JP2006313213A - Optical system for illumination and microscope lighting system - Google Patents

Optical system for illumination and microscope lighting system Download PDF

Info

Publication number
JP2006313213A
JP2006313213A JP2005135593A JP2005135593A JP2006313213A JP 2006313213 A JP2006313213 A JP 2006313213A JP 2005135593 A JP2005135593 A JP 2005135593A JP 2005135593 A JP2005135593 A JP 2005135593A JP 2006313213 A JP2006313213 A JP 2006313213A
Authority
JP
Japan
Prior art keywords
optical system
illumination
lens
annular
donut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005135593A
Other languages
Japanese (ja)
Inventor
Kokichi Kenno
孝吉 研野
Kenichi Kusaka
健一 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005135593A priority Critical patent/JP2006313213A/en
Publication of JP2006313213A publication Critical patent/JP2006313213A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination optical system for enabling bright phase difference observation and dark field observation by obtaining annular illumination without losing light intensity from a light source, and to provide an illumination optical system for an exposure device and a microscope lighting system using it. <P>SOLUTION: The optical system for illumination comprises a light source 11, a condensing optical system 13 for condensing or dispersing light or making a light flux by condensing light flux dispersed from the light source 11, a doughnut lens 10 for annularly condensing the light flux, an annular opening 2 arranged in the neighborhood of a condensing position of the light flux condensed annularly, and a condenser lens 3 for projecting an image of the annular opening 2 at a pupil position 6 of an observation optical system or projection optical system objective lens 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、照明用光学系及び顕微鏡照明装置に関し、特に、顕微鏡や露光装置の照明用光学系とそれを用いた顕微鏡照明装置に関するものである。   The present invention relates to an illumination optical system and a microscope illumination apparatus, and more particularly to an illumination optical system for a microscope and an exposure apparatus and a microscope illumination apparatus using the same.

従来、輪帯照明が得られる光学系としては、特許文献1、特許文献2、特許文献3、特許文献4等のものが知られている。特許文献1〜2に記載のものは、ライトガイドの先端をリング状にしてその先端から出た光束を内視鏡視野にリング状に照射するものである。また、特許文献3に記載のものは、同心円状の等間隔の回折格子で平行光を円錐状に広がる光束に変換し、その円錐状に広がる光束を収束レンズでリング絞り上に収束させるものである。さらに、特許文献4に記載のものは、特殊結像レンズで光源の多重像を発生させ、その多重像の各々の光源像がリング状開口上に隣接して円状に並ぶようにするものである。   Conventionally, optical systems capable of obtaining annular illumination include those of Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, and the like. In the devices described in Patent Documents 1 and 2, the tip of the light guide is formed in a ring shape, and a light beam emitted from the tip of the light guide is irradiated onto the endoscope visual field in a ring shape. In addition, the device described in Patent Document 3 converts parallel light into a conical circularly diffusing light beam with a concentric equidistant diffraction grating, and converges the conical light beam on a ring diaphragm with a converging lens. is there. Further, the device disclosed in Patent Document 4 generates a multiple image of a light source with a special imaging lens so that each light source image of the multiple image is arranged in a circle adjacent to the ring-shaped opening. is there.

なお、平行光を円錐状に広がる光束に変換するのに、中心軸を含む断面内で中心軸から外れた凸レンズの断面の形状をその中心軸の周りで360°回転して得られるドーナツ状レンズあるいはアンパンレンズ(以下、ドーナツ状レンズと称する。)に平行光を入射させて円環状に集光させるものは、特許文献5において知られている。
特公平5−11284号公報 特公平5−11285号公報 特開平8−334701号公報 特開2003−270542号公報 特公平8−27436号公報
A donut-like lens obtained by rotating the shape of a cross section of a convex lens deviating from the central axis within the cross section including the central axis 360 degrees around the central axis in order to convert the parallel light into a conical light beam. Alternatively, Patent Document 5 discloses a technique in which parallel light is incident on an ampang lens (hereinafter referred to as a donut-shaped lens) and condensed in an annular shape.
Japanese Examined Patent Publication No. 5-11284 Japanese Patent Publication No. 5-11285 JP-A-8-334701 JP 2003-270542 A Japanese Patent Publication No. 8-27436

しかしながら、上記の従来の輪帯照明が得られる光学系においては、十分に狭い輪帯開口(リング絞り)に損失なく均一に集光できなかったり、効率良い輪帯照明ができなかった。   However, in the above-described optical system capable of obtaining the annular illumination, it has not been possible to uniformly collect light without loss at a sufficiently narrow annular opening (ring diaphragm), or efficient annular illumination has not been achieved.

また、また、従来のドーナツ状レンズを用いるものは、輪帯開口に損失なく均一に集光するものではなかった。   In addition, the conventional lens using a donut-shaped lens does not collect light uniformly at the annular opening without any loss.

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、光源からの光量を損失することなく輪帯照明を得られ、明るい位相差観察や暗視野観察が可能な照明光学系、露光装置用の照明光学系とそれを用いた顕微鏡照明装置を提供することである。   The present invention has been made in view of such a situation in the prior art, and an object thereof is to obtain annular illumination without losing the amount of light from the light source, and capable of bright phase difference observation and dark field observation. An illumination optical system, an illumination optical system for an exposure apparatus, and a microscope illumination apparatus using the same.

上記目的を達成する本発明の照明用光学系は、光源と、前記光源から発散する光束を集光して集光又は発散あるいは平行な光束にする集光光学系と、前記光束を輪帯状に集光するドーナツ状レンズと、前記輪帯状に集光した光束の集光位置近傍に配置された輪帯開口と、前記輪帯開口の像を観察光学系又は投影光学系の対物レンズの瞳位置に投影するコンデンサーレンズとを備えていることを特徴とするものである。   The illumination optical system of the present invention that achieves the above object includes a light source, a condensing optical system that condenses the light beam diverging from the light source into a condensed or divergent or parallel light beam, and the light beam in an annular shape. A donut-shaped lens for condensing, an annular aperture disposed in the vicinity of the condensing position of the luminous flux condensed in the annular shape, and an image of the annular aperture for the pupil position of the objective lens of the observation optical system or projection optical system And a condenser lens that projects onto the lens.

この場合、前記ドーナツ状レンズと前記輪帯開口が一体化されていることが望ましい。   In this case, it is desirable that the donut-shaped lens and the annular zone opening are integrated.

また、前記ドーナツ状レンズは光軸の周りで回転対称な形状をしており、光軸を含む断面の光軸から外れた片側の形状が光源側に凸面を向けた平凸レンズ形状のものとすることができる。   The donut-shaped lens has a shape that is rotationally symmetric around the optical axis, and has a plano-convex lens shape in which the shape on one side deviating from the optical axis of the cross section including the optical axis faces the convex surface on the light source side. be able to.

この場合に、前記凸面の面頂の光軸からの半径をR、前記輪帯開口の半径をrとするとき、R≒rであることが望ましい。   In this case, when the radius from the optical axis at the top of the convex surface is R and the radius of the annular zone opening is r, it is desirable that R≈r.

また、前記凸面は周辺に行くに従って曲率が緩くなる面であることが望ましい。   Further, it is desirable that the convex surface is a surface whose curvature becomes gentler toward the periphery.

また、前記ドーナツ状レンズはフレネルレンズから構成することができる。   The donut-shaped lens can be composed of a Fresnel lens.

また、前記集光光学系には、集光される光束を均一にする拡散素子が含まれていることが望ましい。   Further, it is desirable that the condensing optical system includes a diffusing element that makes the collected light beam uniform.

また、前記集光光学系と前記ドーナツ状レンズを含めた光軸を含む断面内での前記光源から光源像への投影倍率をβとするとき、
0.1<β<20 ・・・(1)
なる条件を満足することが望ましい。
When the projection magnification from the light source to the light source image in the cross section including the optical axis including the condensing optical system and the doughnut-shaped lens is β,
0.1 <β <20 (1)
It is desirable to satisfy the following conditions.

また、以上の本発明の照明用光学系が位相差観察光学系を備えた顕微鏡の照明装置に用いられ、前記位相差観察光学系の前記輪帯開口の投影位置に位相膜が輪帯状に配置されている顕微鏡照明装置として構成することができる。   Further, the illumination optical system of the present invention described above is used for an illumination device of a microscope having a phase difference observation optical system, and a phase film is arranged in a ring shape at the projection position of the ring zone opening of the phase difference observation optical system. It can be configured as a microscope illumination device.

また、以上の本発明の照明用光学系が暗視野観察光学系を備えた顕微鏡の照明装置に用いられ、前記暗視野観察光学系の対物レンズの開口数より大きい開口数の光束を前記コンデンサーレンズを介して前記暗視野観察光学系の標本面に集光させて暗視野照明を行う顕微鏡照明装置として構成することができる。   Further, the illumination optical system according to the present invention is used in an illumination device of a microscope having a dark field observation optical system, and a condenser having a numerical aperture larger than the numerical aperture of the objective lens of the dark field observation optical system is used. It can be configured as a microscope illuminator that performs dark field illumination by condensing on the sample surface of the dark field observation optical system.

本発明によると、照明の利用効率が良く、明るい位相差観察や暗視野観察を行うことが可能な照明用光学系と顕微鏡照明装置を得ることが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to obtain the illumination optical system and microscope illuminating device which can use illumination efficiently and can perform bright phase difference observation and dark field observation.

以下、本発明の照明用光学系及び顕微鏡照明装置を図面を参照にして説明する。   The illumination optical system and microscope illumination apparatus of the present invention will be described below with reference to the drawings.

まず、顕微鏡における従来の位相差観察と暗視野観察について説明する。図9は従来の位相差観察時の光路を輪帯開口以降について示した図である。光軸O−O’に同軸に輪帯開口板1、コンデンサーレンズ3、対物レンズ5が配置され、コンデンサーレンズ3と対物レンズ5の間に標本面4が配置され、対物レンズ5の射出瞳6位置に輪帯開口板1の輪帯開口2と共役にリング状の位相膜7が配置されている。そして、図示しない集光光学系を経た光源からの平行光等で照明された輪帯開口板1の輪帯開口2を通った光は、コンデンサーレンズ3を経て光軸O−O’を含む断面(メリジオナル断面)内で略平行な光になって、標本面4上の試料を光軸O−O’に同軸なコーン状の光束として照明する。標本面4上の試料で回折されずに透過した光束は、対物レンズ5の射出瞳6位置の位相膜7に入射して位相がずれて像面8に達し、一方、標本面4上の試料で回折された光束は大部分位相膜7の影響を受けずに像面8に達し、この2つの光束は像面8上で干渉して、試料の位相分布がコントラスト像として観察可能になる。   First, conventional phase difference observation and dark field observation in a microscope will be described. FIG. 9 is a diagram showing the optical path at the time of conventional phase difference observation after the annular opening. An annular aperture plate 1, a condenser lens 3, and an objective lens 5 are arranged coaxially with the optical axis OO ′, a sample surface 4 is arranged between the condenser lens 3 and the objective lens 5, and an exit pupil 6 of the objective lens 5. A ring-shaped phase film 7 is arranged at a position conjugate with the annular opening 2 of the annular opening plate 1. The light passing through the annular aperture 2 of the annular aperture plate 1 illuminated with parallel light from a light source that has passed through a condensing optical system (not shown) passes through the condenser lens 3 and includes a cross section including the optical axis OO ′. The light is substantially parallel within the (meridional cross section), and the sample on the specimen surface 4 is illuminated as a cone-shaped light beam coaxial with the optical axis OO ′. The light beam transmitted without being diffracted by the sample on the sample surface 4 is incident on the phase film 7 at the position of the exit pupil 6 of the objective lens 5 and is shifted in phase to reach the image surface 8, while the sample on the sample surface 4. Most of the light beam diffracted by the laser beam reaches the image plane 8 without being influenced by the phase film 7, and the two light beams interfere on the image surface 8, so that the phase distribution of the sample can be observed as a contrast image.

次に、図10は従来の暗視野観察時の光路を輪帯開口以降について示した図である。光軸O−O’に同軸に輪帯開口板1、コンデンサーレンズ3、対物レンズ5、絞り9が配置され、コンデンサーレンズ3と対物レンズ5の間に標本面4が配置されている。そして、図示しない集光光学系を経た光源からの平行光等で照明された輪帯開口板1の輪帯開口2を通った光は、コンデンサーレンズ3を経て光軸O−O’を含む断面(メリジオナル断面)内で略平行な光になって、標本面4上の試料をコーン状の光束として照明する。このコーン状の光束の開口数(NA)は対物レンズ5の開口数より大きくなるように構成されているので、標本面4上の試料で散乱されずに透過する光束は、対物レンズ5の入射瞳には入らないので像面8には達せず、一方、標本面4上の試料で散乱された光の一部は対物レンズ5の開口数より小さくなり、対物レンズ5と絞り9を経て像面8に達し、像面8上に試料の暗視野像として結像し、観察可能になる。   Next, FIG. 10 is a diagram showing an optical path at the time of conventional dark field observation after the annular opening. An annular aperture plate 1, a condenser lens 3, an objective lens 5, and an aperture 9 are arranged coaxially with the optical axis O-O ′, and a sample surface 4 is arranged between the condenser lens 3 and the objective lens 5. The light passing through the annular aperture 2 of the annular aperture plate 1 illuminated with parallel light from a light source that has passed through a condensing optical system (not shown) passes through the condenser lens 3 and includes a cross section including the optical axis OO ′. The light on the specimen surface 4 is illuminated as a cone-shaped light beam in the (meridional section). Since the numerical aperture (NA) of the cone-shaped light beam is configured to be larger than the numerical aperture of the objective lens 5, the light beam transmitted without being scattered by the sample on the sample surface 4 is incident on the objective lens 5. Since it does not enter the pupil, it does not reach the image plane 8. On the other hand, a part of the light scattered by the sample on the sample plane 4 becomes smaller than the numerical aperture of the objective lens 5, and passes through the objective lens 5 and the aperture 9. It reaches the surface 8 and forms a dark field image of the sample on the image surface 8 so that it can be observed.

しかしながら、図9、図10何れの場合も、光源からの照明光の大部分は輪帯開口板1の輪帯開口2以外の部分を照明して損失光となるため、効率良く明るい輪帯照明はできなかった。   However, in both cases of FIG. 9 and FIG. 10, most of the illumination light from the light source illuminates a portion other than the annular opening 2 of the annular opening plate 1 and becomes lost light. I couldn't.

