JP5829212B2 - Manufacturing method of microscope optical system - Google Patents
Manufacturing method of microscope optical system Download PDFInfo
- Publication number
- JP5829212B2 JP5829212B2 JP2012530636A JP2012530636A JP5829212B2 JP 5829212 B2 JP5829212 B2 JP 5829212B2 JP 2012530636 A JP2012530636 A JP 2012530636A JP 2012530636 A JP2012530636 A JP 2012530636A JP 5829212 B2 JP5829212 B2 JP 5829212B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- optical element
- order
- diffractive optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 266
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000003384 imaging method Methods 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 210000001747 pupil Anatomy 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 4
- 230000005499 meniscus Effects 0.000 description 22
- 239000005304 optical glass Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 230000014509 gene expression Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 238000005286 illumination Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000004075 alteration Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4205—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
- G02B27/4211—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Lenses (AREA)
- Microscoopes, Condenser (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
本発明は、顕微鏡光学系の製造方法に関する。 The present invention relates to a method for manufacturing a microscope optical system.
顕微鏡光学系に回折光学素子を用いると、従来技術と比較して色収差補正などに優位点があり、光学性能が高く、低コストな顕微鏡対物レンズが設計可能である。しかし、このような回折光学素子を顕微鏡光学系に用いると、結像に寄与する次数の光だけでなく、その他の次数の光(以下、「不要次数の光」と呼ぶ)が顕微鏡対物レンズを透過するため、フレアが発生してしまう。このような回折光学素子における不要次数の光によるフレアを目立たなくするためには、像面における不要次数の光のスポットを大きくすれば良いことが知られている(例えば、特許文献1参照)。 When a diffractive optical element is used in the microscope optical system, it has advantages in correcting chromatic aberration as compared with the prior art, and a microscope objective lens having high optical performance and low cost can be designed. However, when such a diffractive optical element is used in a microscope optical system, not only light of the order that contributes to image formation but also light of other orders (hereinafter referred to as “unnecessary order light”) Since it permeates, flare occurs. In order to make the flare caused by unnecessary-order light in such a diffractive optical element inconspicuous, it is known that the spot of unnecessary-order light on the image plane may be enlarged (see, for example, Patent Document 1).
しかしながら、顕微鏡光学系の対物レンズに回折光学素子を用いる場合には、この顕微鏡光学系の特徴を考慮した設計をしないと、回折光学素子の不要次数の光によるフレアを効果的に抑えることができないという課題があった。 However, when a diffractive optical element is used for the objective lens of the microscope optical system, flare caused by unnecessary orders of light in the diffractive optical element cannot be effectively suppressed unless the design is performed in consideration of the characteristics of the microscope optical system. There was a problem.
本発明はこのような課題に鑑みてなされたものであって、回折光学素子の不要次数の光によるフレアの少ない顕微鏡光学系を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a microscope optical system with less flare caused by unnecessary-order light of a diffractive optical element.
前記課題を解決するために、第1の本発明に係る顕微鏡光学系の製造方法は、回折光学素子を有し、物体からの光を集光して略平行光束にする対物レンズと、この対物レンズからの略平行光束を集光して物体の像を結像する第二対物レンズと、を有する顕微鏡光学系の製造方法であって、結像に回折光学素子のm次光を使用する場合に、光軸上に位置する物体から出た最大NAの光が回折光学素子に入射して当該回折光学素子から射出するm次光とは異なる次数の光が第二対物レンズに入射する角度をθとし、第二対物レンズへの入射瞳の直径をD[mm]としたとき、次式
また、第2の本発明に係る顕微鏡光学系の製造方法は、回折光学素子を有し、物体からの光を集光して略平行光束にする対物レンズと、この対物レンズからの略平行光束を集光して物体の像を結像する第二対物レンズと、を有する顕微鏡光学系の製造方法であって、光軸上に位置する物体から出た最大NAの光が回折光学素子に入射して当該回折光学素子から射出する回折光のうち、結像に使用する次数の光の射出角度と不要次数の光の射出角度との差をδθとし、結像に使用する次数の光の射出する高さをhdoe、射出する角度をθdoeとし、第二対物レンズへの入射瞳の直径をD[mm]とし、対物レンズを構成するレンズのうち回折光学素子より像側にあるレンズからなるレンズ群の焦点距離をf1としたとき、次式
また、このような顕微鏡光学系の製造方法において、回折光学素子は、密着複層型の回折光学素子であることが好ましい。 In such a method of manufacturing a microscope optical system, the diffractive optical element is preferably a close-contact multilayer diffractive optical element.
また、このような顕微鏡光学系の製造方法において、回折光学素子は、異なる屈折率を有する樹脂層同士の接合面に回折格子パターンが形成されており、樹脂層の各々は平面基板上に配置されていることが好ましい。 Further, in such a method for manufacturing a microscope optical system, the diffractive optical element has a diffraction grating pattern formed on a joint surface between resin layers having different refractive indexes, and each of the resin layers is disposed on a flat substrate. It is preferable.
このような顕微鏡光学系の製造方法において、対物レンズを構成するレンズのうち回折光学素子より像側にあるレンズからなるレンズ群は、負の屈折力を有することが好ましい。 In such a method of manufacturing a microscope optical system , it is preferable that a lens group including lenses on the image side of the diffractive optical element among lenses constituting the objective lens has a negative refractive power.
本発明を以上のように構成すれば、回折光学素子の不要次数の光によるフレアの少ない顕微鏡光学系を提供することができる。 If the present invention is configured as described above, it is possible to provide a microscope optical system with little flare caused by unnecessary-order light of the diffractive optical element.
顕微鏡光学系では、暗視野照明の使用でフレアが目立ちやすいという問題がある。一方、照明系まで含んだ光学系であるため、非常に明るい光源が視野内外にあり、フレア源になるということはない。しかしながら、この顕微鏡光学系に回折光学素子を使用した場合、通常の多重反射によるフレア以外に回折光学素子の不要次数の光が問題となる。このような不要次数の光によるフレアは、その次数の回折効率でフレア光量が決まり、結像面でのスポットの大きさにより照度が決まる。したがって、回折光学素子を使用した顕微鏡光学系では、結像に寄与する使用次数の光の回折効率を高め、不要次数の光によるフレアのスポットを大きくする必要がある。 In the microscope optical system, there is a problem that flare is easily noticeable by using dark field illumination. On the other hand, since it is an optical system including the illumination system, a very bright light source is inside and outside the field of view and does not become a flare source. However, when a diffractive optical element is used in this microscope optical system, unnecessary order light of the diffractive optical element becomes a problem in addition to the flare caused by normal multiple reflection. In such flare caused by unnecessary order light, the amount of flare is determined by the diffraction efficiency of the order, and the illuminance is determined by the size of the spot on the imaging surface. Therefore, in a microscope optical system using a diffractive optical element, it is necessary to increase the diffraction efficiency of light of the use order that contributes to image formation and to increase the flare spot due to light of unnecessary order.
一般に顕微鏡光学系では、無限遠系の対物レンズにより物体からの光束を略平行光束にし、第二対物レンズにより結像する。この第二対物レンズの結像位置にCCDカメラを配置すれば画像取得可能で、接眼レンズを配置すれば目視観察が可能であり、画像取得と目視観察の切り替えが可能となっている。このような顕微鏡光学系においては、暗い物体の観察には撮像時間を長く調整できるCCDカメラを利用する方が適しているが、反面、フレアが問題になりやすい。なお、顕微鏡光学系は拡大系であるため、物体高は小さく、この物体高が異なっていても、対物レンズ中の光路の差は小さい。そのため、回折光学素子によるフレアを考える場合、軸上物体光だけを考えて問題はない。 In general, in a microscope optical system, a light beam from an object is made into a substantially parallel light beam by an infinite objective lens, and an image is formed by a second objective lens. If a CCD camera is placed at the imaging position of the second objective lens, an image can be acquired, and if an eyepiece is placed, visual observation is possible, and switching between image acquisition and visual observation is possible. In such a microscope optical system, it is more suitable to use a CCD camera that can adjust the imaging time longer for observing a dark object, but flare tends to be a problem. Since the microscope optical system is an enlargement system, the object height is small, and even if the object height is different, the optical path difference in the objective lens is small. Therefore, when considering flare due to a diffractive optical element, there is no problem considering only on-axis object light.
以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1に示す顕微鏡光学系MSに基づいて説明を行う。この顕微鏡光学系MSは、物体からの光を集光して略平行光束にする対物レンズOLと、この略平行光束を集光して物体の像を結像する第二対物レンズILと、を有して構成される。また、対物レンズOLは、物体からの光を集光して収束光束にした後、この収束光束を略平行光束にするように構成されており、物体からの光が収束光束となっている位置に回折光学素子GDが配置されている。そのため、以降の説明では、回折光学素子GDよりも物体側にあるレンズで構成されるレンズ群を第1レンズ群G1と呼び、回折光学素子GDよりも像側にあるレンズで構成されるレンズ群を第2レンズ群G2と呼ぶ。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, description will be made based on the microscope optical system MS shown in FIG. This microscope optical system MS includes an objective lens OL that collects light from an object to form a substantially parallel light beam, and a second objective lens IL that collects the substantially parallel light beam and forms an image of the object. It is configured. The objective lens OL is configured to condense the light from the object into a convergent light beam, and then convert the converged light beam into a substantially parallel light beam. The position where the light from the object is the convergent light beam. The diffractive optical element GD is disposed on the surface. Therefore, in the following description, a lens group that is configured with a lens that is closer to the object side than the diffractive optical element GD is referred to as a first lens group G1, and a lens group that is configured with a lens that is located on the image side relative to the diffractive optical element GD. Is referred to as a second lens group G2.
回折光学素子GD(回折光学面)は、負の分散値(後述する実施例ではアッベ数=−3.453)を有し、分散が大きく、また異常分散性(後述する実施例では部分分散比(ng−nF)/(nF−nC)=0.2956)が強いため、強力な色収差補正能力を有している。光学ガラスのアッベ数は、通常30〜80程度であるが、上述のように回折光学素子のアッベ数は負の値を持っている。換言すると、回折光学素子GDの回折光学面は分散特性が通常のガラス(屈折光学素子)とは逆で光の波長が短くなるに伴い屈折力が小さくなり、長い波長の光ほど大きく曲がる性質を有している。そのため、通常の屈折光学素子と組み合わせることにより、大きな色消し効果が得られる。したがって回折光学素子GDを利用することで、通常の光学ガラスでは達し得ない良好な色収差の補正が可能になる。 The diffractive optical element GD (diffractive optical surface) has a negative dispersion value (Abbe number = −3.453 in the examples described later), large dispersion, and anomalous dispersion (partial dispersion ratio in the examples described later). (Ng−nF) / (nF−nC) = 0.2956) is strong, and therefore has strong chromatic aberration correction capability. The Abbe number of the optical glass is usually about 30 to 80, but the Abbe number of the diffractive optical element has a negative value as described above. In other words, the diffractive optical surface of the diffractive optical element GD has a dispersion characteristic that is opposite to that of ordinary glass (refractive optical element), and the refractive power decreases as the wavelength of light decreases, and the longer the wavelength of light, the greater the bending property. Have. Therefore, a large achromatic effect can be obtained by combining with an ordinary refractive optical element. Therefore, by using the diffractive optical element GD, it becomes possible to correct chromatic aberration that cannot be achieved with ordinary optical glass.
