JP6544675B2 - Method of manufacturing multilayer resin molded article - Google Patents

Method of manufacturing multilayer resin molded article Download PDF

Info

Publication number
JP6544675B2
JP6544675B2 JP2015041399A JP2015041399A JP6544675B2 JP 6544675 B2 JP6544675 B2 JP 6544675B2 JP 2015041399 A JP2015041399 A JP 2015041399A JP 2015041399 A JP2015041399 A JP 2015041399A JP 6544675 B2 JP6544675 B2 JP 6544675B2
Authority
JP
Japan
Prior art keywords
resin material
biomass
thermoplastic resin
molded article
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015041399A
Other languages
Japanese (ja)
Other versions
JP2015186916A (en
Inventor
磯部 智明
智明 磯部
聖充 中嶋
聖充 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015041399A priority Critical patent/JP6544675B2/en
Publication of JP2015186916A publication Critical patent/JP2015186916A/en
Application granted granted Critical
Publication of JP6544675B2 publication Critical patent/JP6544675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0227Mixing the material with binding agent using rotating stirrers, e.g. the agent being fed through the shaft of the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、複層樹脂成形品の製造方法とこの製造方法によって製造された複層樹脂成形品に関する。   The present invention relates to a method for producing a multilayer resin molded article and a multilayer resin molded article produced by the method.

従来、複数種の樹脂材料を用いて成形した複層樹脂成形品が知られている。これらの複層樹脂成形品の樹脂材料としては、成形が容易である等の理由から熱可塑性樹脂が一般的に用いられている。例えば、成形品の表層にはその用途に応じた機能を有する熱可塑性樹脂を選択し、ベース層にはより安価な熱可塑性樹脂を選択する等の、複数種の熱可塑性樹脂の組み合わせが採用されている。   Conventionally, a multilayer resin molded product molded using a plurality of resin materials is known. As a resin material of these multilayer resin molded products, thermoplastic resins are generally used for reasons such as easy molding. For example, a thermoplastic resin having a function according to the application is selected for the surface layer of the molded article, and a combination of plural types of thermoplastic resins is adopted for the base layer, such as selecting a cheaper thermoplastic resin. ing.

このような熱可塑性樹脂を用いた複層樹脂成形品は、製造コストが安価であり、成形品の軽量化が可能になる等の特長を有している。しかしながら、熱可塑性樹脂は熱硬化性樹脂に比べて耐熱性や耐傷付性が劣るため、成形品の用途は限定的であった。   A multilayer resin molded article using such a thermoplastic resin is advantageous in that the manufacturing cost is low and weight reduction of the molded article becomes possible. However, since the thermoplastic resin is inferior to the thermosetting resin in heat resistance and scratch resistance, the use of the molded article is limited.

そこで、これまでにも、熱可塑性樹脂と熱硬化性樹脂との組み合わせで構成した複層樹脂成形品が提案されている。例えば、特許文献1には、表裏の表層用マットとして熱硬化性樹脂と木質分との混合物を用い、芯層用マットとして熱可塑性樹脂溶融物と木片との混合物を用いた三層もしくは二層構造の木質板が提案されている。また、特許文献2には、表裏の表層用マットとして熱硬化性樹脂と木質材との混合物を用い、芯層用マットとして熱可塑性樹脂溶融物と木質材との混合物を用いた三層もしくは二層構造の木材・プラスチック複合ボードが提案されている。   Then, the multilayer resin molded product comprised by the combination of a thermoplastic resin and a thermosetting resin is proposed until now. For example, Patent Document 1 uses a mixture of a thermosetting resin and wood as a surface layer mat for the front and back, and a three-layer or two-layer using a mixture of a thermoplastic resin melt and a piece of wood as a core layer mat. A wood board of structure has been proposed. In Patent Document 2, a mixture of a thermosetting resin and a wood material is used as a surface layer mat for the front and back, and a three-layer or two layer using a mixture of a thermoplastic resin melt and a wood material as a core layer mat. Layered wood-plastic composite boards have been proposed.

特開2003−94411号公報JP 2003-94411 A 特開2003−1611号公報JP, 2003-1611, A

しかしながら、熱可塑性樹脂と熱硬化性樹脂、これらに混合した木片や木質材とを組み合わせた複層樹脂成形品の場合には、熱可塑性樹脂材料や熱硬化性樹脂材料への木片等との混合の過程や複層樹脂成形の過程において、不均質化が生じやすい。そしてこの不均質化に起因して、成形品の表面に凹凸が生じることが避けられなかった。このため、これまでの様々な改良の試みにもかかわらず、複層樹脂成形品の用途は、依然として、意匠性として凹凸を有することが許容される用途に限られていた。そこで、例えば水廻り部材や火廻り部材等の用途にも適用し得るような、耐久性に優れるとともに意匠性にも優れた複層樹脂成形品が求められていた。   However, in the case of a double-layered resin molded product combining a thermoplastic resin and a thermosetting resin, wood chips mixed with these, or wood materials, mixing of wood with a thermoplastic resin material or thermosetting resin material with wood chips etc. In the process of and the process of multilayer resin molding, inhomogenization tends to occur. And it was not avoided that an unevenness | corrugation arises on the surface of a molded article resulting from this heterogenization. For this reason, in spite of the various improvement attempts so far, the application of a multilayer resin molded product was still limited to the application which is permitted to have unevenness as a design property. Therefore, for example, a multilayer resin molded article excellent in durability and excellent in designability, which can be applied to uses such as a water-covered member and a fire-covered member, has been desired.

本発明は、以上のとおりの事情に鑑みてなされたものであり、耐久性とともに意匠性にも優れた新規な複層樹脂成形品の製造方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and an object of the present invention is to provide a method for producing a novel multilayer resin molded product which is excellent in durability as well as in design.

また本発明は、新規な製造方法によって製造された複層樹脂成形品を提供することを課題としている。   Another object of the present invention is to provide a multilayer resin molded article produced by the novel production method.

上記の課題を解決するために、本発明の複層樹脂成形品の製造方法は、次の工程;
(a)バイオマス材料と熱可塑性樹脂とを混練してバイオマス含有熱可塑性樹脂材料を得る工程、
(b)前記バイオマス含有熱可塑性樹脂材料を金型で成形して一次成形品を得る工程、および
(c)前記一次成形品を金型に収納した状態でその表面に熱硬化性樹脂材料を供給して、熱硬化性樹脂材料を成形する工程
を含むことを特徴とする。
In order to solve the above problems, the method for producing a multilayer resin molded article of the present invention comprises the following steps:
(A) kneading the biomass material and the thermoplastic resin to obtain a biomass-containing thermoplastic resin material;
(B) molding the biomass-containing thermoplastic resin material with a mold to obtain a primary molded product, and (c) supplying a thermosetting resin material to the surface of the primary molded product housed in the mold. And forming a thermosetting resin material.

また、本発明の複層樹脂成形品は、前記の複層樹脂成形品の製造方法によって製造されたことを特徴とする。   In addition, the multilayer resin molded article of the present invention is characterized by being manufactured by the above-mentioned method for manufacturing a multilayer resin molded article.

本発明の複層樹脂成形品の製造方法によれば、製造コストが安価であり、成形品の軽量化が可能になる等の特長を有し、耐久性とともに意匠性にも優れた複層樹脂成形品を提供することができる。   According to the method for producing a multilayer resin molded article of the present invention, a multilayer resin has advantages such as inexpensive manufacturing cost, weight saving of molded articles, etc., and excellent durability as well as design. An article can be provided.

本発明の複層樹脂成形品の製造方法における成形の一実施形態を例示した模式断面図である。It is a schematic cross section which illustrated one Embodiment of shaping | molding in the manufacturing method of the multilayer resin molded product of this invention.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

前記のとおり、本発明の複層樹脂成形品の製造方法では、(a)バイオマス材料と熱可塑性樹脂とを混練してバイオマス含有熱可塑性樹脂材料を得る工程、(b)このバイオマス含有熱可塑性樹脂材料を金型で成形して一次成形品を得る工程、そして(c)この一次成形品を金型に残した状態で一次成形品の表面に熱硬化性樹脂材料を供給して、熱硬化性樹脂材料を成形する工程を含む。   As described above, in the method for producing a multilayer resin molded article of the present invention, (a) kneading the biomass material and the thermoplastic resin to obtain a biomass-containing thermoplastic resin material, (b) the biomass-containing thermoplastic resin A step of molding the material with a mold to obtain a primary molded product, and (c) supplying a thermosetting resin material to the surface of the primary molded product with the primary molded product remaining in the mold to obtain a thermosetting resin The process of shape | molding the resin material is included.

<バイオマス材料>
前記の混練の工程(a)で用いられるバイオマス材料としては、例えば、木材、竹、麻類、草本類、農産物等の植物材料やこれらの廃棄物、残渣物(皮、葉、茎、実)等、前記植物材料を加工して得られる粉体、繊維等が挙げられる。木材としては、例えば、スギ、ヒノキ、マツ等の針葉樹、ブナ、ナラ、カバ等の広葉樹等の各種のものを加工して得られる粉体、繊維が挙げられる。麻類としては、例えば、ジュート、ケナフ、亜麻、ヘンプ、ラミー、サイザル等を加工して得られる粉体、繊維が挙げられる。
<Biomass material>
Examples of biomass materials used in the above-mentioned kneading step (a) include plant materials such as wood, bamboo, hemp, herbs, agricultural products, etc., and wastes and residues thereof (skin, leaves, stems, fruits) And powders, fibers and the like obtained by processing the plant material. Examples of wood include powders and fibers obtained by processing various materials such as conifers such as cedar, cypress and pine, and hardwoods such as beech, nara and hippopotamus. Examples of hemp include powders and fibers obtained by processing jute, kenaf, flax, hemp, ramie, sisal and the like.

また、上記以外の植物材料として、葦、稲わら、籾殻、ヤシの実、さとうきびの絞りカス等を用いてもよい。なお、本実施形態の複層樹脂成形品の製造方法においては、バイオマス材料は、必要に応じて2種以上を併用してもよい。   In addition, as plant materials other than the above, rice straw, rice straw, rice husk, palm fruits, sugarcane swarf, etc. may be used. In addition, in the manufacturing method of the multilayer resin molded product of this embodiment, you may use together 2 or more types of biomass materials as needed.

<熱可塑性樹脂>
本実施形態で用いられる熱可塑性樹脂としては、例えば、PE(ポリエチレン)、PP(ポリプロピレン)、PS(ポリスチレン)、PET(ポリエチレンテレフタラート)、アクリル(PMMA)、ABS樹脂、ASA樹脂等が挙げられる。これらの熱可塑性樹脂については、所要の目的や用途、特性に応じて、選択することができる。例えば、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂材料層との密着性を高める観点からは、熱硬化性樹脂材料の加熱成形時に少なくとも一部が溶解もしくは軟化され得るものが好ましい。なお、熱可塑性樹脂と熱硬化性樹脂材料の品種の組み合わせによっては、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂材料層との間で剥離を生じやすくなる場合があるので考慮して選択するのが好ましい。
<Thermoplastic resin>
As a thermoplastic resin used by this embodiment, PE (polyethylene), PP (polypropylene), PS (polystyrene), PET (polyethylene terephthalate), acryl (PMMA), an ABS resin, an ASA resin etc. are mentioned, for example . These thermoplastic resins can be selected according to the required purpose, application, and characteristics. For example, from the viewpoint of enhancing the adhesion between the biomass-containing thermoplastic resin material layer and the thermosetting resin material layer in a multilayer resin molded product, at least a part can be dissolved or softened during the heat molding of the thermosetting resin material Is preferred. In addition, depending on the combination of the thermoplastic resin and the thermosetting resin material, peeling may easily occur between the biomass-containing thermoplastic resin material layer and the thermosetting resin material layer in the multilayer resin molded product. Therefore, it is preferable to select in consideration.

また、熱可塑性樹脂は、新材原料(バージン)に限定されるものではなく、例えば、廃プラスチックや再生プラスチック等のリサイクル原料を用いてもよい。なお、熱可塑性樹脂は、必要に応じて2種以上を併用してもよい。   Further, the thermoplastic resin is not limited to the new material raw material (virgin), and for example, a recycled raw material such as waste plastic or recycled plastic may be used. In addition, 2 or more types of thermoplastic resins may be used together as needed.

前記混練後に得られるバイオマス含有熱可塑性樹脂材料における熱可塑性樹脂の割合は、30〜70wt%の範囲内であることが好ましい。熱可塑性樹脂の割合が上記の範囲内であると、バイオマス含有熱可塑性樹脂材料の溶融粘度の過度の上昇が抑制され、金型への注入をよりスムーズに行うことができる。また、熱可塑性樹脂の割合が上記の範囲内であると、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層の表面に微細な形状がより効率よく形成され、熱硬化性樹脂材料層との間の密着性をより効果的に保つことができる。熱可塑性樹脂の割合が30wt%未満の場合には、バイオマス含有熱可塑性樹脂材料の溶融粘度が高くなり、成形時にバイオマス含有熱可塑性樹脂材料を金型に注入することができにくくなる場合がある。熱可塑性樹脂の割合が70wt%を超える場合には、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂材料層との間の密着性が低下する場合がある。経済的な観点、および成形品の軽量化の観点からは、熱可塑性樹脂の割合をより小さくすることが好ましく考慮される。   It is preferable that the ratio of the thermoplastic resin in the biomass containing thermoplastic resin material obtained after the said kneading | mixing exists in the range of 30-70 wt%. When the proportion of the thermoplastic resin is within the above range, an excessive increase in the melt viscosity of the biomass-containing thermoplastic resin material is suppressed, and injection into the mold can be performed more smoothly. In addition, when the proportion of the thermoplastic resin is within the above range, a fine shape is more efficiently formed on the surface of the biomass-containing thermoplastic resin material layer in the multilayer resin molded product, and the thermosetting resin material layer The adhesion between the two can be maintained more effectively. If the proportion of the thermoplastic resin is less than 30 wt%, the melt viscosity of the biomass-containing thermoplastic resin material may be high, and it may be difficult to inject the biomass-containing thermoplastic resin material into the mold during molding. When the proportion of the thermoplastic resin exceeds 70 wt%, the adhesion between the biomass-containing thermoplastic resin material layer and the thermosetting resin material layer in the multilayer resin molded product may be lowered. From the economical point of view and the point of view of reducing the weight of molded articles, it is preferable to reduce the proportion of the thermoplastic resin.

<熱硬化性樹脂材料>
本実施形態で用いられる熱硬化性樹脂材料としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、アクリル樹脂、メラミン樹脂、フェノール樹脂等の熱硬化性樹脂が挙げられる。これらの熱硬化性樹脂材料については、所要の目的や用途、特性に応じて、選択することができる。なお、熱硬化性樹脂材料としては、熱可塑性樹脂の融点より低い温度で硬化可能な樹脂を用いる。
<Thermosetting resin material>
As a thermosetting resin material used by this embodiment, thermosetting resins, such as an epoxy resin, unsaturated polyester resin, an acrylic resin, a melamine resin, a phenol resin, are mentioned, for example. These thermosetting resin materials can be selected according to the required purpose, application, and characteristics. As the thermosetting resin material, a resin that can be cured at a temperature lower than the melting point of the thermoplastic resin is used.

本実施形態では、熱硬化性樹脂材料は、ガラス繊維を含有することが好ましい。本実施形態で用いられるガラス繊維は、弾性率の向上や、熱硬化性樹脂材料とバイオマス含有熱可塑性樹脂材料との密着性を向上させる目的で用いられ、例えば、Eガラス、NEガラス、Tガラス等のガラス繊維が挙げられる。これらのガラス繊維は、各々、屈折率(複層樹脂成形品の外観に影響する物性)や耐熱性(成形条件に影響する物性)が異なるので、所要の目的や用途に応じて選択することができる。   In the present embodiment, the thermosetting resin material preferably contains glass fibers. The glass fiber used in the present embodiment is used for the purpose of improving the elastic modulus and improving the adhesion between the thermosetting resin material and the biomass-containing thermoplastic resin material. For example, E glass, NE glass, T glass Etc. glass fibers. Since these glass fibers have different refractive indices (physical properties affecting the appearance of the multilayer resin molded product) and heat resistance (physical properties affecting the molding conditions), they should be selected according to the required purpose and application. it can.

また、ガラス繊維の長さは、1.5〜6.0mmの範囲内であることが好ましい。ガラス繊維の長さが上記の範囲内であると、熱硬化性樹脂材料とバイオマス含有熱可塑性樹脂材料との密着性がより効果的に向上する。ガラス繊維の長さが1.5mm未満の場合には、所望する密着性が得られない場合がある。ガラス繊維の長さが6.0mmを超える場合には、所望する密着性が得られなかったり、複層樹脂成形品の外観に影響を及ぼしたりする場合がある。   Moreover, it is preferable that the length of glass fiber exists in the range of 1.5-6.0 mm. The adhesiveness of a thermosetting resin material and the biomass containing thermoplastic resin material improves more effectively that the length of glass fiber is in said range. If the glass fiber length is less than 1.5 mm, the desired adhesion may not be obtained. If the glass fiber length exceeds 6.0 mm, desired adhesion may not be obtained, or the appearance of the multilayer resin molded article may be affected.

なお、ガラス繊維の含有量には特に制限はないが、ガラス繊維の含有量をより多くすると、熱硬化性樹脂材料とバイオマス含有熱可塑性樹脂材料との密着性がより効果的に向上する。一方で、ガラス繊維の含有量が多いと熱硬化性樹脂材料の粘度が上昇するので、適用する成形方法に応じてガラス繊維の含有量を調整することが好ましく考慮される。   In addition, there is no restriction | limiting in particular in content of glass fiber, However, If content of glass fiber is increased more, the adhesiveness of a thermosetting resin material and a biomass containing thermoplastic resin material will improve more effectively. On the other hand, when the content of glass fiber is large, the viscosity of the thermosetting resin material is increased. Therefore, it is preferable to adjust the content of glass fiber according to the forming method to be applied.

また、熱硬化性樹脂材料には、熱硬化性樹脂に加えて、架橋剤や硬化剤等とを混合した材料を用いてもよい。この場合においては、架橋剤や硬化剤等としては、一般に公知のものをはじめ各種のものを用いることができる。なお、熱硬化性樹脂材料は、必要に応じて2種以上の熱硬化性樹脂、架橋剤、硬化剤等を併用してもよい。   In addition to the thermosetting resin, a material in which a crosslinking agent, a curing agent, and the like are mixed may be used as the thermosetting resin material. In this case, as the crosslinking agent, the curing agent and the like, various kinds can be used including those generally known. In addition, a thermosetting resin material may use together 2 or more types of thermosetting resin, a crosslinking agent, a hardening agent, etc. as needed.

さらに、複層樹脂成形品の表面硬度の向上や弾性率の向上、および複層樹脂成形品の意匠性として重厚感等を保持させる観点からは、熱硬化性樹脂材料に、無機充填材を添加してもよい。無機充填材としては、一般に公知のものをはじめ各種のものを用いることができ、例えば、水酸化アルミニウム、水酸化マグネシウム、シリカ等が挙げられる。熱硬化性樹脂との分散性が良好であること、および複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂材料層との間の密着性を損なわないことの観点からは、無機充填材は、表面処理材で表面処理が施されているものが好ましい。表面処理剤としては、一般に公知のものをはじめ各種のものを用いることができ、例えば、有機ケイ素化合物、有機チタン化合物等の有機金属化合物、およびリン酸基、ホスホン酸基、スルホン酸基、カルボン酸基等の酸性基を少なくとも1個有する酸性基含有有機化合物等が挙げられる。   Furthermore, an inorganic filler is added to the thermosetting resin material from the viewpoint of improving the surface hardness of the multilayer resin molded product, improving the elastic modulus, and maintaining a solid feeling as the designability of the multilayer resin molded product. You may As the inorganic filler, various fillers can be used including those generally known, and examples thereof include aluminum hydroxide, magnesium hydroxide, silica and the like. From the viewpoint of the good dispersibility with the thermosetting resin and the fact that the adhesion between the biomass-containing thermoplastic resin material layer and the thermosetting resin material layer in the multilayer resin molded product is not impaired, The inorganic filler is preferably one that has been surface-treated with a surface treatment material. As the surface treating agent, any of various commonly known ones can be used, and examples thereof include organic metal compounds such as organic silicon compounds and organic titanium compounds, and phosphoric acid groups, phosphonic acid groups, sulfonic acid groups, and carboxylic acids. An acidic group containing organic compound etc. which have at least one acidic group, such as an acidic radical, etc. are mentioned.

<バイオマス含有熱可塑性樹脂材料>
本実施形態で用いられるバイオマス含有熱可塑性樹脂材料は、バイオマス材料と熱可塑性樹脂とを混練して得ることができる。具体的には、混練機に、バイオマス材料と熱可塑性樹脂とを投入し、熱可塑性樹脂の熱溶融温度以上の温度、より好ましくはバイオマス材料の熱分解温度以上の温度でせん断力を加えて混練する。すると、バイオマス材料と熱可塑性樹脂と混練機のブレードとの間にせん断摩擦が生じ、内部発熱が誘起される。特にバイオマス材料の熱分解温度以上の温度でバイオマス材料と熱可塑性樹脂とを混練することによって、バイオマス材料を熱変性によって疎水化させると、熱可塑性樹脂との相溶化向上効果または分散性向上効果をもたらすことができる。さらには、バイオマス材料を可塑化させて流動性をもたらす効果を生じさせることができる。その結果、バイオマス材料と熱可塑性樹脂との一体化・複合化を効率的に進めることができる。
<Biomass-containing thermoplastic resin material>
The biomass-containing thermoplastic resin material used in the present embodiment can be obtained by kneading the biomass material and the thermoplastic resin. Specifically, the biomass material and the thermoplastic resin are charged into the kneader, and shearing is applied at a temperature higher than the thermal melting temperature of the thermoplastic resin, more preferably a temperature higher than the thermal decomposition temperature of the biomass material, and kneading is performed. Do. Then, shear friction occurs between the biomass material, the thermoplastic resin, and the blades of the kneader to induce internal heat generation. In particular, when the biomass material is made to be hydrophobic by heat denaturation by kneading the biomass material and the thermoplastic resin at a temperature higher than the thermal decomposition temperature of the biomass material, the effect of improving the compatibility with the thermoplastic resin or the dispersing property Can bring. Furthermore, the biomass material can be plasticized to produce the effect of providing fluidity. As a result, integration and combination of the biomass material and the thermoplastic resin can be efficiently promoted.

このようにして得られるバイオマス含有熱可塑性樹脂材料は、バイオマス材料の熱変性効果によって疎水化している。また、バイオマス含有熱可塑性樹脂材料中のバイオマス材料は、微細化しているかまたは熱可塑性樹脂中に均質に分散している。そのため、本実施形態におけるバイオマス含有熱可塑性樹脂材料は、流動性および寸法安定性に優れており、成形用の金型への注入が容易である。さらに、微細化したまたは熱可塑性樹脂中に均質に分散したバイオマス材料によって、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層の表面には、成形品の意匠性を損なわない程度に微細な凹凸形状が生じる。この微細な凹凸形状によって、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂層との接着面積が増大し、接着力が向上する。このようにして、バイオマス含有熱可塑性樹脂材料中のバイオマス材料は、複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂層との密着性を向上させるアンカーとしての役割を果たす。   The biomass-containing thermoplastic resin material thus obtained is made hydrophobic by the heat denaturation effect of the biomass material. Also, the biomass material in the biomass-containing thermoplastic resin material is finely divided or homogeneously dispersed in the thermoplastic resin. Therefore, the biomass-containing thermoplastic resin material in the present embodiment is excellent in flowability and dimensional stability, and is easily injected into a mold for molding. Furthermore, due to the biomass material finely divided or homogeneously dispersed in the thermoplastic resin, the surface of the biomass-containing thermoplastic resin material layer in the multilayer resin molded article has fine irregularities to the extent that the designability of the molded article is not impaired. A shape arises. Due to this fine uneven shape, the adhesion area between the biomass-containing thermoplastic resin material layer and the thermosetting resin layer in the multilayer resin molded product is increased, and the adhesion is improved. Thus, the biomass material in the biomass-containing thermoplastic resin material plays a role as an anchor for improving the adhesion between the biomass-containing thermoplastic resin material layer and the thermosetting resin layer in the multilayer resin molded product.

好ましい実施形態として、バイオマス含有熱可塑性樹脂材料は、例えば、混練機にバイオマス材料と熱可塑性樹脂とを投入し、190〜250℃の温度で、100〜3000rpmの回転速度で混練して得ることができる。この場合、混練機によって加えられたせん断力によって誘起された摩擦発熱により、混練物の温度は200〜250℃程度まで上昇させると、バイオマス材料を熱変性によって疎水化させることができる。そのため、熱可塑性樹脂との相溶化向上効果または分散性向上効果をもたらすことができ好ましい。   In a preferable embodiment, the biomass-containing thermoplastic resin material can be obtained, for example, by charging the biomass material and the thermoplastic resin into a kneader and kneading at a rotational speed of 100 to 3000 rpm at a temperature of 190 to 250 ° C. it can. In this case, when the temperature of the kneaded material is raised to about 200 to 250 ° C. by the frictional heat generation induced by the shear force applied by the kneader, the biomass material can be made hydrophobic by heat denaturation. Therefore, the effect of improving the compatibility with the thermoplastic resin or the effect of improving the dispersibility can be brought about, which is preferable.

本実施形態で用いられる混練機としては、一般に公知のものをはじめ各種のものを用いることができる。なお、バイオマス材料と熱可塑性樹脂との一体化・複合化をより効率的に進める観点からは、混練機のブレードは、より強いせん断力を加えることができるものを選択することが好ましく考慮される。   As a kneader used in the present embodiment, various types can be used including generally known types. From the viewpoint of more efficiently integrating and combining the biomass material and the thermoplastic resin, it is preferable to select a blade of the kneader which can apply a stronger shearing force. .

<一次成形品と熱硬化性樹脂材料の成形>
本実施形態の複層樹脂成形品の製造方法においては、前記工程(b)として、バイオマス含有熱可塑性樹脂材料を金型で成形して一次成形品を得る。金型としては、フラット型、サーキュラ型等、一般に公知のものをはじめ各種のものを用いることができる。また、成形方法としては、注型成形、射出成形、ブロー成形等、一般に公知である各種の成形方法を適用することができる。
<Molding of primary molded product and thermosetting resin material>
In the method for producing a multilayer resin molded article of the present embodiment, as the step (b), a biomass-containing thermoplastic resin material is molded with a mold to obtain a primary molded article. As the mold, various types can be used including generally known types such as flat type and circular type. Moreover, as a molding method, generally known various molding methods such as cast molding, injection molding, blow molding, etc. can be applied.

本実施形態の複層樹脂成形品の製造方法においては、前記工程(c)として、バイオマス含有熱可塑性樹脂材料を金型で成形して一次成形品を得た後にこの一次成形品を金型に収納した状態で、一次成形品の表面に熱硬化性樹脂材料を供給して、この熱硬化性樹脂材料を成形する。本実施形態で用いられる熱硬化性樹脂材料の供給方法および成形方法としては、一般に公知である各種の方法を適用することができる。   In the method for producing a multilayer resin molded article of the present embodiment, as the step (c), a biomass-containing thermoplastic resin material is molded with a mold to obtain a primary molded article, and then the primary molded article is used as a mold. In the stored state, a thermosetting resin material is supplied to the surface of the primary molded product to mold the thermosetting resin material. As a supply method and a molding method of the thermosetting resin material used in the present embodiment, various methods which are generally known can be applied.

ここで、図1の模式断面図を用いて、本発明の複層樹脂成形品の製造方法における成形の一実施形態を説明する。   Here, one embodiment of molding in the method for manufacturing a multilayer resin molded article of the present invention will be described using the schematic cross-sectional view of FIG. 1.

図1に模式断面図として例示した製造方法では、図1(A)に示すように、上型2と下型3とを備えた金型1を用いる。この金型1の下型3には、熱硬化性樹脂材料を注入するためのクリアランスとして、熱硬化性樹脂材料注入口4が設けられている。この熱硬化性樹脂材料注入口4は、複層樹脂成形品における熱硬化性樹脂材料層の所望の厚みに応じて、設計することができる。   In the manufacturing method illustrated as a schematic cross-sectional view in FIG. 1, as shown in FIG. 1 (A), a mold 1 provided with an upper mold 2 and a lower mold 3 is used. The lower mold 3 of the mold 1 is provided with a thermosetting resin material injection port 4 as a clearance for injecting the thermosetting resin material. The thermosetting resin material inlet 4 can be designed according to the desired thickness of the thermosetting resin material layer in the multilayer resin molded product.

まず、図1(B)に示すように、予めバイオマス材料と熱可塑性樹脂とを混練して得たバイオマス含有熱可塑性樹脂材料を、金型1内に投入する。その後、金型1を閉じて型締めする。その後、金型1を、バイオマス含有熱可塑性樹脂材料中の熱可塑性樹脂の溶融温度未満から熱硬化性樹脂材料の硬化温度までの温度範囲内に冷却することによって、バイオマス含有熱可塑性樹脂材料の一次成形品5を得る。冷却手段としては、空冷、水冷、あるいは冷媒等の各種のものを用いることができる。   First, as shown in FIG. 1 (B), a biomass-containing thermoplastic resin material obtained by kneading a biomass material and a thermoplastic resin in advance is introduced into the mold 1. Thereafter, the mold 1 is closed and clamped. Thereafter, by cooling the mold 1 within a temperature range from less than the melting temperature of the thermoplastic resin in the biomass-containing thermoplastic resin material to the curing temperature of the thermosetting resin material, primary of the biomass-containing thermoplastic resin material The molded article 5 is obtained. As the cooling means, various kinds of air cooling, water cooling, or a refrigerant can be used.

次に、図1(C)に示すように、金型1の上型2をバイオマス含有熱可塑性樹脂材料の一次成形品5の表面から離し、熱硬化性樹脂材料注入口4からバイオマス含有熱可塑性樹脂材料の一次成形品5の表面に熱硬化性樹脂材料を供給可能な状態にする。   Next, as shown in FIG. 1C, the upper mold 2 of the mold 1 is separated from the surface of the primary molded product 5 of the biomass-containing thermoplastic resin material, and the biomass-containing thermoplastic resin is injected from the thermosetting resin material inlet 4 The thermosetting resin material can be supplied to the surface of the primary molding 5 of the resin material.

そして、図1(D)に示すように、バイオマス含有熱可塑性樹脂材料の一次成形品5を金型1に収納した状態で、熱硬化性樹脂材料6を注入する。その後、型圧を保持し、熱硬化性樹脂材料6を硬化させる。このようにして、図1(E)に示すように、バイオマス含有熱可塑性樹脂材料層(ベース層)7と熱硬化性樹脂材料層(表層)8とで構成された複層樹脂成形品9を得る。   Then, as shown in FIG. 1D, the thermosetting resin material 6 is injected in a state where the primary molded product 5 of the biomass-containing thermoplastic resin material is accommodated in the mold 1. Thereafter, the mold pressure is maintained, and the thermosetting resin material 6 is cured. Thus, as shown in FIG. 1 (E), a multilayer resin molded article 9 composed of the biomass-containing thermoplastic resin material layer (base layer) 7 and the thermosetting resin material layer (surface layer) 8 is obtained. obtain.

なお、上記の実施形態の例示においては、図1(B)でのバイオマス含有熱可塑性樹脂材料の一次成形品5を得た後、図1(C)とは異なって、金型1の上型2を取り外した状態で、バイオマス含有熱可塑性樹脂材料の一次成形品5の表面に熱硬化性樹脂材料を供給してもよい。この場合においては、熱硬化性樹脂材料を成形する際に、複層樹脂成形品における熱硬化性樹脂材料層の所望の形状や厚み等に応じて、取り外した上型とは異なる形状の上型を用いてもよい。また、一次成形品5を熱硬化性樹脂材料の硬化温度未満の温度まで冷却した後、金型1に熱硬化性樹脂材料6を注入し、次いで金型1を、バイオマス含有熱可塑性樹脂材料中の熱可塑性樹脂の溶融温度未満から熱硬化性樹脂材料の硬化温度までの温度範囲内に昇温して熱硬化性樹脂材料6を硬化させるようにしてもよい。また、金型1でバイオマス含有熱可塑性樹脂材料の一次成形品5を得た後、金型1から取り出し、一次成形品5を成形した金型1とは異なる金型に収納した後、熱硬化性樹脂材料6を注入するようにしてもよい。   In addition, in the illustration of said embodiment, after obtaining the primary molded article 5 of the biomass containing thermoplastic resin material in FIG. 1 (B), it differs from FIG. 1 (C), and the upper mold of the mold 1 differs. In a state in which 2 is removed, a thermosetting resin material may be supplied to the surface of the primary molded article 5 of the biomass-containing thermoplastic resin material. In this case, when molding the thermosetting resin material, an upper mold having a shape different from the removed upper mold in accordance with the desired shape, thickness, etc. of the thermosetting resin material layer in the multilayer resin molded article. May be used. In addition, after the primary molded product 5 is cooled to a temperature less than the curing temperature of the thermosetting resin material, the thermosetting resin material 6 is injected into the mold 1, and then the mold 1 is added to the biomass-containing thermoplastic resin material. The thermosetting resin material 6 may be cured by raising the temperature to a temperature range from less than the melting temperature of the thermoplastic resin to the curing temperature of the thermosetting resin material. In addition, after obtaining the primary molded article 5 of the biomass-containing thermoplastic resin material with the mold 1, the thermosetting resin is taken out from the mold 1 and stored in a mold different from the mold 1 for molding the primary molded article 5; May be injected.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

<実施例1>
[バイオマス含有熱可塑性樹脂材料の作製]
木粉(100メッシュアンダー)、ポリプロピレン(バージンPP、MFR60)、および相溶化剤「ユーメックス1010(三洋化成工業(株)製)」をそれぞれ65部、35部、2部の割合で、ラボプラストミル(東洋精機製作所製)に投入した。噛合型同方向回転ブレードを用いて回転数を150rpmで混練し、せん断摩擦による内部発熱によって混練物の温度が225℃まで上昇したところで空冷を開始した。その後、混練物の温度を220℃に保持しながら25分間混練することにより、ペレット状のバイオマス含有熱可塑性樹脂材料を得た。
[バイオマス含有熱可塑性樹脂材料の一次成形]
シリンダー温度を190℃に加熱した卓上手動式射出成形機(東洋精機製作所製)を用いて、上記のバイオマス含有熱可塑性樹脂材料を、下型100℃上型100℃に調節した平板形状(100mm×100mm×t3mm)の金型に射出成形することにより、バイオマス含有熱可塑性樹脂材料の一次成形品を得た。
[熱硬化性樹脂材料の調製]
アクリル樹脂ペレット「VH000(三菱レイヨン(株)製)」100部をメチルメタクリレート「MMA(三菱ガス化学(株)製)」300部で溶解させた。この溶液に、架橋剤としてエチレングリコールジメタクリレート「NKエステル1G(新中村化学工業(株)製)4部、硬化剤としてアルキルパーエステル「トリゴノックス121−50E(化薬アクゾ(株)製)」1.6部、および溶融シリカ「F−HD05(キンセイマテック(株)製)(平均粒径:5μm)」600部を混合することにより、熱硬化性樹脂材料を得た。
[複層樹脂成形品の製造]
上記のバイオマス含有熱可塑性樹脂材料の一次成形品を成形した金型を、一次成形品を残した状態で、t5mm、下型80℃上型95℃に調節した。この金型の上部空隙に、上記の熱硬化性樹脂材料をインサート成形し、成形物を金型内で20分間保持することにより、バイオマス含有熱可塑性樹脂材料層(ベース層、厚み3mm)と熱硬化性樹脂材料層(表層、厚み2mm)とで構成された複層樹脂成形品を得た。
Example 1
[Production of biomass-containing thermoplastic resin material]
65%, 35 parts, 2 parts of wood flour (100 mesh under), polypropylene (virgin PP, MFR 60), and compatibilizer “Umex 1010 (manufactured by Sanyo Chemical Industries, Ltd.)” respectively, Laboplast Mill (Made by Toyo Seiki Seisakusho). The rotational speed was kneaded at 150 rpm using a meshed co-directional rotating blade, and air cooling was started when the temperature of the kneaded product rose to 225 ° C. due to internal heat generation due to shear friction. Thereafter, the kneaded material was kneaded for 25 minutes while maintaining the temperature of the kneaded product at 220 ° C., to obtain a pellet-like biomass-containing thermoplastic resin material.
[Primary molding of biomass-containing thermoplastic resin material]
A flat plate shape (100 mm × 100 mm × 100 mm) of the above-mentioned biomass-containing thermoplastic resin material adjusted to a lower mold temperature of 100 ° C. using a table-top manual injection molding machine (made by Toyo Seiki Seisakusho Co., Ltd.) heated to 190 ° C. cylinder temperature. The primary molding of the biomass-containing thermoplastic resin material was obtained by injection molding in a 100 mm × t 3 mm) mold.
[Preparation of thermosetting resin material]
100 parts of an acrylic resin pellet "VH000 (manufactured by Mitsubishi Rayon Co., Ltd.)" was dissolved with 300 parts of methyl methacrylate "MMA (manufactured by Mitsubishi Gas Chemical Co., Ltd.)". In this solution, 4 parts of ethylene glycol dimethacrylate "NK ester 1G (manufactured by Shin-Nakamura Chemical Co., Ltd.)" as a crosslinking agent, and alkylperester "Trigonox 121-50E (manufactured by Kayaku Akzo Co., Ltd.)" 1 as a curing agent A thermosetting resin material was obtained by mixing 6 parts and 600 parts of fused silica “F-HD05 (manufactured by Kinseimatech Co., Ltd.) (average particle diameter: 5 μm)”.
[Manufacture of multilayer resin molded articles]
The mold obtained by molding the primary molded article of the biomass-containing thermoplastic resin material described above was adjusted to a lower mold 80 ° C. upper mold 95 ° C. at t 5 mm while leaving the primary molded article. The above thermosetting resin material is insert-molded in the upper void of the mold, and the molded product is held in the mold for 20 minutes to obtain the biomass-containing thermoplastic resin material layer (base layer, 3 mm in thickness) and the heat. The multilayer resin molded product comprised with the curable resin material layer (surface layer, thickness 2 mm) was obtained.

<実施例2>
熱硬化性樹脂材料を作製する際に、溶融シリカを用いなかったこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 2
A multilayer resin molded article was obtained in the same manner as in Example 1 except that fused silica was not used when producing a thermosetting resin material.

<実施例3>
バイオマス含有熱可塑性樹脂材料を作製する際に、実施例1で用いたポリプロピレンの代わりに熱可塑性アクリル樹脂ペレット「VH000(三菱レイヨン(株)製)」を用いたこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 3
The same as Example 1, except that thermoplastic acrylic resin pellet "VH000 (Mitsubishi Rayon Co., Ltd.)" was used instead of the polypropylene used in Example 1 when preparing the biomass-containing thermoplastic resin material. Then, a multilayer resin molded product was obtained.

<実施例4>
バイオマス含有熱可塑性樹脂材料を作製する際に、実施例1で用いた木粉(100メッシュアンダー)、ポリプロピレン(バージンPP、MFR60)、および相溶化剤「ユーメックス1010(三洋化成工業(株)製)」の割合を、それぞれ50部、50部、2.8部の割合にしたこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 4
Wood flour (100 mesh under), polypropylene (virgin PP, MFR 60), and compatibilizer “Yumex 1010 (manufactured by Sanyo Chemical Industries, Ltd.) used in Example 1 when producing a biomass-containing thermoplastic resin material A double-layered resin molded article was obtained in the same manner as in Example 1 except that the ratio of 50% to 50 parts was changed to 2.8 parts.

<実施例5>
[バイオマス含有熱可塑性樹脂材料の作製]
実施例1で用いた木粉(100メッシュアンダー)、ポリプロピレン(市販品バージンPP、MFR60)、および相溶化剤「ユーメックス1010(三洋化成工業(株)製)」の割合を、それぞれ35部、65部、3.7部の割合にしたこと以外は、実施例1と同様にしてバイオマス含有熱可塑性樹脂材料を得た。
Example 5
[Production of biomass-containing thermoplastic resin material]
The proportions of wood flour (100 mesh under), polypropylene (commercially available virgin PP, MFR 60), and the compatibilizer "Umex 1010 (manufactured by Sanyo Chemical Industries, Ltd.)" used in Example 1 are 35 parts, 65 respectively. A biomass-containing thermoplastic resin material was obtained in the same manner as in Example 1 except that the ratio was 3.7 parts.

<実施例6>
バイオマス含有熱可塑性樹脂材料を作製する際に、実施例1で用いたラボプラストミルの噛合型同方向回転ブレードの代わりにローラー型ブレードを用いたこと以外は、実施例1と同様にして複層樹脂成形品を得た。なお、噛合型同方向回転ブレードとローラー型ブレードとでは、噛合型同方向回転ブレードの方が混練対象物により高いせん断力を加えられることが一般に知られている。
Example 6
When preparing a biomass-containing thermoplastic resin material, multilayers were carried out in the same manner as in Example 1 except that a roller type blade was used instead of the mesh type co-rotating blade of the laboplast mill used in Example 1. A resin molded product was obtained. It is generally known that, in the meshed co-directional rotating blade and the roller type blade, the meshed co-directional rotating blade can apply a higher shearing force to the material to be kneaded.

<実施例7>
熱硬化性樹脂材料を作製する際に、長さ3.0mm_Eガラス繊維「CS3E−227(日東紡績(株)製)」をアクリル樹脂に対して0.5部含有させたこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 7
Example of Example except that 0.5 parts of a 3.0 mm — E glass fiber “CS3E-227 (manufactured by Nitto Boseki Co., Ltd.)” was added to the acrylic resin when producing the thermosetting resin material. A multilayer resin molded article was obtained in the same manner as in 1.

<実施例8>
熱硬化性樹脂材料を作製する際に、長さ0.3mm_Eガラス繊維「SS10−420(日東紡績(株)製)」をアクリル樹脂に対して0.5部含有させたこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 8
Example of Example except that 0.5 parts of a 0.3 mm length E glass fiber “SS10-420 (manufactured by Nitto Boseki Co., Ltd.)” was added to the acrylic resin when producing the thermosetting resin material. A multilayer resin molded article was obtained in the same manner as in 1.

<実施例9>
熱硬化性樹脂材料を作製する際に、長さ13mm_Eガラス繊維「CS13−J917(日東紡績(株)製)」をアクリル樹脂に対して0.5部含有させたこと以外は、実施例1と同様にして複層樹脂成形品を得た。
Example 9
Example 1 and Example 1 except that 0.5 part of a 13 mm--E glass fiber "CS13-J 917 (manufactured by Nitto Boseki Co., Ltd.)" was added to the acrylic resin when producing the thermosetting resin material. A multilayer resin molded article was obtained in the same manner.

<比較例1>
[バイオマス含有熱可塑性樹脂材料の作製]
実施例1と同様にして、バイオマス含有熱可塑性樹脂材料を得た。
[バイオマス含有熱可塑性樹脂材料の一次成形]
実施例1と同様にして、バイオマス含有熱可塑性樹脂材料の一次成形品を得た。
[複層樹脂成形品の製造]
実施例1で用いた熱硬化性樹脂材料の代わりに熱可塑性アクリル樹脂ペレット「VH000(三菱レイヨン(株)製)」を用いた。上記のバイオマス含有熱可塑性樹脂材料の一次成形品を成形した金型を、一次成形品を残した状態で、t5mm、下型80℃上型95℃に調節した。シリンダー温度を230℃に加熱した卓上手動式射出成形機(東洋精機製作所製)を用いて、この金型に、上記の熱可塑性アクリル樹脂ペレットをインサート成形し、成形物を金型内で20分間保持することにより、バイオマス含有熱可塑性樹脂材料層(ベース層、厚み3mm)と熱可塑性アクリル樹脂層(表層、厚み2mm)とで構成された複層樹脂成形品を得た。
Comparative Example 1
[Production of biomass-containing thermoplastic resin material]
In the same manner as in Example 1, a biomass-containing thermoplastic resin material was obtained.
[Primary molding of biomass-containing thermoplastic resin material]
In the same manner as Example 1, a primary molded article of a biomass-containing thermoplastic resin material was obtained.
[Manufacture of multilayer resin molded articles]
Instead of the thermosetting resin material used in Example 1, a thermoplastic acrylic resin pellet "VH000 (manufactured by Mitsubishi Rayon Co., Ltd.)" was used. The mold obtained by molding the primary molded article of the biomass-containing thermoplastic resin material described above was adjusted to a lower mold 80 ° C. upper mold 95 ° C. at t 5 mm while leaving the primary molded article. The above-mentioned thermoplastic acrylic resin pellet is insert-molded into this mold using a table-top manual injection molding machine (made by Toyo Seiki Seisakusho Co., Ltd.) heated to a cylinder temperature of 230 ° C., and the molding is molded for 20 minutes in the mold By holding, a multilayer resin molded product composed of the biomass-containing thermoplastic resin material layer (base layer, thickness 3 mm) and the thermoplastic acrylic resin layer (surface layer, thickness 2 mm) was obtained.

<比較例2>
熱硬化性樹脂材料を単独で成形した。具体的には、実施例1で成形した金型を、t5mm、下型80℃上型95℃に調節した。この金型の空隙に、実施例1と同様の熱硬化性樹脂材料を注入して20分間保持することにより、熱硬化性樹脂材料(厚み5mm)単独の樹脂成形品を得た。
Comparative Example 2
The thermosetting resin material was molded alone. Specifically, the mold molded in Example 1 was adjusted to t 5 mm, lower mold 80 ° C. upper mold 95 ° C. A thermosetting resin material similar to that of Example 1 was injected into the voids of the mold and held for 20 minutes to obtain a resin molded article of a thermosetting resin material (thickness 5 mm) alone.

このようにして得られた実施例1〜9および比較例1〜2の複層樹脂成形品(ただし、比較例2は単層の樹脂成形品)について、下記のとおりの測定および評価を行った。   The following measurement and evaluation were carried out on the multilayer resin molded articles of Examples 1 to 9 and Comparative Examples 1 and 2 obtained in this manner (however, Comparative Example 2 is a single-layer resin molded article). .

[バイオマス含有熱可塑性樹脂材料の成形性の評価]
バイオマス含有熱可塑性樹脂材料の一次成形品を作製する際の、金型への注入適正の評価を行った。射出成形機で容易に射出成形できたものは成形性が良好であるとして評価した。下記表1では、容易に射出成形できたものは○、やや注入に時間がかかったものは△とした。
[Evaluation of moldability of biomass-containing thermoplastic resin material]
The injection suitability to the mold was evaluated when producing a primary molded article of a biomass-containing thermoplastic resin material. Those that were easily injection molded by an injection molding machine were evaluated as having good moldability. In Table 1 below, those that could be easily injection molded were marked with ○, and those that took some time to inject were marked △.

[耐熱性の評価]
各複層樹脂成形品の上に、200℃に加熱した空鍋を5分間放置した後、空鍋を取り去り目視により外観観察を行った。試験前後で外観に変化が認められないものは耐熱性が良好であるとして評価した。下記表1では、外観に変化が認められないものを○とした。
[Evaluation of heat resistance]
After leaving an empty pot heated to 200 ° C. for 5 minutes on each multilayer resin molded product, the empty pot was removed and the appearance was visually observed. Those with no change in appearance before and after the test were evaluated as having good heat resistance. In Table 1 below, those with no change in appearance were marked with ○.

[耐傷付性の評価]
JIS K 5400の標準方法により、各成形品の表面鉛筆硬度を測定した。
[Evaluation of scratch resistance]
The surface pencil hardness of each molded article was measured by the standard method of JIS K 5400.

[破壊密着性の評価]
各成形品を、ハンマーを用いて衝撃を加えた後、目視により外観観察を行った。複層樹脂成形品におけるバイオマス含有熱可塑性樹脂材料層と熱硬化性樹脂材料層との剥離が認められないものは破壊密着性が良好であるとして評価した。本評価を2回実施し、下記表1では、剥離が認められないものを○、一部に剥離が認められるものを△とした。
[Evaluation of destructive adhesion]
Each molded product was subjected to impact using a hammer and then visually observed for appearance. The thing in which peeling of the biomass containing thermoplastic resin material layer and the thermosetting resin material layer in a multilayer resin molded product is not recognized was evaluated as favorable fracture adhesion. This evaluation was carried out twice, and in Table 1 below, those with no peeling were rated as ○, and those with partial peeling noted as Δ.

[弾性率の評価]
ASTM D790に準拠して弾性率を測定した。
[Evaluation of elastic modulus]
The modulus of elasticity was measured in accordance with ASTM D790.

[重量の評価]
各複層樹脂成形品の重量を、比較例2の樹脂成形品の重量を基準として評価した。
[Evaluation of weight]
The weight of each multilayer resin molded article was evaluated based on the weight of the resin molded article of Comparative Example 2.

以上の複層樹脂成形品の材料組成および評価結果を表1に示す。   Table 1 shows the material composition and the evaluation results of the above multilayer resin molded product.

Figure 0006544675
Figure 0006544675

実施例1〜9の複層樹脂成形品は、熱硬化性樹脂単独の成形品である比較例2の成形品と比較して重量が軽いうえに、いずれの評価項目についても優れた特性を示すことが確認された。また、実施例1と実施例2とを比較すると、熱硬化性樹脂材料に無機充填材として溶融シリカを加えた実施例1の複層樹脂成形品の方が、無機充填材を加えなかった実施例2の複層樹脂成形品よりも、耐傷付性および弾性率がより優れていた。実施例1と実施例3とを比較すると、バイオマス含有熱可塑性樹脂材料の原料として用いた熱可塑性樹脂の違いによっては複層樹脂成形品の特性に有意な差は見られず、いずれの成形品も優れた特性を示した。   The double-layered resin molded articles of Examples 1 to 9 are lighter in weight as compared with the molded article of Comparative Example 2 which is a molded article of the thermosetting resin alone, and exhibit excellent characteristics with respect to any evaluation items. That was confirmed. Moreover, when Example 1 and Example 2 are compared, in the double-layered resin molded product of Example 1 which added fused silica as an inorganic filler to the thermosetting resin material, the implementation which did not add an inorganic filler. The scratch resistance and the elastic modulus were more excellent than the multilayer resin molded article of Example 2. When Example 1 and Example 3 are compared, no significant difference is seen in the characteristics of the multilayer resin molded article depending on the difference of the thermoplastic resin used as the raw material of the biomass-containing thermoplastic resin material, and any molded article Also showed excellent characteristics.

また、実施例1と実施例7〜9とを比較すると、熱硬化性樹脂材料にガラス繊維を加えた実施例7〜9の複層樹脂成形品の方が、実施例1の複層樹脂成形品よりも弾性率が高く、樹脂成形品がたわみにくいことが確認された。また、ガラス繊維の長さが1.5〜6.0mmの範囲内である実施例7は、実施例8や9よりも、破壊密着性がより優れていた。このことは、上述したようにガラス繊維を用いることにより熱硬化性樹脂材料とバイオマス含有熱可塑性樹脂材料との密着性や弾性率が向上し、耐衝撃性や耐変形性(耐歪み性)がより優れた複層樹脂成形品が得られることを示している。   Further, when Example 1 and Examples 7 to 9 are compared, the multilayer resin molded article of Examples 7 to 9 in which the glass fiber is added to the thermosetting resin material is the multilayer resin molding of Example 1 It was confirmed that the elastic modulus is higher than that of the product, and the resin molded product is hardly bent. Moreover, Example 7 whose glass fiber length is in the range of 1.5-6.0 mm was more excellent in destructive adhesion than Examples 8 and 9. This means that, as described above, by using the glass fiber, the adhesion between the thermosetting resin material and the biomass-containing thermoplastic resin material and the elastic modulus are improved, and the impact resistance and the deformation resistance (strain resistance) are improved. It shows that a superior multilayer resin molded article can be obtained.

これに対して、複層樹脂成形品の表層の熱硬化性樹脂材料の代わりに熱可塑性樹脂のみを用いた比較例1の複層樹脂成形品では、耐熱性の評価試験において艶ヒケの現象が見られた。また、比較例1の複層樹脂成形品の弾性率は、実施例1〜9の複層樹脂成形品の値よりも有意に低い数値であった。   On the other hand, in the multilayer resin molded article of Comparative Example 1 in which only the thermoplastic resin was used instead of the thermosetting resin material of the surface layer of the multilayer resin molded article, the phenomenon of gloss loss was observed in the heat resistance evaluation test. It was seen. Moreover, the elastic modulus of the multilayer resin molded product of the comparative example 1 was a numerical value significantly lower than the value of the multilayer resin molded product of Examples 1-9.

また、バイオマス含有熱可塑性樹脂材料を作製する際にローラー型ブレードを用いて混練した実施例6の複層樹脂成形品では、バイオマス含有熱可塑性樹脂材料の一次成形時の樹脂材料の注入に他の実施例、比較例と比べてやや時間がかかった。また、破壊密着性の評価試験では、一部に剥離が見られた。   Moreover, in the multilayer resin molded product of Example 6 which was knead | mixed using a roller type | mold blade, when producing a biomass containing thermoplastic resin material, it is another for injection | pouring of the resin material at the time of primary shaping | molding of a biomass containing thermoplastic resin material. It took some time compared with the example and the comparative example. In addition, peeling was observed in part in the evaluation test for fracture adhesion.

1 金型
2 上型
3 下型
4 熱硬化性樹脂材料注入口
5 バイオマス含有熱可塑性樹脂材料の一次成形品
6 熱硬化性樹脂材料
7 バイオマス含有熱可塑性樹脂材料層(ベース層)
8 熱硬化性樹脂材料層(表層)
9 複層樹脂成形品
1 mold 2 upper mold 3 lower mold 4 thermosetting resin material inlet 5 primary molded article of biomass-containing thermoplastic resin material 6 thermosetting resin material 7 biomass-containing thermoplastic resin material layer (base layer)
8 Thermosetting resin material layer (surface layer)
9 Multi-layer resin molded products

Claims (5)

次の工程;
(a)バイオマス材料と熱可塑性樹脂とを、前記バイオマス材料の熱分解温度以上の温度でせん断力を加えて混練してバイオマス含有熱可塑性樹脂材料を得る工程、
(b)前記バイオマス含有熱可塑性樹脂材料を金型で成形して一次成形品を得る工程、および
(c)前記一次成形品を金型に収納した状態でその表面に熱硬化性樹脂材料を供給して、熱硬化性樹脂材料を成形する工程を含むことを特徴とする複層樹脂成形品の製造方法。
Next step;
(A) a step of obtaining a biomass-containing thermoplastic resin material by kneading a biomass material and a thermoplastic resin at a temperature higher than the thermal decomposition temperature of the biomass material and applying a shearing force ;
(B) molding the biomass-containing thermoplastic resin material with a mold to obtain a primary molded product, and (c) supplying a thermosetting resin material to the surface of the primary molded product housed in the mold. And a step of molding the thermosetting resin material.
前記工程(a)で得るバイオマス含有熱可塑性樹脂材料中の熱可塑性樹脂の割合が30〜70wt%の範囲内であることを特徴とする請求項1に記載の複層樹脂成形品の製造方法。   The method for producing a multilayer resin molded article according to claim 1, wherein the proportion of the thermoplastic resin in the biomass-containing thermoplastic resin material obtained in the step (a) is in the range of 30 to 70 wt%. 前記工程(c)では、熱可塑性樹脂の溶融温度未満から前記熱硬化性樹脂材料の硬化温度までの温度範囲内で成形することを特徴とする請求項1又は2に記載の複層樹脂成形品の製造方法。 In the said process (c), it shape | molds within the temperature range from less than the melting temperature of a thermoplastic resin to the curing temperature of the said thermosetting resin material, The multilayer resin molded article of Claim 1 or 2 characterized by the above-mentioned. Manufacturing method. 前記熱硬化性樹脂材料が、ガラス繊維を含有することを特徴とする請求項1からのうちのいずれか一項に記載の複層樹脂成形品の製造方法。 The said thermosetting resin material contains glass fiber, The manufacturing method of the multilayer resin molded article as described in any one of Claim 1 to 3 characterized by the above-mentioned. 前記ガラス繊維の長さが、1.5〜6.0mmの範囲内であることを特徴とする請求項に記載の複層樹脂成形品の製造方法。 The length of the said glass fiber is in the range of 1.5-6.0 mm, The manufacturing method of the multilayer resin molded product of Claim 4 characterized by the above-mentioned.
JP2015041399A 2014-03-10 2015-03-03 Method of manufacturing multilayer resin molded article Expired - Fee Related JP6544675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041399A JP6544675B2 (en) 2014-03-10 2015-03-03 Method of manufacturing multilayer resin molded article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014046456 2014-03-10
JP2014046456 2014-03-10
JP2015041399A JP6544675B2 (en) 2014-03-10 2015-03-03 Method of manufacturing multilayer resin molded article

Publications (2)

Publication Number Publication Date
JP2015186916A JP2015186916A (en) 2015-10-29
JP6544675B2 true JP6544675B2 (en) 2019-07-17

Family

ID=54071347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041399A Expired - Fee Related JP6544675B2 (en) 2014-03-10 2015-03-03 Method of manufacturing multilayer resin molded article

Country Status (2)

Country Link
JP (1) JP6544675B2 (en)
WO (1) WO2015136889A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264344A (en) * 1987-04-22 1988-11-01 Kanegafuchi Chem Ind Co Ltd Woodlike molded body
JPS63264346A (en) * 1987-04-22 1988-11-01 Kanegafuchi Chem Ind Co Ltd Woodlike molded body
JPS63264343A (en) * 1987-04-22 1988-11-01 Kanegafuchi Chem Ind Co Ltd Woodlike molded body
JPS63264345A (en) * 1987-04-22 1988-11-01 Kanegafuchi Chem Ind Co Ltd Woodlike molded body
JPH05185466A (en) * 1992-01-14 1993-07-27 Nippon Steel Corp Fabricating method of composite resin
JPH05318527A (en) * 1992-05-21 1993-12-03 Asahi Chem Ind Co Ltd Production of molded object
JPH0732416A (en) * 1993-07-22 1995-02-03 Asahi Chem Ind Co Ltd Coating method for thermoplastic resin molded piece with thermosetting resin
JP2000044809A (en) * 1998-07-28 2000-02-15 Matsushita Electric Works Ltd Resin composition containing wood powder
JP3455700B2 (en) * 1999-07-28 2003-10-14 宇部興産株式会社 In-mold coating molding method
JP3619074B2 (en) * 1999-09-08 2005-02-09 積水化学工業株式会社 Method for producing molded thermoplastic resin
JP3641202B2 (en) * 2000-11-09 2005-04-20 日光化成株式会社 Manufacturing method and manufacturing apparatus for wood / plastic composite
JP2003019731A (en) * 2001-07-06 2003-01-21 Grand Polymer Co Ltd In-mold coating injection molded article and method for manufacturing the same
JP2005307078A (en) * 2004-04-23 2005-11-04 Sekisui Chem Co Ltd Method for producing biodegradable resin composite material and method for molding the same
JP5072133B1 (en) * 2012-04-11 2012-11-14 株式会社名機製作所 Molding apparatus and molding method for composite molded article containing fiber material

Also Published As

Publication number Publication date
WO2015136889A1 (en) 2015-09-17
JP2015186916A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
KR101417207B1 (en) Flooring material using polylactic acid resin
CN1098314C (en) Moulding made from or including an environmentally acceptable material, a process for manufacturing the same, and the use of said moulding
CN103772819B (en) A kind of preparation method of polypropylene powdered rice hulls foaming composite pallet
JP4888030B2 (en) Method for producing plant composite material molded body, plant composite material molded body, plant composite material production method, and plant composite material
CA2818658A1 (en) Plant fiber-reinforced thermoplastic resin composition
CN104761818A (en) Method for preparing polypropylene-based wood-plastic composite material by using straw
Rabbi et al. Injection-molded natural fiber-reinforced polymer composites–a review
Kuram Advances in development of green composites based on natural fibers: A review
Kajaks et al. Physical and mechanical properties of composites based on polypropylene and timber industry waste
CN104761820A (en) Method for preparing polypropylene-based wood-plastic composite material by using rice husk powder
WO2007142305A1 (en) Molded article and process for producing the same
WO2011014085A2 (en) Fibre-reinforced cork-based composites
CN104530739A (en) Thermotropic high-polymer liquid crystal reinforced/toughened polyolefin-base wood-plastic composite material and preparation method thereof
CN102181167B (en) Amino mold reinforcement polyvinyl chloride (PVC) base wood plastics composite and preparation method thereof
JP6544675B2 (en) Method of manufacturing multilayer resin molded article
CN106459493B (en) The thermoplastic shaped with renewable content
CN103468013A (en) Plastic-wood composite material and preparation method thereof
JP4818672B2 (en) Thermoplastic resin molding
JP2015168242A (en) Method for manufacturing multilayer resin molding, and multilayer resin molding
KR100908671B1 (en) Manufacturing method of wood-plastic composites using recycled fiberboard
CN108641387A (en) A method of preparing wood plastic composite using walnut sawdust
KR101309994B1 (en) Polypropylene resin composition
CN108017889A (en) A kind of strong and unyielding balanced polylactic acid/methyl methacrylate rubber composite material and preparation method thereof
WO2013183440A1 (en) Thermoplastic resin composition
KR100729595B1 (en) Wooden plastic compunding resin for t-die extrusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R151 Written notification of patent or utility model registration

Ref document number: 6544675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees