高次非球面形状の凹面である反射面37aを有する穴あきミラー(反射面37aが高次非球面形状に形成された凹面であって、光軸を含む部分に円筒状の開口部37bが形成されたミラー)、または、図5に示すように、少なくとも1つのレンズ面が非球面形状に形成されたレンズであって、光軸を含む部分に円筒状の開口部を有する穴あきレンズが用いられる。なお、この第2光学部材37は、対物レンズ30(対物光学系31)の作動距離や開口数に合わせて設計する必要があるため、倍率の異なる対物レンズ間で共通化することは難しい。   On the other hand, the second optical member 37 deflects the light beam emitted from the first optical member 36 in the direction of the optical axis AX to irradiate a predetermined illumination area including the optical axis AX on the sample surface 16 a of the sample 16. It is configured. As shown in FIG. 3, this second optical member 37 has a perforated mirror (reflection surface 37 a that has a reflection surface 37 a that is a concave surface of a high-order aspheric shape whose central axis is the optical axis AX of the objective optical system 31). A concave surface formed in a high-order aspheric shape, and a mirror in which a cylindrical opening 37b is formed in a portion including the optical axis, or, as shown in FIG. 5, at least one lens surface is aspheric A lens formed into a shape, and having a cylindrical opening at a portion including the optical axis is used. In addition, since it is necessary to design this second optical member 37 in accordance with the working distance and numerical aperture of the objective lens 30 (objective optical system 31), it is difficult to share the objective lenses having different magnifications.

このような構成の暗視野用照明光学系35によると、第1光学部材36で径方向に集光された照明光は、この第1光学部材36の径方向の集光位置Bで一旦集光して発散光となって第2光学部材37に入射する。そして、この第2光学部材37で反射または屈折されて対物光学系31の光軸AXの方向に偏向されて標本面16aに照射される。   According to the dark field illumination optical system 35 having such a configuration, the illumination light collected in the radial direction by the first optical member 36 is once collected at the light collection position B in the radial direction of the first optical member 36. Then, it becomes divergent light and is incident on the second optical member 37. Then, the light is reflected or refracted by the second optical member 37, deflected in the direction of the optical axis AX of the objective optical system 31, and irradiated onto the sample surface 16a.

なお、この暗視野用照明光学系35を小型化するためには、第1光学部材36で集光される照明光の径方向の集光位置Bが、第1光学部材36と第2光学部材37との間であって、第1光学部材36を基点として、この第1光学部材36から第2光学部材37までの距離の1/3より離れていることが望ましい。一般に第1光学部材36は胴付面近辺に配置され、第2光学部材37は作動距離が確保できるぎりぎりの位置に配置される。そのため、この暗視野用照明光学系35は、次式(1)の条件を満足することが望ましい。このように対物レンズ30を構成すると、対物光学系31の径が大きくなる部分に、照明光束が最も細くなり、且つ、光軸AXから離れる集光位置Bが位置することにより、照明光を効率良く標本面16aに導くことができるからである。   In order to miniaturize the dark field illumination optical system 35, the radial focusing position B of the illumination light focused by the first optical member 36 is the first optical member 36 and the second optical member. It is desirable that the distance between the first optical member 36 and the second optical member 37 be greater than one-third of the distance between the first optical member 36 and the second optical member 37 with the first optical member 36 as a base point. In general, the first optical member 36 is disposed in the vicinity of the cylinder attachment surface, and the second optical member 37 is disposed at the position where the working distance can be secured. Therefore, it is desirable that the dark field illumination optical system 35 satisfy the condition of the following expression (1). When the objective lens 30 is configured as described above, the illumination light flux becomes the narrowest at a portion where the diameter of the objective optical system 31 becomes large, and the light collecting position B away from the optical axis AX is located, thereby increasing the efficiency of the illumination light. It is because it can be well led to the sample surface 16a.

1/3 ≦ fr/(fp−WD) < 1 (1)
但し、
fr:第1光学部材36の径方向の焦点距離
fp:対物レンズ30の同焦点距離
WD:対物レンズ30の作動距離
1/3 ≦ fr / (fp−WD) <1 (1)
However,
fr: radial focal length of first optical member 36 fp: same focal length of objective lens 30 WD: working distance of objective lens 30

なお、この条件式(1)において、作動距離は、対物レンズ30の先端から標本面16aまでの距離を示し、同焦点距離は、胴付面34a(この対物レンズ30がレボルバー19に取り付けられるときの取付面)から標本面16aまでの距離を示す。また、焦点距離(同焦点距離及び径方向の焦点距離)は、対物レンズ30で使用される主波長に対する値である。すなわち、対物レンズ30を可視光用として使用する場合は主波長はd線であり、近赤外用や紫外用として使用する場合はそれに応じた主波長となる。また、第1光学部材36の径方向の焦点距離frは、次式(2)の関係を有している。   In the conditional expression (1), the working distance represents the distance from the tip of the objective lens 30 to the sample surface 16a, and the same focal length is the cylinder attachment surface 34a (when the objective lens 30 is attached to the revolver 19) Of the sample surface 16a). Further, the focal length (the same focal length and the focal length in the radial direction) is a value for the main wavelength used in the objective lens 30. That is, when the objective lens 30 is used for visible light, the main wavelength is d-line, and when it is used for near infrared light or ultraviolet light, the main wavelength corresponding to that is used. The radial focal length fr of the first optical member 36 has the following relationship (2).