次に、本発明の照明用光学系を適用した1実施例の位相差観察光学系の配置図を図1に示す。光軸O−O’に同軸に、光源11、拡散素子12、集光光学系13、ドーナツ状レンズ10、輪帯開口板1、コンデンサーレンズ3、対物レンズ5が配置され、コンデンサーレンズ3と対物レンズ5の間に標本面4が配置され、対物レンズ5の射出瞳6位置に輪帯開口板1の輪帯開口2と共役にリング状の位相膜7が配置されている。ドーナツ状レンズ10は光軸O−O’の周りで回転対称な形状をしており、メリジオナル断面に直交するサジタル断面内ではパワー(屈折力)を持たないが、メリジオナル断面では正のパワーPを持つ。パワーPは一般的な曲率と屈折率から求められる近軸焦点距離fの逆数1/fであり、ドーナツ状レンズ10の焦点位置近傍に輪帯開口板1の輪帯開口2が配置されている。なお、集光光学系13としては、コレクターレンズや凹面反射鏡が使用できる。   Next, FIG. 1 shows a layout of the phase difference observation optical system of one embodiment to which the illumination optical system of the present invention is applied. A light source 11, a diffusing element 12, a condensing optical system 13, a donut-shaped lens 10, an annular aperture plate 1, a condenser lens 3, and an objective lens 5 are arranged coaxially with the optical axis OO ′. A specimen surface 4 is disposed between the lenses 5, and a ring-shaped phase film 7 is disposed in a conjugate manner with the annular aperture 2 of the annular aperture plate 1 at the exit pupil 6 position of the objective lens 5. The donut-shaped lens 10 has a rotationally symmetric shape around the optical axis OO ′, and has no power (refractive power) in the sagittal section orthogonal to the meridional section, but has a positive power P in the meridional section. Have. The power P is a reciprocal 1 / f of the paraxial focal length f obtained from a general curvature and refractive index, and the annular aperture 2 of the annular aperture plate 1 is disposed in the vicinity of the focal position of the donut-shaped lens 10. . As the condensing optical system 13, a collector lens or a concave reflecting mirror can be used.

このような配置において、光源11から出て拡散素子12を経て集光光学系13により略平行にされた照明光は、ドーナツ状レンズ10に入射してメリジオナル断面内の後側焦点に輪帯(円環)状に集光される。その照明光の集光位置と輪帯開口板1の輪帯開口2が略一致しているので、光源11から出た照明光は略全て輪帯開口板1の輪帯開口2を通過し、コンデンサーレンズ3を経てメリジオナル断面内で略平行な光になって、標本面4上の試料を光軸O−O’に同軸なコーン状の光束として照明する。標本面4上の試料で回折されずに透過した光束は、対物レンズ5の射出瞳6位置の位相膜7に入射して輪帯状に集光され、位相膜7を透過して位相がずれて像面8に達し、一方、標本面4上の試料で回折された光束は大部分位相膜7の影響を受けずに像面8に達し、この2つの光束は像面8上で干渉して、試料の位相分布をコントラスト像として結像する。なお、位相差顕微鏡として構成するには、この像面8上に結像しているコントラスト像を接眼レンズで拡大観察できるようにするか、その中間像を撮像素子の撮像面に投影する結像レンズを配し、撮像された画像をモニター上に表示できるようにすればよい。   In such an arrangement, the illumination light emitted from the light source 11, passed through the diffusing element 12, and made substantially parallel by the condensing optical system 13 is incident on the donut-shaped lens 10 and has a ring zone (at the rear focal point in the meridional section). It is condensed in the shape of a ring. Since the condensing position of the illumination light and the annular aperture 2 of the annular aperture plate 1 substantially coincide with each other, almost all of the illumination light emitted from the light source 11 passes through the annular aperture 2 of the annular aperture plate 1, After passing through the condenser lens 3, the light becomes substantially parallel in the meridional section, and the sample on the specimen surface 4 is illuminated as a cone-shaped light beam coaxial with the optical axis OO ′. The light beam transmitted without being diffracted by the sample on the specimen surface 4 is incident on the phase film 7 at the position of the exit pupil 6 of the objective lens 5, is condensed in a ring shape, passes through the phase film 7, and is out of phase. On the other hand, the light beam diffracted by the sample on the specimen surface 4 reaches the image surface 8 without being influenced by the phase film 7 and the two light beams interfere with each other on the image surface 8. The phase distribution of the sample is formed as a contrast image. In order to construct a phase-contrast microscope, the contrast image formed on the image plane 8 can be enlarged and observed with an eyepiece lens, or an intermediate image is projected onto the imaging surface of the image sensor. A lens may be disposed so that the captured image can be displayed on the monitor.

次に、本発明の照明用光学系を適用した1実施例の暗視野観察光学系の配置図を図2に示す。光軸O−O’に同軸に、光源11、拡散素子12、集光光学系13、ドーナツ状レンズ10、輪帯開口板1、コンデンサーレンズ3、対物レンズ5、絞り9が配置され、コンデンサーレンズ3と対物レンズ5の間に標本面4が配置されている。ドーナツ状レンズ10はメリジオナル断面に直交するサジタル断面内ではパワー(屈折力)を持たないが、メリジオナル断面では正のパワーPを持つ。パワーPは一般的な曲率と屈折率から求められる近軸焦点距離fの逆数1/fであり、ドーナツ状レンズ10の焦点位置近傍に輪帯開口板1の輪帯開口2が配置されている。なお、集光光学系13としては、コレクターレンズや凹面反射鏡が使用できる。   Next, FIG. 2 shows a layout of the dark field observation optical system of one embodiment to which the illumination optical system of the present invention is applied. A light source 11, a diffusing element 12, a condensing optical system 13, a donut-shaped lens 10, an annular aperture plate 1, a condenser lens 3, an objective lens 5, and an aperture 9 are arranged coaxially with the optical axis OO ′. The specimen surface 4 is arranged between the objective lens 3 and the objective lens 5. The donut-shaped lens 10 does not have power (refractive power) in the sagittal section orthogonal to the meridional section, but has a positive power P in the meridional section. The power P is a reciprocal 1 / f of the paraxial focal length f obtained from a general curvature and refractive index, and the annular aperture 2 of the annular aperture plate 1 is disposed in the vicinity of the focal position of the donut-shaped lens 10. . As the condensing optical system 13, a collector lens or a concave reflecting mirror can be used.

