JP2005307078A - Method for producing biodegradable resin composite material and method for molding the same - Google Patents

Method for producing biodegradable resin composite material and method for molding the same Download PDF

Info

Publication number
JP2005307078A
JP2005307078A JP2004128348A JP2004128348A JP2005307078A JP 2005307078 A JP2005307078 A JP 2005307078A JP 2004128348 A JP2004128348 A JP 2004128348A JP 2004128348 A JP2004128348 A JP 2004128348A JP 2005307078 A JP2005307078 A JP 2005307078A
Authority
JP
Japan
Prior art keywords
biodegradable resin
fiber
composite material
resin composite
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128348A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kori
悌之 郡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004128348A priority Critical patent/JP2005307078A/en
Publication of JP2005307078A publication Critical patent/JP2005307078A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a new useful biodegradable resin composite material containing vegetable fiber, having excellent strength and productivity. <P>SOLUTION: The method for producing the biodegradable resin composite material comprising the vegetable fiber having 10-2,000 μm average fiber length and 5-500 μ average fiber diameter, and a biodegradable resin having a melting point not higher than (the decomposition-starting temperature+30°C) involves melting and kneading the vegetable fiber with the biodegradable resin within a temperature range of -25 to +30°C of the decomposition-starting temperature of the vegetable fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生分解性樹脂複合材料の製造方法および生分解性樹脂複合材料の成形方法に関し、特に、植物繊維を含有し、強度、生産性に優れる生分解性樹脂複合材料の製造方法および生分解性樹脂複合材料の成形方法に関する。   The present invention relates to a method for producing a biodegradable resin composite material and a method for molding a biodegradable resin composite material, and in particular, a method for producing a biodegradable resin composite material containing plant fibers and excellent in strength and productivity. The present invention relates to a method for molding a decomposable resin composite material.

近年、持続可能な循環型社会を目指して植物由来プラスチックスや生分解性プラスチックスと植物繊維との複合材料の利用が射出成形品、プレス成型品、シート成型品、押出成型品等の様々な分野に利用されようとしている。
例えば、生分解性樹脂と竹繊維の生分解性複合材料が開示されている(例えば、特許文献1参照。)。この複合材料は、植物繊維として強度の強い竹繊維を用い、直径7〜15μmの竹繊維もしくは繊維束で、その長さを繊維もしくは繊維束直径の100倍以上に規定し、生分解性樹脂として脂肪族ポリエステルを規定することで十分高い性能を出すことができるとされている。しかしながら、すべての脂肪族ポリエステルに適応できず、また成型条件により植物繊維が分解し、安定的に十分な性能を引き出すことが困難である。
また、植物繊維とポリ乳酸との射出成形体が開示されている(例えば、特許文献2参照。)。この技術においては、植物繊維とポリ乳酸を150〜200℃の雰囲気下で混合することを規定して射出成形している。しかしながら、この方法では十分強度のある成型物を得ることは難しく、製造条件の特定無しではかえって植物繊維が分解し、補強材の効果としては利用できないという問題があった。
特開2000−160034号公報 特開2002−69303号公報
In recent years, the use of plant-derived plastics and composite materials of biodegradable plastics and plant fibers has been used for various purposes such as injection-molded products, press-molded products, sheet-molded products, and extruded products with the aim of achieving a sustainable recycling society. It is going to be used in the field.
For example, a biodegradable composite material of biodegradable resin and bamboo fiber is disclosed (for example, refer to Patent Document 1). This composite material uses strong bamboo fiber as a plant fiber, is a bamboo fiber or fiber bundle having a diameter of 7 to 15 μm, and its length is defined as 100 times or more of the fiber or fiber bundle diameter, and is used as a biodegradable resin. It is said that a sufficiently high performance can be obtained by defining the aliphatic polyester. However, it cannot be applied to all aliphatic polyesters, and plant fibers are decomposed depending on molding conditions, and it is difficult to stably extract sufficient performance.
Moreover, the injection molded object of a vegetable fiber and polylactic acid is disclosed (for example, refer patent document 2). In this technique, injection molding is performed by prescribing that plant fibers and polylactic acid are mixed in an atmosphere of 150 to 200 ° C. However, in this method, it is difficult to obtain a molded product having sufficient strength, and there is a problem that the plant fiber is decomposed without specifying the production conditions and cannot be used as an effect of the reinforcing material.
JP 2000-160034 A JP 2002-69303 A

本発明は、上記の植物繊維含有生分解性樹脂複合材料の問題を解決し、強度、生産性に優れた生分解性樹脂複合材料の製造方法および得られた生分解性樹脂複合材料の成形方法を提供することを目的とする。   The present invention solves the problems of the above-described plant fiber-containing biodegradable resin composite material, and a method for producing a biodegradable resin composite material excellent in strength and productivity, and a method for molding the obtained biodegradable resin composite material The purpose is to provide.

本発明者は、上記課題を解決すべく、かねてより植物繊維と生分解性樹脂の物理的性質や製造条件について研究を行っていたところ、植物繊維はその形状や成型条件により、機械的強度が大きく低下することがあり、設計上の品質を確保することができず、汎用プラスチックと比較しても十分高い性能を出すことができないことがわかり、これらを解決する方法として、特定の繊維長、平均繊維径を有する植物繊維を生分解性樹脂に混合する際に植物繊維の分解開始温度と生分解性樹脂の融点を特定の範囲にあるようにすることにより機械的強度の低下がない複合材料が得られることを見出し本発明を完成させた。   In order to solve the above-mentioned problems, the present inventor has previously studied the physical properties and production conditions of plant fibers and biodegradable resins, and the plant fibers have a mechanical strength depending on their shapes and molding conditions. It can be greatly reduced, design quality can not be ensured, and it can be seen that sufficiently high performance can not be obtained compared to general-purpose plastic, as a method to solve these, the specific fiber length, When mixing plant fibers having an average fiber diameter with a biodegradable resin, a composite material in which the mechanical strength is not lowered by setting the decomposition start temperature of the plant fibers and the melting point of the biodegradable resin within a specific range. The present invention was completed.

すなわち、本発明の第1の発明によれば、平均繊維長が10〜2000μm、平均繊維径が5〜500μmである植物繊維と融点が植物繊維の分解開始温度+30℃以下である生分解性樹脂とを含有する生分解性樹脂複合材料の製造方法であって、植物繊維と生分解性樹脂とを、植物繊維の分解開始温度の−25〜+30℃の温度範囲で溶融混練することを特徴とする生分解性樹脂複合材料の製造方法が提供される。   That is, according to the first aspect of the present invention, a biodegradable resin having an average fiber length of 10 to 2000 μm and an average fiber diameter of 5 to 500 μm and a melting point of the plant fiber decomposition start temperature + 30 ° C. or less. A biodegradable resin composite material comprising: a plant fiber and a biodegradable resin are melt-kneaded in a temperature range of −25 to + 30 ° C. of the decomposition start temperature of the plant fiber. A method for producing a biodegradable resin composite material is provided.

また、本発明の第2の発明によれば、第1の発明において、植物繊維の含有量は、20〜80重量%であることを特徴とする生分解性樹脂複合材料の製造方法が提供される。   According to a second aspect of the present invention, there is provided a method for producing a biodegradable resin composite material according to the first aspect, wherein the plant fiber content is 20 to 80% by weight. The

また、本発明の第3の発明によれば、第1又は2の発明において、植物繊維は、平均繊維直径が5〜500μmであり、平均繊維長が平均繊維直径の5〜100倍であるケナフ繊維、ジュート、竹繊維、または葦繊維のいずれかであることを特徴とする生分解性樹脂複合材料の製造方法が提供される。   According to the third invention of the present invention, in the first or second invention, the plant fiber has an average fiber diameter of 5 to 500 μm and an average fiber length of 5 to 100 times the average fiber diameter. Provided is a method for producing a biodegradable resin composite material, which is any one of fibers, jute, bamboo fibers, and straw fibers.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、植物繊維の揮発成分量は、10重量%以下であることを特徴とする生分解性樹脂複合材料の製造方法が提供される。   According to a fourth aspect of the present invention, there is provided the biodegradable resin composite material according to any one of the first to third aspects, wherein the amount of volatile components of the plant fiber is 10% by weight or less. A manufacturing method is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明で得られる生分解性樹脂複合材料の成形方法において、該生分解性樹脂複合材料の揮発成分量を10重量%以下にし、溶融成形時の最大温度を植物繊維の分解開始温度の−25〜+30℃の範囲にすることを特徴とする生分解性樹脂複合材料の成形方法が提供される。   According to the fifth aspect of the present invention, in the method for molding a biodegradable resin composite material obtained in any one of the first to fourth aspects, the amount of volatile components in the biodegradable resin composite material is 10 wt. % Or less, and the maximum temperature during melt molding is in the range of −25 to + 30 ° C. of the decomposition start temperature of the plant fiber. A method for molding a biodegradable resin composite material is provided.

本発明の生分解性樹脂複合材料は、強度、生産性に優れた新規で有用な生分解性樹脂複合材料である。   The biodegradable resin composite material of the present invention is a new and useful biodegradable resin composite material excellent in strength and productivity.

本発明で得られる生分解性樹脂複合材料は、植物繊維と生分解性樹脂の溶融混合物であり、その構成材料、溶融混合方法について以下に説明する。   The biodegradable resin composite material obtained in the present invention is a molten mixture of plant fibers and biodegradable resin, and the constituent materials and the melt mixing method will be described below.