Figure 0006546544
但し、
Rr1:光源側面R1の径方向の曲率半径
Rr2:標本側面R2の径方向の曲率半径
d:面R1,R2の軸SAX上の距離
n:媒質の主波長に対する屈折率
Figure 0006546544
However,
Rr1: Radius of curvature radius of light source side surface R1 Rr2: Radius of radius of curvature of specimen side R2 d: Distance on the axis SAX of the surfaces R1, R2 n: Index of refraction with respect to the main wavelength of the medium

また、上述したように、リング状の照明光の通過領域は、リング状の第1光学部材36の内側領域(光軸側の部分)に偏っているため、この第1光学部材36を、光の通過しない外側の部分(図4の破線の部分)が削り取られた形状とすることにより、小型化することができる。   Further, as described above, since the passing area of the ring-shaped illumination light is biased to the inner area (portion on the optical axis side) of the ring-shaped first optical member 36, the first optical member 36 It can be miniaturized by making it the shape which the outside part (part of the broken line of FIG. 4) which does not pass through is scraped off.

なお、以上の説明では、第1光学部材36及び第2光学部材37のそれぞれを、対物レンズ30の対物光学系31の光軸AXを回転軸とする回転対称形状として構成した場合について説明したが、これは、暗視野用照明光学系35に入射する照明光束がリング形状を有しているためである。しかしながら、照明光束は、このリング形状に限定されることはない。例えば、複数の光源(例えば、LEDや、光源装置からの光を導く光ファイバーの端面)とこの光源からの照明光を平行光にするマイクロレンズとの組を、対物レンズ30の暗視野用光路33のリング状の開口部に沿って並べ、それぞれの光源からの照明光を、第1光学部材36及び第2光学部材37からなる暗視野用照明光学系35で標本面16aに照射するように構成しても良い。この場合、第1及び第2光学部材36,37は、回転対称形状の部材のうち、照明光が通過する部分だけに円周上に複数並べた構成とすることができる。   In the above description, the case where each of the first optical member 36 and the second optical member 37 is configured as a rotationally symmetric shape with the optical axis AX of the objective optical system 31 of the objective lens 30 as the rotation axis has been described. This is because the illumination light beam incident on the dark field illumination optical system 35 has a ring shape. However, the illumination beam is not limited to this ring shape. For example, a combination of a plurality of light sources (for example, an LED or an end face of an optical fiber for guiding light from a light source device) and a micro lens for collimating illumination light from the light source Are arranged along the ring-shaped opening, and illumination light from each light source is irradiated onto the sample surface 16a by the dark field illumination optical system 35 including the first optical member 36 and the second optical member 37. You may. In this case, the first and second optical members 36 and 37 may be arranged along the circumference only at the portion through which the illumination light passes among the members of the rotationally symmetric shape.

なお、前述のように、第2光学部材37を複数の光学部材により構成した場合であっても、後述する実施例1,2における穴あきミラー、又は穴あきレンズに含まれる。   As described above, even when the second optical member 37 is formed of a plurality of optical members, it is included in the perforated mirror or the perforated lens in Examples 1 and 2 described later.

以下、対物レンズ30に設けられた暗視野用照明光学系35の実施例を、図面に基づいて説明する。なお、図3、図5及び図6は、第1〜第3実施例の構成を示している。   Hereinafter, examples of the dark field illumination optical system 35 provided in the objective lens 30 will be described based on the drawings. 3, 5 and 6 show the configurations of the first to third embodiments.

[第1実施例]
図3は第1実施例に係る暗視野用照明光学系35を有する対物レンズ30の構成を示す断面図である。この第1実施例に係る対物レンズ30は高倍率の対物レンズである。この対物レンズ30において、暗視野用照明光学系35は、光源側から順に、光源側の面(図4(b)における面R1)から入射したリング状の照明光束を径方向(光軸AXを円の中心とするときに、この円の径方向)に集光する第1光学部材36と、この第1光学部材36で集光された照明光束を、対物光学系31の光軸方向に偏向させ、標本面16aの所定の照明領域に照射する第2光学部材37と、から構成されている。ここで、第1光学部材36は、照明光束を、径方向の内側の光線が対物光学系31の光軸AXから離れるように屈折させ、この第1光学部材36と第2光学部材37との間の集光位置Bで一旦集光させるように構成されている。また、第2光学部材37は、対物光学系31の光軸AX上に頂点を有する高次非球面の一部により構成された穴あきミラーである。この第1実施例に係る対物レンズ30は高倍率の対物レンズであるため、標本面16a上の狭い照明領域に照明光を集光するため、第2光学部材37としては、上述した高次非球面形状のミラーを用いて、上述の焦点位置Bより発散光となった照明光束を集光して標本面16a上に照射するように構成されている。
[First embodiment]
FIG. 3 is a cross-sectional view showing the configuration of the objective lens 30 having the dark field illumination optical system 35 according to the first embodiment. The objective lens 30 according to the first embodiment is a high power objective lens. In the objective lens 30, the dark field illumination optical system 35 sequentially arranges, from the light source side, a ring-shaped illumination light beam incident from the surface (surface R1 in FIG. 4B) on the light source side (optical axis AX). The first optical member 36 that condenses in the radial direction of the circle when it is the center of the circle, and the illumination light flux collected by the first optical member 36 are deflected in the optical axis direction of the objective optical system 31 And a second optical member 37 for irradiating a predetermined illumination area of the sample surface 16a. Here, the first optical member 36 refracts the illumination light flux so that the light beam inside in the radial direction is separated from the optical axis AX of the objective optical system 31, and the first optical member 36 and the second optical member 37 It is comprised so that it may condense light at the condensing position B between. Further, the second optical member 37 is a perforated mirror formed by a part of a high-order aspheric surface having an apex on the optical axis AX of the objective optical system 31. Since the objective lens 30 according to the first embodiment is an objective lens with a high magnification, the second optical member 37 has the above-described high-order non-linearity as the second optical member 37 to condense illumination light on a narrow illumination area on the sample surface 16a. The illumination light flux which has become divergent light from the above-described focal position B is collected using a spherical mirror and configured to be irradiated onto the sample surface 16a.