このような配置において、光源11から出て拡散素子12を経て集光光学系13により略平行にされた照明光は、ドーナツ状レンズ10に入射してメリジオナル断面内の後側焦点に輪帯(円環)状に集光される。その照明光の集光位置と輪帯開口板1の輪帯開口2が略一致しているので、光源11から出た照明光は略全て輪帯開口板1の輪帯開口2を通過し、標本面4上の試料を光軸O−O’に同軸なコーン状の光束として照明する。このコーン状の光束の開口数は対物レンズ5の開口数より大きくなるように構成されているので、標本面4上の試料で散乱されずに透過する光束は、対物レンズ5の入射瞳には入らないので像面8には達せず、一方、標本面4上の試料で散乱された光の一部は対物レンズ5の開口数より小さくなり、対物レンズ5と絞り9を経て像面8に達し、像面8上に試料の暗視野像として結像する。なお、暗視野顕微鏡として構成するには、この像面8上に結像している暗視野像を接眼レンズで拡大観察できるようにするか、その中間像を撮像素子の撮像面に投影する結像レンズを配し、撮像された画像をモニター上に表示できるようにすればよい。   In such an arrangement, the illumination light emitted from the light source 11, passed through the diffusing element 12, and made substantially parallel by the condensing optical system 13 is incident on the donut-shaped lens 10 and has a ring zone (at the rear focal point in the meridional section). It is condensed in the shape of a ring. Since the condensing position of the illumination light and the annular aperture 2 of the annular aperture plate 1 substantially coincide with each other, almost all of the illumination light emitted from the light source 11 passes through the annular aperture 2 of the annular aperture plate 1, The sample on the specimen surface 4 is illuminated as a cone-shaped light beam coaxial with the optical axis OO ′. Since the numerical aperture of the cone-shaped light beam is configured to be larger than the numerical aperture of the objective lens 5, the light beam transmitted without being scattered by the sample on the sample surface 4 is incident on the entrance pupil of the objective lens 5. Since it does not enter, it does not reach the image plane 8. On the other hand, a part of the light scattered by the sample on the sample plane 4 becomes smaller than the numerical aperture of the objective lens 5, and passes through the objective lens 5 and the aperture 9 to the image plane 8. And forms a dark field image of the sample on the image plane 8. In order to configure the dark field microscope, the dark field image formed on the image plane 8 can be enlarged and observed with an eyepiece, or the intermediate image is projected onto the imaging surface of the image sensor. An image lens may be provided so that the captured image can be displayed on the monitor.

以上のように、位相差観察光学系、暗視野観察光学系何れの場合も、ドーナツ状レンズ10を輪帯開口板1の入射側に配置して、光源11からの照明光の大部分を輪帯開口2を通過させて試料の照明に利用するようにしているので、従来(図9、図10)の場合に比較して、効率良く明るい輪帯照明が可能になる。   As described above, in both the phase difference observation optical system and the dark field observation optical system, the donut-shaped lens 10 is disposed on the incident side of the annular zone opening plate 1 so that most of the illumination light from the light source 11 is looped. Since it is used to illuminate the sample through the band opening 2, it is possible to efficiently illuminate the bright annular zone as compared with the conventional cases (FIGS. 9 and 10).

ここで、ドーナツ状レンズ10のみでも輪帯状の集光状態が得られるが、光源11の大きさが有限のために拡散素子12を光源11の後に配置して光源11の大きさを見かけ上大きくすることが一般的である。そのため、ドーナツ状レンズ10により形成される輪帯状の集光像はある程度の広がりを持つこととなる。そこで、さらにこの輪帯状の集光像を絞る輪帯開口2と組み合わせて使用することが重要である。また、ドーナツ状レンズ10の内外で発生するフレアーやゴーストを避けるためにも、輪帯開口2を配置することは重要である。特に、ドーナツ状レンズ10の片面を図1のように平面で構成する場合(図1の場合は、後側の面)は、コンデンサーレンズ3と間の繰り返し反射により像のコントラストに悪影響を与えることがあるが、輪帯開口2を配置することでこのような繰り返し反射を防止することができる。   Here, a ring-shaped condensing state can be obtained with only the donut-shaped lens 10, but since the size of the light source 11 is finite, the diffusion element 12 is arranged behind the light source 11 and the size of the light source 11 is apparently large. It is common to do. Therefore, the ring-shaped condensed image formed by the donut-shaped lens 10 has a certain extent. Therefore, it is important to use it in combination with the ring zone opening 2 for narrowing the ring-shaped condensed image. In order to avoid flare and ghost generated inside and outside the donut-shaped lens 10, it is important to arrange the annular opening 2. In particular, when one side of the donut-shaped lens 10 is configured as a flat surface as shown in FIG. 1 (the rear surface in the case of FIG. 1), the image contrast is adversely affected by repeated reflection with the condenser lens 3. However, it is possible to prevent such repeated reflection by arranging the annular opening 2.

ここで、まず拡張回転自由曲面を定義すると、光軸O−O’方向をY軸と、光軸O−O’に直交する方向をZ軸とし、Y−Z座標面上で原点を通る下記の曲線(b)が定められる。   Here, first, an extended rotation free-form surface is defined. An optical axis OO ′ direction is defined as a Y axis, and a direction orthogonal to the optical axis OO ′ is defined as a Z axis, and passes through the origin on the YZ coordinate plane. The curve (b) is defined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(a)
次いで、この曲線(a)をZ軸正方向へ距離R(負のときはZ負方向)だけ平行移動する。同時に、座標系も移動する。その平行移動した曲線を、移動した座標系の原点を通るX軸正方向を向いて左回りを正として角度θ(°)回転した曲線が定められる。その後に移動する前の座標系のY軸(光軸O−O’)の周りで回転させてできる回転対称面を拡張回転自由曲面とする。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (a)
Next, the curve (a) is translated in the Z-axis positive direction by a distance R (Z negative direction when negative). At the same time, the coordinate system moves. A curved line obtained by rotating the translated curve in the positive direction of the X axis passing through the origin of the moved coordinate system and rotating counterclockwise is defined as an angle θ (°). A rotationally symmetric surface formed by rotating around the Y axis (optical axis OO ′) of the coordinate system before moving thereafter is defined as an extended rotation free-form surface.

その結果、拡張回転自由曲面は移動する前の座標系のY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free curve) in the YZ plane of the coordinate system before moving, and becomes a circle with a radius | R | in the X-Z plane.

この定義からY軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Y-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

上記ドーナツ状レンズ10は、図3に断面を示すように、上記のような拡張回転自由曲面を少なくとも一方の面に有するようにすることが望ましい。図3の場合は、光軸O−O’から外れた片側の形状が光源11側に凸面を向けた平凸レンズ形状のものであり、その凸面に拡張回転自由曲面を用いている。なお、図3には、上記曲線(a)と、Z軸正方向へ距離Rだけ平行移動した曲線と、距離Rと角度θと、移動する前の座標系と、移動した座標系を角度θ回転した座標系とを示してある(以下の、図4〜図6も同じ)。   It is desirable that the donut-shaped lens 10 has an extended rotation free-form surface as described above on at least one surface as shown in a cross section in FIG. In the case of FIG. 3, the shape on one side deviating from the optical axis O-O ′ is a plano-convex lens shape having a convex surface facing the light source 11, and an extended rotation free-form surface is used for the convex surface. In FIG. 3, the curve (a), a curve translated by the distance R in the positive direction of the Z axis, the distance R and the angle θ, the coordinate system before the movement, and the moved coordinate system are represented by the angle θ. A rotated coordinate system is shown (the same applies to FIGS. 4 to 6 below).

そして、ドーナツ状レンズ10に使用している拡張回転自由曲面が、特に非球面成分C2 、C3 、C4 、C5 …を有する場合には、θ=90°なる条件からずれると、断面の非球面が非対称になり、一般的に言われるコマ収差が発生し、集光状態が悪化する。 And when the extended rotation free-form surface used for the donut-shaped lens 10 has aspherical components C 2 , C 3 , C 4 , C 5 ... The aspherical surface becomes asymmetric, so-called coma aberration is generally generated, and the light condensing state is deteriorated.