図1に示すように、回折光学素子GDで発生した不要次数の光の結像面でのスポットを大きくするためには、第二対物レンズILへの入射角θを大きくすれば良いことが分かる。対物レンズOLと第二対物レンズILとの間は略平行系なので、軸上物体から出た光の場合、第二対物レンズILに対する入射角はほぼ0°である。また、この顕微鏡光学系MSの像側開口数(NA)が大きいほど明るい像が結像されるためフレアは目立ちにくくなる。 As shown in FIG. 1, it can be seen that in order to increase the spot on the imaging plane of the light of unnecessary order generated by the diffractive optical element GD, it is sufficient to increase the incident angle θ to the second objective lens IL. . Since the objective lens OL and the second objective lens IL are substantially parallel, the incident angle with respect to the second objective lens IL is approximately 0 ° in the case of light emitted from an on-axis object. Further, since the brighter image is formed as the image-side numerical aperture (NA) of the microscope optical system MS is larger, the flare is less noticeable.
この図1に示す顕微鏡光学系MSにおいて、軸上物体から放射された光のうち、最大NAの光線により回折光学素子GDで発生した不要次数の光の第二対物レンズILに対する入射角をθとし、第二対物レンズILの焦点距離をf2としたとき、その不要次数の光により像面に形成されるスポットの光軸からの高さは、f2tanθで表される。発明者の試作結果として、像側NAが0.015の場合に、顕微鏡に通常求められる解像度を有した光学系で物体からの光を集光した場合、像面上での不要次数の光によるスポットを半径2.0mm程度まで大きくすれば、フレアが目立たないことが分かっている。そのため、最大NAの光線による不要次数の光の第二対物レンズILへの入射角θが次式(a)を満たせば良いことがわかる。 In the microscope optical system MS shown in FIG. 1, the incident angle of the unnecessary order light generated in the diffractive optical element GD by the light beam having the maximum NA out of the light radiated from the on-axis object is θ relative to the second objective lens IL. When the focal length of the second objective lens IL is f2, the height from the optical axis of the spot formed on the image plane by the unnecessary order light is represented by f2 tan θ. As a result of the inventor's trial production, when the image side NA is 0.015, when the light from the object is collected by an optical system having a resolution normally required for a microscope, it is caused by light of an unnecessary order on the image plane. It has been found that flare is inconspicuous if the spot is increased to a radius of about 2.0 mm. Therefore, it can be seen that it is sufficient that the incident angle θ of the light of the unnecessary order due to the light beam having the maximum NA to the second objective lens IL satisfies the following expression (a).
ここで、式(a)中のNAは像側のNAである。 Here, NA in the formula (a) is NA on the image side.
また、この式(a)を第二対物レンズILへの入射瞳の直径D[mm](D=2×f2×NA)で表すと、次式(1)として表現される。すなわち、不要次数の光がこの条件式(1)で示される入射角θで第二対物レンズILに入射すれば、NA=0.015の場合、そのスポットの半径は2.0mm以上となり、フレアを目立たなくすることができる。なお、不要次数の光とは、回折光学素子GDから射出する回折光のうち、この顕微鏡光学系MSで物体の結像に用いる次数以外の次数の光である。そのため、結像に用いる回折光をm次光とすると、不要次数の光は、m−1次光や、m+1次光として表すことができる。また、m次光よりも次数の差が大きいm−2次光やm+2次光は、m−1次光やm+1次光よりも更に大きく光路が異なっているため、m−1次光やm+1次光よりも大きなスポット径となる。そのため、本発明ではm次光に最も近い回折光となるm−1次光及びm+1次光について説明し、それよりもm次光との差が大きな回折光による像はより大きなスポットになることが自明なため、詳細な説明は省く。 Further, when this equation (a) is expressed by the diameter D [mm] (D = 2 × f2 × NA) of the entrance pupil to the second objective lens IL, it is expressed as the following equation (1). That is, if unnecessary order light is incident on the second objective lens IL at an incident angle θ represented by the conditional expression (1), when NA = 0.015, the radius of the spot becomes 2.0 mm or more, and flare Can be made inconspicuous. The unnecessary order light is light of orders other than the order used for imaging an object in the microscope optical system MS among the diffracted light emitted from the diffractive optical element GD. Therefore, if the diffracted light used for image formation is m-order light, unnecessary-order light can be expressed as m-1 order light or m + 1 order light. Further, since the m-2 order light and the m + second order light having a larger order difference than the m order light have a larger optical path than the m-1 order light and the m + 1 order light, the m-1 order light and the m + 1 order light are different. The spot diameter is larger than the next light. Therefore, in the present invention, the m-1st order light and the m + 1st order light that are the diffracted lights closest to the mth order light will be described, and the image of the diffracted light having a larger difference from the mth order light will be a larger spot. Since it is self-evident, a detailed explanation is omitted.
図2に示すように、回折光学素子GDより像側にあるレンズで構成されるレンズ群(第2レンズ群G2)の焦点距離をf1とし、軸上物体から出た最大NAの光線が回折光学素子GDに入射してこの回折光学素子GDから射出する回折光のうち、結像に使用される次数の光の射出角度をθdoeとし、この最大NAの光線が回折光学素子GDを射出する高さをhdoeとすると、この回折光学素子GDから射出される光束はhdoe/tan(θdoe)だけ離れた点(図2に示すA点)に焦点があり、また、対物レンズOLと第二対物レンズILとの間は平行系であるので、A点は第2レンズ群G2の焦点位置となる。 As shown in FIG. 2, the focal length of a lens group (second lens group G2) composed of lenses located on the image side of the diffractive optical element GD is f1, and the light beam having the maximum NA emitted from the on-axis object is diffracted optically. Of the diffracted light that enters the element GD and exits from the diffractive optical element GD, the emission angle of the light of the order used for image formation is θdoe, and the height at which this maximum NA light beam exits the diffractive optical element GD Is the focus, the light beam emitted from the diffractive optical element GD is focused at a point (point A shown in FIG. 2) separated by hdoe / tan (θdoe), and the objective lens OL and the second objective lens IL. Since A is a parallel system, the point A is the focal position of the second lens group G2.
顕微鏡光学系MSでは、回折光学素子GDより像側のレンズ群(第2レンズ群G2)は、負の屈折力を有することが多く、その場合、A点は、焦点距離f1を有するレンズ群(第2レンズ群G2)にとって虚像位置となる。このとき、不要次数の光による光線(図2に示すように、結像光線とは角度δθ異なるとする)のA点における光線高h′は、次式(b)で表される。 In the microscope optical system MS, the lens group on the image side (second lens group G2) from the diffractive optical element GD often has a negative refractive power. In this case, the point A is a lens group having a focal length f1 ( This is the virtual image position for the second lens group G2). At this time, a ray height h ′ at point A of a ray of unnecessary order light (assuming that it differs from the imaging ray by an angle δθ as shown in FIG. 2) is expressed by the following equation (b).
また、対物レンズOLを構成するレンズ群のうち、回折光学素子GDより像側に配置されたレンズにより構成されるレンズ群(第2レンズ群G2)を射出する不要次数の光による光線の射出角、すなわち、第二対物レンズILに対する入射角θは、次式(c)のように表される。 In addition, among the lens groups constituting the objective lens OL, the exit angle of the light beam by the unnecessary order light that exits the lens group (second lens group G2) configured by the lens disposed on the image side from the diffractive optical element GD. That is, the incident angle θ with respect to the second objective lens IL is expressed as the following equation (c).
以上より、式(c)で表されるθを式(1)に代入すると、次式(2)のようになり、像側NAが0.015の顕微鏡光学系1において、像面上での不要次数の光によるスポットを半径2mm程度まで大きくするためには、この式(2)を満足すれば良いことが分かる。
As described above, when θ represented by the equation (c) is substituted into the equation (1), the following equation (2) is obtained. In the microscope
しかしながら、第2レンズ群G2による結像は全く収差補正されていない。そのため、近軸の関係式から導いた式(b)や式(c)による表記と実際の光線追跡結果の間にはずれが生じる。第二対物レンズILへの入射角は一般的には式(c)よりも大きくなる傾向があり、10%程度補正した方が式(1)と式(2)との間の整合性が良くなる。よって、上記式(2)を次の式(2′)に補正する方が望ましい。 However, no aberration correction is performed on the image formed by the second lens group G2. For this reason, there is a difference between the notation based on the equations (b) and (c) derived from the paraxial relational expression and the actual ray tracing result. The angle of incidence on the second objective lens IL generally tends to be larger than that in the equation (c), and the consistency between the equations (1) and (2) is better when corrected by about 10%. Become. Therefore, it is desirable to correct the above equation (2) to the following equation (2 ′).
なお、物体側のある一点からの光束が、結像面で一点に集光された場合、そのときの結像面上における単位面積当たりの光量は、スポット面積に反比例するので、m次光とは異なる回折次数の光による明るさは、結像面でのスポット面積に反比例する。すなわち、m次光とは異なる回折次数の光による明るさは、結像面でのスポット径の二乗に反比例して暗くなる。ゆえに、回折光学素子GDにより発生したフレア光自体が結像面において、暗くなる。 When the light beam from a certain point on the object side is condensed at one point on the imaging plane, the light amount per unit area on the imaging plane at that time is inversely proportional to the spot area, so The brightness due to light of different diffraction orders is inversely proportional to the spot area on the imaging plane. That is, the brightness due to light of a diffraction order different from that of m-order light becomes darker in inverse proportion to the square of the spot diameter on the imaging plane. Therefore, the flare light itself generated by the diffractive optical element GD becomes dark on the imaging surface.
回折光学素子GDを、対物レンズOLの物体に近い位置に配置すると、この対物レンズOLを通過する光束が広がっている場所に配置されることになり、回折光学素子GDへの入射角が大きくなり易く、回折効率上不利である。また、対物レンズOLの中間部の光束が略平行に近い場所に回折光学素子GDを配置すると、光束が広いため高次の収差が発生し易く望ましくない。そのため、上述したように、回折光学素子GDより像側のレンズ群(第2レンズ群G2)の屈折力が負となるように対物レンズOLを構成することにより、この第2レンズ群G2の物体側の、対物レンズOLを通過する光束が収束している位置に回折光学素子GDを配置することが望ましい。 When the diffractive optical element GD is disposed at a position close to the object of the objective lens OL, the diffractive optical element GD is disposed at a place where the light beam passing through the objective lens OL is spread, and the incident angle to the diffractive optical element GD is increased. It is easy and disadvantageous in terms of diffraction efficiency. In addition, if the diffractive optical element GD is disposed in a place where the light beam in the intermediate portion of the objective lens OL is nearly parallel, high-order aberrations are likely to occur because the light beam is wide. Therefore, as described above, by configuring the objective lens OL so that the refractive power of the lens group (second lens group G2) on the image side from the diffractive optical element GD is negative, the object of the second lens group G2 is configured. It is desirable to arrange the diffractive optical element GD at a position on the side where the light beam passing through the objective lens OL is converged.