以下の表1に、この第1実施例に係る暗視野用照明光学系35の諸元の値を示す。なお、この表1において、f、NA、WD、βはそれぞれ対物レンズ30(対物光学系31)の焦点距離、開口数、作動距離及び倍率を示す。また、h2は、対物光学系31(結像光学系17)の光軸AXから第1光学部材35の面R1,R2の対称軸SAXまでの距離を示す。また、mは光線の進行する方向に沿った各光学面の番号(面番号)を示し、rは各光学面の曲率半径(径方向の曲率半径の場合もある)を示し、dは各光学面から次の光学面までの光軸AX上(対称軸SAX上の場合もある)の距離を示し、ndは媒質のd線に対する屈折率を示し、νdはアッベ数(=(nd−1)/(nF−nC))を示す。ここで、nF及びnCはそれぞれF線及びC線に対する屈折率を表す。   Table 1 below shows values of various items of the dark field illumination optical system 35 according to the first embodiment. In Table 1, f, NA, WD and β respectively indicate the focal length, numerical aperture, working distance and magnification of the objective lens 30 (objective optical system 31). Further, h2 represents the distance from the optical axis AX of the objective optical system 31 (imaging optical system 17) to the symmetry axis SAX of the surfaces R1 and R2 of the first optical member 35. Further, m indicates the number (surface number) of each optical surface along the traveling direction of the light beam, r indicates the radius of curvature (may be the radius of curvature in the radial direction) of each optical surface, and d indicates each optical Indicates the distance on the optical axis AX (sometimes on the symmetry axis SAX) from the surface to the next optical surface, nd indicates the refractive index to the d-line of the medium, and d d indicates the Abbe number (= (nd-1) / (NF-nC)) is shown. Here, nF and nC represent the refractive index to the F line and the C line, respectively.

ここで、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(3)で表される。従って、以降の諸元表においては、非球面については、非球面データ、すなわち円錐定数K及び各非球面定数A4〜A8の値を示す。ここで、「E−n」は「×10-n」を示す。 Here, the aspheric surface has a height in the direction perpendicular to the optical axis as y, and the distance (sag amount) along the optical axis from the tangent plane of the vertex of each aspheric surface at height y to each aspheric surface is S Assuming that the radius of curvature (paraxial radius of curvature) of the reference spherical surface is r, the conic constant is K, and the n-th-order aspheric coefficient is An, the following equation (3) is used. Therefore, in the following data tables, for aspheric surfaces, aspheric surface data, that is, the values of the conical constant K and the respective aspheric constants A4 to A8 are shown. Here, “E-n” indicates “× 10 −n ”.

S(y)=(y2/r)/[1+{1−(1+K)(y2/r2)}1/2
+A4×y4+A6×y6+A8×y8 (3)
S (y) = (y 2 / r) / [1+ {1- (1 + K) (y 2 / r 2)} 1/2]
+ A 4 x y 4 + A 6 x y 6 + A 8 x y 8 (3)

なお、各実施例の表中において、非球面(その形状が上記非球面式(3)で表される面)には面番号の右側に*を付している。   In the tables of the respective embodiments, an aspheric surface (a surface whose shape is represented by the aspheric surface expression (3)) is given an asterisk * on the right side of the surface number.

また、以下の全ての諸元値において掲載されている曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、空気の屈折率1.000000は省略してある。以上の説明は、以降の諸元表においても同様である。   In addition, although the unit of curvature radius r, surface separation d, and other lengths listed in all the specification values below is generally “mm”, the optical system is equivalent even if it is scaled up or down proportionally The optical performance of is not limited to this. In addition, the refractive index 1.00000 of air is omitted. The above description is the same in the following specification tables.