さて、ドーナツ状レンズ10と輪帯開口板1を一体化することにより、輪帯状の集光像と輪帯開口2を一致させる手間が不要になり、好ましい。   Now, integrating the donut-shaped lens 10 and the annular opening plate 1 is preferable because it eliminates the need to match the annular condensed image and the annular opening 2.

位相差観察の場合は、対物レンズ5内は配置された輪帯状の位相膜7に対して輪帯開口2の像を正しく一致させる必要があり、さらに、ドーナツ状レンズ10が作る輪帯状の集光像の位置も輪帯開口2に正しく一致させることは光学系の調整が非常に煩雑になる。したって、ドーナツ状レンズ10と輪帯開口板1を一体化することが望ましい。   In the case of phase difference observation, it is necessary to correctly match the image of the annular aperture 2 with the annular-shaped phase film 7 disposed in the objective lens 5, and furthermore, the annular-shaped collection formed by the donut-shaped lens 10. Correctly aligning the position of the optical image with the annular aperture 2 makes the adjustment of the optical system very complicated. Therefore, it is desirable to integrate the donut-shaped lens 10 and the annular zone opening plate 1.

さらに好ましくは、ドーナツ状レンズ10と一体化した輪帯開口板1を常に正規の位置にセットできるように位置決め手段を有することが、光学系の調整を簡略化するためには好ましい。   More preferably, in order to simplify the adjustment of the optical system, it is preferable to have positioning means so that the annular zone opening plate 1 integrated with the donut-shaped lens 10 can be always set at a normal position.

さらに、暗視野観察の場合(図2)は、標本面4に載せる試料のスライドガラスの厚さにより、輪帯開口板1を光軸O−O’方向に微調整することがあり、そのときにもドーナツ状レンズ10と輪帯開口板1を一体化しておくことが操作上好ましい。   Further, in the case of dark field observation (FIG. 2), the annular aperture plate 1 may be finely adjusted in the direction of the optical axis OO ′ depending on the thickness of the slide glass of the sample placed on the specimen surface 4. In addition, it is preferable in terms of operation that the donut-shaped lens 10 and the annular zone opening plate 1 are integrated.

さらに、ドーナツ状レンズ10で発生するサジタル断面での球面収差(コマ収差)を少なくするためには、メリジオナル断面の光軸O−O’から外れた片側の形状が光源11側に凸面を向けた平凸レンズ形状のもので構成することが好ましい。   Further, in order to reduce the spherical aberration (coma aberration) in the sagittal section generated in the donut-shaped lens 10, the shape on one side deviating from the optical axis OO ′ of the meridional section has a convex surface directed toward the light source 11 side. It is preferable to use a plano-convex lens.

次に、ドーナツ状レンズ10の凸面の面頂の光軸O−O’からの半径Rは、輪帯開口2の半径rと略同じであることが好ましい(図3)。   Next, it is preferable that the radius R from the optical axis O-O ′ of the convex surface top of the donut-shaped lens 10 is substantially the same as the radius r of the annular opening 2 (FIG. 3).

ドーナツ状レンズ10に入射する光束半径Dに比べて、輪帯開口2の径が大きい場合には、図4に示すように、ドーナツ状レンズ10の凸面の面頂の光軸O−O’からの半径RをD/2より大きくすることが好ましい。また、図5に示すように、光束半径Dに比べて、輪帯開口2の径が小さい場合には、ドーナツ状レンズ10の凸面の面頂の光軸O−O’からの半径RをD/2より小さくすることが好ましい。   When the diameter of the annular zone opening 2 is larger than the radius D of the light beam incident on the donut-shaped lens 10, as shown in FIG. 4, from the optical axis OO ′ at the top of the convex surface of the donut-shaped lens 10. It is preferable to make the radius R of these larger than D / 2. Further, as shown in FIG. 5, when the diameter of the annular opening 2 is smaller than the light beam radius D, the radius R from the optical axis OO ′ at the top of the convex surface of the donut-shaped lens 10 is set to D. It is preferable to make it smaller than / 2.

さらに、図4、図5のように、輪帯開口2を射出する光束の光軸O−O’に対する向きが傾いてしまう場合には、図6に示すように、輪帯開口2に光束に偏角を与える断面楔状の屈折部材14を配置することが好ましい。このような構成は、特に高倍の対物レンズ5を用いる場合に有効である。   Furthermore, as shown in FIGS. 4 and 5, when the direction of the light beam exiting the annular opening 2 is inclined with respect to the optical axis OO ′, as shown in FIG. It is preferable to arrange a refracting member 14 having a wedge-shaped cross section that gives a declination. Such a configuration is particularly effective when a high-magnification objective lens 5 is used.

さらに、ドーナツ状レンズ10の凸面のメリジオナル断面形状を非球面で構成する場合は、凸面の面頂から離れるに従って(レンズ外周とレンズ中心に向かって)曲率が緩く(小さく)なるように、非球面項C3 、C5 、C7 等を与えることが好ましい。 Further, when the meridional cross-sectional shape of the convex surface of the donut-shaped lens 10 is configured as an aspherical surface, the aspherical surface is formed so that the curvature becomes gentler (smaller) away from the top of the convex surface (toward the lens outer periphery and the lens center). It is preferable to give the terms C 3 , C 5 , C 7 and the like.

さらに、ドーナツ状レンズ10の凸面をフレネルレンズ面で構成することにより、光軸O−O’方向の厚さを薄くすることができ、狭い照明光路内に配置することが可能となる。   Furthermore, by forming the convex surface of the donut-shaped lens 10 with a Fresnel lens surface, the thickness in the direction of the optical axis O-O ′ can be reduced, and it can be arranged in a narrow illumination optical path.

さらに、集光光学系13には拡散素子12を配置し、光束はある程度広がった略均一な光束に変換することにより、光源11の例えばフィラメントやアークの位置ムラ(光束の発光方向による指向性のムラではなく)を除去する場合に効果的である。特に、クリティカル照明の場合には、光源11が直接標本面4に投影されるので、このムラを除去するのに拡散素子12を配置すると効果的である。   In addition, a diffusing element 12 is disposed in the condensing optical system 13 and the light beam is converted into a substantially uniform light beam spread to a certain extent, so that the position irregularity of the filament or arc of the light source 11 (directivity depending on the light emission direction of the light beam) is changed. This is effective for removing (not unevenness). In particular, in the case of critical illumination, the light source 11 is directly projected onto the specimen surface 4, and therefore it is effective to dispose the diffusing element 12 to remove this unevenness.

さらに、光源11の発光部は通常□1mmから1mm×3mmの大きさが一般的である。一方、位相差観察用の輪帯開口2の幅は通常1mm前後であるので、効率的に発光部を輪帯開口2上に投影するためには、集光光学系13とドーナツ状レンズ10を含めたメリジオナル断面での光源11から光源像への投影倍率をβとするとき、
0.1<β<20 ・・・(1)
なる条件を満足することが好ましい。
Further, the light emitting portion of the light source 11 is generally generally 1 mm to 1 mm × 3 mm in size. On the other hand, the width of the annular aperture 2 for phase difference observation is usually around 1 mm. Therefore, in order to efficiently project the light emitting part onto the annular aperture 2, the condensing optical system 13 and the donut-shaped lens 10 are provided. When the projection magnification from the light source 11 to the light source image in the included meridional section is β,
0.1 <β <20 (1)
It is preferable to satisfy the following conditions.