このような顕微鏡光学系MSにおいて、全体のフレアの光量は回折光学素子GDの回折効率で決まるので、回折効率を高くすることは重要である。回折光学素子GDの回折効率が落ちる要因としては、次の3点が挙げられる。すなわち、第1に、回折光学素子GDの回折光学面を通過する光の波長がブレーズ波長と異なる場合、第2に、回折光学素子GDの回折光学面への入射角がブレーズ条件とは異なる場合、第3に、回折光学素子GDの回折光学面の形状がブレーズ形状からずれている場合である。第3の要因は回折光学面の製造上の形状誤差の問題であるが、第1及び第2の要因は一定の波長域や視野を確保するためには必然的に生じる問題である。この場合、回折光学素子GDを密着複層型の回折光学素子とすることで、上記問題を解決することができる。 In such a microscope optical system MS, since the light quantity of the entire flare is determined by the diffraction efficiency of the diffractive optical element GD, it is important to increase the diffraction efficiency. The following three points can be cited as factors that reduce the diffraction efficiency of the diffractive optical element GD. That is, first, when the wavelength of light passing through the diffractive optical surface of the diffractive optical element GD is different from the blaze wavelength, and second, when the incident angle to the diffractive optical surface of the diffractive optical element GD is different from the blaze condition Third, the shape of the diffractive optical surface of the diffractive optical element GD is deviated from the blaze shape. The third factor is a problem of a shape error in manufacturing the diffractive optical surface, but the first and second factors are problems that inevitably occur in order to ensure a certain wavelength range and field of view. In this case, the above problem can be solved by making the diffractive optical element GD a close-contact multilayer diffractive optical element.
密着複層型の回折光学素子は、次式(d)をおおよそ満たすような異なる2つの光学材料を用い、その2つの光学材料の接合面に回折格子パターンを設けて回折光学面を構成している。なお、2つの光学材料のうち、一方の光学材料の媒質のd線、F線及びC線に対する屈折率をそれぞれn1d、n1F、n1Cとし、他方の光学材料の媒質のd線、F線及びC線に対する屈折率をそれぞれn2d、n2F、n2Cとする。The close-contact multi-layer diffractive optical element uses two different optical materials that approximately satisfy the following formula (d), and forms a diffractive optical surface by providing a diffraction grating pattern on the joint surface between the two optical materials. Yes. Of the two optical materials, the refractive indexes for the d-line, F-line, and C-line of the medium of one optical material are n 1d , n 1F , and n 1C , respectively, and the d-line and F of the medium of the other optical material are The refractive indexes for the line and the C line are n 2d , n 2F , and n 2C , respectively.
この密着複層型の回折光学素子は、g線からC線を含む広波長域において回折効率を高くすることができる。したがって、本実施形態に係る顕微鏡光学系MSに用いられる対物レンズOLは広波長域において利用することが可能となる。なお、回折効率は、透過型の回折光学素子において一次回折光を利用する場合、入射強度I0と一次回折光の強度I1との割合η(=I1/I0×100[%])を示す。また、密着複層型の回折光学素子は、回折格子パターンが形成された2つの回折素子要素をこの回折格子パターン同士が対向するように近接配置してなるいわゆる分離複層型の回折光学素子に比べて製造工程を簡素化することができるため、量産効率がよく、また光線の入射角に対する回折効率が良いという長所を備えている。したがって、密着複層型の回折光学素子GDを利用した本実施の形態に係る対物レンズOLでは、製造が容易となり、また回折効率も良くなる。 This close-contact multi-layer diffractive optical element can increase the diffraction efficiency in a wide wavelength region including g-line to C-line. Therefore, the objective lens OL used in the microscope optical system MS according to the present embodiment can be used in a wide wavelength region. The diffraction efficiency indicates a ratio η (= I1 / I0 × 100 [%]) between the incident intensity I0 and the intensity I1 of the first-order diffracted light when the first-order diffracted light is used in the transmission type diffractive optical element. The close-contact multilayer diffractive optical element is a so-called separated multilayer diffractive optical element in which two diffraction element elements formed with a diffraction grating pattern are arranged close to each other so that the diffraction grating patterns face each other. Since the manufacturing process can be simplified in comparison, it has the advantages of high mass production efficiency and good diffraction efficiency with respect to the incident angle of light. Therefore, the objective lens OL according to the present embodiment using the multi-contact diffractive optical element GD is easy to manufacture, and the diffraction efficiency is improved.
また、この密着複層型の回折光学素子GDの回折格子の回折格子パターンは、平面基板上に配置された回折素子要素の接合面に形成されている。このように平面基板上に回折素子要素を配置して回折格子パターンを形成することでも、球面等に形成する場合に比べて回折格子パターンの形成が非常に容易になり、正確な回折格子パターンが得られやすくなっている。 Further, the diffraction grating pattern of the diffraction grating of the multi-contact diffractive optical element GD is formed on the joint surface of the diffraction element elements arranged on the flat substrate. In this way, even if the diffraction grating elements are arranged on the flat substrate to form the diffraction grating pattern, it becomes very easy to form the diffraction grating pattern as compared with the case of forming it on a spherical surface or the like, and an accurate diffraction grating pattern can be obtained. It is easy to obtain.
上述のような本実施の形態に係る顕微鏡光学系MSは、図3に示すような顕微鏡システム1に用いられている。図3において、顕微鏡システム1は、試料Sを含むプレパラート2を観察するものであり、第1光源装置6と、第2光源装置7と、対物レンズ8(OL)と、第二対物レンズ9(IL)とからなる顕微鏡光学系MSと、この顕微鏡光学系MSで結像された像からの光束を使用者の眼球に導く接眼光学系11と、プレパラート2を支持しながら移動可能なステージ10と、を含む。このステージ10を対物レンズ8の光軸方向に移動することで合焦動作が行える。もちろん、別途焦点検出機構を設け、その焦点検出機構からの出力に基づいて、ステージ10の移動量を制御しても良い。また、この顕微鏡システム1は、ボディ15を備えており、第1光源装置6、第2光源装置7、対物レンズ8、第二対物レンズ9、及び、ステージ10のそれぞれは、このボディ15に支持されている。
The microscope optical system MS according to the present embodiment as described above is used in a
なお、この顕微鏡システム1は、第1光源装置6から射出された光を用いてプレパラート2を照明する第1照明光学系(透過照明光学系)17と、第2光源装置7から射出された光を用いてプレパラート2を照明する第2照明光学系(落射照明光学系)18を備えている。ここで、第2光源装置7から射出された光は、対物レンズ8も第2照明光学系18の一部となっており、光路合成部材16により第2光源装置7からの光を対物レンズ8に導く。この光路合成部材16は、対物レンズ8の光軸及びその近傍が透明で、外周部分に反射膜が形成されたミラーを採用しても良いし、ハーフミラーを採用しても良い。前者の場合は、暗視野観察が可能となる。後者の場合は、落射照明で明視野観察が可能となる。
The
また、対物レンズ8及び第二対物レンズ9により結像された像が形成される位置に、撮像手段を搭載していても良い。もちろん、図示しない光路分割手段により、対物レンズ8からの光束を分割し、別途第二対物レンズを設けて、この第二対物レンズにより像が形成される位置に撮像手段を搭載しても良い。また、この顕微鏡システム1は、正立顕微鏡でも倒立顕微鏡でも良い。さらに、第1光源装置6と第2光源装置7はいずれか一方でも良い。
In addition, an imaging unit may be mounted at a position where an image formed by the
以下に、本実施の形態に係る顕微鏡光学系MSの6つの実施例を示すが、各実施例において、回折光学素子GDに形成された回折光学面の位相差は、通常の屈折率と後述する非球面式(d)とを用いて行う超高屈折率法により計算した。超高屈折率法とは、非球面形状と回折光学面の格子ピッチとの間の一定の等価関係を利用するものであり、本実施例においては、回折光学面を超高屈折率法のデータとして、すなわち、後述する非球面式(d)及びその係数により示している。なお、本実施例では収差特性の算出対象として、d線、C線、F線及びg線を選んでいる。本実施例において用いられたこれらd線、C線、F線及びg線の波長と、各スペクトル線に対して設定した超高屈折率法の計算に用いるための屈折率の値を次の表1に示す。 In the following, six examples of the microscope optical system MS according to the present embodiment will be shown. In each example, the phase difference of the diffractive optical surface formed on the diffractive optical element GD is a normal refractive index and will be described later. The calculation was made by the ultrahigh refractive index method using the aspherical formula (d). The ultrahigh refractive index method uses a certain equivalent relationship between the aspherical shape and the grating pitch of the diffractive optical surface. In this embodiment, the diffractive optical surface is represented by data of the ultrahigh refractive index method. That is, it is shown by an aspherical expression (d) and its coefficient, which will be described later. In this embodiment, d-line, C-line, F-line and g-line are selected as the calculation target of the aberration characteristics. The wavelengths of these d-line, C-line, F-line and g-line used in this example and the refractive index values used for calculation of the ultrahigh refractive index method set for each spectral line are shown in the following table. It is shown in 1.
(表1)
波長 屈折率(超高屈折率法による)
d線 587.562nm 10001.0000
C線 656.273nm 11170.4255
F線 486.133nm 8274.7311
g線 435.835nm 7418.6853(Table 1)
Wavelength Refractive index (by ultra-high refractive index method)
d-line 587.562nm 10001.0000
C line 656.273nm 11170.4255
F line 486.133nm 8274.7311
g-line 435.835nm 7418.6853
各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(頂点曲率半径)をrとし、定数をκとし、n次の非球面係数をAnとしたとき、以下の式(d)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (vertex radius of curvature), κ is the constant, and An is the nth-order aspherical coefficient. In the following examples, “E−n” indicates “× 10 −n ”.
S(y)=(y2/r)/{1+(1−κ×y2/r2)1/2}
+A2×y2+A4×y4+A6×y6+A8×y8 (d)S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A2 × y 2 + A4 × y 4 + A6 × y 6 + A8 × y 8 (d)
なお、各実施例において、回折光学面が形成されたレンズ面には、表中の面番号の右側に*印を付しており、非球面式(d)は、この回折光学面の性能の諸元を示している。 In each example, the lens surface on which the diffractive optical surface is formed is marked with an asterisk (*) on the right side of the surface number in the table, and the aspherical expression (d) indicates the performance of the diffractive optical surface. The specifications are shown.
[第1実施例]
まず、第1実施例として図4に示す顕微鏡光学系MS1について説明する。この顕微鏡光学系MS1は、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、物体側に凸面を向けた負メニスカスレンズL3と両凸レンズL4とを接合した接合レンズ、及び、両凸レンズL5と両凹レンズL6と両凸レンズL7とを接合した接合レンズから構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL8、それぞれ異なる樹脂材料から形成された2個の光学部材L9,L10、及び、平板状の光学ガラスL11がこの順で接合され、光学部材L9,L10の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、両凹レンズL12と両凸レンズL13と両凹レンズL14とを接合した接合レンズで構成される。また、第二対物レンズILは、物体側から順に、両凸レンズL15と物体側に凹面を向けた負メニスカスレンズL16とを接合した接合レンズ、及び、両凸レンズL17と両凹レンズL18とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。また、プリズムPRは光路長のみを考慮しており、実形状を表しているわけではない(以降の実施例においても同様である)。[First embodiment]
First, a microscope optical system MS1 shown in FIG. 4 will be described as a first embodiment. The microscope optical system MS1 includes an objective lens OL, a second objective lens IL, and a prism PR in order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, in order from the object side, the first lens group G1 includes a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, and a negative meniscus lens L3 having a convex surface facing the object side. The lens includes a cemented lens in which the biconvex lens L4 is cemented, and a cemented lens in which the biconvex lens L5, the biconcave lens L6, and the biconvex lens L7 are cemented. Further, in the diffractive optical element GD, a flat optical glass L8, two optical members L9 and L10 formed from different resin materials, and a flat optical glass L11 are joined in this order from the object side. Then, a diffraction grating pattern (diffractive optical surface) is formed on the joint surface of the optical members L9 and L10. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 includes a cemented lens in which a biconcave lens L12, a biconvex lens L13, and a biconcave lens L14 are cemented in order from the object side. The second objective lens IL includes a cemented lens in which a biconvex lens L15 and a negative meniscus lens L16 having a concave surface facing the object side are cemented in order from the object side, and a cemented lens in which a biconvex lens L17 and a biconcave lens L18 are cemented. Consists of lenses. Note that the prism PR is made of optical glass whose both ends are flat. In addition, the prism PR considers only the optical path length and does not represent the actual shape (the same applies to the following embodiments).