(表1)
f=2mm
NA=0.8
WD=4.5mm
β=100x
h2=14.2mm

m r d nd νd
光源面 ∞ ∞
1 17.00000 3.500000 1.5251 56
2 ∞ 62.900000
3* -9.20000 -4.400000
標本面 ∞

非球面データ
K A4 A6 A8
第3面 -0.900000 0.100000E-03 -0.340000E-06 0.350000E-09
(Table 1)
f = 2 mm
NA = 0.8
WD = 4.5 mm
β = 100x
h2 = 14.2 mm

m r d nd d d
Light source surface ∞ ∞
1 17.00000 3.500000 1.5251 56
2 6 62.900000
3 * -9.20000 -4.400000
Sample plane ∞

Aspheric data
K A4 A6 A8
Third surface -0.900000 0.100000E-03 -0.340000E-06 0.350000E-09

この表1に示す面番号1〜3は、図3に示す番号1〜3に対応している。具体的には、第1面は第1光学部材36の光源側の面(図4(b)の面R1)に対応し、第2面は第1光学部材36の標本側の面(図4(b)の面R2)に対応する。この第1面及び第2面における曲率半径rは、対物光学系31の光軸AXから距離h2だけ離れて略平行に延びる対称軸SAX上に中心がある円弧として示されており、面間隔dは、対称軸SAX上にある各面の頂点を光軸AXに対して垂直に下ろした位置からの距離として示されている。なお、この表1の第1面及び第2面に示す曲率半径rは、光軸AXを中心とする円の径方向の値であり、周方向は無限大である。また、第3面は第2光学部材36の反射面37bに対応している。この第3面は、表1に示す非球面データと非球面式(3)とにより表される曲線を対物光学系31の光軸AXを中心軸として回転させた面の一部であり、この非球面の基準球面の頂点は、光軸AX上の標本面16よりも光源から離れた位置にある。なお、図3において、その一部が第3面を形成する非球面を破線で示す。また、標本面16aも平面(曲率半径r=∞)である。   The surface numbers 1 to 3 shown in Table 1 correspond to the numbers 1 to 3 shown in FIG. Specifically, the first surface corresponds to the surface on the light source side of the first optical member 36 (the surface R1 in FIG. 4B), and the second surface corresponds to the surface on the sample side of the first optical member 36 (FIG. 4) It corresponds to the surface R2) of (b). The radius of curvature r in the first surface and the second surface is shown as an arc centered on a symmetry axis SAX extending substantially in parallel from the optical axis AX of the objective optical system 31 by a distance h2, Is indicated as a distance from a position where the vertex of each surface on the symmetry axis SAX is lowered perpendicularly to the optical axis AX. The radius of curvature r shown on the first surface and the second surface of Table 1 is a value in the radial direction of a circle centered on the optical axis AX, and the circumferential direction is infinite. The third surface corresponds to the reflection surface 37 b of the second optical member 36. The third surface is a part of the surface obtained by rotating the curve represented by the aspheric surface data shown in Table 1 and the aspheric surface formula (3) around the optical axis AX of the objective optical system 31 as a central axis. The apex of the aspheric reference sphere is located farther from the light source than the sample surface 16 on the optical axis AX. In FIG. 3, an aspheric surface, a part of which forms the third surface, is indicated by a broken line. The sample surface 16a is also a plane (curvature radius r = r).

この第1実施例に係る暗視野用照明光学系35及びこの照明光学系を有する対物レンズ30を以上のように構成すると、照明光の光量ロスを最小限に留め効率的な照明が可能となる。また、部品点数が少なく、低コスト化が可能となる。   When the dark field illumination optical system 35 according to the first embodiment and the objective lens 30 having the illumination optical system are configured as described above, it is possible to minimize the light amount loss of the illumination light and achieve efficient illumination. . Further, the number of parts is small, and cost reduction can be achieved.

[第2実施例]
図5は第2実施例に係る暗視野用照明光学系35を有する対物レンズ30の構成を示す断面図である。この第2実施例に係る対物レンズ30は低倍率の対物レンズである。この対物レンズ30において、暗視野用照明光学系35は、光源側から順に、光源側の面(図4(b)における面R1)から入射したリング状の照明光束を径方向に集光する第1光学部材36と、この第1光学部材36で集光された照明光束を、対物光学系31の光軸方向に偏向させ、標本面16aの所定の照明領域に照射する第2光学部材37と、から構成されている。ここで、第1光学部材36は、第1実施例と同一の部材であり、対物光学系31の光軸AXを含む任意の断面において、光束のうち最も光軸AX側の光を、最も光軸AXから離れた光よりも大きく径方向に屈折させるとともに、最も光軸側(内側)の光(径方向の内側の光)を対物光学系31の光軸AXから離れるように屈折させ、この第1光学部材36と第2光学部材37との間の集光位置Bで一旦集光させるように構成されている。また、第2光学部材37は、そのレンズ面が対物光学系31の光軸AX上に頂点を有するレンズの一部であり、光源側の面が高次非球面形状を有した穴あきレンズである(標本側の面は放物面である)。
Second Embodiment
FIG. 5 is a cross-sectional view showing the configuration of the objective lens 30 having the dark field illumination optical system 35 according to the second embodiment. The objective lens 30 according to the second embodiment is a low power objective lens. In the objective lens 30, the dark field illumination optical system 35 radially condenses the ring-shaped illumination light flux incident from the light source side surface (surface R1 in FIG. 4B) from the light source side. 1 optical member 36, and a second optical member 37 for deflecting the illumination light beam collected by the first optical member 36 in the direction of the optical axis of the objective optical system 31 and irradiating a predetermined illumination area of the sample surface 16a , Is composed of. Here, the first optical member 36 is the same member as that of the first embodiment, and in an arbitrary cross section including the optical axis AX of the objective optical system 31, the light on the optical axis AX side of the luminous flux is the most light While refracting in the radial direction more than light away from the axis AX, the light (inner side in the radial direction) on the optical axis side (inner side) is refracted away from the optical axis AX of the objective optical system 31, It is configured to once condense light at a condensing position B between the first optical member 36 and the second optical member 37. The second optical member 37 is a holed lens whose lens surface is part of a lens having a vertex on the optical axis AX of the objective optical system 31 and whose surface on the light source side has a high-order aspheric shape. Yes (the sample side is a paraboloid).