1.構成材料
(1)植物繊維
本発明の製造方法により得られる生分解性樹脂複合材料で用いる植物繊維は、特に限定されず、どのようなものでも良く、例えば、ケナフ繊維、ジュート、葦繊維、稲わら、竹繊維、バガス、シサル麻、マニラ麻、亜麻、ラミー、笹繊維、バナナの茎、椰子の果実皮等を挙げることができる。これらの中では、ケナフ繊維、ジュート、ラミー、亜麻、等の麻類、葦繊維、竹繊維が好ましい。
植物繊維の平均繊維長は、10〜2000μmであり、好ましくは50〜1000μmである。また、平均繊維径は、5〜500μmであり、好ましくは10〜100μmである。
植物繊維の平均繊維長が10μm未満であると破壊された繊維となっており、繊維本来の強度、弾性率を十分反映することができず、2000μmを超えると植物繊維と生分解性樹脂の溶融混練による複合材料の作成中に、植物繊維同士が絡み合い分散性不良となり、強度のバラツキが大きくなる。また、平均繊維径が5μm未満の場合はもはや植物繊維本来の繊維形状が残ったものとなっておらず複合材の曲げ強度が低下し、500μmを超えると強度、弾性率アップの効果が含有重量に対してさほど上がらない。
1. Constituent material (1) Plant fiber The plant fiber used in the biodegradable resin composite material obtained by the production method of the present invention is not particularly limited and may be any material, for example, kenaf fiber, jute, straw fiber, rice Mention may be made of straw, bamboo fiber, bagasse, sisal hemp, manila hemp, flax, ramie, cocoon fiber, banana stem, palm fruit skin, and the like. Among these, kenaf fiber, jute, ramie, flax and the like hemp, straw fiber, and bamboo fiber are preferable.
The average fiber length of the plant fiber is 10 to 2000 μm, preferably 50 to 1000 μm. Moreover, an average fiber diameter is 5-500 micrometers, Preferably it is 10-100 micrometers.
When the average fiber length of the plant fiber is less than 10 μm, the fiber is broken, and the original strength and elastic modulus cannot be sufficiently reflected. When the average fiber length exceeds 2000 μm, the plant fiber and the biodegradable resin are melted. During the production of the composite material by kneading, the plant fibers are entangled with each other, resulting in poor dispersibility and a large variation in strength. In addition, when the average fiber diameter is less than 5 μm, the original fiber shape of the plant fiber is no longer left, and the bending strength of the composite material is lowered. When the average fiber diameter exceeds 500 μm, the effect of increasing the strength and elastic modulus is contained. It does n’t go up so much.

なお、植物繊維の平均繊維長や平均繊維径は、植物繊維の種類やその繊維化の方法で異なるが、平均繊維長は、平均繊維直径の5〜100倍であると強度が高くなり、好ましい。平均繊維長が平均繊維径の5倍未満であると、繊維補強としての弾性率アップの効果が少なく、100倍を超えると、生分解性樹脂と植物繊維を混合する時の分散性や繊維のフィード性が悪く、一定の品質を作り込むのが困難である。   The average fiber length and average fiber diameter of the plant fiber differ depending on the type of plant fiber and the fiberizing method, but the average fiber length is preferably 5 to 100 times the average fiber diameter, which increases the strength. . If the average fiber length is less than 5 times the average fiber diameter, the effect of increasing the elastic modulus as fiber reinforcement is small, and if it exceeds 100 times, the dispersibility and fiber properties when mixing biodegradable resin and plant fibers are exceeded. Feedability is poor and it is difficult to make a certain quality.

(2)生分解性樹脂
本発明で用いる生分解性樹脂は、特に限定されず、どのようなものでも良く、例えば、グリコールと脂肪族ジカルボン酸との重縮合などにより得られるポリエチレンサクシネ−ト、ポリブチレンサクシネ−ト、ポリヘキサメチレンサクシネ−ト、ポリエチレンアジペ−ト、ポリヘキサメチレンアジペ−ト、ポリブチレンアジペ−ト、ポリエチレンオキザレ−ト、ポリブチレンオキザレ−ト、ポリネオペンチルオキザレ−ト、ポリエチレンセバケ−ト、ポリブチレンセバケ−ト、ポリヘキサメチレンセバケ−ト、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートカーボネート等の脂肪族ポリエステル系樹脂などが挙げられる。また、ポリグリコ−ル酸やポリ乳酸などのようなポリ(α−ヒドロキシ酸)またはこれらの共重合体、ポリ(ε−カプロラクトン)やポリ(β−プロピオラクトン)のようなポリ(ω−ヒドロキシアルカノエ−ト)、ポリ(3−ヒドロキシブチレ−ト)、ポリ(3−ヒドロキシバリレ−ト)、ポリ(3−ヒドロキシカプロレ−ト)、ポリ(3−ヒドロキシヘプタノエ−ト)、ポリ(3−ヒドロキシオクタノエ−ト)のようなポリ(β−ヒドロキシアルカノエ−ト)とポリ(4−ヒドロキシブチレ−ト)などの脂肪族ポリエステルを用いることも可能である。さらに、セルロース系としては酢酸セルロース、澱粉脂肪酸エステル、澱粉/ポリカプロラクトン、澱粉/ポリブチレンアジペートテレフタレート等があげられる。これらは2種類あるいはそれ以上を混合して用いても良い。
(2) Biodegradable resin The biodegradable resin used in the present invention is not particularly limited and may be any, for example, polyethylene succinate obtained by polycondensation of glycol and aliphatic dicarboxylic acid. Polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polyhexamethylene adipate, polybutylene adipate, polyethylene oxalate, polybutylene oxalate, Examples include aliphatic polyester resins such as polyneopentyl oxalate, polyethylene sebacate, polybutylene sebacate, polyhexamethylene sebacate, polybutylene succinate adipate, polybutylene succinate carbonate, etc. It is done. In addition, poly (α-hydroxy acid) such as polyglycolic acid and polylactic acid, or a copolymer thereof, poly (ω-hydroxy) such as poly (ε-caprolactone) and poly (β-propiolactone). Alkanoate), poly (3-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3-hydroxycaproate), poly (3-hydroxyheptanoate), It is also possible to use poly (β-hydroxyalkanoates) such as poly (3-hydroxyoctanoate) and aliphatic polyesters such as poly (4-hydroxybutyrate). Further, examples of the cellulose type include cellulose acetate, starch fatty acid ester, starch / polycaprolactone, starch / polybutylene adipate terephthalate, and the like. Two or more of these may be used in combination.