上記条件式(1)の下限の0.1を越えると、光源11のメリジオナル断面での大きさが小さくなるが、光源像形成後のメリジオナル断面での光線の広がり(NA)が大きくなりすぎ、無駄に広い標本面4を照明することになり、照明効率がかえって悪くなる。   If the lower limit of 0.1 of the conditional expression (1) is exceeded, the size of the light source 11 at the meridional section becomes small, but the light spread (NA) at the meridional section after the light source image formation becomes too large, The wide specimen surface 4 is illuminated unnecessarily, and the illumination efficiency is deteriorated.

一方、上記条件式(1)の上限の20を越えると、光源像が大きくなりすぎ、輪帯開口2を通過する光束が減ってしまい、これも照明効率が低下する。   On the other hand, if the upper limit of 20 in the conditional expression (1) is exceeded, the light source image becomes too large and the light flux passing through the annular opening 2 decreases, which also reduces the illumination efficiency.

因みに、サジタル断面ではドーナツ状レンズ10はパワーを持たないため、サジタル断面での投影倍率は異なる値をとる。   Incidentally, since the donut-shaped lens 10 has no power in the sagittal section, the projection magnification in the sagittal section takes different values.

さらに好ましくは、
1<β<10 ・・・(1−1)
なる条件を満足することが好ましい。
More preferably,
1 <β <10 (1-1)
It is preferable to satisfy the following conditions.

次に、ドーナツ状レンズ10の1つの具体例を示す。このドーナツ状レンズ10の構成パラメータは後記する。この実施例の構成パラメータは、図7に示すように、ドーナツ状レンズ10に光源11からの光が通る順の順光線追跡の結果に基づくものである。   Next, one specific example of the donut-shaped lens 10 is shown. The configuration parameters of the donut lens 10 will be described later. As shown in FIG. 7, the configuration parameters of this embodiment are based on the result of tracking forward rays in the order in which light from the light source 11 passes through the donut-shaped lens 10.

座標系は、順光線追跡において、ドーナツ状レンズ10の集光点が形成する面である像面の光軸O−O’上の位置を偏心光学面の原点とし、光軸O−O’の光が進む方向をZ軸正方向とし、Z軸に直交する図7の上方向をY軸正方向とし、図7の紙面内をY−Z平面とする。そして、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。   The coordinate system uses the position on the optical axis OO ′ of the image plane, which is the surface formed by the condensing point of the donut-shaped lens 10, in the forward ray tracing as the origin of the decentered optical surface, and the optical axis OO ′. The direction in which light travels is the positive Z-axis direction, the upward direction in FIG. 7 orthogonal to the Z-axis is the Y-axis positive direction, and the plane of the paper in FIG. 7 is the YZ plane. The axes constituting the Y-axis and Z-axis and the right-handed orthogonal coordinate system are defined as the X-axis positive direction.

偏心面については、その面が定義される座標系の上記光学系の原点の中心からの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系の原点に定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the amount of decentering from the center of the origin of the optical system in the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, and Z, respectively) and the optical system The inclination angles (α, β, γ (°), respectively) of the coordinate system defining each surface centered on the X axis, Y axis, and Z axis of the coordinate system defined at the origin are given. In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.

また、上記実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。   Further, among the optical action surfaces constituting the optical system of the above embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.

なお、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、ドーナツ状レンズ10の集光点が形成する面である像面の光軸O−O’上の位置からの偏心量で表わす。   It should be noted that a term relating to an aspheric surface for which no data is described in the configuration parameters described later is zero. About a refractive index and an Abbe number, the thing with respect to d line (wavelength 587.56nm) is described. The unit of length is mm. The decentering of each surface is represented by the amount of decentering from the position on the optical axis O-O ′ of the image surface, which is the surface formed by the condensing point of the donut lens 10 as described above.

なお、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。   The extended rotation free-form surface is a rotationally symmetric surface given by the following definition.

まず、Y−Z座標面上で原点を通る下記の曲線(b)が定められる。   First, the following curve (b) passing through the origin on the YZ coordinate plane is determined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(a)
次いで、この曲線(b)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (a)
Next, a curve F (Y) obtained by rotating the curve (b) in the positive direction of the X-axis and turning it counterclockwise to be positive is determined. This curve F (Y) also passes through the origin on the YZ coordinate plane.

その曲線F(Y)をZ正方向に距離R(負のときはZ負方向)だけ平行移動し、その後にY軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。   The curve F (Y) is translated in the positive Z direction by a distance R (or negative Z direction if negative), and then the rotationally symmetric surface formed by rotating the translated curve around the Y axis is expanded and rotated. Let it be a free-form surface.

その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | R | in the XZ plane.

この定義からY軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Y-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

なお、上記の拡張回転自由曲面の定義は、前記した定義の表現とは若干異なるが実質的に同じである。   Note that the definition of the extended rotation free-form surface is substantially the same, although slightly different from the expression of the above definition.

ドーナツ状レンズ10の1つの具体例の光軸O−O’に沿ってとった断面図を図7に、その斜視図を図8に示す。なお、図7には光路も示してある。   FIG. 7 is a cross-sectional view taken along the optical axis O-O ′ of one specific example of the donut-shaped lens 10, and FIG. 8 is a perspective view thereof. FIG. 7 also shows an optical path.

このドーナツ状レンズ10は、光軸O−O’を含む断面の光軸O−O’から外れた片側の形状が光源11側に凸面を向けた拡張回転自由曲面21と、輪帯開口板1側の光軸O−O’に垂直な平面22とからなるものであり、このドーナツ状レンズ10に光源11側から光軸O−O’に平行な光束が入射すると、座標軸を定めた像面の光軸O−O’を中心とした半径7.5mmの円の上に輪帯状に集光する。その位置に、輪帯開口板1の輪帯開口2が配置される。   This donut-shaped lens 10 includes an extended rotation free-form surface 21 in which the shape on one side deviating from the optical axis OO ′ in the cross section including the optical axis OO ′ is a convex surface toward the light source 11, and the annular aperture plate 1. When the light beam parallel to the optical axis OO ′ is incident on the donut-shaped lens 10 from the light source 11 side, the image plane with the coordinate axis defined is formed. The light is collected in a ring shape on a circle with a radius of 7.5 mm centered on the optical axis OO ′. At that position, the annular opening 2 of the annular opening plate 1 is arranged.

この具体例1のドーナツ状レンズ10の有効径は、φ30mm、メリジオナル断面の焦点距離は、32.93mm、集光光学系13として焦点距離10mmの非球面レンズを用いた場合の光源11の投影倍率βは、3.29倍となる。   The effective diameter of the donut-shaped lens 10 of Example 1 is φ30 mm, the focal length of the meridional section is 32.93 mm, and the projection magnification of the light source 11 when an aspherical lens with a focal length of 10 mm is used as the condensing optical system 13. β is 3.29 times.