以下の表2に、この第2実施例に係る暗視野用照明光学系35の諸元の値を示す。   Table 2 below shows values of various items of the dark field illumination optical system 35 according to the second embodiment.

(表2)
f=10mm
NA=0.4
WD=19mm
β=20x
h2=14.2mm

m r d nd νd
光源面 ∞ ∞
1 17.00000 3.500000 1.5251 56
2 ∞ 28.100000
3* 17.00000 12.000000 1.5251 56
4* -41.00000 18.400000
標本面 ∞

非球面データ
K A4 A6 A8
第3面 -1.000000 -0.200000E-05 -0.200000E-07 0.000000E+00
第4面 -1.000000 0.000000E+00 0.000000E+00 0.000000E+00
(Table 2)
f = 10 mm
NA = 0.4
WD = 19 mm
β = 20x
h2 = 14.2 mm

m r d nd d d
Light source surface ∞ ∞
1 17.00000 3.500000 1.5251 56
2 2 28.100000
3 * 17.00000 12.000000 1.5251 56
4 * -41.00000 18.400000
Sample plane ∞

Aspheric data
K A4 A6 A8
Third surface -1.000000 -0.200000E-05 -0.200000E-07 0.000000E + 00
Fourth side -1.000000 0.000000E + 00 0.000000E + 00 0.000000E + 00

この表2に示す面番号1〜4は、図5に示す番号1〜4に対応している。具体的には、第1面及び第2面は第1光学部材36の面に対応する(第1実施例と同じである)。また、第3面は第2光学部材37の光源側の面であり、表2に示す非球面データと非球面式(3)とにより表される曲線を対物光学系31の光軸AXを中心軸として回転させた面の一部であって、この非球面の基準球面の頂点は、対物光学系31の光軸AX上にある。また、第4面は第2光学部材37の標本面側の面であり、表2に示す非球面データと非球面式(3)とにより表される曲線を対物光学系31の光軸AXを中心軸として回転させた面の一部であって、この非球面の基準球面の頂点は、対物光学系31の光軸AX上にある。なお、図5において、第3面及び第4面を形成する第2光学部材37のレンズ面のうち、切り欠かれた部分を破線で示す。その他の説明は第1実施例と同じである。   The surface numbers 1 to 4 shown in Table 2 correspond to the numbers 1 to 4 shown in FIG. Specifically, the first surface and the second surface correspond to the surface of the first optical member 36 (the same as in the first embodiment). The third surface is the surface on the light source side of the second optical member 37, and the curve represented by the aspheric surface data shown in Table 2 and the aspheric surface formula (3) is centered on the optical axis AX of the objective optical system 31. A part of the surface rotated as an axis, and the vertex of the reference spherical surface of this aspheric surface is on the optical axis AX of the objective optical system 31. The fourth surface is the surface on the sample surface side of the second optical member 37, and the curve represented by the aspheric surface data shown in Table 2 and the aspheric surface formula (3) is taken as the optical axis AX of the objective optical system 31. The apex of the reference spherical surface of this aspheric surface, which is a part of the surface rotated as the central axis, lies on the optical axis AX of the objective optical system 31. In addition, in FIG. 5, the part which was notched among the lens surfaces of the 2nd optical member 37 which forms a 3rd surface and a 4th surface is shown with a broken line. The other descriptions are the same as in the first embodiment.

この第2実施例に係る暗視野用照明光学系35及びこの照明光学系を有する対物レンズ30を以上のように構成すると、照明光の光量ロスを最小限に留め効率的な照明が可能となる。また、部品点数が少なく、低コスト化が可能となる。なお、本第2実施例の第1光学部材36は第1実施例の第1光学部材36と同一形状であり、異なる倍率でも同じ第1光学部材36を使用することでさらなる低コスト化が可能となる。   When the dark field illumination optical system 35 according to the second embodiment and the objective lens 30 having the illumination optical system are configured as described above, the loss of light quantity of the illumination light can be minimized and efficient illumination can be performed. . Further, the number of parts is small, and cost reduction can be achieved. The first optical member 36 of the second embodiment has the same shape as the first optical member 36 of the first embodiment, and the cost can be further reduced by using the same first optical member 36 at different magnifications. It becomes.