本発明で得られる生分解性樹脂複合材料においては、上記の植物繊維により使用する生分解性樹脂の種類が制限される。すなわち、生分解性樹脂の融点は、混合する植物繊維の分解開始温度+30℃以下であり、好ましくは植物繊維の分解開始温度−50℃〜分解開始温度+25℃である。
生分解性樹脂の融点が植物繊維の分解開始温度+30℃を超えると、生分解性樹脂と植物繊維とを溶融混合する際に植物繊維が熱により大きく分解し、植物繊維の強度を大きく低下させ、得られた生分解性樹脂複合材料の強度が低下する。例えば、植物繊維として、竹繊維を用いると、竹繊維の分解開始温度は161℃であるので、生分解性樹脂の融点は191℃以下である必要がある。
ここで、植物繊維の分解開始温度及び生分解性樹脂の融点は、以下の方法で規定した温度である。
分解開始温度:Seiko Instruments社製のTG/DTA320により窒素フロー中で、昇速温度10℃/minで加熱したときの加熱減量を測定し、100℃以上で第1の変曲温度の開始温度を分解開始温度とした。例えば、竹繊維の場合は、図1に示すとおり、分解開始温度は161℃となる。
融点:樹脂の融点はSeiko Instruments社製の示差熱分析装置DSC220により、昇速温度10℃/min、窒素雰囲気下で最大吸熱ピークの温度より求める。
In the biodegradable resin composite material obtained by the present invention, the type of biodegradable resin used by the plant fiber is limited. That is, the melting point of the biodegradable resin is not more than the decomposition start temperature of the plant fiber to be mixed + 30 ° C. or less, and preferably the decomposition start temperature of the plant fiber is −50 ° C. to the decomposition start temperature + 25 ° C.
When the melting point of the biodegradable resin exceeds the decomposition start temperature of the plant fiber + 30 ° C., the plant fiber is greatly decomposed by heat when the biodegradable resin and the plant fiber are melt-mixed, greatly reducing the strength of the plant fiber. The strength of the obtained biodegradable resin composite material is reduced. For example, when bamboo fiber is used as the plant fiber, the decomposition start temperature of bamboo fiber is 161 ° C., and therefore the melting point of the biodegradable resin needs to be 191 ° C. or less.
Here, the decomposition start temperature of the plant fiber and the melting point of the biodegradable resin are temperatures defined by the following method.
Decomposition start temperature: Measure the weight loss when heated at a rising temperature of 10 ° C / min in a nitrogen flow with TG / DTA320 manufactured by Seiko Instruments, and set the start temperature of the first inflection temperature above 100 ° C. It was set as the decomposition start temperature. For example, in the case of bamboo fiber, the decomposition start temperature is 161 ° C. as shown in FIG.
Melting point: The melting point of the resin is determined from the temperature of the maximum endothermic peak in a nitrogen atmosphere at an ascending temperature of 10 ° C./min using a differential thermal analyzer DSC220 manufactured by Seiko Instruments.

(3)配合割合
生分解性樹脂複合材料中における植物繊維と生分解性樹脂の配合割合は、植物繊維が好ましくは20〜80重量%、より好ましくは25〜70重量%であり、生分解性樹脂が好ましくは80〜20重量%、より好ましくは75〜30重量%である。植物繊維の含量が20重量%未満(生分解性樹脂の含有量が80重量%を超える)であると植物繊維による補強効果は発現せず、80重量%を超えると(生分解性樹脂の含有量が20重量%未満)植物繊維と生分解性樹脂の分散が不良で、密着不良が生じる。
(3) Blending ratio The blending ratio of the plant fiber and the biodegradable resin in the biodegradable resin composite material is preferably 20 to 80% by weight, more preferably 25 to 70% by weight of the plant fiber. The resin is preferably 80 to 20% by weight, more preferably 75 to 30% by weight. When the plant fiber content is less than 20% by weight (the biodegradable resin content exceeds 80% by weight), the reinforcing effect by the plant fiber is not expressed, and when it exceeds 80% by weight (the biodegradable resin content) (The amount is less than 20% by weight) Dispersion of plant fiber and biodegradable resin is poor, resulting in poor adhesion.