以下に、上記具体例1の構成パラメータを示す。なお、以下の表中の“ERFS”は拡張回転自由曲面を示す。   The configuration parameters of specific example 1 are shown below. In the table below, “ERFS” indicates an extended rotation free-form surface.


具体例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ERFS[1] 偏心(1) 1.5163 64.1
2 ∞ 偏心(2)
像 面 ∞
ERFS[1]
RY 17.07
θ -90.00
R 7.5
5 -1.4068 ×10-5
偏心(1)
X 0.00 Y 0.00 Z -35.00
α 90.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z -30.00
α 0.00 β 0.00 γ 0.00 。

Example 1
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ERFS [1] Eccentricity (1) 1.5163 64.1
2 ∞ Eccentricity (2)
Image plane ∞
ERFS [1]
RY 17.07
θ -90.00
R 7.5
C 5 -1.4068 × 10 -5
Eccentricity (1)
X 0.00 Y 0.00 Z -35.00
α 90.00 β 0.00 γ 0.00
Eccentricity (2)
X 0.00 Y 0.00 Z -30.00
α 0.00 β 0.00 γ 0.00.

以上、本発明の照明用光学系及び顕微鏡照明装置を実施例に基づいて説明してきたが、本発明は種々の変形が可能である。例えば、ドーナツ状レンズ10の両面を、光軸O−O’を含む断面の光軸O−O’から外れた片側の形状が両凸レンズ形状のものとしてももちろんよい。   As described above, the illumination optical system and the microscope illumination apparatus according to the present invention have been described based on the embodiments. However, the present invention can be variously modified. For example, it is a matter of course that the shape of one side of the doughnut-shaped lens 10 deviating from the optical axis O-O ′ in the cross section including the optical axis O-O ′ may be a biconvex lens shape.

本発明の照明用光学系を適用した1実施例の位相差観察光学系の配置図である。1 is a layout diagram of a phase difference observation optical system of one example to which an illumination optical system of the present invention is applied. FIG. 本発明の照明用光学系を適用した1実施例の暗視野観察光学系の配置図である。It is a layout view of a dark field observation optical system of one example to which the optical system for illumination of the present invention is applied. ドーナツ状レンズの1つの形態の断面図である。It is sectional drawing of one form of a donut-shaped lens. 入射する光束半径に比べて輪帯開口の径が大きい場合のドーナツ状レンズの形態の断面図である。It is sectional drawing of the form of a donut-shaped lens in case the diameter of annular zone opening is large compared with the incident light beam radius. 入射する光束半径に比べて輪帯開口の径が小さい場合のドーナツ状レンズの形態の断面図である。It is sectional drawing of the form of a donut-shaped lens in case the diameter of an annular zone opening is small compared with the incident light beam radius. 輪帯開口を射出する光束の光軸に対する向きが傾いてしまう場合の対策を示す断面図である。It is sectional drawing which shows a countermeasure when the direction with respect to the optical axis of the light beam which inject | emits an annular aperture will incline. ドーナツ状レンズの1つの具体例の光軸に沿ってとった断面図である。It is sectional drawing taken along the optical axis of one specific example of a donut-shaped lens. 図7の具体例の斜視図である。It is a perspective view of the specific example of FIG. 従来の位相差観察光学系の位相差観察時の光路を輪帯開口以降について示した図である。It is the figure which showed the optical path at the time of phase difference observation of the conventional phase difference observation optical system after annulus opening. 従来の暗視野観察光学系の暗視野観察時の光路を輪帯開口以降について示した図である。It is the figure which showed the optical path at the time of dark field observation of the conventional dark field observation optical system after annulus opening.

符号の説明Explanation of symbols

O−O’…光軸
1…輪帯開口板
2…輪帯開口
3…コンデンサーレンズ
4…標本面
5…対物レンズ
6…対物レンズの射出瞳
7…位相膜
8…像面
9…絞り
10…ドーナツ状レンズ
11…光源
12…拡散素子
13…集光光学系
14…断面楔状の屈折部材
21…ドーナツ状レンズの光源側の面(拡張回転自由曲面)
22…ドーナツ状レンズの輪帯開口側の面(平面)
OO '... Optical axis 1 ... Ring zone aperture plate 2 ... Zone zone aperture 3 ... Condenser lens 4 ... Sample surface 5 ... Objective lens 6 ... Exit pupil 7 of objective lens ... Phase film 8 ... Image plane 9 ... Diaphragm 10 ... Donut-shaped lens 11 ... Light source 12 ... Diffusing element 13 ... Condensing optical system 14 ... Refraction member 21 having a wedge-shaped cross section ... Surface on the light source side of the donut-shaped lens (extended rotation free-form surface)
22 ... The surface (plane) of the donut-shaped lens on the annular zone opening side

Claims (10)

光源と、前記光源から発散する光束を集光して集光又は発散あるいは平行な光束にする集光光学系と、前記光束を輪帯状に集光するドーナツ状レンズと、前記輪帯状に集光した光束の集光位置近傍に配置された輪帯開口と、前記輪帯開口の像を観察光学系又は投影光学系の対物レンズの瞳位置に投影するコンデンサーレンズとを備えていることを特徴とする照明用光学系。 A light source, a condensing optical system that condenses and diverges or collimates the light flux emitted from the light source, a donut-shaped lens that collects the light flux in an annular shape, and condenses the annular light An annular aperture disposed in the vicinity of the condensing position of the luminous flux, and a condenser lens that projects an image of the annular aperture on the pupil position of the objective lens of the observation optical system or the projection optical system, Lighting optical system. 前記ドーナツ状レンズと前記輪帯開口が一体化されていることを特徴とする請求項1記載の照明用光学系。 The illumination optical system according to claim 1, wherein the donut-shaped lens and the annular zone opening are integrated. 前記ドーナツ状レンズは光軸の周りで回転対称な形状をしており、光軸を含む断面の光軸から外れた片側の形状が光源側に凸面を向けた平凸レンズ形状のものであることを特徴とする請求項1又は2記載の照明用光学系。 The donut-shaped lens has a shape that is rotationally symmetric around the optical axis, and the shape on one side deviating from the optical axis of the cross section including the optical axis is a plano-convex lens shape with the convex surface facing the light source side. The illumination optical system according to claim 1, wherein the illumination optical system is an illumination optical system. 前記凸面の面頂の光軸からの半径をR、前記輪帯開口の半径をrとするとき、R≒rであることを特徴とする請求項3記載の照明用光学系。 4. The illumination optical system according to claim 3, wherein R≈r, where R is a radius from the optical axis at the top of the convex surface, and r is a radius of the annular opening. 前記凸面は周辺に行くに従って曲率が緩くなる面であることを特徴とする請求項3又は4記載の照明用光学系。 The illumination optical system according to claim 3 or 4, wherein the convex surface is a surface whose curvature becomes gentler toward the periphery. 前記ドーナツ状レンズはフレネルレンズからなることを特徴とする請求項1から5の何れか1項記載の照明用光学系。 The illumination optical system according to claim 1, wherein the donut-shaped lens is a Fresnel lens. 前記集光光学系には、集光される光束を均一にする拡散素子が含まれていることを特徴とする請求項1から6の何れか1項記載の照明用光学系。 The illumination optical system according to any one of claims 1 to 6, wherein the condensing optical system includes a diffusing element that makes a condensed light flux uniform. 前記集光光学系と前記ドーナツ状レンズを含めた光軸を含む断面内での前記光源から光源像への投影倍率をβとするとき、
0.1<β<20 ・・・(1)
なる条件を満足することを特徴とする請求項1から7の何れか1項記載の照明用光学系。
When the projection magnification from the light source to the light source image in the cross section including the optical axis including the condensing optical system and the donut-shaped lens is β,
0.1 <β <20 (1)
The illumination optical system according to claim 1, wherein the following condition is satisfied.
請求項1から8の何れか1項記載の照明用光学系が位相差観察光学系を備えた顕微鏡の照明装置に用いられ、前記位相差観察光学系の前記輪帯開口の投影位置に位相膜が輪帯状に配置されていることを特徴とする顕微鏡照明装置。 9. The illumination optical system according to claim 1, wherein the illumination optical system is used in an illumination device of a microscope having a phase difference observation optical system, and a phase film is formed at a projection position of the annular opening of the phase difference observation optical system. Is arranged in a ring shape. 請求項1から8の何れか1項記載の照明用光学系が暗視野観察光学系を備えた顕微鏡の照明装置に用いられ、前記暗視野観察光学系の対物レンズの開口数より大きい開口数の光束を前記コンデンサーレンズを介して前記暗視野観察光学系の標本面に集光させて暗視野照明を行うことを特徴とする顕微鏡照明装置。 The illumination optical system according to any one of claims 1 to 8 is used in an illumination apparatus of a microscope including a dark field observation optical system, and has a numerical aperture larger than a numerical aperture of an objective lens of the dark field observation optical system. A microscope illumination apparatus characterized in that dark field illumination is performed by condensing a light beam on a sample surface of the dark field observation optical system via the condenser lens.
JP2005135593A 2005-05-09 2005-05-09 Optical system for illumination and microscope lighting system Pending JP2006313213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135593A JP2006313213A (en) 2005-05-09 2005-05-09 Optical system for illumination and microscope lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135593A JP2006313213A (en) 2005-05-09 2005-05-09 Optical system for illumination and microscope lighting system