[第3実施例]
上述の第1実施例では、第2光学部材37として、対物光学系31の光軸AX上に基準球面の頂点を有する高次非球面の一部を穴あきミラーとして用いた場合について説明したが、この形状に反射面が限定されることはない。例えば、図6に示すように、対物光学系31の光軸AXに対して長軸を傾けた楕円であって、その2つの焦点のうちの一方(焦点Fa)を第1光学部材36による照明光束の集光位置でかつ、第1光学部材36の対称軸SAX上に配置し、他方(焦点Fb)を標本面と光軸AXとが交わる位置に配置した楕円を、光軸AXの周り回転させた回転対称面の一部(凹面)を第2光学部材37の反射面とすることもできる。
Third Embodiment
In the first embodiment described above, a case where a part of the high-order aspheric surface having the vertex of the reference spherical surface on the optical axis AX of the objective optical system 31 as the second optical member 37 is used as a perforated mirror The reflective surface is not limited to this shape. For example, as shown in FIG. 6, it is an ellipse whose major axis is tilted with respect to the optical axis AX of the objective optical system 31, and one of the two focal points (focal point Fa) is illuminated by the first optical member 36 The ellipse having the focusing position of the light beam and disposed on the symmetry axis SAX of the first optical member 36 and the other (focus Fb) disposed at the position where the sample surface intersects the optical axis AX is rotated about the optical axis AX A part (concave surface) of the rotationally symmetric surface may be used as a reflection surface of the second optical member 37.

この図6に示す第3実施例では、第1光学部材36は、その対称軸SAXの光軸AXからの高さh2が13.9mmであり、面R1の曲率半径が17.2mmの円弧、面R2が平面で構成され、面R1と面R2との対称軸SAX上の距離dが3.5mmに設定されている。また、この第1光学部材36の媒質はd線に対する屈折率ndが1.5251で、アッベ数νdが56である。また、第2光学部材37の反射面を構成する楕円は、その長軸半径aが19.17831mm、短軸半径bが10.72451mmで、光軸AXに対して長軸の傾き角θが25.9204°である。   In the third embodiment shown in FIG. 6, the first optical member 36 is an arc having a height h2 of 13.9 mm from the optical axis AX of its symmetry axis SAX and a radius of curvature of 17.2 mm of the surface R1. The surface R2 is a flat surface, and the distance d between the surface R1 and the surface R2 on the symmetry axis SAX is set to 3.5 mm. The medium of the first optical member 36 has a refractive index nd for the d-line of 1.5251 and an Abbe number dd of 56. The ellipse constituting the reflection surface of the second optical member 37 has a major axis radius a of 19.17831 mm, a minor axis radius b of 10.72451 mm, and an inclination angle θ of the major axis with respect to the optical axis AX of 25 It is .9204 degrees.

この第3実施例に係る暗視野用照明光学系35及びこの照明光学系を有する対物レンズ30でも、照明光の光量ロスを最小限に留め効率的な照明が可能となる。また、部品点数が少なく、低コスト化が可能となる。   Also with the dark field illumination optical system 35 according to the third embodiment and the objective lens 30 having this illumination optical system, it is possible to minimize the light amount loss of the illumination light and achieve efficient illumination. Further, the number of parts is small, and cost reduction can be achieved.

なお、図6では、対称軸SAX上にその焦点Faを配置しているが、1mm以下の範囲であれば、この焦点Faを図6の位置から光軸AXの垂直方向にずらしてもかまわない。この第3実施例において、照明光は半角1°程度の広がり角を持っており、トロイダルレンズである第1光学部材36の径方向の集光位置は1mm程度の幅を持つからである。具体的には、第1光学部材36に対する照明光の入射角が1°であって、この第1光学部材36の径方向の焦点距離frが32.375mmであるとすると、集光位置での光軸に垂直方向のずれ量はfr×tan(1°)=0.565mmとなり、幅で1mm程度になる。   Although the focal point Fa is disposed on the symmetry axis SAX in FIG. 6, the focal point Fa may be shifted in the direction perpendicular to the optical axis AX from the position of FIG. 6 within the range of 1 mm or less. . In the third embodiment, the illumination light has a spread angle of about 1 ° in half angle, and the focusing position in the radial direction of the first optical member 36 which is a toroidal lens has a width of about 1 mm. Specifically, assuming that the incident angle of the illumination light to the first optical member 36 is 1 °, and the focal length fr of the first optical member 36 in the radial direction is 32.375 mm, The shift amount in the direction perpendicular to the optical axis is fr × tan (1 °) = 0.565 mm, and the width is about 1 mm.