このように図4に示した第1実施例に係る顕微鏡光学系MS1の諸元を表2に示す。なお、この表2において、fは対物レンズOLの全系の焦点距離を示し、f1は対物レンズOLを構成する第2レンズ群G2の焦点距離を示し、f2は第二対物レンズILの全系の焦点距離を示し、βは倍率を示し、NAは対物レンズOLと第二対物レンズILとを組み合わせた光学系の物体側と像側の開口数を示し、d0は物体面から最初のレンズ(正メニスカスレンズL1)の物体側のレンズ面(第1面)の頂点までの光軸上の距離を示し、Dは第二対物レンズILへの入射瞳の直径を示し、hdoeは軸上物体から出た最大NAの光線が回折光学素子GDを射出する高さを示し、θdoeは軸上物体から出た最大NAの光線が回折光学素子GDを射出する角度を示す(結像に寄与する1次の回折光が射出する角度とする)。また、第1欄mは物体側からの各光学面の番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄ndはd線に対する屈折率を、そして、第5欄νdはアッベ数をそれぞれ示している。ここで、第1欄mに示す各光学面の番号(右の*は回折光学面として形成されているレンズ面を示す)は、図4に示した面番号1〜29に対応している。また、第2欄rにおいて、曲率半径0.000は平面を示している。また、回折光学面の場合は、第2欄rにベースとなる非球面の基準となる球面の曲率半径を示し、超高屈折率法に用いるデータは非球面データとして諸元表内に示している。また、第4欄ndにおいて、空気の屈折率1.000は省略してある。また、第5欄νdは、F線に対する屈折率をnF、C線に対する屈折率をnCとして、νd=(nd−1)/(nF−nC)で表される。さらに、この表2には、上記条件式(1)及び(2)に対応する値、すなわち、条件対応値も示している。この諸元表の説明は以降の実施例においても同様である。
Table 2 shows the specifications of the microscope optical system MS1 according to the first example shown in FIG. In Table 2, f represents the focal length of the entire objective lens OL, f1 represents the focal length of the second lens group G2 constituting the objective lens OL, and f2 represents the entire system of the second objective lens IL. , Β denotes the magnification, NA denotes the numerical aperture on the object side and the image side of the optical system combining the objective lens OL and the second objective lens IL, and d0 denotes the first lens (from the object plane) The distance on the optical axis to the vertex of the object-side lens surface (first surface) of the positive meniscus lens L1) is indicated, D is the diameter of the entrance pupil to the second objective lens IL, and hdoe is the distance from the on-axis object. The height at which the emitted beam with the maximum NA exits the diffractive optical element GD indicates the height, and θdoe indicates the angle at which the beam with the maximum NA that exits from the axial object exits the diffractive optical element GD (the first order that contributes to imaging The angle at which the diffracted light is emitted. The first column m is the number of each optical surface from the object side, the second column r is the radius of curvature of each optical surface, and the third column d is on the optical axis from each optical surface to the next optical surface. The distance (surface spacing), the fourth column nd indicates the refractive index with respect to the d-line, and the fifth column νd indicates the Abbe number. Here, the numbers of the optical surfaces shown in the first column m (* on the right indicate lens surfaces formed as diffractive optical surfaces) correspond to the
なお、以下の全ての諸元において掲載される曲率半径r、面間隔d、対物レンズの焦点距離fその他長さの単位は、特記の無い場合、一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることはなく、他の適当な単位を用いることもできる。 Unless otherwise specified, “mm” is generally used as the unit of curvature radius r, surface interval d, focal length f of objective lens, and other length units listed in all the following specifications. Since the same optical performance can be obtained even when proportional expansion or reduction is performed, the unit is not limited to “mm”, and other appropriate units may be used.
(表2)
f=4
f1=-22.4
f2=200
β=50x
NA(物体側)=0.8
NA(像側)=0.016
d0=3.38
D=6.4
hdoe=6.1
θdoe=8.0[°]
m r d nd νd
1 -4.220 4.00 1.903 35.7
2 -5.421 0.20
3 -47.354 4.00 1.603 65.5
4 -12.900 0.20
5 85.133 1.10 1.517 52.4
6 12.610 8.00 1.498 82.5
7 -16.869 0.20
8 30.992 5.35 1.640 60.1
9 -17.900 1.20 1.738 32.3
10 9.973 5.60 1.498 82.5
11 -32.895 3.00
12 0.000 2.50 1.517 64.1
13 0.000 0.06 1.528 34.7
14 0.000 0.00 10001.000 -3.5
15* 0.000 0.06 1.557 50.2
16 0.000 3.00 1.517 64.1
17 0.000 16.10
18 -67.221 1.70 1.652 58.5
19 12.651 2.70 1.717 29.5
20 -9.076 1.25 1.517 52.3
21 8.270 91.00
22 75.043 5.10 1.623 57.0
23 -75.043 2.00 1.750 35.2
24 1600.580 7.50
25 50.256 5.10 1.668 42.0
26 -84.541 1.80 1.613 44.4
27 36.911 5.50
28 0.000 30.00 1.569 56.0
29 0.000 143.81
回折光学面データ
第15面 κ=1 A2=-5.9524E-08 A4=3.8419E-10
A6=-4.8802E-12 A8=6.5871E-15
条件対応値
(1) 左辺 |θ|(0次)=0.74[°] |θ|(2次)=0.72[°]
右辺 =0.54[°]
(2) 左辺 |δθ|(0次−1次)=0.37[°]
|δθ|(2次−1次)=0.37[°]
右辺 =0.27[°]
(2′)右辺 =0.25[°](Table 2)
f = 4
f1 = -22.4
f2 = 200
β = 50x
NA (object side) = 0.8
NA (image side) = 0.016
d0 = 3.38
D = 6.4
hdoe = 6.1
θdoe = 8.0 [°]
m r d nd νd
1 -4.220 4.00 1.903 35.7
2 -5.421 0.20
3 -47.354 4.00 1.603 65.5
4 -12.900 0.20
5 85.133 1.10 1.517 52.4
6 12.610 8.00 1.498 82.5
7 -16.869 0.20
8 30.992 5.35 1.640 60.1
9 -17.900 1.20 1.738 32.3
10 9.973 5.60 1.498 82.5
11 -32.895 3.00
12 0.000 2.50 1.517 64.1
13 0.000 0.06 1.528 34.7
14 0.000 0.00 10001.000 -3.5
15 * 0.000 0.06 1.557 50.2
16 0.000 3.00 1.517 64.1
17 0.000 16.10
18 -67.221 1.70 1.652 58.5
19 12.651 2.70 1.717 29.5
20 -9.076 1.25 1.517 52.3
21 8.270 91.00
22 75.043 5.10 1.623 57.0
23 -75.043 2.00 1.750 35.2
24 1600.580 7.50
25 50.256 5.10 1.668 42.0
26 -84.541 1.80 1.613 44.4
27 36.911 5.50
28 0.000 30.00 1.569 56.0
29 0.000 143.81
Diffraction optical surface data 15th surface κ = 1 A2 = -5.9524E-08 A4 = 3.8419E-10
A6 = -4.8802E-12 A8 = 6.5871E-15
Condition-corresponding value (1) Left side | θ | (0th order) = 0.74 [°] | θ | (second order) = 0.72 [°]
Right side = 0.54 [°]
(2) Left side | δθ | (0th order-1st order) = 0.37 [°]
| Δθ | (secondary-1st order) = 0.37 [°]
Right side = 0.27 [°]
(2 ') Right side = 0.25 [°]
なお、表2に示した条件対応値は、結像光として1次の回折光を使用し、不要次数の光を0次及び2次の回折光として求めている。このように、第1実施例では上記条件式(1)及び(2)を全て満たしていることが分かる。また、以降の実施例も同様に、結像光として1次の回折光を使用している。 The condition-corresponding values shown in Table 2 are obtained using first-order diffracted light as imaging light and unnecessary-order light as 0th-order and second-order diffracted light. Thus, it can be seen that all the conditional expressions (1) and (2) are satisfied in the first embodiment. Also in the following embodiments, first-order diffracted light is used as the imaging light.
図5に、この第1実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。なお、この図5に示すスポットダイアグラムにおいて、Bは物体高を示している(以降の実施例においても同様である)。この図5に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが1.9mm以上あるため、第1実施例に係る顕微鏡光学系MS1は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 FIG. 5 shows a spot diagram of 0th order light and secondary light (unnecessary order light) in the first embodiment. In the spot diagram shown in FIG. 5, B indicates the object height (the same applies to the following embodiments). As shown in FIG. 5, the zero-order light and the secondary light, which are unnecessary-order lights, have a height of 1.9 mm or more from the optical axis of the spot, so that the microscope optical system MS1 according to the first example is The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
[第2実施例]
次に、第2実施例として図6に示す顕微鏡光学系MS2について説明する。この顕微鏡光学系MS2も、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に凹面を向けた正メニスカスレンズL2、両凸レンズL3と物体側に凹面を向けた負メニスカスレンズL4とを接合した接合レンズ、両凸レンズL5と両凹レンズL6と両凸レンズL7とを接合した接合レンズ、及び、両凸レンズL8と物体側に凹面を向けた負メニスカスレンズL9とを接合した接合レンズから構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL10、それぞれ異なる樹脂材料から形成された2個の光学部材L11,L12、及び、平板状の光学ガラスL13がこの順で接合され、光学部材L11,L12の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、両凹レンズL12、及び、両凹レンズL13と両凸レンズL14とを接合した接合レンズから構成される。さらに、第二対物レンズILは、物体側から順に、両凸レンズL15と両凹レンズL16とを接合した接合レンズ、及び、両凸レンズL17と両凹レンズL18とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。[Second Embodiment]
Next, a microscope optical system MS2 shown in FIG. 6 will be described as a second embodiment. The microscope optical system MS2 is also composed of an objective lens OL, a second objective lens IL, and a prism PR in order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, in order from the object side, the first lens group G1 includes a positive meniscus lens L1 having a concave surface facing the object side, a positive meniscus lens L2 having a concave surface facing the object side, a biconvex lens L3, and a negative surface having a concave surface facing the object side. A cemented lens in which the meniscus lens L4 is cemented, a cemented lens in which the biconvex lens L5, the biconcave lens L6, and the biconvex lens L7 are cemented, and a cemented lens in which the biconvex lens L8 and the negative meniscus lens L9 having a concave surface facing the object side are cemented. Consists of lenses. Further, in the diffractive optical element GD, a flat optical glass L10, two optical members L11 and L12 formed of different resin materials, and a flat optical glass L13 are joined in this order from the object side. In addition, a diffraction grating pattern (diffractive optical surface) is formed on the joint surface of the optical members L11 and L12. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 includes a biconcave lens L12 and a cemented lens in which the biconcave lens L13 and the biconvex lens L14 are cemented in order from the object side. Further, the second objective lens IL includes a cemented lens in which a biconvex lens L15 and a biconcave lens L16 are cemented in order from the object side, and a cemented lens in which a biconvex lens L17 and a biconcave lens L18 are cemented. Note that the prism PR is made of optical glass whose both ends are flat.