2.生分解性樹脂複合材料の製造
本発明の生分解性樹脂複合材料は、上記植物繊維と生分解性樹脂複合材料を溶融混練して製造する。
植物繊維と生分解性樹脂とを溶融混練する温度は、植物繊維の分解開始温度の−25〜+30℃の範囲であり、好ましくは植物繊維の分解開始温度の−15〜+25℃である。溶融混練温度が植物繊維の分解開始温度の−25℃未満であると、植物繊維は生分解性樹脂中に均一に分散されるが、生分解性樹脂と植物繊維の密着性が悪く、強度がやや低い。また、溶融混練温度が植物繊維の分解開始温度の+30℃を超えると、植物繊維と生分解性樹脂の密着性は良いが、植物繊維が分解し、植物繊維の強度が繊維補強材として寄与しない。また、本発明の生分解性樹脂複合材料からの成形体の成形においても、溶融成形時の最大温度は、植物繊維の分解開始温度の−25〜+30℃の範囲であることが好ましい。
2. Production of biodegradable resin composite material The biodegradable resin composite material of the present invention is produced by melt-kneading the above-described plant fiber and biodegradable resin composite material.
The temperature at which the plant fiber and the biodegradable resin are melt-kneaded is in the range of −25 to + 30 ° C. of the decomposition start temperature of the plant fiber, and preferably −15 to + 25 ° C. of the decomposition start temperature of the plant fiber. When the melt kneading temperature is less than -25 ° C., which is the decomposition start temperature of the plant fiber, the plant fiber is uniformly dispersed in the biodegradable resin, but the adhesion between the biodegradable resin and the plant fiber is poor, and the strength is low. Slightly low. Moreover, when the melt kneading temperature exceeds + 30 ° C., which is the decomposition start temperature of the plant fiber, the adhesion between the plant fiber and the biodegradable resin is good, but the plant fiber decomposes and the strength of the plant fiber does not contribute as a fiber reinforcement. . Moreover, also in shaping | molding of the molded object from the biodegradable resin composite material of this invention, it is preferable that the maximum temperature at the time of melt molding is the range of -25 to +30 degreeC of decomposition start temperature of a vegetable fiber.

また、植物繊維と生分解性樹脂との溶融混練に際しては、植物繊維の揮発に起因する揮発成分量が130℃において10重量%以下となるように予め調整しておくのが好ましく、より好ましくは3重量%以下となるように調整しておく。植物繊維の揮発成分量が10重量%を超えると、植物繊維の分解が大きく進み、強度低下がおこりやすい。
ここで、揮発成分は、赤外加熱式揮発分測定装置(Kett社製)により130℃で10分間、加熱後の重量減少より重量%として求める値である。
Further, in the melt-kneading of the plant fiber and the biodegradable resin, it is preferable to adjust in advance such that the amount of volatile components resulting from the volatilization of the plant fiber is 10% by weight or less at 130 ° C., more preferably It is adjusted to be 3% by weight or less. When the amount of the volatile component of the plant fiber exceeds 10% by weight, the decomposition of the plant fiber proceeds greatly, and the strength tends to decrease.
Here, a volatile component is a value calculated | required as weight% from the weight reduction after a heating for 10 minutes at 130 degreeC with an infrared heating type volatile content measuring apparatus (made by Kett company).

3.生分解性樹脂複合材料の用途
上記のようにして得られた本発明の生分解性樹脂複合材料は、十分な強度を示すとともに植物繊維/生分解性樹脂として環境に負荷を与えることが少ないので、様々な成型品として好適に使用できる。特に強度を必要とする構造部材、建築材料はもちろんのこと、建具材料、建設仮設材、看板、ディスプレー用台板、家電製品筐体などに好適である。
3. Use of biodegradable resin composite material The biodegradable resin composite material of the present invention obtained as described above exhibits sufficient strength and has little impact on the environment as a plant fiber / biodegradable resin. It can be suitably used as various molded products. In particular, it is suitable not only for structural members and building materials that require strength, but also for joinery materials, construction temporary materials, signboards, display boards, home appliance housings, and the like.

以下に実施例により本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。なお、実施例で実施した評価方法は以下の通りである。
(1)曲げ弾性率:JIS K−7055−1995に準拠して測定した。
(2)曲げ強度:JIS K−7055−1995に準拠して測定した。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. In addition, the evaluation method implemented in the Example is as follows.
(1) Flexural modulus: measured in accordance with JIS K-7055-1995.
(2) Bending strength: measured in accordance with JIS K-7055-1995.