前記課題を解決するために、対物レンズは、対物光学系の光軸に対して略平行な光を、この対物光学系を囲むように配置された光路を介して標本に照射する暗視野用照明光学系を有する対物レンズであって、暗視野用照明光学系は、少なくとも対物光学系の光軸を中心とする円の径方向に正の屈折力を有し、この径方向に光を集光し、集光点を形成する第1光学部材と、この集光点から発散した光を光軸方向に偏向して標本に照射する第2光学部材と、を有することを特徴とする。
このような対物レンズにおいて、第1光学部材は、光軸を含む任意の断面内において、前記光のうち最も光軸側の光を、最も光軸から離れた光よりも大きく径方向に屈折させるとともに、最も光軸側の光を光軸から離れるように径方向に屈折させるように構成されている。
また、このような対物レンズは、次式の条件を満足することが好ましい。
1/3 ≦ fr/(fp−WD) < 1
但し、
fr:第1光学部材の径方向の焦点距離
fp:対物レンズの同焦点距離
WD:対物レンズの作動距離
また、このような対物レンズにおいて、第2光学部材は、反射面が高次非球面形状に形成された凹面であって、光軸を含む部分に円筒状の開口部を有する穴あきミラーであることが好ましい。
また、このような対物レンズにおいて、第2光学部材は、少なくとも1つのレンズ面が非球面形状に形成され、光軸を含む部分に開口部を有する穴あきレンズであることが好ましい。
また、このような対物レンズにおいて、第2光学部材は、反射面が、対物レンズの光軸に対して長軸が傾いた楕円の一部を光軸周りに回転させて形成された凹面であって、光軸を含む部分に円筒状の開口部を有する穴あきミラーであることが好ましい。
また、本発明に係る顕微鏡は、上述の対物レンズいずれかを有することを特徴とする。
In order to solve the above-mentioned problem, the objective lens illuminates a specimen through a light path disposed so as to surround the objective optical system and light substantially parallel to the optical axis of the objective optical system. It is an objective lens having an optical system, and the dark field illumination optical system has positive refractive power in the radial direction of a circle centered at least on the optical axis of the objective optical system, and condenses light in this radial direction And a second optical member for deflecting the light diverged from the light collection point in the direction of the optical axis to irradiate the specimen with the first light member.
In such an objective lens, the first optical member refracts the light closest to the optical axis among the light in the radial direction more than the light most distant from the optical axis in any cross section including the optical axis. In addition, light on the side closest to the optical axis is refracted in the radial direction so as to be away from the optical axis.
Further, such an objective lens preferably satisfies the condition of the following equation.
1/3 ≦ fr / (fp−WD) <1
However,
fr: radial focal length of first optical member fp: same focal length of objective lens WD: working distance of objective lens Further, in such an objective lens, the second optical member has a reflecting surface with a high-order aspheric shape It is preferable that the holed mirror is a concave surface formed in and having a cylindrical opening in a portion including the optical axis.
Further, in such an objective lens, it is preferable that the second optical member is a perforated lens in which at least one lens surface is formed in an aspheric shape and an opening is provided in a portion including the optical axis.
In addition, in such an objective lens, the second optical member is a concave surface formed by rotating a part of an ellipse whose major axis is inclined with respect to the optical axis of the objective lens around the optical axis. Preferably, the mirror is a perforated mirror having a cylindrical opening in a portion including the optical axis.
A microscope according to the present invention is characterized by having any one of the above-mentioned objective lenses.

1 顕微鏡 30 対物レンズ 31 対物光学系
35 暗視野用照明光学系 36 第1光学部材 37 第2光学部材
Reference Signs List 1 microscope 30 objective lens 31 objective optical system 35 illumination optical system for dark field 36 first optical member 37 second optical member

Claims (7)