このように図6に示した第2実施例に係る顕微鏡光学系MS2の諸元を表3に示す。なお、表3に示す面番号は、図6に示した面番号1〜33と一致している。 Table 3 shows the specifications of the microscope optical system MS2 according to the second example shown in FIG. In addition, the surface number shown in Table 3 corresponds with the surface numbers 1-33 shown in FIG.
(表3)
f=1.33
f1=-4.83
f2=200
β=150x
NA(物体側)=0.9
NA(像側)=0.006
d0=2.95
D=2.387
hdoe=4.50
θdoe=15.60[°]
m r d nd νd
1 -5.290 3.50 1.804 39.6
2 -5.030 0.15
3 -18.200 2.90 1.603 65.5
4 -9.566 0.15
5 27.978 6.20 1.498 82.6
6 -12.264 1.30 1.569 56.0
7 -19.297 0.20
8 30.758 5.60 1.498 82.6
9 -13.300 1.00 1.673 38.2
10 12.192 6.70 1.498 82.6
11 -14.331 0.15
12 21.570 4.70 1.498 82.6
13 -10.130 1.00 1.804 39.6
14 -89.173 0.70
15 0.000 2.50 1.517 64.1
16 0.000 0.06 1.528 34.7
17 0.000 0.00 10001.000 -3.5
18* 0.000 0.06 1.557 50.2
19 0.000 3.00 1.517 64.1
20 0.000 12.00
21 -6.151 1.70 1.517 52.4
22 6.151 3.00
23 -4.178 1.00 1.734 51.5
24 6.681 2.20 1.785 25.6
25 -7.986 121.00
26 75.043 5.10 1.623 57.0
27 -75.043 2.00 1.750 35.2
28 1600.580 7.50
29 50.256 5.10 1.668 42.0
30 -84.541 1.80 1.613 44.4
31 36.911 5.50
32 0.000 30.00 1.569 56.0
33 0.000 143.78
回折光学面データ
第18面 κ=1 A2=-7.3529E-08 A4=1.2704E-09
A6=-3.6213E-11 A8=1.4394E-13
条件対応値
(1) 左辺 |θ|(0次)=2.01[°] |θ|(2次)=1.75[°]
右辺 =1.43[°]
(2) 左辺 |δθ|(0次−1次)=0.41[°]
|δθ|(2次−1次)=0.42[°]
右辺 =0.39[°]
(2′)右辺 =0.35[°](Table 3)
f = 1.33
f1 = -4.83
f2 = 200
β = 150x
NA (object side) = 0.9
NA (image side) = 0.006
d0 = 2.95
D = 2.387
hdoe = 4.50
θdoe = 15.50 [°]
m r d nd νd
1 -5.290 3.50 1.804 39.6
2 -5.030 0.15
3 -18.200 2.90 1.603 65.5
4 -9.566 0.15
5 27.978 6.20 1.498 82.6
6 -12.264 1.30 1.569 56.0
7 -19.297 0.20
8 30.758 5.60 1.498 82.6
9 -13.300 1.00 1.673 38.2
10 12.192 6.70 1.498 82.6
11 -14.331 0.15
12 21.570 4.70 1.498 82.6
13 -10.130 1.00 1.804 39.6
14 -89.173 0.70
15 0.000 2.50 1.517 64.1
16 0.000 0.06 1.528 34.7
17 0.000 0.00 10001.000 -3.5
18 * 0.000 0.06 1.557 50.2
19 0.000 3.00 1.517 64.1
20 0.000 12.00
21 -6.151 1.70 1.517 52.4
22 6.151 3.00
23 -4.178 1.00 1.734 51.5
24 6.681 2.20 1.785 25.6
25 -7.986 121.00
26 75.043 5.10 1.623 57.0
27 -75.043 2.00 1.750 35.2
28 1600.580 7.50
29 50.256 5.10 1.668 42.0
30 -84.541 1.80 1.613 44.4
31 36.911 5.50
32 0.000 30.00 1.569 56.0
33 0.000 143.78
Diffraction optical surface data 18th surface κ = 1 A2 = -7.3529E-08 A4 = 1.2704E-09
A6 = -3.6213E-11 A8 = 1.4394E-13
Condition-corresponding value (1) Left side | θ | (0th order) = 2.01 [°] | θ | (second order) = 1.75 [°]
Right side = 1.43 [°]
(2) Left side | δθ | (0th order-1st order) = 0.41 [°]
| Δθ | (secondary-first order) = 0.42 [°]
Right side = 0.39 [°]
(2 ') Right side = 0.35 [°]
このように、第2実施例では上記条件式(1)及び(2)を全て満たしていることが分かる。また、図7に、この第2実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。この図7に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが5.0mm以上あるため、第2実施例に係る顕微鏡光学系MS2は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 Thus, it can be seen that all the conditional expressions (1) and (2) are satisfied in the second embodiment. FIG. 7 shows a spot diagram of the 0th order light and the secondary light (unnecessary order light) in the second embodiment. As shown in FIG. 7, since the zero-order light and the secondary light, which are unnecessary-order lights, have a height from the optical axis of the spot of 5.0 mm or more, the microscope optical system MS2 according to the second example has The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
[第3実施例]
次に、第3実施例として図8に示す顕微鏡光学系MS3について説明する。この顕微鏡光学系MS3も、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、両凸レンズL1、両凸レンズL2と物体側に凹面を向けた負メニスカスレンズL3とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL4から構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL5、それぞれ異なる樹脂材料から形成された2個の光学部材L6,L7、及び、平板状の光学ガラスL8がこの順で接合され、光学部材L6,L7の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL9と両凹レンズL10とを接合した接合レンズで構成される。さらに、第二対物レンズILは、物体側から順に、両凸レンズL11と両凹レンズL12とを接合した接合レンズ、及び、両凸レンズL13と両凹レンズL14とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。[Third embodiment]
Next, a microscope optical system MS3 shown in FIG. 8 will be described as a third embodiment. This microscope optical system MS3 is also composed of an objective lens OL, a second objective lens IL, and a prism PR in this order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, the first lens group G1 includes, in order from the object side, a biconvex lens L1, a cemented lens in which the biconvex lens L2 and a negative meniscus lens L3 having a concave surface on the object side are cemented, and a positive lens having a convex surface on the object side. It comprises a meniscus lens L4. Further, in the diffractive optical element GD, a flat optical glass L5, two optical members L6 and L7 formed of different resin materials, and a flat optical glass L8 are joined in this order from the object side. In addition, a diffraction grating pattern (diffractive optical surface) is formed on the joint surfaces of the optical members L6 and L7. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 is composed of a cemented lens in which, in order from the object side, a positive meniscus lens L9 having a concave surface facing the object side and a biconcave lens L10 are cemented. Further, the second objective lens IL is composed of, in order from the object side, a cemented lens in which the biconvex lens L11 and the biconcave lens L12 are cemented, and a cemented lens in which the biconvex lens L13 and the biconcave lens L14 are cemented. Note that the prism PR is made of optical glass whose both ends are flat.
このように図8に示した第3実施例に係る顕微鏡光学系MS3の諸元を表4に示す。なお、表4に示す面番号は、図8に示した面番号1〜24と一致している。
Table 4 shows the specifications of the microscope optical system MS3 according to the third example shown in FIG. The surface numbers shown in Table 4 coincide with the
(表4)
f=20
f1=-14.2
f2=200
β=10x
NA(物体側)=0.2
NA(像側)=0.02
d0=38.00
D=8
hdoe=5.54
θdoe=17.15[°]
m r d nd νd
1 48.798 3.00 1.697 55.5
2 -34.514 0.20
3 37.001 3.40 1.603 65.5
4 -26.906 1.10 1.847 23.8
5 -212.805 0.20
6 24.500 3.30 1.517 64.1
7 116.697 0.70
8 0.000 2.00 1.517 64.1
9 0.000 0.06 1.528 34.7
10 0.000 0.00 10001.000 -3.5
11* 0.000 0.06 1.557 50.2
12 0.000 3.00 1.517 64.1
13 0.000 3.50
14 -23.277 3.50 1.805 25.4
15 -11.689 1.50 1.620 60.3
16 12.655 136.60
17 75.043 5.10 1.623 57.0
18 -75.043 2.00 1.750 35.2
19 1600.580 7.50
20 50.256 5.10 1.668 42.0
21 -84.541 1.80 1.613 44.4
22 36.911 5.50
23 0.000 30.00 1.569 56.0
24 0.000 143.81
回折光学面データ
第11面 κ=1 A2=-4.9388E-08 A4=3.0081E-12
A6=-3.3504E-19 A8=-1.6682E-15
条件対応値
(1) 左辺 |θ|(0次)=0.56[°] |θ|(2次)=0.56[°]
右辺 =0.43[°]
(2) 左辺 |δθ|(0次−1次)=0.36[°]
|δθ|(2次−1次)=0.37[°]
右辺 =0.31[°]
(2′)右辺 =0.28[°](Table 4)
f = 20
f1 = -14.2
f2 = 200
β = 10x
NA (object side) = 0.2
NA (image side) = 0.02
d0 = 38.00
D = 8
hdoe = 5.54
θdo = 17.15 [°]
m r d nd νd
1 48.798 3.00 1.697 55.5
2 -34.514 0.20
3 37.001 3.40 1.603 65.5
4 -26.906 1.10 1.847 23.8
5 -212.805 0.20
6 24.500 3.30 1.517 64.1
7 116.697 0.70
8 0.000 2.00 1.517 64.1
9 0.000 0.06 1.528 34.7
10 0.000 0.00 10001.000 -3.5
11 * 0.000 0.06 1.557 50.2
12 0.000 3.00 1.517 64.1
13 0.000 3.50
14 -23.277 3.50 1.805 25.4
15 -11.689 1.50 1.620 60.3
16 12.655 136.60
17 75.043 5.10 1.623 57.0
18 -75.043 2.00 1.750 35.2
19 1600.580 7.50
20 50.256 5.10 1.668 42.0
21 -84.541 1.80 1.613 44.4
22 36.911 5.50
23 0.000 30.00 1.569 56.0
24 0.000 143.81
Diffraction optical surface data 11th surface κ = 1 A2 = -4.9388E-08 A4 = 3.00081E-12
A6 = -3.3504E-19 A8 = -1.6682E-15
Condition-corresponding value (1) Left side | θ | (0th order) = 0.56 [°] | θ | (Second order) = 0.56 [°]
Right side = 0.43 [°]
(2) Left side | δθ | (0th order-1st order) = 0.36 [°]
| Δθ | (secondary-1st order) = 0.37 [°]
Right side = 0.31 [°]
(2 ') Right side = 0.28 [°]
このように、第3実施例では上記条件式(1)及び(2)を全て満たしていることが分かる。また、図9に、この第3実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。この図9に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが1.5mm以上あるため、第3実施例に係る顕微鏡光学系MS3は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 Thus, it can be seen that the third embodiment satisfies all the conditional expressions (1) and (2). FIG. 9 shows a spot diagram of zeroth order light and secondary light (unnecessary order light) in the third embodiment. As shown in FIG. 9, the zero-order light and the secondary light, which are unnecessary orders of light, have a height from the optical axis of the spot of 1.5 mm or more, and therefore the microscope optical system MS3 according to the third example has The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
[第4実施例]
次に、第4実施例として図10に示す顕微鏡光学系MS4について説明する。この顕微鏡光学系MS4も、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、両凸レンズL1、物体側に凸面を向けた負メニスカスレンズL2と両凸レンズL3とを接合した接合レンズ、及び、物体側に凸面を向けた負メニスカスレンズL4と物体側に凸面を向けた正メニスカスレンズL5とを接合した接合レンズから構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL6、それぞれ異なる樹脂材料から形成された2個の光学部材L7,L8、及び、平板状の光学ガラスL9がこの順で接合され、光学部材L7,L8の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、両凸レンズL10と両凹レンズL11とを接合した接合レンズ、及び、物体側に凹面を向けた正メニスカスレンズL12と両凹レンズL13とを接合した接合レンズから構成される。さらに、第二対物レンズILは、物体側から順に、両凸レンズL14と両凹レンズL15とを接合した接合レンズ、及び、両凸レンズL16と両凹レンズL17とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。[Fourth embodiment]
Next, a microscope optical system MS4 shown in FIG. 10 will be described as a fourth embodiment. This microscope optical system MS4 is also composed of an objective lens OL, a second objective lens IL, and a prism PR in this order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, the first lens group G1 includes, in order from the object side, a biconvex lens L1, a cemented lens in which a negative meniscus lens L2 having a convex surface facing the object side and a biconvex lens L3 are cemented, and a negative lens having a convex surface directed to the object side. It is composed of a cemented lens in which a meniscus lens L4 and a positive meniscus lens L5 having a convex surface facing the object side are cemented. Further, in the diffractive optical element GD, the flat optical glass L6, two optical members L7 and L8 formed from different resin materials, and the flat optical glass L9 are joined in this order from the object side. A diffraction grating pattern (diffractive optical surface) is formed on the joint surface of the optical members L7 and L8. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 includes, in order from the object side, a cemented lens in which a biconvex lens L10 and a biconcave lens L11 are cemented, and a cemented lens in which a positive meniscus lens L12 having a concave surface facing the object side and a biconcave lens L13 are cemented. Consists of lenses. Further, the second objective lens IL includes a cemented lens in which the biconvex lens L14 and the biconcave lens L15 are cemented in order from the object side, and a cemented lens in which the biconvex lens L16 and the biconcave lens L17 are cemented. Note that the prism PR is made of optical glass whose both ends are flat.