(実施例1)
生分解性樹脂として、ポリブチレンサクシネート(PBS)(三菱化学社製Gspla、融点:115℃)を用い、植物繊維として、竹繊維(末広産業社製、平均繊維径:70μm、平均繊維長:500μm、分解開始温度:161℃、揮発成分:4.5重量%)を用いた。竹繊維と生分解性樹脂を竹繊維の含有量が20重量%となるように2軸押出機(TEX33日本製鋼所)により130℃で、滞留時間3分間となるように混合押出し、生分解性樹脂複合体のペレットを作成した。次に、得られたペレットの揮発成分量を1.5重量%以下として、射出温度150℃で厚みが2mmのダンベル試験片を射出成形した。得られた試験片の曲げ強度と弾性率を測定した。その結果を表1に示す。
なお、揮発分の調整は、ペレットをホッパードライヤー(温風乾燥機)に入れ60℃に設定して6時間乾燥して行った。
(Example 1)
Polybutylene succinate (PBS) (Gspla manufactured by Mitsubishi Chemical Corporation, melting point: 115 ° C.) is used as a biodegradable resin, and bamboo fibers (manufactured by Suehiro Sangyo Co., Ltd., average fiber diameter: 70 μm, average fiber length: 500 μm, decomposition start temperature: 161 ° C., volatile component: 4.5% by weight). Bamboo fiber and biodegradable resin are mixed and extruded at 130 ° C. with a twin screw extruder (TEX33 Nippon Steel Works) so that the bamboo fiber content is 20% by weight. Resin composite pellets were prepared. Next, a dumbbell test piece having a thickness of 2 mm at an injection temperature of 150 ° C. was injection-molded with the amount of volatile components of the obtained pellets being 1.5 wt% or less. The bending strength and elastic modulus of the obtained test piece were measured. The results are shown in Table 1.
The volatile matter was adjusted by putting the pellets in a hopper dryer (hot air dryer) and setting the temperature at 60 ° C. for 6 hours.

(実施例2)
押出機での最高温度を180℃に設定した以外は実施例1と同様の方法で竹繊維とPBSを混合し、ペレットを作成した後試験片を作成し、物性を測定した。その結果を表1に示す。
(Example 2)
Bamboo fibers and PBS were mixed in the same manner as in Example 1 except that the maximum temperature in the extruder was set to 180 ° C., and pellets were formed, and then test pieces were prepared and measured for physical properties. The results are shown in Table 1.

(実施例3)
生分解性樹脂としてポリ乳酸(三井化学社製H−100、融点:163℃)を用い、押出機での最高温度を180℃とした以外は実施例1と同様にして試験片を作成し、物性を測定した。その結果を表1に示す。
(Example 3)
A test piece was prepared in the same manner as in Example 1 except that polylactic acid (H-100, manufactured by Mitsui Chemicals, melting point: 163 ° C.) was used as the biodegradable resin, and the maximum temperature in the extruder was 180 ° C. Physical properties were measured. The results are shown in Table 1.

(実施例4)
植物繊維として葦繊維(平均繊維径:99μm、平均繊維長:1060μm、分解開始温度:127℃、揮発成分:5.3重量%)を用い、押出機での最高温度を150℃とした以外は実施例1と同様にして試験片を作成し、物性を測定した。その結果を表1に示す。
Example 4
Other than using cocoon fiber (average fiber diameter: 99 μm, average fiber length: 1060 μm, decomposition start temperature: 127 ° C., volatile component: 5.3 wt%) as the plant fiber, the maximum temperature in the extruder was set to 150 ° C. Test pieces were prepared in the same manner as in Example 1, and the physical properties were measured. The results are shown in Table 1.

(比較例1)
押出機での最高温度を130℃に設定した以外は実施例1と同様の方法で竹繊維とPBSを混合し、ペレットを作成した後試験片を作成し、物性を測定した。その結果を表1に示す。
(Comparative Example 1)
Bamboo fibers and PBS were mixed in the same manner as in Example 1 except that the maximum temperature in the extruder was set to 130 ° C., pellets were prepared, test pieces were prepared, and physical properties were measured. The results are shown in Table 1.

(比較例2)
押出機での最高温度を210℃に設定した以外は実施例1と同様の方法で竹繊維とPBSを混合し、ペレットを作成した後試験片を作成し、物性を測定した。その結果を表1に示す。
(Comparative Example 2)
Bamboo fiber and PBS were mixed by the same method as in Example 1 except that the maximum temperature in the extruder was set at 210 ° C., pellets were prepared, test pieces were prepared, and physical properties were measured. The results are shown in Table 1.

(比較例3)
押出機での最高温度を220℃に設定した以外は実施例3と同様の方法で竹繊維とPBSを混合し、ペレットを作成した後試験片を作成し、物性を測定した。その結果を表1に示す。
(Comparative Example 3)
Bamboo fibers and PBS were mixed in the same manner as in Example 3 except that the maximum temperature in the extruder was set to 220 ° C., and pellets were prepared, and then test specimens were prepared and the physical properties were measured. The results are shown in Table 1.

(比較例4)
押出機での最高温度を180℃に設定した以外は実施例4と同様の方法で竹繊維とPBSを混合し、ペレットを作成した後試験片を作成し、物性を測定した。その結果を表1に示す。
(Comparative Example 4)
Bamboo fibers and PBS were mixed in the same manner as in Example 4 except that the maximum temperature in the extruder was set to 180 ° C., and pellets were formed, and then test pieces were prepared and measured for physical properties. The results are shown in Table 1.

表1から明らかなように、本発明の生分解性樹脂複合材料は、優れた強度を有する材料であった(実施例1〜4)。一方、植物繊維と生分解性樹脂との溶融混練温度が植物繊維の分解開始温度よりも30℃以上高い場合、また、分解開始温度よりも10℃以上低い場合は複合材料の曲げ弾性率および強度が低下した(比較例1〜4)。   As is clear from Table 1, the biodegradable resin composite material of the present invention was a material having excellent strength (Examples 1 to 4). On the other hand, when the melt kneading temperature of the plant fiber and the biodegradable resin is 30 ° C. or more higher than the decomposition start temperature of the plant fiber, or 10 ° C. lower than the decomposition start temperature, the flexural modulus and strength of the composite material (Comparative Examples 1-4).

本発明による生分解性複合材料は、その最適な形成と溶融混練温度により植物繊維のもつ本来の強い強度を確保し、強度を必要とする成型品等に有効に活用できる。   The biodegradable composite material according to the present invention ensures the original strong strength of the plant fiber by its optimum formation and melt kneading temperature, and can be effectively used for molded products that require strength.

竹繊維の分解開始温度の測定例の結果を示す図である。It is a figure which shows the result of the example of a measurement of the decomposition start temperature of a bamboo fiber.

Claims (5)

平均繊維長が10〜2000μm、平均繊維径が5〜500μmである植物繊維と融点が植物繊維の分解開始温度+30℃以下である生分解性樹脂とを含有する生分解性樹脂複合材料の製造方法であって、植物繊維と生分解性樹脂とを、植物繊維の分解開始温度の−25〜+30℃の温度範囲で溶融混練することを特徴とする生分解性樹脂複合材料の製造方法。   A method for producing a biodegradable resin composite material comprising a plant fiber having an average fiber length of 10 to 2000 μm and an average fiber diameter of 5 to 500 μm and a biodegradable resin having a melting point equal to or less than 30 ° C. A method for producing a biodegradable resin composite material comprising melt-kneading plant fibers and biodegradable resins in a temperature range of −25 to + 30 ° C. of the decomposition start temperature of plant fibers. 植物繊維の含有量は、20〜80重量%であることを特徴とする請求項1に記載の生分解性樹脂複合材料の製造方法。   The method for producing a biodegradable resin composite material according to claim 1, wherein the content of the plant fiber is 20 to 80% by weight. 植物繊維は、平均繊維直径が5〜500μmであり、平均繊維長が平均繊維直径の5〜100倍であるケナフ繊維、ジュート、竹繊維、または葦繊維のいずれかであることを特徴とする請求項1又は2に記載の生分解性樹脂複合材料の製造方法。   The plant fiber is any one of kenaf fiber, jute, bamboo fiber, or straw fiber having an average fiber diameter of 5 to 500 μm and an average fiber length of 5 to 100 times the average fiber diameter. Item 3. A method for producing a biodegradable resin composite material according to Item 1 or 2. 植物繊維の揮発成分量は、10重量%以下であることを特徴とする請求項1〜3のいずれか1項に記載の生分解性樹脂複合材料の製造方法。   The method for producing a biodegradable resin composite material according to any one of claims 1 to 3, wherein the amount of volatile components of the plant fiber is 10% by weight or less. 請求項1〜4のいずれか1項に記載の生分解性樹脂複合材料の製造方法で得られる生分解性樹脂複合材料の成形方法において、該生分解性樹脂複合材料の揮発成分量を10重量%以下にし、溶融成形時の最大温度を植物繊維の分解開始温度の−25〜+30℃の範囲にすることを特徴とする生分解性樹脂複合材料の成形方法。   In the shaping | molding method of the biodegradable resin composite material obtained with the manufacturing method of the biodegradable resin composite material of any one of Claims 1-4, the amount of volatile components of this biodegradable resin composite material is 10 weight %, And the maximum temperature at the time of melt molding is in the range of −25 to + 30 ° C. of the decomposition start temperature of the plant fiber.
JP2004128348A 2004-04-23 2004-04-23 Method for producing biodegradable resin composite material and method for molding the same Pending JP2005307078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128348A JP2005307078A (en) 2004-04-23 2004-04-23 Method for producing biodegradable resin composite material and method for molding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128348A JP2005307078A (en) 2004-04-23 2004-04-23 Method for producing biodegradable resin composite material and method for molding the same

Publications (1)

Publication Number Publication Date
JP2005307078A true JP2005307078A (en) 2005-11-04

Family

ID=35436207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128348A Pending JP2005307078A (en) 2004-04-23 2004-04-23 Method for producing biodegradable resin composite material and method for molding the same

Country Status (1)

Country Link
JP (1) JP2005307078A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224126A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Method for producing plant fiber-containing resin composition
WO2008050945A1 (en) * 2006-10-24 2008-05-02 Korea Institute Of Energy Research Seaweed fiber-reinforced biocomposite and method for producing the same using high-temperature grinding
JP2008193477A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Speaker box, speaker system using the same and electronic apparatus using the speaker system
KR100867424B1 (en) 2006-10-24 2008-11-06 한국에너지기술연구원 Biocomposites reinforced with red algae fiber and method of manufacturing biocomposites with highly dispersed reinforcements using high temperature milling technique
JP2009045813A (en) * 2007-08-20 2009-03-05 Konica Minolta Opto Inc Manufacturing process of cellulose ester film, cellulose ester film, polarizing plate and liquid crystal display
US8063145B2 (en) 2006-12-28 2011-11-22 Sri Sports Limited Golf ball
US8450397B2 (en) * 2007-09-25 2013-05-28 Dunlop Sports Co. Ltd. Golf ball
JP2015186916A (en) * 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Method for producing multi-layered resin molding, and multi-layered resin molding
CN112940466A (en) * 2021-02-05 2021-06-11 吉林禾迪科技有限公司 Special material for bio-based degradable straw and preparation method thereof
JP7491026B2 (en) 2020-04-02 2024-05-28 王子ホールディングス株式会社 Molding composition and molded body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224126A (en) * 2006-02-22 2007-09-06 Matsushita Electric Works Ltd Method for producing plant fiber-containing resin composition
WO2008050945A1 (en) * 2006-10-24 2008-05-02 Korea Institute Of Energy Research Seaweed fiber-reinforced biocomposite and method for producing the same using high-temperature grinding
KR100867424B1 (en) 2006-10-24 2008-11-06 한국에너지기술연구원 Biocomposites reinforced with red algae fiber and method of manufacturing biocomposites with highly dispersed reinforcements using high temperature milling technique
US8063145B2 (en) 2006-12-28 2011-11-22 Sri Sports Limited Golf ball
JP2008193477A (en) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd Speaker box, speaker system using the same and electronic apparatus using the speaker system
JP2009045813A (en) * 2007-08-20 2009-03-05 Konica Minolta Opto Inc Manufacturing process of cellulose ester film, cellulose ester film, polarizing plate and liquid crystal display
US8450397B2 (en) * 2007-09-25 2013-05-28 Dunlop Sports Co. Ltd. Golf ball
US8883923B2 (en) 2007-09-25 2014-11-11 Dunlop Sports Co. Ltd. Golf ball
JP2015186916A (en) * 2014-03-10 2015-10-29 パナソニックIpマネジメント株式会社 Method for producing multi-layered resin molding, and multi-layered resin molding
JP7491026B2 (en) 2020-04-02 2024-05-28 王子ホールディングス株式会社 Molding composition and molded body
CN112940466A (en) * 2021-02-05 2021-06-11 吉林禾迪科技有限公司 Special material for bio-based degradable straw and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101602884B (en) Heat-resistant polylactic acid composite material and preparation method thereof
US11518878B2 (en) Biodegradable polymer composition for the manufacture of articles having a high heat deflection temperature
EP1652874B1 (en) Injection-molded object, process for producing the same, and pellet for use for injection-molded object
JP2005307078A (en) Method for producing biodegradable resin composite material and method for molding the same
JP6163485B2 (en) Molding material, molded body thereof, and method for producing the molded body
CN113166489A (en) Biodegradable reinforced composite material
JP2006291214A (en) Injection-molded article, process for producing the same, and pellet used for injection molded article
JP2006206913A (en) Injection-molded object, process for producing the same, and pellet for use for injection-molded object
JP2008163111A (en) Polylactic acid stereocomplex molded item and its manufacturing method
JP4384949B2 (en) Injection molded body
JP2010209305A (en) Method for producing eco-friendly biodegradable resin composite material by using vegetable waste and method for forming the same
JP5085871B2 (en) POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE USING THE SAME, AND MANUFACTURING METHOD
CN103146162A (en) Lyocell fiber/polylactic acid composite material and preparation method thereof
US20220388235A1 (en) Use of thermoplastic cellulose composite for additive manufacturing
JP2004231910A (en) Fiber-containing thermoplastic resin composition and use of the same
JP2008195814A (en) Fiber-reinforced polyhydroxybutyrate resin composition
JP2007107012A (en) Injection-molded product, process for producing the same, and pellet used for injection-molded product
CN111434716A (en) Preparation method and process of glass fiber/polylactic acid composite material
Drpić Characteristics of composite materials based on polylactic acid (PLA)
CN117186655B (en) Wood-plastic composite degradable composite material and preparation method thereof
TWI825450B (en) Fan unit containing recycled and renewable polymeric compositions
JP4647895B2 (en) Method for promoting crystallization of injection molded article
KR101880495B1 (en) Silk Fibroin/Wool/Poly(butylene succinate) Biocomposities and Method for Preparing Thereof
CN115651381A (en) Biodegradable modified polylactic acid composite material and preparation method and application thereof
KR100913734B1 (en) Polylactic acid resin composition and preparation method thereof