対物光学系と、
遮光部材と、
対物レンズ筐体と、
暗視野光学系と、
を有する対物レンズであって、
前記暗視野光学系は、
第1光学部材と、
第2光学部材と、
を有し、
前記第1光学部材は、入射した光を前記第1光学部材と前記第2光学部材との間の集光位置で集光させ、
前記第2光学部材は、前記集光位置より発散光となった光を偏向して標本に照射し、
前記遮光部材は、
第1遮光部と、
前記第1遮光部よりも前記標本側に設けられた第2遮光部と、を有し、
前記第2遮光部の前記対物レンズ筐体に対向する面は、前記第1遮光部の前記対物レンズ筐体に対向する面よりも、前記対物レンズ筐体側に設けられ、
前記第1光学部材は、前記第1遮光部と前記対物レンズ筐体との間の空間に配置されている対物レンズ。
An objective optical system,
A light shielding member,
An objective lens case,
Dark field optical system,
An objective lens having
The dark field optical system
A first optical member,
A second optical member,
Have
The first optical member condenses incident light at a condensing position between the first optical member and the second optical member,
The second optical member deflects light which has become diverging light from the light collecting position and irradiates the specimen with the light;
The light shielding member is
A first light shielding portion,
And a second light shielding portion provided closer to the sample than the first light shielding portion,
The surface of the second light shielding portion facing the objective lens housing is provided closer to the objective lens housing than the surface of the first light shielding portion facing the objective lens housing.
The objective lens, wherein the first optical member is disposed in a space between the first light shielding portion and the objective lens housing.
前記対物レンズ筐体は、
第1筐体部と、
前記第1筐体部よりも前記標本側に設けられた第2筐体部と、を有し、
前記第1筐体部の前記遮光部材に対向する面は、前記第2筐体部の前記遮光部材に対向する面よりも、前記遮光部材側に設けられている
請求項1に記載の対物レンズ。
The objective lens housing is
A first housing unit,
And a second casing provided closer to the sample than the first casing.
The objective lens according to claim 1, wherein a surface of the first housing unit facing the light shielding member is provided closer to the light shielding member than a surface of the second housing unit facing the light shielding member. .
前記第2遮光部の前記第1筐体部に対向する面と前記第1筐体部の前記第2遮光部に対向する面との距離は、前記第1遮光部の前記第1筐体部に対向する面と前記第1筐体部の前記第1遮光部に対向する面との距離よりも小さい
請求項2に記載の対物レンズ。
The distance between the surface of the second light shielding portion facing the first housing portion and the surface of the first housing portion facing the second light shielding portion is the first housing portion of the first light shielding portion. The objective lens according to claim 2, wherein a distance between a surface facing the lens unit and a surface facing the first light shielding unit of the first housing unit is smaller than a distance between the surface facing the lens unit and the surface facing the first light shielding unit.
前記第1筐体部の前記第2遮光部に対向する面と前記第2遮光部の前記第1筐体部に対向する面との距離は、前記第2筐体部の前記第2遮光部に対向する面と前記第2遮光部の前記第2筐体部に対向する面との距離よりも小さい
請求項2又は3に記載の対物レンズ。
The distance between the surface of the first housing portion facing the second light shielding portion and the surface of the second light shielding portion facing the first housing portion is the second light shielding portion of the second housing portion. 4. The objective lens according to claim 2, wherein the distance between the surface facing the second light shielding portion and the surface facing the second housing portion of the second light shielding portion is smaller than the distance between the second light shielding portion and the surface facing the second housing portion.
前記第2光学部材は、ミラーである
請求項1〜4のいずれか1項に記載の対物レンズ。
The objective lens according to any one of claims 1 to 4, wherein the second optical member is a mirror.
前記第1光学部材は、トロイダルレンズである
請求項1〜5のいずれか1項に記載の対物レンズ。
The objective lens according to any one of claims 1 to 5, wherein the first optical member is a toroidal lens.
請求項1〜6のいずれか1項に記載の対物レンズを有する顕微鏡。   The microscope which has an objective lens of any one of Claims 1-6.
JP2016029579A 2016-02-19 2016-02-19 Objective lens and microscope Active JP6546544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029579A JP6546544B2 (en) 2016-02-19 2016-02-19 Objective lens and microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029579A JP6546544B2 (en) 2016-02-19 2016-02-19 Objective lens and microscope

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012188230A Division JP5888509B2 (en) 2012-08-29 2012-08-29 Objective lens and microscope

Publications (3)

Publication Number Publication Date
JP2016085480A JP2016085480A (en) 2016-05-19
JP2016085480A5 JP2016085480A5 (en) 2017-01-19
JP6546544B2 true JP6546544B2 (en) 2019-07-17

Family

ID=55973718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029579A Active JP6546544B2 (en) 2016-02-19 2016-02-19 Objective lens and microscope

Country Status (1)

Country Link
JP (1) JP6546544B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776966B2 (en) * 2011-03-10 2015-09-09 株式会社リコー Sheet conveying apparatus and image forming apparatus
JP5888509B2 (en) * 2012-08-29 2016-03-22 株式会社ニコン Objective lens and microscope

Also Published As

Publication number Publication date
JP2016085480A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6185825B2 (en) Immersion microscope objective lens and microscope using the same
JP5829212B2 (en) Manufacturing method of microscope optical system
JP6184287B2 (en) Immersion microscope objective lens and microscope using the same
JP4043619B2 (en) Lighting device
JP5888509B2 (en) Objective lens and microscope
JP6274952B2 (en) Immersion microscope objective lens and microscope using the same
JP2015079222A (en) Liquid immersion microscope objective lens and microscope having the same
JP6604774B2 (en) microscope
JP2006178440A (en) Zoom microscope
JP6546544B2 (en) Objective lens and microscope
JP2006313213A (en) Optical system for illumination and microscope lighting system
WO2020021662A1 (en) Microscope objective lens and microscope
JP6392947B2 (en) Immersion microscope objective lens and microscope using the same
JP2010204531A (en) Zoom microscope and illumination optical system
JP6233421B2 (en) Objective lens and microscope
US9170414B2 (en) Method and apparatus for producing a super-magnified wide-field image
WO2023210318A1 (en) Image formation lens and microscope device
JP3511690B2 (en) Telecentric illumination optics
JP2009205060A (en) Microscope condenser lens and microscope apparatus having the same
JP2011043555A (en) Objective optical system for microscope, and microscope having objective optical system for microscope and variable power optical system
WO2020054012A1 (en) Tip member, endoscope optical system, endoscope, and endoscope system
JP2009014877A (en) Microscope for inspection by dispersion dyeing method
WO2020053922A1 (en) Endoscope optical system, endoscope, and endoscope system
JP2017134276A (en) Imaging device and capsule endoscope
JP2015176134A (en) imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250