Publications (1)

Publication Number Publication Date
JP2006313213A true JP2006313213A (en) 2006-11-16

Family

ID=37534735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135593A Pending JP2006313213A (en) 2005-05-09 2005-05-09 Optical system for illumination and microscope lighting system

Country Status (1)

Country Link
JP (1) JP2006313213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197399A (en) * 2007-02-14 2008-08-28 Photonic Lattice Inc Polarizing microscope and unit for same
JP2016139007A (en) * 2015-01-27 2016-08-04 株式会社ニコン microscope
JP2017068203A (en) * 2015-10-02 2017-04-06 株式会社ニコン microscope
CN111399204A (en) * 2020-02-17 2020-07-10 浙江大学 Annular scanning imaging system correction method based on back pupil surface imaging

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154402U (en) * 1986-03-25 1987-09-30
JPH07174708A (en) * 1993-12-17 1995-07-14 Kobe Steel Ltd Ring-shaped condenser element, and pipe inspecting device using the element
JPH0827436B2 (en) * 1990-10-05 1996-03-21 工業技術院長 Light collector
JPH10208273A (en) * 1997-01-24 1998-08-07 Sankyo Seiki Mfg Co Ltd Optical pickup device
JP2000019412A (en) * 1998-04-30 2000-01-21 Nikon Corp Dark-field illuminator and dark-field illuminating method
JP2000347105A (en) * 1999-06-01 2000-12-15 Nikon Corp Phase difference observing device
JP2002023061A (en) * 2000-07-11 2002-01-23 Nikon Corp Device and method for illuminating dark field of microscope
JP2003059329A (en) * 2001-08-09 2003-02-28 Asahi Matsushita Electric Works Ltd Lighting system
JP2003270542A (en) * 2002-03-19 2003-09-25 Olympus Optical Co Ltd Illumination optical system for microscope

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154402U (en) * 1986-03-25 1987-09-30
JPH0827436B2 (en) * 1990-10-05 1996-03-21 工業技術院長 Light collector
JPH07174708A (en) * 1993-12-17 1995-07-14 Kobe Steel Ltd Ring-shaped condenser element, and pipe inspecting device using the element
JPH10208273A (en) * 1997-01-24 1998-08-07 Sankyo Seiki Mfg Co Ltd Optical pickup device
JP2000019412A (en) * 1998-04-30 2000-01-21 Nikon Corp Dark-field illuminator and dark-field illuminating method
JP2000347105A (en) * 1999-06-01 2000-12-15 Nikon Corp Phase difference observing device
JP2002023061A (en) * 2000-07-11 2002-01-23 Nikon Corp Device and method for illuminating dark field of microscope
JP2003059329A (en) * 2001-08-09 2003-02-28 Asahi Matsushita Electric Works Ltd Lighting system
JP2003270542A (en) * 2002-03-19 2003-09-25 Olympus Optical Co Ltd Illumination optical system for microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197399A (en) * 2007-02-14 2008-08-28 Photonic Lattice Inc Polarizing microscope and unit for same
JP2016139007A (en) * 2015-01-27 2016-08-04 株式会社ニコン microscope
JP2017068203A (en) * 2015-10-02 2017-04-06 株式会社ニコン microscope
CN111399204A (en) * 2020-02-17 2020-07-10 浙江大学 Annular scanning imaging system correction method based on back pupil surface imaging
CN111399204B (en) * 2020-02-17 2021-06-15 浙江大学 Annular scanning imaging system correction method based on back pupil surface imaging

Similar Documents

Publication Publication Date Title
US7724358B2 (en) Illuminator for darkfield inspection
JP4348574B2 (en) Dark field illumination device and dark field illumination method
JP2009514028A (en) Optical system for evanescent field illumination
JP6555803B2 (en) Sheet illumination microscope and illumination method of sheet illumination microscope
JP5675892B2 (en) Catadioptric optical system with high numerical aperture
JP2006313213A (en) Optical system for illumination and microscope lighting system
JP4043619B2 (en) Lighting device
JP2011085432A (en) Axial chromatic aberration optical system and three-dimensional shape measuring device
JP2003161886A (en) Objective lens and optical apparatus using the same
JP2019109302A (en) Illumination optical system, optical inspection device, and optical microscope
JP2009229144A (en) Eccentricity measuring device
JPH09509265A (en) High symmetry optical system
JP5888509B2 (en) Objective lens and microscope
JP2002023061A (en) Device and method for illuminating dark field of microscope
CN109633882B (en) Phase contrast microscope and debugging method thereof
US9170414B2 (en) Method and apparatus for producing a super-magnified wide-field image
JP6546544B2 (en) Objective lens and microscope
JP2006154365A (en) Optical system
JP3864105B2 (en) Microscope illumination optics
JP2012122757A (en) Photometric device
JP2004085463A (en) Lens point image observation system and method
JPH08122643A (en) Telecentric lighting optical device
WO2020054012A1 (en) Tip member, endoscope optical system, endoscope, and endoscope system
JP2006139055A (en) Projection type display device
JP2015176134A (en) imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100901