このように図10に示した第4実施例に係る顕微鏡光学系MS4の諸元を表5に示す。なお、表5に示す面番号は、図10に示した面番号1〜28と一致している。 Table 5 shows the specifications of the microscope optical system MS4 according to the fourth example shown in FIG. In addition, the surface number shown in Table 5 corresponds with the surface numbers 1-28 shown in FIG.
(表5)
f=10
f1=-7.60
f2=200
β=20x
NA(物体側)=0.3
NA(像側)=0.015
d0=30.60
D=6
hdoe=6.22
θdoe=23.83[°]
m r d nd νd
1 234.314 3.50 1.589 61.2
2 -25.703 0.15
3 28.645 1.00 1.785 25.7
4 16.720 5.20 1.498 82.5
5 -66.437 0.15
6 15.752 1.00 1.835 42.7
7 11.342 5.00 1.589 61.2
8 121.523 0.95
9 0.000 2.50 1.517 64.1
10 0.000 0.06 1.557 50.2
11 0.000 0.00 10001.000 -3.5
12* 0.000 0.06 1.528 34.7
13 0.000 3.00 1.517 64.1
14 0.000 0.50
15 9.002 3.35 1.564 60.7
16 -39.060 1.00 1.804 39.6
17 5.900 2.90
18 -13.735 1.90 1.785 25.7
19 -5.202 1.00 1.640 60.1
20 15.201 136.30
21 75.043 5.10 1.623 57.0
22 -75.043 2.00 1.750 35.2
23 1600.580 7.50
24 50.256 5.10 1.668 42.0
25 -84.541 1.80 1.613 44.4
26 36.911 5.50
27 0.000 30.00 1.569 56.0
28 0.000 143.82
回折光学面データ
第12面 κ=1 A2=-5.6000E-08 A4=3.2897E-10
A6=-4.1539E-12 A8=2.0125E-14
条件対応値
(1) 左辺 |θ|(0次)=0.91[°] |θ|(2次)=0.90[°]
右辺 =0.57[°]
(2) 左辺 |δθ|(0次−1次)=0.39[°]
|δθ|(2次−1次)=0.39[°]
右辺 =0.26[°]
(2′)右辺 =0.23[°](Table 5)
f = 10
f1 = -7.60
f2 = 200
β = 20x
NA (object side) = 0.3
NA (image side) = 0.015
d0 = 30.60
D = 6
hdoe = 6.22
θdoe = 23.83 [°]
m r d nd νd
1 234.314 3.50 1.589 61.2
2 -25.703 0.15
3 28.645 1.00 1.785 25.7
4 16.720 5.20 1.498 82.5
5 -66.437 0.15
6 15.752 1.00 1.835 42.7
7 11.342 5.00 1.589 61.2
8 121.523 0.95
9 0.000 2.50 1.517 64.1
10 0.000 0.06 1.557 50.2
11 0.000 0.00 10001.000 -3.5
12 * 0.000 0.06 1.528 34.7
13 0.000 3.00 1.517 64.1
14 0.000 0.50
15 9.002 3.35 1.564 60.7
16 -39.060 1.00 1.804 39.6
17 5.900 2.90
18 -13.735 1.90 1.785 25.7
19 -5.202 1.00 1.640 60.1
20 15.201 136.30
21 75.043 5.10 1.623 57.0
22 -75.043 2.00 1.750 35.2
23 1600.580 7.50
24 50.256 5.10 1.668 42.0
25 -84.541 1.80 1.613 44.4
26 36.911 5.50
27 0.000 30.00 1.569 56.0
28 0.000 143.82
Diffraction optical surface data 12th surface κ = 1 A2 = -5.6000E-08 A4 = 3.2897E-10
A6 = -4.1539E-12 A8 = 2.0125E-14
Condition-corresponding value (1) Left side | θ | (0th order) = 0.91 [°] | θ | (second order) = 0.90 [°]
Right side = 0.57 [°]
(2) Left side | δθ | (0th order-1st order) = 0.39 [°]
| Δθ | (secondary-first order) = 0.39 [°]
Right side = 0.26 [°]
(2 ') Right side = 0.23 [°]
このように、第4実施例では上記条件式(1)及び(2)を全て満たしていることが分かる。また、図11に、この第4実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。この図11に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが2.0mm以上あるため、第4実施例に係る顕微鏡光学系MS4は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 Thus, it can be seen that the fourth embodiment satisfies all the conditional expressions (1) and (2). FIG. 11 shows a spot diagram of zeroth-order light and secondary light (unnecessary-order light) in the fourth embodiment. As shown in FIG. 11, the zero-order light and the secondary light, which are unnecessary orders of light, have a height from the optical axis of the spot of 2.0 mm or more, and therefore the microscope optical system MS4 according to the fourth example has The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
[第5実施例]
次に、第5実施例として図12に示す顕微鏡光学系MS5について説明する。この顕微鏡光学系MS5も、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、両凸レンズL2と物体側に凹面を向けた負メニスカスレンズL3とを接合した接合レンズ、両凸レンズL4、及び、両凸レンズL5と両凹レンズL6と物体側に凸面を向けた正メニスカスレンズL7とを接合した接合レンズから構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL8、それぞれ異なる樹脂材料から形成された2個の光学部材L9,L10、及び、平板状の光学ガラスL11がこの順で接合され、光学部材L9,L10の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、両凸レンズL12と両凹レンズL13とを接合した接合レンズ、及び、両凹レンズL14と両凸レンズL15と両凹レンズL16とを接合した接合レンズから構成される。さらに、第二対物レンズILは、物体側から順に、両凸レンズL17と両凹レンズL18とを接合した接合レンズ、及び、両凸レンズL19と両凹レンズL20とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。[Fifth embodiment]
Next, a microscope optical system MS5 shown in FIG. 12 will be described as a fifth embodiment. The microscope optical system MS5 is also composed of an objective lens OL, a second objective lens IL, and a prism PR in this order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, the first lens group G1 includes, in order from the object side, a positive meniscus lens L1 having a concave surface facing the object side, a biconvex lens L2, and a cemented lens and a biconvex lens having a negative meniscus lens L3 having a concave surface facing the object side. L4 and a cemented lens in which a biconvex lens L5, a biconcave lens L6, and a positive meniscus lens L7 having a convex surface facing the object are cemented. Further, in the diffractive optical element GD, a flat optical glass L8, two optical members L9 and L10 formed from different resin materials, and a flat optical glass L11 are joined in this order from the object side. Then, a diffraction grating pattern (diffractive optical surface) is formed on the joint surface of the optical members L9 and L10. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 includes, in order from the object side, a cemented lens in which a biconvex lens L12 and a biconcave lens L13 are cemented, and a cemented lens in which a biconcave lens L14, a biconvex lens L15, and a biconcave lens L16 are cemented. The Further, the second objective lens IL includes a cemented lens in which a biconvex lens L17 and a biconcave lens L18 are cemented in order from the object side, and a cemented lens in which a biconvex lens L19 and a biconcave lens L20 are cemented. Note that the prism PR is made of optical glass whose both ends are flat.
このように図12に示した第5実施例に係る顕微鏡光学系MS5の諸元を表6に示す。なお、表6に示す面番号は、図12に示した面番号1〜32と一致している。 Table 6 shows the specifications of the microscope optical system MS5 according to the fifth example shown in FIG. In addition, the surface number shown in Table 6 corresponds with the surface numbers 1-32 shown in FIG.
(表6)
f=4
f1=-5.09
f2=200
β=50x
NA(物体側)=0.4
NA(像側)=0.008
d0=22.51
D=3.2
hdoe=4.56
θdoe=19.10[°]
m r d nd νd
1 -120.028 3.40 1.697 55.5
2 -20.743 0.15
3 37.941 5.35 1.498 82.5
4 -21.400 1.00 1.720 34.7
5 -39.959 0.15
6 24.558 3.70 1.603 65.5
7 -143.315 0.15
8 16.120 4.35 1.498 82.5
9 -47.354 1.00 1.804 39.6
10 9.766 3.20 1.498 82.5
11 38.999 1.20
12 0.000 2.50 1.517 64.1
13 0.000 0.06 1.528 34.7
14 0.000 0.00 10001.000 -3.5
15* 0.000 0.06 1.557 50.2
16 0.000 3.00 1.517 64.1
17 0.000 0.20
18 7.350 2.80 1.498 82.5
19 -42.071 1.00 1.804 39.6
20 7.151 3.90
21 -10.484 0.90 1.729 54.7
22 5.488 2.40 1.741 27.8
23 -3.461 0.90 1.624 47.0
24 5.396 100.00
25 75.043 5.10 1.623 57.0
26 -75.043 2.00 1.750 35.2
27 1600.580 7.50
28 50.256 5.10 1.668 42.0
29 -84.541 1.80 1.613 44.4
30 36.911 5.50
31 0.000 30.00 1.569 56.0
32 0.000 143.82
回折光学面データ
第15面 κ=1 A2=-5.5556E-08 A4=-9.0940E-14
A6=-3.0689E-12 A8=1.7287E-15
条件対応値
(1) 左辺 |θ|(0次)=1.20[°] |θ|(2次)=1.23[°]
右辺 =1.07[°]
(2) 左辺 |δθ|(0次−1次)=0.39[°]
|δθ|(2次−1次)=0.39[°]
右辺 =0.37[°]
(2′)右辺 =0.33[°](Table 6)
f = 4
f1 = -5.09
f2 = 200
β = 50x
NA (object side) = 0.4
NA (image side) = 0.008
d0 = 22.51
D = 3.2
hdoe = 4.56
θdoe = 19.10 [°]
m r d nd νd
1 -120.028 3.40 1.697 55.5
2 -20.743 0.15
3 37.941 5.35 1.498 82.5
4 -21.400 1.00 1.720 34.7
5 -39.959 0.15
6 24.558 3.70 1.603 65.5
7 -143.315 0.15
8 16.120 4.35 1.498 82.5
9 -47.354 1.00 1.804 39.6
10 9.766 3.20 1.498 82.5
11 38.999 1.20
12 0.000 2.50 1.517 64.1
13 0.000 0.06 1.528 34.7
14 0.000 0.00 10001.000 -3.5
15 * 0.000 0.06 1.557 50.2
16 0.000 3.00 1.517 64.1
17 0.000 0.20
18 7.350 2.80 1.498 82.5
19 -42.071 1.00 1.804 39.6
20 7.151 3.90
21 -10.484 0.90 1.729 54.7
22 5.488 2.40 1.741 27.8
23 -3.461 0.90 1.624 47.0
24 5.396 100.00
25 75.043 5.10 1.623 57.0
26 -75.043 2.00 1.750 35.2
27 1600.580 7.50
28 50.256 5.10 1.668 42.0
29 -84.541 1.80 1.613 44.4
30 36.911 5.50
31 0.000 30.00 1.569 56.0
32 0.000 143.82
Diffraction optical surface data 15th surface κ = 1 A2 = -5.5556E-08 A4 = -9.0940E-14
A6 = -3.0689E-12 A8 = 1.7287E-15
Condition-corresponding value (1) Left side | θ | (0th order) = 1.20 [°] | θ | (Second order) = 1.23 [°]
Right side = 1.07 [°]
(2) Left side | δθ | (0th order-1st order) = 0.39 [°]
| Δθ | (secondary-first order) = 0.39 [°]
Right side = 0.37 [°]
(2 ') Right side = 0.33 [°]
このように、第5実施例では上記条件式(1)及び(2)を全て満たしていることが分かる。また、図13に、この第5実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。この図13に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが3.75mm以上あるため、第5実施例に係る顕微鏡光学系MS5は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 Thus, it can be seen that the fifth embodiment satisfies all the conditional expressions (1) and (2). FIG. 13 shows a spot diagram of zeroth-order light and secondary light (unnecessary-order light) in the fifth embodiment. As shown in FIG. 13, the zero-order light and the secondary light, which are unnecessary orders of light, have a height from the optical axis of the spot of 3.75 mm or more. Therefore, the microscope optical system MS5 according to the fifth example has The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
[第6実施例]
最後に、第6実施例として図14に示す顕微鏡光学系MS6について説明する。この顕微鏡光学系MS6も、物体側から順に、対物レンズOLと、第二対物レンズILと、プリズムPRと、から構成される。また、対物レンズOLは、物体側から順に、第1レンズ群G1と、回折光学素子GDと、第2レンズ群G2と、から構成される。さらに、第1レンズ群G1は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL1、物体側に平面を向けた平凸レンズL2、両凸レンズL3と物体側に凹面を向けた負メニスカスレンズL4とを接合した接合レンズ、両凸レンズL5と両凹レンズL6と両凸レンズL7とを接合した接合レンズ、及び、両凸レンズL8と両凹レンズL9とを接合した接合レンズから構成される。また、回折光学素子GDは、物体側から順に、平板状の光学ガラスL10、それぞれ異なる樹脂材料から形成された2個の光学部材L11,L12、及び、平板状の光学ガラスL13がこの順で接合され、光学部材L11,L12の接合面に回折格子パターン(回折光学面)が形成されている。すなわち、この回折光学素子GDは、密着複層型の回折光学素子である。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL14と両凸レンズL15と両凹レンズL16とを接合した接合レンズ、及び、両凹レンズL17と両凸レンズL18と両凹レンズL19とを接合した接合レンズから構成される。さらに、第二対物レンズILは、物体側から順に、両凸レンズL20と両凹レンズL21とを接合した接合レンズ、及び、両凸レンズL22と両凹レンズL23とを接合した接合レンズから構成される。なお、プリズムPRは両端が平面の光学ガラスで構成される。[Sixth embodiment]
Finally, a microscope optical system MS6 shown in FIG. 14 will be described as a sixth embodiment. The microscope optical system MS6 is also composed of an objective lens OL, a second objective lens IL, and a prism PR in this order from the object side. The objective lens OL includes a first lens group G1, a diffractive optical element GD, and a second lens group G2 in order from the object side. Further, in order from the object side, the first lens group G1 includes a positive meniscus lens L1 having a concave surface facing the object side, a planoconvex lens L2 having a flat surface facing the object side, a biconvex lens L3, and a negative meniscus having a concave surface facing the object side. The lens includes a cemented lens in which the lens L4 is cemented, a cemented lens in which the biconvex lens L5, the biconcave lens L6, and the biconvex lens L7 are cemented, and a cemented lens in which the biconvex lens L8 and the biconcave lens L9 are cemented. Further, in the diffractive optical element GD, a flat optical glass L10, two optical members L11 and L12 formed of different resin materials, and a flat optical glass L13 are joined in this order from the object side. In addition, a diffraction grating pattern (diffractive optical surface) is formed on the joint surface of the optical members L11 and L12. That is, the diffractive optical element GD is a contact multilayer diffractive optical element. The second lens group G2 includes, in order from the object side, a cemented lens in which a negative meniscus lens L14 having a convex surface facing the object side, a biconvex lens L15, and a biconcave lens L16, and a biconcave lens L17 and a biconvex lens L18. It is composed of a cemented lens in which a biconcave lens L19 is cemented. Further, the second objective lens IL is composed of a cemented lens in which the biconvex lens L20 and the biconcave lens L21 are cemented in order from the object side, and a cemented lens in which the biconvex lens L22 and the biconcave lens L23 are cemented. Note that the prism PR is made of optical glass whose both ends are flat.
このように図14に示した第6実施例に係る顕微鏡光学系MS6の諸元を表7に示す。なお、表7に示す面番号は、図14に示した面番号1〜36と一致している。 Table 7 shows the specifications of the microscope optical system MS6 according to the sixth example shown in FIG. In addition, the surface number shown in Table 7 corresponds with the surface numbers 1-36 shown in FIG.
(表7)
f=2
f1=-3.54
f2=200
β=100x
NA(物体側)=0.6
NA(像側)=0.006
d0=12.18
D=2.4
hdoe=4.90
θdoe=20.34[°]
m r d nd νd
1 -17.818 3.20 1.729 54.6
2 -11.600 0.10
3 0.000 4.00 1.569 71.3
4 -20.743 0.10
5 45.256 5.90 1.498 82.6
6 -19.170 1.20 1.613 44.3
7 -39.808 0.10
8 29.510 4.60 1.498 82.6
9 -33.847 1.20 1.613 44.3
10 13.735 4.70 1.498 82.6
11 -80.931 0.20
12 15.883 3.90 1.498 82.6
13 -38.548 1.00 1.723 38.0
14 38.548 1.20
15 0.000 2.50 1.517 63.9
16 0.000 0.06 1.528 34.7
17 0.000 0.00 10001.000 -3.5
18* 0.000 0.06 1.557 50.2
19 0.000 3.00 1.517 63.9
20 0.000 0.20
21 8.410 1.30 1.694 53.2
22 4.811 3.50 1.434 95.0
23 -20.594 1.00 1.673 32.2
24 6.950 5.20
25 -10.080 1.00 1.788 47.4
26 11.276 1.80 1.847 23.8
27 -3.092 0.70 1.694 53.2
28 4.719 140.50
29 75.043 5.10 1.623 57.0
30 -75.043 2.00 1.750 35.2
31 1600.580 7.50
32 50.256 5.10 1.668 42.0
33 -84.541 1.80 1.613 44.4
34 36.911 5.50
35 0.000 30.00 1.569 56.0
36 0.000 143.82
回折光学面データ
第18面 κ=1 A2=-4.1167E-08 A4=-8.5221E-11
A6=-7.6001E-14 A8=-3.0526E-17
条件対応値
(1) 左辺 |θ|(0次)=1.54[°] |θ|(2次)=1.48[°]
右辺 =1.43[°]
(2) 左辺 |δθ|(0次−1次)=0.32[°]
|δθ|(2次−1次)=0.32[°]
右辺 =0.34[°]
(2′)右辺 =0.30[°](Table 7)
f = 2
f1 = -3.54
f2 = 200
β = 100x
NA (object side) = 0.6
NA (image side) = 0.006
d0 = 12.18
D = 2.4
hdoe = 4.90
θdoe = 20.34 [°]
m r d nd νd
1 -17.818 3.20 1.729 54.6
2 -11.600 0.10
3 0.000 4.00 1.569 71.3
4 -20.743 0.10
5 45.256 5.90 1.498 82.6
6 -19.170 1.20 1.613 44.3
7 -39.808 0.10
8 29.510 4.60 1.498 82.6
9 -33.847 1.20 1.613 44.3
10 13.735 4.70 1.498 82.6
11 -80.931 0.20
12 15.883 3.90 1.498 82.6
13 -38.548 1.00 1.723 38.0
14 38.548 1.20
15 0.000 2.50 1.517 63.9
16 0.000 0.06 1.528 34.7
17 0.000 0.00 10001.000 -3.5
18 * 0.000 0.06 1.557 50.2
19 0.000 3.00 1.517 63.9
20 0.000 0.20
21 8.410 1.30 1.694 53.2
22 4.811 3.50 1.434 95.0
23 -20.594 1.00 1.673 32.2
24 6.950 5.20
25 -10.080 1.00 1.788 47.4
26 11.276 1.80 1.847 23.8
27 -3.092 0.70 1.694 53.2
28 4.719 140.50
29 75.043 5.10 1.623 57.0
30 -75.043 2.00 1.750 35.2
31 1600.580 7.50
32 50.256 5.10 1.668 42.0
33 -84.541 1.80 1.613 44.4
34 36.911 5.50
35 0.000 30.00 1.569 56.0
36 0.000 143.82
Diffraction optical surface data 18th surface κ = 1 A2 = -4.1167E-08 A4 = -8.5221E-11
A6 = -7.6001E-14 A8 = -3.0526E-17
Condition-corresponding value (1) Left side | θ | (0th order) = 1.54 [°] | θ | (second order) = 1.48 [°]
Right side = 1.43 [°]
(2) Left side | δθ | (0th order-1st order) = 0.32 [°]
| Δθ | (secondary-1st order) = 0.32 [°]
Right side = 0.34 [°]
(2 ') Right side = 0.30 [°]
このように、第6実施例では上記条件式(1)及び(2′)を満たしていることが分かる。しかしながら、条件式(2)は満たしていない。これは収差のためである。また、図15に、この第6実施例における、0次光及び2次光(不要次数の光)によるスポットダイアグラムを示す。この図15に示すように、不要次数の光である0次光及び2次光は、スポットの光軸からの高さが5.0mm以上あるため、第6実施例に係る顕微鏡光学系MS6は、像面においてこの0次光及び2次光によるフレアを目立たなくすることができる。 Thus, it can be seen that the sixth embodiment satisfies the above conditional expressions (1) and (2 ′). However, conditional expression (2) is not satisfied. This is due to aberrations. FIG. 15 shows a spot diagram of zeroth-order light and secondary light (unnecessary-order light) in the sixth embodiment. As shown in FIG. 15, the zeroth-order light and the second-order light, which are unnecessary-order lights, have a height from the optical axis of the spot of 5.0 mm or more, so that the microscope optical system MS6 according to the sixth example has The flare caused by the zero-order light and the secondary light can be made inconspicuous on the image plane.
MS 顕微鏡光学系 OL 対物レンズ IL 第二対物レンズ
G1 第1レンズ群 GD 回折光学素子 G2 第2レンズ群
1 顕微鏡システム 10 ステージ
17 第1及照明光学系 18 第2照明光学系MS microscope optical system OL objective lens IL second objective lens G1 first lens group GD diffractive optical element G2
Claims (5)
前記対物レンズからの略平行光束を集光して前記物体の像を結像する第二対物レンズと、を有する顕微鏡光学系の製造方法であって、
結像に前記回折光学素子のm次光を使用する場合に、光軸上に位置する前記物体から出た最大NAの光が前記回折光学素子に入射して当該回折光学素子から射出する前記m次光とは異なる次数の光が前記第二対物レンズに入射する角度をθとし、前記第二対物レンズへの入射瞳の直径をD[mm]としたとき、次式
The method of manufacturing a microscope optical system for chromatic and second objective lenses, a a substantially condenses the parallel beam to form an image of the object from the objective lens,
When m-order light of the diffractive optical element is used for image formation, the maximum NA light emitted from the object located on the optical axis enters the diffractive optical element and exits from the diffractive optical element. When the angle at which light of a different order from the secondary light is incident on the second objective lens is θ and the diameter of the entrance pupil to the second objective lens is D [mm],
前記対物レンズからの略平行光束を集光して前記物体の像を結像する第二対物レンズと、を有する顕微鏡光学系の製造方法であって、
光軸上に位置する前記物体から出た最大NAの光が前記回折光学素子に入射して当該回折光学素子から射出する回折光のうち、結像に使用する次数の光の射出角度と不要次数の光の射出角度との差をδθとし、前記結像に使用する次数の光の射出する高さをhdoe、射出する角度をθdoeとし、前記第二対物レンズへの入射瞳の直径をD[mm]とし、前記対物レンズを構成するレンズのうち前記回折光学素子より像側にあるレンズからなるレンズ群の焦点距離をf1としたとき、次式
The method of manufacturing a microscope optical system for chromatic and second objective lenses, a a substantially condenses the parallel beam to form an image of the object from the objective lens,
Of the diffracted light emitted from the diffractive optical element when the maximum NA light emitted from the object located on the optical axis is incident on the diffractive optical element, the emission angle and unnecessary order of the light used for image formation Δθ is the difference from the light exit angle of the light, and the height at which the light of the order used for imaging is emitted is hdo, the exit angle is θdoe, and the diameter of the entrance pupil to the second objective lens is D [ mm] and the focal length of a lens group consisting of lenses on the image side of the diffractive optical element among the lenses constituting the objective lens is f1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012530636A JP5829212B2 (en) | 2010-08-25 | 2011-08-18 | Manufacturing method of microscope optical system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010187828 | 2010-08-25 | ||
JP2010187828 | 2010-08-25 | ||
JP2012530636A JP5829212B2 (en) | 2010-08-25 | 2011-08-18 | Manufacturing method of microscope optical system |
PCT/JP2011/068647 WO2012026379A1 (en) | 2010-08-25 | 2011-08-18 | Microscope optical assembly and microscope system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012026379A1 JPWO2012026379A1 (en) | 2013-10-28 |
JP5829212B2 true JP5829212B2 (en) | 2015-12-09 |
Family
ID=45723381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012530636A Active JP5829212B2 (en) | 2010-08-25 | 2011-08-18 | Manufacturing method of microscope optical system |
Country Status (5)
Country | Link |
---|---|
US (1) | US9001420B2 (en) |
EP (1) | EP2610662B1 (en) |
JP (1) | JP5829212B2 (en) |
CN (1) | CN102959451B (en) |
WO (1) | WO2012026379A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108351301B (en) * | 2015-09-02 | 2021-03-09 | 英思克斯公司 | System and method for color imaging |
EP3371572B1 (en) | 2015-11-05 | 2021-05-05 | Inscopix, Inc. | System for optogenetic imaging |
CN105866968B (en) * | 2016-05-31 | 2019-05-24 | 武汉理工大学 | A kind of dispersion compensation device based on diffraction lens |
DE102016122528A1 (en) * | 2016-11-22 | 2018-05-24 | Carl Zeiss Microscopy Gmbh | Method for controlling or regulating a microscope illumination |
US10001633B1 (en) * | 2016-12-19 | 2018-06-19 | Newmax Technology Co., Ltd. | Six-piece microscope lens system |
JP6296318B1 (en) * | 2017-04-28 | 2018-03-20 | アクアシステム株式会社 | Microscope optical system and microscope using the same |
CN108037580A (en) * | 2018-01-09 | 2018-05-15 | 中山日荣塑料电子制品有限公司 | A kind of light-guiding type microscope |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11125709A (en) * | 1997-10-21 | 1999-05-11 | Olympus Optical Co Ltd | Optical system using diffraction optical element |
JP2009251554A (en) * | 2008-04-11 | 2009-10-29 | Nikon Corp | Microscope objective lens |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0335510U (en) * | 1989-08-19 | 1991-04-08 | ||
JPH0527179A (en) * | 1991-07-18 | 1993-02-05 | Fuji Photo Film Co Ltd | Scanning microscope |
JP3893691B2 (en) * | 1997-09-17 | 2007-03-14 | 株式会社ニコン | Imaging optics |
JP2002267940A (en) | 2001-03-09 | 2002-09-18 | Olympus Optical Co Ltd | Inverted microscope system |
US20040070846A1 (en) * | 2001-06-22 | 2004-04-15 | Hans-Juergen Dobschal | Objective |
DE10130212A1 (en) * | 2001-06-22 | 2003-01-02 | Zeiss Carl Jena Gmbh | lens |
US7193775B2 (en) * | 2002-05-30 | 2007-03-20 | Dmetrix, Inc. | EPI-illumination system for an array microscope |
JP4383080B2 (en) * | 2003-04-15 | 2009-12-16 | オリンパス株式会社 | Objective lens |
JP2005062232A (en) * | 2003-08-11 | 2005-03-10 | Nissin Kohki Co Ltd | Optical element, lens, and optical head device |
DE10352523A1 (en) * | 2003-11-07 | 2005-06-09 | Carl Zeiss Jena Gmbh | Invertible light microscope |
EP1865355B1 (en) * | 2005-03-30 | 2013-03-06 | Nikon Corporation | Image forming method and microscope device |
US20080158668A1 (en) * | 2005-10-07 | 2008-07-03 | Nikon Corporation | Microscope and Image Generation Method |
JP5136422B2 (en) * | 2006-12-12 | 2013-02-06 | 株式会社ニコン | Microscope device and image processing method |
JP5370157B2 (en) * | 2007-10-15 | 2013-12-18 | 株式会社ニコン | Lens barrel base unit and microscope |
JP5109712B2 (en) * | 2008-02-25 | 2012-12-26 | 株式会社ニコン | Objective lens |
EP2264506B1 (en) * | 2008-04-11 | 2017-05-17 | Nikon Corporation | Microscope objective lens |
US9035235B2 (en) * | 2008-07-22 | 2015-05-19 | Centre National De La Recherche Scientifique (Cnrs) | Method for reducing interference and crosstalk in double optical tweezers using a single laser source, and apparatus using the same |
WO2010071140A1 (en) * | 2008-12-19 | 2010-06-24 | 株式会社ニコン | Microscope device |
JP2013235246A (en) * | 2012-04-12 | 2013-11-21 | Olympus Corp | Liquid immersion microscope objective lens and microscope including the same |
-
2011
- 2011-08-18 CN CN201180031600.9A patent/CN102959451B/en active Active
- 2011-08-18 WO PCT/JP2011/068647 patent/WO2012026379A1/en active Application Filing
- 2011-08-18 EP EP11819842.3A patent/EP2610662B1/en active Active
- 2011-08-18 JP JP2012530636A patent/JP5829212B2/en active Active
-
2013
- 2013-02-25 US US13/775,486 patent/US9001420B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11125709A (en) * | 1997-10-21 | 1999-05-11 | Olympus Optical Co Ltd | Optical system using diffraction optical element |
JP2009251554A (en) * | 2008-04-11 | 2009-10-29 | Nikon Corp | Microscope objective lens |
Also Published As
Publication number | Publication date |
---|---|
EP2610662A4 (en) | 2014-05-07 |
CN102959451B (en) | 2015-06-24 |
EP2610662A1 (en) | 2013-07-03 |
JPWO2012026379A1 (en) | 2013-10-28 |
EP2610662B1 (en) | 2018-04-04 |
US9001420B2 (en) | 2015-04-07 |
CN102959451A (en) | 2013-03-06 |
WO2012026379A1 (en) | 2012-03-01 |
US20130170021A1 (en) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5829212B2 (en) | Manufacturing method of microscope optical system | |
JP5440891B2 (en) | Microscope objective lens | |
JP5614448B2 (en) | Microscope objective lens | |
EP2264506A1 (en) | Microscope objective lens | |
EP2264505A1 (en) | Objective lens | |
US7511897B2 (en) | Projector optical system | |
JP4860500B2 (en) | Achromatic lens system, optical device | |
JP3833754B2 (en) | Electronic camera with diffractive optical element | |
JP5206085B2 (en) | Microscope objective lens | |
JP4957983B2 (en) | microscope | |
JP2008122592A (en) | Microscope objective lens | |
JP5190691B2 (en) | Microscope objective lens | |
US6141159A (en) | Viewfinder optical system | |
JPH1073706A (en) | Diffraction type optical element having both surfaces consisting of diffraction surface | |
JP6233421B2 (en) | Objective lens and microscope | |
JP5434130B2 (en) | Microscope objective lens | |
JPH09146007A (en) | Optical system | |
JPH09197283A (en) | Objective lens | |
JP2006317761A (en) | Objective lens | |
WO2019225063A1 (en) | Objective lens, optical system, and microscope | |
JP4725847B2 (en) | DOE lens and illumination optical system having the DOE lens | |
JP2006133638A (en) | Lighting system and light projecting tube used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130905 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5829212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |