JP6543974B2 - Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article - Google Patents

Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article Download PDF

Info

Publication number
JP6543974B2
JP6543974B2 JP2015052641A JP2015052641A JP6543974B2 JP 6543974 B2 JP6543974 B2 JP 6543974B2 JP 2015052641 A JP2015052641 A JP 2015052641A JP 2015052641 A JP2015052641 A JP 2015052641A JP 6543974 B2 JP6543974 B2 JP 6543974B2
Authority
JP
Japan
Prior art keywords
ring
compound
resin composition
group
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015052641A
Other languages
Japanese (ja)
Other versions
JP2016172796A (en
Inventor
菅野 真樹
真樹 菅野
良 江川
良 江川
小出 昌史
昌史 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2015052641A priority Critical patent/JP6543974B2/en
Publication of JP2016172796A publication Critical patent/JP2016172796A/en
Application granted granted Critical
Publication of JP6543974B2 publication Critical patent/JP6543974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、未硬化状態での粘度が低く、活性エネルギー線照射による硬化速度が速く、成形精度に優れ、しかも強度や耐熱性等の機械的特性に優れた立体造形物を与える光学的立体造形用活性エネルギー線重合性樹脂組成物に関する。   The present invention is an optical three-dimensional object which provides a three-dimensional object having a low viscosity in the uncured state, a high curing rate by active energy ray irradiation, an excellent forming accuracy, and excellent mechanical properties such as strength and heat resistance. The present invention relates to an active energy ray polymerizable resin composition.

活性エネルギー線重合技術は、その速い重合速度、一般に無溶剤であることによる良好な作業性、極めて低いエネルギー必要量の省エネルギー化等種々の特性に加え、近年、環境汚染問題により、環境汚染の低減化を図れるという利点を有しているため、建装材料、包装材料、印刷材料、表示材料、電気電子部品材料、光学デバイス、ディスプレイなどの分野において、その利用分野は拡大傾向にある。
これらは、活性エネルギー線で重合し得る樹脂とα,β−不飽和二重結合基を有する単量体のみを含有し、単量体が溶媒の機能をかねていることから塗膜や成型品形成時に溶剤が揮発しないという利点があるからである。そして、この活性エネルギー線重合性を有する樹脂として、低分子量のポリエステル系樹脂、ポリウレタン系樹脂、ポリエポキシ系樹脂、ポリアクリル系樹脂等の分子末端にα,β−不飽和二重結合基を有するオリゴマーやα,β−不飽和二重結合基を有する単量体等が利用されている。
Active energy ray polymerization technology has reduced environmental pollution in recent years due to environmental pollution problems, in addition to various characteristics such as high polymerization rate, good workability with no solvent in general, energy saving of extremely low energy requirement, etc. In the fields of construction materials, packaging materials, printing materials, display materials, electric and electronic component materials, optical devices, displays and the like, their application fields tend to be expanded.
These contain only a resin that can be polymerized by active energy rays and a monomer having an α, β-unsaturated double bond group, and since the monomer also functions as a solvent, it forms a coating film or a molded article It is because there is an advantage that the solvent does not volatilize sometimes. And, as a resin having this active energy ray polymerization property, it has an α, β-unsaturated double bond group at the molecular terminal of low molecular weight polyester resin, polyurethane resin, polyepoxy resin, polyacrylic resin etc. Oligomers and monomers having an α, β-unsaturated double bond group are used.

近年、樹脂成型品の製造方法として、コンピュータ上の立体デザインシステム(3次元CAD)により設計した立体形状データをもとに、液状の光硬化性樹脂組成物を活性エネルギー線の一種である紫外線レーザー光によって選択的に重合硬化させることにより、成型品を作製する光学的立体造形法(光造形法)が用いられている。
この光造形法は、従来の切削加工などと比べて、切削困難な複雑な形状にも対応可能、完全自動化プロセスであり取り扱いが容易、製造時間が短くコスト面でも有利などの様々な利点を有しており、樹脂製品の生産の他、デザイン検討、性能試験、広告用等の試作モデルや医療モデルなどの製造に幅広く用いられるようになってきている。
この立体造形法の代表的な例としては、容器に入れた液状の光硬化性樹脂組成物の液面に、所望パターンの重合硬化層が得られるように、光、例えば、活性エネルギー線の一種である紫外線レーザー光を選択的に照射して重合硬化層を得、次に該硬化層の上に液状の光硬化性樹脂組成物を層状に供給し、次いで前記と同様に光を選択的に照射して前記の硬化層と連続した重合硬化層を形成する。この積層操作を繰り返すことにより、最終的に所望の立体造形物を得る方法である。この立体造形法は、製作する造形物の形状が複雑な場合でも、容易にしかも短時間で目的の造形物を得ることができるため注目されている。
In recent years, as a method for producing resin molded products, ultraviolet laser, which is a kind of active energy ray, is a liquid photocurable resin composition based on three-dimensional shape data designed by a three-dimensional design system (three-dimensional CAD) on a computer An optical three-dimensional modeling method (optical modeling method) for producing a molded article by selective polymerization curing with light is used.
This stereolithography method can cope with complex shapes that are difficult to cut, compared with conventional cutting, etc. It is a fully automated process, easy to handle, has a short manufacturing time, has advantages such as cost advantages, etc. In addition to the production of resin products, they are widely used in design studies, performance tests, manufacturing of prototype models for medical use, etc.
As a representative example of this three-dimensional modeling method, light, for example, a type of active energy ray, is obtained so that a polymerization cured layer of a desired pattern can be obtained on the liquid surface of the liquid photocurable resin composition placed in a container. Is selectively irradiated with ultraviolet laser light to obtain a polymerized and cured layer, and then a liquid photocurable resin composition is supplied in layers on the cured layer, and then light is selectively selected in the same manner as described above. It irradiates and forms a polymerization hardening layer continuous with the above-mentioned hardening layer. It is a method of finally obtaining a desired three-dimensional object by repeating this lamination operation. This three-dimensional modeling method is drawing attention because it can easily obtain a target object in a short time even if the shape of the object to be produced is complicated.

光学的立体造形法としては、例えば、特許文献1に開示されているように、液状の光硬化性樹脂組成物に必要なエネルギー供給を選択的に行って、所望形状の立体造形物を形成する方法である。このような方法またはその改良技術が、特許文献2,3に開示されている。   As the optical three-dimensional modeling method, for example, as disclosed in Patent Document 1, the energy supply necessary for the liquid photocurable resin composition is selectively performed to form a three-dimensional article having a desired shape. It is a method. Such methods or their improved techniques are disclosed in Patent Documents 2 and 3.

上記の光造形に用いられる光硬化性樹脂組成物としては、効率的な光造形を行う観点から、粘度が低く速やかに平滑な液面を形成することができるとともに、透明性や良好な光硬化性を有することが要求される。また、光による重合硬化時の収縮(硬化収縮)に起因する残留歪み等のために、硬化物が経時で変形(反り、引け、張出部の持ち上がり等)を起こす問題があり、このような経時変形が小さいことが要求される。さらに用途に応じて、重合硬化物には、強靱性などの機械強度、耐熱性、耐湿性および耐水性などが要求されている。   As a photocurable resin composition used for the above-mentioned photofabrication, while being able to form a smooth liquid level with a low viscosity rapidly from a viewpoint of performing efficient photofabrication, transparency and favorable photocuring are made. It is required to have sex. In addition, there is a problem that the cured product is deformed (warped, pulled out, raised in the overhang portion, etc.) over time due to residual strain caused by shrinkage (curing shrinkage) at the time of polymerization curing by light. It is required that the deformation over time be small. Furthermore, depending on the application, the cured product is required to have mechanical strength such as toughness, heat resistance, moisture resistance, water resistance and the like.

従来、このような光硬化性樹脂組成物としては、透明性、光硬化性等の観点から、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、感光性ポリイミド等のラジカル重合性化合物(例えば、特許文献4、5)やエポキシ化合物、ビニルエーテル化合物等のカチオン重合性化合物を含有する樹脂組成物(例えば、特許文献6)などが用いられている。しかし、近年の対象製品の微細化、複雑化に伴い、寸法精度に対する要求が益々厳しくなってきており、上記樹脂組成物の経時変形特性では要求を満足できないようになってきている。
さらに、特許文献7には、エチレン系不飽和モノマーや光開始剤との屈折率の差の絶対値が0でない微小中空球を含有する光硬化性液体組成物が開示されており、該光硬化性液体組成物の透明度が減少することが記載されている。さらに、特許文献8には、発色剤を含有する照射硬化性樹脂組成物が開示されており、該照射硬化性樹脂組成物から製造された三次元物品は、硬化の前後で異なる色を示すことが記載されている。
しかしながら、上記樹脂組成物を硬化して得られる樹脂硬化物も、強靱性、耐水性、物性安定性や経時的変形の抑制の全ての要求を満足するには至っていないのが現状である。
Conventionally, as such a photocurable resin composition, radically polymerizable compounds such as urethane (meth) acrylate, epoxy (meth) acrylate, photosensitive polyimide and the like from the viewpoint of transparency, photocurability, etc. Documents 4, 5) and resin compositions containing cationically polymerizable compounds such as epoxy compounds and vinyl ether compounds (eg, Patent Document 6) are used. However, with the miniaturization and complexity of the target products in recent years, the demand for dimensional accuracy is becoming more and more severe, and the demand can not be satisfied with the time-dependent deformation characteristics of the resin composition.
Furthermore, Patent Document 7 discloses a photocurable liquid composition containing micro hollow spheres in which the absolute value of the difference in refractive index between an ethylenically unsaturated monomer and a photoinitiator is not 0, and the photocuring It is stated that the transparency of the sexual liquid composition is reduced. Furthermore, Patent Document 8 discloses a radiation curable resin composition containing a color former, and the three-dimensional article produced from the radiation curable resin composition exhibits a different color before and after curing. Is described.
However, at present the cured resin product obtained by curing the above resin composition has not been able to satisfy all the requirements for toughness, water resistance, physical property stability and suppression of temporal deformation.

特開昭60−247515号公報Japanese Patent Application Laid-Open No. 60-247515 特開昭62−035966号公報(米国特許第4575330号明細書)JP-A-62-035966 (US Pat. No. 4,575,330) 特開昭62−101408号公報Japanese Patent Application Laid-Open No. 62-101408 特開平2−228312号公報JP-A-2-228312 特開平5−279436号公報JP-A-5-279436 特開平1−213304号公報Unexamined-Japanese-Patent No. 1-213304 特許2648222号公報Patent No. 2648222 特表2005−510603号公報Japanese Patent Application Publication No. 2005-510603

本発明は、経時変形が小さく、さらに、強靱性およびその経時安定性に優れた硬化物を得ることが可能な光学的立体造形用活性エネルギー線重合性樹脂組成物を提供することにある。また、該組成物の硬化物を提供することを目的とする。   An object of the present invention is to provide an active energy ray polymerizable resin composition for optical three-dimensional shaping, which is capable of obtaining a cured product which is less deformed with time and which is excellent in toughness and stability with time. Another object of the present invention is to provide a cured product of the composition.

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す光学的立体造形用活性エネルギー線重合性樹脂組成物により前記目標達成できることを見出し、更に立体造形物により本発明を完成するに至った。
すなわち、本発明は、分子内に芳香環を2個以上有し、アルキレンオキサイド結合基の平均付加モル数が1〜40であり、窒素原子を含有する環状構造(ca)を含有せず、α,β−不飽和二重結合基を2個含有する化合物(A)と、
窒素原子を含有する環状構造(ca)として2,2,6,6−テトラメチルピペリジン骨格を有し、α,β−不飽和二重結合基含有化合物(B)と、
光重合開始剤(C)と、
を含有する光学的立体造形用活性エネルギー線重合性樹脂組成物であって、化合物(A)および化合物(B)のα,β−不飽和二重結合基はアクリロイル基および/またはメタクリロイル基であり、
前記樹脂組成物全量中、化合物(A)を60〜90.9重量%、化合物(B)を9〜20重量%、光重合開始剤(C)を0.1〜20重量部含有し、かつ、化合物(A)は、アルキレンオキサイド結合基の平均付加モル数が4である化合物を前記樹脂組成物全量に対して12〜22重量%含有する光学的立体造形用活性エネルギー線重合性樹脂組成物に関する。
MEANS TO SOLVE THE PROBLEM As a result of repeating earnestly examining that the present inventors should solve the said subject, it discovers that the said goal can be achieved by the active energy ray polymeric resin composition for optical three-dimensional modeling shown below, Furthermore, this invention It came to complete.
That is, the present invention is an aromatic ring possess two or more in the molecule, an average number of moles added of alkylene oxide linking group 1-40 does not contain a cyclic structure (ca) containing nitrogen atoms, alpha A compound (A) containing two β-unsaturated double bond groups,
And α, β-unsaturated double bond group-containing compound (B) having a 2,2,6,6-tetramethylpiperidine skeleton as a cyclic structure (ca) containing a nitrogen atom,
A photopolymerization initiator (C),
And the α, β-unsaturated double bond group of the compound (A) and the compound (B) is an acryloyl group and / or a methacryloyl group. ,
60 to 90.9 wt% of the compound (A), 9 to 20 wt% of the compound (B), and 0.1 to 20 wt parts of the photopolymerization initiator (C) in the total amount of the resin composition, and The compound (A) is an active energy ray polymerizable resin composition for optical three-dimensional modeling, containing 12 to 22% by weight of a compound having an average addition mole number of alkylene oxide bonding group of 4 with respect to the total amount of the resin composition. About.

さらに、本発明は、化合物(A)のα,β−不飽和二重結合基が、メタクリロイル基であることを特徴とする上記光学的立体造形用活性エネルギー線重合性樹脂組成物に関する。   Furthermore, the present invention relates to the above active energy ray polymerizable resin composition for optical three-dimensional modeling, wherein the α, β-unsaturated double bond group of the compound (A) is a methacryloyl group.

さらに、本発明は、化合物(B)のα,β−不飽和二重結合基が、メタクリロイル基であることを特徴とする上記光学的立体造形用活性エネルギー線重合性樹脂組成物に関する。   Furthermore, the present invention relates to the above active energy ray polymerizable resin composition for optical three-dimensional modeling, wherein the α, β-unsaturated double bond group of the compound (B) is a methacryloyl group.

さらに、本発明は、化合物(C)が、リン含有の化合物であることを特徴とする上記光学的立体造形用活性エネルギー線重合性樹脂組成物に関する。   Furthermore, the present invention relates to the active energy ray polymerizable resin composition for optical three-dimensional modeling described above, wherein the compound (C) is a phosphorus-containing compound.

さらに、本発明は、上記活性エネルギー線重合性樹脂組成物を、活性エネルギー線で重合硬化してなる樹脂硬化物に関する。   Furthermore, the present invention relates to a resin cured product obtained by polymerizing and curing the above-mentioned active energy ray polymerizable resin composition with active energy rays.

さらに、本発明は、上記樹脂硬化物からなる立体造形物に関する。   Furthermore, the present invention relates to a three-dimensional object made of the above resin cured product.

本発明により、反りや膨潤等の成形時における変形が少なく、光学的立体造形法により精度の高い造形物を生産することができ、また重合硬化物の力学的性質が優れているため、立体造形物は機構部品としても使用可能である光学的立体造形用活性エネルギー線重合性樹脂組成物を提供することができるようになった。   According to the present invention, it is possible to produce a high-precision shaped object by optical three-dimensional shaping method with little deformation at the time of molding such as warpage and swelling, and also excellent in mechanical properties of the polymerized and cured material. It has become possible to provide an active energy ray polymerizable resin composition for optical three-dimensional modeling that can also be used as a mechanical component.

以下、本発明の実施形態について説明する。
<光学的立体造形用活性エネルギー線重合性樹脂組成物の構成>
本発明の光学的立体造形用活性エネルギー線重合性樹脂組成物は、分子内に芳香環を2個以上有するα,β−不飽和二重結合基含有化合物(A)と、
窒素原子を含有する環状構造を有するα,β−不飽和二重結合基含有化合物(B)と、
光重合開始剤(C)と、
を含有する。
Hereinafter, embodiments of the present invention will be described.
<Configuration of Active Energy Ray Polymerizable Resin Composition for Optical Three-Dimensional Sizing>
The active energy ray polymerizable resin composition for optical three-dimensional modeling of the present invention comprises an α, β-unsaturated double bond group-containing compound (A) having two or more aromatic rings in the molecule,
An α, β-unsaturated double bond group-containing compound (B) having a cyclic structure containing a nitrogen atom,
A photopolymerization initiator (C),
Contains

ここで、「活性エネルギー線」とは、紫外線、可視光線、赤外線、エレクトロンビーム、及び放射線を含む、化学反応を生じさせるための活性化に必要なエネルギーを提供できる、広義のエネルギー線を意味する。本発明の光学的立体造形用活性エネルギー線重合性樹脂組成物(以下、「樹脂組成物」と称す)は、上記活性エネルギー線の照射によって、重合反応が進行し、硬化物を形成する。特に限定するものではないが、本発明の一実施形態において、上記活性エネルギー線は、紫外線を含む光エネルギーであることが好ましい。   Here, "active energy ray" means a broad energy ray capable of providing energy necessary for activation to cause a chemical reaction, including ultraviolet light, visible light, infrared light, electron beam, and radiation. . The polymerization reaction of the active energy ray polymerizable resin composition for optical three-dimensional modeling (hereinafter referred to as “resin composition”) of the present invention proceeds by the irradiation of the active energy ray to form a cured product. Although not particularly limited, in the embodiment of the present invention, the active energy ray is preferably light energy including ultraviolet light.

以下、樹脂組成物の構成成分について具体的に説明する。
<化合物(A)>
本発明の樹脂組成物において、分子内に芳香環を2個以上有するα,β−不飽和二重結合基含有化合物(A)について説明する。
Hereinafter, the components of the resin composition will be specifically described.
<Compound (A)>
The resin composition of this invention WHEREIN: The (alpha), (beta)-unsaturated double bond group containing compound (A) which has 2 or more of aromatic rings in a molecule | numerator is demonstrated.

本発明において化合物(A)は、分子内に少なくとも芳香環を2個有し、かつ少なくとも1個のα,β−不飽和二重結合基を含有する化合物である単量体である。上記化合物(A)は、芳香環を有することで、活性エネルギー線照射によって作成された立体造形物が非水性となるため、耐水性や耐湿性の低下を抑制することが可能となる。さらに、環状構造に由来する造形物の硬度と耐久性の向上に期待できるため好ましい。   In the present invention, the compound (A) is a monomer which is a compound having at least two aromatic rings in the molecule and containing at least one α, β-unsaturated double bond group. The above-mentioned compound (A) has an aromatic ring, and the three-dimensional object produced by irradiation with active energy rays becomes non-aqueous, and therefore, it is possible to suppress a decrease in water resistance and moisture resistance. Furthermore, it is preferable because it can be expected to improve the hardness and durability of the shaped article derived from the cyclic structure.

本発明の芳香環としては、例えばベンゼン環;   As the aromatic ring of the present invention, for example, a benzene ring;

例えば、ナフタレン環、ペンタレン環、インデン環、インダン環、テトラリン環、アズレン環等の芳香族縮合二環類; For example, aromatic fused bicyclics such as naphthalene ring, pentalene ring, indene ring, indane ring, tetralin ring, azulene ring and the like;

例えば、as−インダセン環、s−インダセン環、ビフェニレン環、アセナフチレン環、アセナフテン環、フルオレン環、フェナレン環、ペリナフテン環、フェナントレン環、アントラセン環等の炭素縮合三環類; For example, carbon-fused tricycles such as as-indacene ring, s-indacene ring, biphenylene ring, acenaphthylene ring, acenaphthene ring, fluorene ring, phenalene ring, perinaften ring, phenanthrene ring, anthracene ring and the like;

例えば、トリンデン環、トリンダン環、フルオランテン環、アセフェナントリレン環、アセフェナントレン環、アセアントリレン環、アセアントレン環、トリフェニレン環、ピレン環、クリセン環、テトラフェン環、テトラセン環、ナフタセン環、ルブレン環、プレイアデン環、ベンゾアントロン環、クリセン環等の炭素縮合四環類;   For example, a trindane ring, a trindane ring, a fluoranthene ring, an acephenanthrylene ring, an acephenanthrene ring, an aceanthrylene ring, an aceanthrene ring, a triphenylene ring, a pyrene ring, a chrysene ring, a tetraphen ring, a tetraphen ring, a tetracene ring, a naphthacene ring, rubrene Carbon-fused tetracycles such as a ring, a preadine ring, a benzoanthrone ring and a chrysene ring;

例えば、ピセン環、ペリレン環、ペンタフェン環、ペンタセン環、テトラフェニレン環、コラントリレン環、コラントレン環等の炭素縮合五環類;   For example, carbon-fused pentacycles such as picene ring, perylene ring, pentaphen ring, pentacene ring, tetraphenylene ring, cholanthrene ring, cholanthrene ring;

例えば、コランヌレン環、フルミネン環、アンタントレン環、ゼトレン環、ヘキサヘリセン環、ヘキサフェン環、ヘキサセン環、ルビセン環、コロネン環、トリナフチレン環、ヘプタフェン環、ヘプタセン環、ピラントレン環、オクタフェン環、オクタセン環、テリレン環、ナフタセノナフタセン環、ノナフェン環、ノナセン環、ビオラントレン環、ビオラントロン環、イソビオラントレン環、イソビオラントロン環、オバレン環、デカフェン環、デカセン環、デカシクレン環、ペンタセノペンタセン環、クアテリレン環、ヘキサセノヘキサセン環、ヘリセン環等の環数6以上の炭素縮合環類等の環構造が挙げられ、特に制限なく使用できる。 For example, corannulene ring, phuromine ring, anthantrene ring, zethrene ring, hexahelicene ring, hexaphene ring, hexacene ring, rubene ring, coronene ring, trinaphthylene ring, heptaphene ring, heptacene ring, pyrantrene ring, octaphene ring, octacene ring, terrylene Ring, naphthaenonaphthacene ring, nonaphen ring, nonacene ring, biolanthrene ring, biolanthrone ring, isobiolanthrene ring, isobiolanthrone ring, ovalene ring, decaphen ring, decacene ring, decacyclene ring, pentasenopentacene ring, quaterylene A ring structure such as a fused carbon ring having 6 or more rings such as a ring, a hexasenohexacene ring, a helicene ring and the like can be mentioned without particular limitation.

本発明の芳香環としては、、ベンゼン環が材料の入手の容易さ、化合物(B)、化合物(C)との相溶性、樹脂組成物の粘度抑制のためにも好ましい。   As the aromatic ring of the present invention, a benzene ring is also preferable for the availability of the material, compatibility with the compound (B) and the compound (C), and suppression of the viscosity of the resin composition.

なお、本願では、「(メタ)アクリロイル」、「(メタ)アクリル酸」、「(メタ)アクリレート」、「(メタ)アクリロイルオキシ」、及び「(メタ)アリル」と表記した場合には、特に説明がない限り、それぞれ、「アクリロイル及び/又はメタクリロイル」、「アクリル酸及び/又はメタクリル酸」、「アクリレート及び/又はメタクリレート」、「アクリロイルオキシ及び/又はメタクリロイルオキシ」、及び「アリル及び/又はメタリル」を表すものとする。   In the present application, in particular, when it is described as “(meth) acryloyl”, “(meth) acrylic acid”, “(meth) acrylate”, “(meth) acryloyloxy”, and “(meth) allyl”, in particular Unless otherwise stated, “acryloyl and / or methacryloyl”, “acrylic acid and / or methacrylic acid”, “acrylate and / or methacrylate”, “acryloyloxy and / or methacryloyloxy”, and “allyl and / or methallyl, respectively. It represents ".

化合物(A)としては、その構造中に、2個以上の芳香環と、1個以上のα,β−不飽和二重結合基とを含有する化合物であれば、特に制限はなく使用できる。特に限定されるものではないが、具体例として、以下の化合物が挙げられる。   The compound (A) can be used without particular limitation as long as it is a compound containing two or more aromatic rings and one or more α, β-unsaturated double bond groups in the structure. Although not particularly limited, the following compounds may be mentioned as specific examples.

(メタ)アクリル酸2−オキソ−1,2−ジフェニルエチル等の(メタ)アクリル酸環状エステル類; (Meth) acrylic acid cyclic esters such as (meth) acrylic acid 2-oxo-1,2-diphenylethyl;

ジ(メタ)アクリル酸−2,2−ビス(ヒドロキシフェニル)プロパンのテトラエチレンオキサイド付加体、ジ(メタ)アクリル酸2,2−ビス(ヒドロキシフェニル)メタンのテトラエチレンオキサイド付加体、ジ(メタ)アクリル酸−4,4’−スルフォニルジフェノールのテトラエチレンオキサイド付加体、ジ(メタ)アクリル酸−水素添加2,2−ビス(ヒドロキシフェニル)プロパンのテトラエチレンオキサイド付加体、ジ(メタ)アクリル酸−水素添加2,2−ビス(ヒドロキシフェニル)メタンのテトラエチレンオキサイド付加体、ジ(メタ)アクリル酸−水素添加2,2−ビス(ヒドロキシフェニル)プロパン、ジ(2−メチル)プロペン酸−水素添加2,2−ビス(ヒドロキシフェニル)メタン、ジ(メタ)アクリル酸−2,2−ビス(ヒドロキシフェニル)プロパンのテトラエチレンオキサイド付加体−ジカプロラクトネート、ジ(メタ)アクリル酸−2,2−ビス(ヒドロキシフェニル)メタンのテトラエチレンオキサイド付加体−ジカプロラクトネート等の2官能(メタ)アクリル酸環状エステル類; Tetraethylene oxide adduct of di (meth) acrylic acid-2,2-bis (hydroxyphenyl) propane, tetraethylene oxide adduct of di (meth) acrylic acid 2,2-bis (hydroxyphenyl) methane, di (meth) acrylic acid ) Tetraethylene oxide adduct of acrylic acid-4,4'-sulfonyldiphenol, tetraethylene oxide adduct of di (meth) acrylic acid-hydrogenated 2,2-bis (hydroxyphenyl) propane, di (meth) acrylic acid Acid-hydrogenated tetraethylene oxide adduct of 2,2-bis (hydroxyphenyl) methane, di (meth) acrylic acid-hydrogenated 2,2-bis (hydroxyphenyl) propane, di (2-methyl) propenoic acid Hydrogenated 2,2-bis (hydroxyphenyl) methane, di (meth) acrylic acid-2,2-bis (hydride) Difunctional (meta) such as tetraethylene oxide adduct of dioxy (meth) oxyloxypropane-dicaprolactone, and tetraethylene oxide adduct of di (meth) acrylic acid-2, 2-bis (hydroxyphenyl) methane-dicaprolactone ) Acrylic acid cyclic esters;

例えば、N−フェニル−N−(3−メトキシフェニル)(メタ)アクリルアミド、N−フェニル−N−(3−メトキシフェニル)(メタ)アクリルアミド等の(メタ)アクリルアミド類; For example, (meth) acrylamides such as N-phenyl-N- (3-methoxyphenyl) (meth) acrylamide, N-phenyl-N- (3-methoxyphenyl) (meth) acrylamide and the like;

例えば、N−(2−フェニルエチル)−3−(3−メトキシ−4−ヒドロキシフェニル)(メタ)アクリルアミド等の水酸基含有の脂環、あるいは芳香環含有の環状(メタ)アクリルアミド類; For example, hydroxyl group-containing alicyclic or aromatic ring-containing cyclic (meth) acrylamides such as N- (2-phenylethyl) -3- (3-methoxy-4-hydroxyphenyl) (meth) acrylamide;

例えば、2,2−ビス{4−(メタ)アクリロイルオキシエトキシフェニル}プロパン、2,2−ビス{4−(メタ)アクリロイルオキシプロポキシフェニル}プロパン、2,2−ビス{4−(メタ)アクリロキシジエトキシフェニル}プロパン、2,2−ビス{4−(メタ)アクリロイルオキシポリエトキシフェニル}プロパン、(メタ)アクリル酸1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレンなどのビスフェノール骨格を有する(メタ)アクリル酸エステル類、あるいはこれらの炭素数2〜4のアルキレンオキシド付加体[アルキレンオキシドの平均付加モル数0〜30モル(特に1〜10モル)程度];例えば、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物等のビスフェノール型エポキシのアクリル酸を付加体類;例えば、ジ(メタ)アクリル酸ビフェニルなどのビフェニル骨格を有する(メタ)アクリル酸エステル類、あるいはこれらの炭素数2〜4のアルキレンオキシド付加体[アルキレンオキシドの平均付加モル数0〜30モル(特に1〜10モル)程度];例えば、ジ(メタ)アクリル酸2,2'−ビス(4−ヒドロキシシクロヘキシル)プロパン、ジ(メタ)アクリル酸ビス(4−ヒドロキシシクロヘキサン)メタン、トリ(メタ)アクリル酸1−(α−メチル−α−(4'−ヒドロキシシクロヘキシル)エチル)−4−(α,α'−ビス(4"−ヒドロキシシクロヘキシル)エチル)ベンゼン、トリ(メタ)アクリル酸1,1'−((4−ヒドロキシシクロヘキシル)メチレン)−ビス(2−メチル−4−ヒドロキシシクロヘキサン)、トリ(メタ)アクリル酸1,1'−((2−メチル−4−ヒドロキシシクロヘキシル)メチレン)−ビス(3−メチル−4−ヒドロキシシクロヘキシル)、トリ(メタ)アクリル酸1,1,1−トリス(4−ヒドロキシシクロヘキシル)メタン等の水添ビスフェノール骨格を有する(メタ)アクリル酸エステル類、あるいはこれらの炭素数2〜4のアルキレンオキシド付加体[アルキレンオキシドの平均付加モル数0〜30モル(特に1〜10モル)程度]などが挙げられる。 For example, 2,2-bis {4- (meth) acryloyloxyethoxyphenyl} propane, 2,2-bis {4- (meth) acryloyloxypropoxyphenyl} propane, 2,2-bis {4- (meth) acrylic acid Roxydiethoxyphenyl} propane, 2,2-bis {4- (meth) acryloyloxypolyethoxyphenyl} propane, (meth) acrylic acid 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 9, 9, (Meth) acrylic esters having a bisphenol skeleton such as 9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, or these C 2 -C 4 alkylene oxide adducts [average addition mole of alkylene oxide Several 0 to 30 moles (especially about 1 to 10 moles)]; for example, bisphenol A jig Additives of acrylic acid of bisphenol type epoxy such as acrylic acid adduct of syl ether and acrylic acid adduct of bisphenol F; (meth) acrylic esters having biphenyl skeleton such as bi (di) (meth) acrylic acid, for example Or these alkylene oxide adducts of 2 to 4 carbon atoms [average addition mole number of alkylene oxide: about 0 to 30 moles (especially about 1 to 10 moles)]; for example, di (meth) acrylic acid 2,2'-bis (4-hydroxycyclohexyl) propane, di (meth) acrylic acid bis (4-hydroxycyclohexane) methane, tri (meth) acrylic acid 1- (α-methyl-α- (4'-hydroxycyclohexyl) ethyl) -4- (Α, α′-bis (4 ′ ′-hydroxycyclohexyl) ethyl) benzene, tri (meth) acrylic Acid 1,1 '-((4-hydroxycyclohexyl) methylene) -bis (2-methyl-4-hydroxycyclohexane), tri (meth) acrylic acid 1,1'-((2-methyl-4-hydroxycyclohexyl) (Meth) acrylic acid esters having a hydrogenated bisphenol skeleton such as methylene) -bis (3-methyl-4-hydroxycyclohexyl) and tri (meth) acrylic acid 1,1,1-tris (4-hydroxycyclohexyl) methane Or these alkylene oxide adducts of 2 to 4 carbon atoms [about 0 to 30 moles (especially about 1 to 10 moles) of the average addition mole number of the alkylene oxide] and the like.

また、本発明の化合物(A)は、一般に市販されているものでも良く、例えば、日立化成(株)製の「エチレンオキサイド2付加体ビスフェノールAジメタクリレート(商品名:FA−320M)」、「エチレンオキサイド10付加体ビスフェノールAジメタクリレート(商品名:FA−321M)」、「エチレンオキサイド18付加体ビスフェノールAジメタクリレート(商品名:FA−3218M)」、「エチレンオキサイド10付加体ビスフェノールAジアクリレート(商品名:FA−321A)」及び「エチレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:FA−324A)」;SARTOMER社製の「エチレンオキサイド2付加体ビスフェノールAジメタクリレート(商品名:SR348)」、「エチレンオキサイド4付加体ビスフェノールAジメタクリレート(商品名:SR540)」、「エチレンオキサイド10付加体ビスフェノールAジメタクリレート(商品名:SR480)」、「エチレンオキサイド3付加体ビスフェノールAアクリレート(商品名:SR349)」、「エチレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:SR601)」及び「エチレンオキサイド10付加体ビスフェノールAジアクリレート(商品名:SR602)」;新中村化学工業(株)製の「エチレンオキサイド3付加体ビスフェノールAジアクリレート(商品名:ABE−300)」、「エチレンオキサイド10付加体ビスフェノールAジアクリレート(商品名:A−BPE−10)」、「エチレンオキサイド20付加体ビスフェノールAジアクリレート(商品名:A−BPE−20)」、「エチレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:A−BPE−4)」、「エチレンオキサイド2.3付加体ビスフェノールAジメタクリレート(商品名:BPE−80N)」、「エチレンオキサイド2.6付加体ビスフェノールAジメタクリレート(商品名:BPE−100)」、「エチレンオキサイド4付加体ビスフェノールAジメタクリレート(商品名:BPE−200)」、「エチレンオキサイド10付加体ビスフェノールAジメタクリレート(商品名:BPE−500)」、「エチレンオキサイド17付加体ビスフェノールAジメタクリレート(商品名:BPE−900)」、「エチレンオキサイド30付加体ビスフェノールAジメタクリレート(商品名:BPE−1300N)」、「プロピレンオキサイド3付加体ビスフェノールAジアクリレート(商品名:A−BPP−3)」、「エトキシ化−о−フェニルフェノールアクリレート(商品名:A−LEN−10)」、「2−ヒドロキシ−о−フェニルフェノールプロピルアクリレート(商品名:401P)」、「フルオレンアクリレート(商品名:A−BPEF)」及び「エチレンオキサイド17付加体ビスフェノールAジメタクリレート(商品名:BPE−900)」;第一工業製薬(株)製の「エチレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:BPE−4)」、「エチレンオキサイド20付加体ビスフェノールAジアクリレート(商品名:BPE−20)」及び「エチレンオキサイド10付加体ビスフェノールAジメタクリレート(商品名:BPEM−10)」;東亞合成(株)製の「エチレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:M−211B)」;共栄社化学(株)製の「プロピレンオキサイド4付加体ビスフェノールAジアクリレート(商品名:HPP−A)」;等が挙げられる。   In addition, the compound (A) of the present invention may be a commercially available one. For example, “ethylene oxide diadduct bisphenol A dimethacrylate (trade name: FA-320M)” manufactured by Hitachi Chemical Co., Ltd. Ethylene oxide 10 adduct bisphenol A dimethacrylate (trade name: FA-321M), "ethylene oxide 18 adduct bisphenol A dimethacrylate (trade name: FA-3218M)", "ethylene oxide 10 adduct bisphenol A diacrylate ( Trade name: FA-321A) "and" Ethylene oxide tetraadduct bisphenol A diacrylate (trade name: FA-324A) ";" Ethylene oxide 2-adduct bisphenol A dimethacrylate (trade name: SR348) "manufactured by SARTOMER , “Ethylene oxide 4-adduct Phenol A dimethacrylate (trade name: SR540), "ethylene oxide 10 adduct bisphenol A dimethacrylate (trade name: SR480)", "ethylene oxide triadduct bisphenol A acrylate (trade name: SR 349)", "ethylene oxide 4-adduct bisphenol A diacrylate (trade name: SR601) and "ethylene oxide 10 adduct bisphenol A diacrylate (trade name: SR602)"; "Ethylene oxide tri-adduct bisphenol A manufactured by Shin-Nakamura Chemical Co., Ltd." Diacrylate (trade name: ABE-300), "ethylene oxide 10 adduct bisphenol A diacrylate (trade name: A-BPE-10)", "ethylene oxide 20 adduct bisphenol A diacrylate (trade name: A- BPE-20 "", "Ethylene oxide tetraadduct bisphenol A diacrylate (trade name: A-BPE-4)", "Ethylene oxide 2.3 adduct bisphenol A dimethacrylate (trade name: BPE-80N)", "ethylene oxide 2.6 adduct bisphenol A dimethacrylate (trade name: BPE-100), "ethylene oxide tetraadduct bisphenol A dimethacrylate (trade name: BPE-200)", "ethylene oxide 10 adduct bisphenol A dimethacrylate ( Trade name: BPE-500), "Ethylene oxide 17 adduct bisphenol A dimethacrylate (trade name: BPE-900)", "Ethylene oxide 30 adduct bisphenol A dimethacrylate (trade name: BPE-1300N)", " Propylene oxide triadduct bis HENOL A diacrylate (trade name: A-BPP-3), "Ethoxylated-R-phenylphenol acrylate (trade name: A-LEN-10)", "2-hydroxy-R-phenylphenol propyl acrylate (trade) Name: 401P), "fluorene acrylate (trade name: A-BPEF)" and "ethylene oxide 17 adduct bisphenol A dimethacrylate (trade name: BPE-900)"; "Ethylene" manufactured by Daiichi Kogyo Seiyaku Co., Ltd. Oxide tetraadduct bisphenol A diacrylate (trade name: BPE-4), "ethylene oxide 20 adduct bisphenol A diacrylate (trade name: BPE-20)" and "ethylene oxide 10 adduct bisphenol A dimethacrylate (trade Name: BPEM-10) ";" Ethylene oxide "manufactured by Toagosei Co., Ltd. De 4-adduct bisphenol A diacrylate (trade name: M-211B); "Propylene oxide tetra-adduct bisphenol A diacrylate (trade name: HPP-A)" manufactured by Kyoeisha Chemical Co., Ltd .;

また、これらは1種だけを用いても良いし、あるいは、複数種を併用してもよい。   Moreover, these may use only 1 type, or may use multiple types together.

本発明の化合物(A)は、アルキレンオキサイド結合基を有するものが好ましい。中でも粘度、光感度、重合率という点からは、アルキレンオキサイド結合基としてエチレンオキサイド単位であるのが好ましい。これらのアルキレンオキサイド結合基は、1種単独で存在していても、2種以上が併存していてもよい。また、アルキレンオキサイド結合基の平均付加モル数の好ましい範囲は、1〜40であり、2〜30がより好ましい。アルキレンオキサイド結合基の平均付加モル数が、この範囲より小さいと、樹脂組成物の粘度を低下させる作用や光感度を向上させる作用、あるいは立体造形物の可撓性を向上させる作用などが不充分となる。また、この範囲より大きいと、樹脂組成物の粘度がかえって大きくなり、アルキレンオキサイド鎖が長くなる分だけ架橋密度も下がり過ぎるため、造形物の強度が低下する。   The compound (A) of the present invention preferably has an alkylene oxide bonding group. Among them, in terms of viscosity, photosensitivity and polymerization rate, ethylene oxide units are preferable as the alkylene oxide bonding group. These alkylene oxide bonding groups may be present singly or in combination of two or more. Moreover, the preferable range of the average added mole number of an alkylene oxide bonding group is 1-40, and 2-30 are more preferable. When the average addition mole number of the alkylene oxide bonding group is smaller than this range, the action to lower the viscosity of the resin composition, the action to improve the photosensitivity, the action to improve the flexibility of the three-dimensional object, etc. are insufficient. It becomes. Moreover, if it is larger than this range, the viscosity of the resin composition is rather increased, and the crosslink density is lowered too much by the lengthening of the alkylene oxide chain, so that the strength of the shaped article is lowered.

本発明の化合物(A)のα,β−不飽和二重結合基としては、従来からアクリロイル基、メタクリロイル基、ビニル基、ビニルエステル基、ビニルシリル基、ビニルエーテル基、アリル基、あるいはメタリル基などが知られており、特に制限無く使用できるが、これらのα,β−不飽和二重結合基のうち、ビニル基、ビニルエステル基、ビニルシリル基、ビニルエーテル基、アリル基、あるいはメタリル基などは、アクリロイル基やメタクリロイル基に比べると、ラジカル重合性に劣り、化合物(A)が未反応のまま残存し易いため、α,β−不飽和二重結合基としては、アクリロイル基やメタクリロイル基を使用することが好ましい。特にメタクリロイル基は、光硬化時の硬化収縮が小さい為に、光造形物の反りによる変形や歪みを抑え、外観不良や寸法精度及び造形精度の低下を抑制する為に、特に好ましい。   As the α, β-unsaturated double bond group of the compound (A) of the present invention, acryloyl group, methacryloyl group, vinyl group, vinyl ester group, vinyl silyl group, vinyl silyl group, vinyl ether group, allyl group, methallyl group etc. Among these α, β-unsaturated double bond groups, vinyl group, vinyl ester group, vinyl silyl group, vinyl ether group, allyl group, methallyl group and the like are known to be used without particular limitation. As the α, β-unsaturated double bond group is an acryloyl group or methacryloyl group, the compound (A) is likely to be left unreacted as the radical polymerization property is inferior to the group or methacryloyl group. Is preferred. In particular, a methacryloyl group is particularly preferable in order to suppress deformation and distortion due to warpage of the photofabricated product and to suppress deterioration in appearance defect and dimensional accuracy and formation accuracy because curing shrinkage at the time of light curing is small.

<化合物(B)>
本発明の樹脂組成物において、窒素原子を含有する環状構造(ca)を有するα,β−不飽和二重結合基含有化合物(B)は、窒素原子を含有する環状構造(ca)を有するため、活性エネルギー線照射後の立体造形物において、α,β−不飽和二重結合基の付加重合以外に、窒素原子に伴う水素結合形成と環状構造由来の剛直性のにより造形物のガラス転移点(Tg)が向上することで、内部凝集力の向上がさらに図られ、耐熱性や耐水性等の耐性の良好な立体造形物を形成することが可能となる。このような窒素原子を含有する環状構造(ca)とは、環内に窒素原子だけが1個以上含有している環状構造(ca1)、環内に窒素原子と酸素原子との双方を含有している環状構造(ca2)、および環内に窒素原子と硫黄原子との双方を含有している環状構造(ca3)に分類される。さらに環状構造(ca1)は、窒素原子が1個だけ有する環構造(ca1−1)と窒素原子を2個以上有する環構造(ca1−2)に大別される。
<Compound (B)>
In the resin composition of the present invention, the α, β-unsaturated double bond group-containing compound (B) having a cyclic structure (ca) containing a nitrogen atom has a cyclic structure (ca) containing a nitrogen atom In addition, in addition to the addition polymerization of α, β-unsaturated double bond groups, the glass transition point of the shaped article due to hydrogen bond formation accompanied by a nitrogen atom and the rigidity derived from the cyclic structure in a three-dimensional shaped article after active energy ray irradiation. By improving (Tg), it is possible to further improve the internal cohesive force, and to form a three-dimensional object having good resistance such as heat resistance and water resistance. The cyclic structure (ca) containing such a nitrogen atom means a cyclic structure (ca1) containing only one or more nitrogen atoms in the ring, and contains both a nitrogen atom and an oxygen atom in the ring And cyclic structures (ca3) containing both nitrogen atoms and sulfur atoms in the ring. Further, the cyclic structure (ca1) is roughly classified into a cyclic structure (ca1-1) having only one nitrogen atom and a cyclic structure (ca1-2) having two or more nitrogen atoms.

このような窒素原子を含有する環状構造(ca)としては、特に限定されないが、より具体的に、例えば、エチレンイミン環、アゼチジン環、ピロリジン環、ピペリジン環、アゼパン環、キヌクリジン環、トロパン環等の窒素原子を1個含有する飽和単環類(ca1−1);ピペラジン環、メテナミン環等の窒素原子を2個以上含有する飽和単館類(ca1−2);アジリン環、アゼト環、ピロール環、ピリジン環、キヌクリジン環、アゼピン環等の窒素原子を1個含有する不飽和単環類(ca1−1);イミダゾール環、インダゾール環、イミダゾリン環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、トリアジン環、テトラゾール環等の窒素原子を2個以上含有する不飽和単環類(ca1−2);インドール環、イソインドール環、キノリン環、イソキノリン環、カルバゾール環、アクリジン環等の窒素原子を1個含有する不飽和多環類(ca1−1);ベンゾイミダゾール環、キノキサリン環、キナゾリン環、フタラジン環、シンノリン環、プテリジン環、ナフチリジン環、プリン環、ベンゾトリアゾール環、フェナジン環、ベンゾジアゼビン環、ベンゾ−o−シンノリン環、ポルフィリン環、クロリン環、コリン環等の窒素原子を2個以上含有する不飽和多環類に代表される窒素原子だけを含有するヘテロ環類(ca1−2);   The cyclic structure (ca) containing such a nitrogen atom is not particularly limited, but more specifically, for example, ethyleneimine ring, azetidine ring, pyrrolidine ring, piperidine ring, azepane ring, quinuclidine ring, tropane ring and the like Saturated monocyclic compounds containing one nitrogen atom (ca1-1); saturated monocycles containing two or more nitrogen atoms such as piperazine ring and methenamine ring (ca1-2); azirine ring, azeto ring, pyrrole Unsaturated monocyclic compounds (ca1-1) containing one nitrogen atom such as ring, pyridine ring, quinuclidine ring and azepine ring (imidazole ring, indazole ring, imidazoline ring, pyrazole ring, pyrazine ring, pyrimidine ring, pyridazine ring) Unsaturated monocyclic rings (ca1-2) containing two or more nitrogen atoms such as triazole ring, triazine ring and tetrazole ring; Unsaturated polycyclic compounds (ca1-1) containing one nitrogen atom such as ring, isoindole ring, quinoline ring, isoquinoline ring, carbazole ring and acridine ring; benzoimidazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, Unsaturated multiple containing two or more nitrogen atoms such as cinnoline ring, pteridine ring, naphthyridine ring, purine ring, benzotriazole ring, phenazine ring, benzodiazebin ring, benzo-o-cinnoline ring, porphyrin ring, chlorin ring, choline ring Heterocycles containing only nitrogen atoms represented by rings (ca1-2);

例えば、モルホリン環、ピロリドン環、ラクタム環、イサチン環、プリミドン環、オキサジン環、オキサゾール環、イソオキサゾール環、ベンゾオキサジン環、フェノキサジン環、ベンゾフェノキサジン環、フェナゾン環、ヒダントイン環、フタロシアニン環等の窒素原子と酸素原子の双方を含有するヘテロ環類(ca2);   For example, morpholine ring, pyrrolidone ring, lactam ring, isatin ring, primidone ring, oxazine ring, oxazole ring, oxazole ring, isoxazole ring, benzoxazine ring, phenoxazine ring, benzophenoxazine ring, phenazone ring, hydantoin ring, phthalocyanine ring, etc. Heterocycles (ca2) containing both nitrogen and oxygen atoms;

例えば、チアゾ-ル環、イソチアゾ-ル環、チアジン環、フェノチアジン環等の窒素原子と硫黄原子の双方を含有するヘテロ環類(ca3)等が挙げられ、特に制限無く使用できる。 Examples thereof include heterocycles (ca3) containing both a nitrogen atom and a sulfur atom, such as thiazole ring, isothiazole ring, thiazine ring, phenothiazine ring and the like, which can be used without particular limitation.

これらの窒素原子を含有する環状構造(ca)を有するα,β−不飽和二重結合基含有化合物(B)としては、環内に窒素原子だけが1個以上含有している環状構造(ca1)を有する化合物(b1)、環内に窒素原子と酸素原子との双方を含有している環状構造(ca2)を有する化合物(b2)、および環内に窒素原子と硫黄原子との双方を含有している環状構造(ca3)を化合物(b3)とが挙げられ、さらに、化合物(b1)は、窒素原子が1個だけ有する環構造(ca1−1)を有する化合物(b1−1)と窒素原子を2個以上有する環構造(ca1−2)を有する化合物(b1−2)に大別される。   As the α, β-unsaturated double bond group-containing compound (B) having a cyclic structure (ca) containing these nitrogen atoms, a cyclic structure (ca1 containing only one or more nitrogen atoms in the ring) And a compound (b2) having a cyclic structure (ca2) containing both a nitrogen atom and an oxygen atom in the ring, and containing both a nitrogen atom and a sulfur atom in the ring And the compound (b1), and the compound (b1) is a compound (b1-1) having a ring structure (ca1-1) having only one nitrogen atom and the nitrogen The compound is roughly classified into a compound (b1-2) having a ring structure (ca1-2) having two or more atoms.

化合物(B)としては、その構造中に1個以上の窒素原子を含有する環状構造(ca)を有するものであれば、特に制限はなく使用でき、α,β−不飽和二重結合基としては、従来からアクリロイル基、メタクリロイル基、ビニル基、ビニルエステル基、ビニルシリル基、ビニルエーテル基、アリル基、あるいはメタリル基などが知られており、特に制限無く使用できるが、これらのα,β−不飽和二重結合基のうち、ビニル基、ビニルエステル基、ビニルシリル基、ビニルエーテル基、アリル基、あるいはメタリル基などは、アクリロイル基やメタクリロイル基に比べると、ラジカル重合性に劣り、化合物(B)が未反応のまま残存し易いため、α,β−不飽和二重結合基としては、アクリロイル基やメタクリロイル基を使用することが好ましい。特にメタクリロイル基は、光硬化時の硬化収縮が小さい為に、光造形物の反りによる変形や歪みを抑え、外観不良や寸法精度及び造形精度の低下を抑制する為に、特に好ましい。   The compound (B) can be used without particular limitation as long as it has a cyclic structure (ca) containing one or more nitrogen atoms in the structure, and it can be used as an α, β-unsaturated double bond group The acryloyl group, methacryloyl group, vinyl group, vinyl ester group, vinyl silyl group, vinyl silyl group, vinyl ether group, allyl group or methallyl group are conventionally known, and can be used without particular limitation. Among the saturated double bond groups, vinyl group, vinyl ester group, vinylsilyl group, vinyl ether group, allyl group or methallyl group is inferior in radical polymerizability compared to acryloyl group or methacryloyl group, and compound (B) is It is preferable to use an acryloyl group or methacryloyl group as the α, β-unsaturated double bond group because it tends to remain unreacted. . In particular, a methacryloyl group is particularly preferable in order to suppress deformation and distortion due to warpage of the photofabricated product and to suppress deterioration in appearance defect and dimensional accuracy and formation accuracy because curing shrinkage at the time of light curing is small.

環内に窒素原子だけを2個以上有するα,β−不飽和二重結合基含有化合物(b1−2)としては、より具体的に、例えば、2−(2'−ヒドロキシ−5'−(メタ)アクリロイルオキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−(メタ)アクリロイルオキシエチルフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−(メタ)アクリロイルオキシプロピルフェニル)−2H−ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−(メタ)アクリロイルオキシプロピルフェニル)−5−クロロ−2H−ベンゾトリアゾール、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−(メタ)アクリロイルオキシエチルフェニル)−2H−ベンゾトリアゾール、2−(2'−ヒドロキシ−3'−tert−ブチル−5'−(メタ)アクリロイルオキシエチルフェニル)−5−クロロ−2H−ベンゾトリアゾール等の窒素原子含有の多環系(メタ)アクリル酸エステル類;   More specific examples of the α, β-unsaturated double bond group-containing compound (b1-2) having two or more nitrogen atoms in the ring are, for example, 2- (2′-hydroxy-5 ′-(b) (Meth) acryloyloxyethylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-5 '-(meth) acryloyloxyethylphenyl) -5-chloro-2H-benzotriazole, 2- (2'-hydroxy-) 5 '-(Meth) acryloyloxypropylphenyl) -2H-benzotriazole, 2- (2'-hydroxy-5'-(meth) acryloyloxypropylphenyl) -5-chloro-2H-benzotriazole, 2- (2) '-Hydroxy-3'-tert-butyl-5'-(meth) acryloyloxyethylphenyl) -2H-benzotriazole, 2- (2'-hydroxy) Nitrogen atom-containing polycyclic (meth) acrylic acid esters such as cis-3'-tert-butyl-5 '-(meth) acryloyloxyethylphenyl) -5-chloro-2H-benzotriazole;

例えば、2,4−ジフェニル−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}] −S−トリアジン、2,4−ビス(2−メチルフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2−メトキシフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2−エチルフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2−エトキシフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2,4−ジエトキシルフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ}]−S−トリアジン、2,4−ビス(2,4−ジエチルフェニル)−6−[2−ヒドロキシ−4−{2−(メタ)アクリロイルオキシエトキシ})]−S−トリアジン等の窒素原子含有の六員環を有する(メタ)アクリル酸エステル類; For example, 2,4-diphenyl-6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis (2-methylphenyl) -6- [2- Hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis (2-methoxyphenyl) -6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy] } -S-Triazine, 2,4-bis (2-ethylphenyl) -6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis ( 2-Ethoxyphenyl) -6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis (2,4-dimethylphenyl) -6- [2- Hydroxy-4- {2- (Meth) acryloyloxyethoxy}]-S-triazine, 2,4-bis (2,4-diethoxylphenyl) -6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy}]-S -Membered nitrogen-containing six-membered such as -triazine and 2,4-bis (2,4-diethylphenyl) -6- [2-hydroxy-4- {2- (meth) acryloyloxyethoxy})]-S-triazine (Meth) acrylic esters having a ring;

環内に窒素原子だけを1個有するα,β−不飽和二重結合基含有化合物(b1−1)としては、より具体的に、例えば、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、4−(ピリミジン−2−イル)ピペラジン−1−イル(メタ)アクリレート等の窒素原子含有の環状(メタ)アクリル酸エステル類; More specifically, examples of the α, β-unsaturated double bond group-containing compound (b1-1) having only one nitrogen atom in the ring include, for example, pentamethyl piperidinyl (meth) acrylate and tetramethyl pi Nitrogen-containing cyclic (meth) acrylates such as peridinyl (meth) acrylate and 4- (pyrimidin-2-yl) piperazin-1-yl (meth) acrylate;

例えば、1−ビニルピロール、2−ビニルピロール、2−メチル−5−ビニル−1H−ピロール、1−ビニル−2−イミダゾリン、2−ビニル−2−イミダゾリン、1−ビニル−2−メチル−2−イミダゾリン、4,5−ジヒドロ−2−ビニル−1H−イミダゾール、1−ビニルイミダゾール、2−ビニル−1H−イミダゾール、1−ビニル−1H−ピラゾール、1−ビニル−3,5―ジメチル―1H−ピラゾール、3−メチル−5−フェニル−1−ビニルピラゾール等の窒素原子含有の五員環を有するビニル基含有化合物類;   For example, 1-vinylpyrrole, 2-vinylpyrrole, 2-methyl-5-vinyl-1H-pyrrole, 1-vinyl-2-imidazoline, 2-vinyl-2-imidazoline, 1-vinyl-2-methyl-2- Imidazoline, 4,5-dihydro-2-vinyl-1H-imidazole, 1-vinylimidazole, 2-vinyl-1H-imidazole, 1-vinyl-1H-pyrazole, 1-vinyl-3,5-dimethyl-1H-pyrazole And vinyl group-containing compounds having a nitrogen atom-containing five-membered ring such as 3-methyl-5-phenyl-1-vinylpyrazole;

例えば、2−ビニルピペラジン、4−ビニルピペラジン、1−ベンジル−2−ビニルピペラジン、1−ベンジル−3−ビニルピペラジン、1、4−ジメチル−3−ビニルピペラジン、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジン、6−メチル−2−ビニルピリジン、2−ビニルピラジン、2−メチル−5−ビニルピラジン、2−メチル−6−ビニルピラジン、2,5−ジメチル−3−ビニルピラジン、2−ビニルピリミジン、2−ビニルピリダジン、2−ビニル−4,6−ジアミノ−1,3,5−トリアジン、6−ビニル−1,3,5―ジメチル―2,4−ジアミン、3−ビニル−1,2,4,5−テトラジン等の窒素原子含有の六員環を有するビニル基含有化合物類; For example, 2-vinylpiperazine, 4-vinylpiperazine, 1-benzyl-2-vinylpiperazine, 1-benzyl-3-vinylpiperazine, 1,4-dimethyl-3-vinylpiperazine, 2-vinylpyridine, 3-vinylpyridine 4-vinylpyridine, 6-methyl-2-vinylpyridine, 2-vinylpyrazine, 2-methyl-5-vinylpyrazine, 2-methyl-6-vinylpyrazine, 2,5-dimethyl-3-vinylpyrazine, 2 -Vinyl pyrimidine, 2-vinyl pyridazine, 2-vinyl-4,6-diamino-1,3,5-triazine, 6-vinyl-1,3,5-dimethyl-2,4-diamine, 3-vinyl-1 , Vinyl group-containing compounds having a nitrogen-containing six-membered ring such as 2,4,5-tetrazine;

例えば、ニコチノイル酢酸ビニル、ニコチノイルプロピオン酸ビニル、ニコチノイル酪酸ビニル、ニコチノイルバレリン酸ビニル、ニコチノイルヘキサン酸ビニル、ニコチノイルデカン酸ビニル、ニコチノイルドデカン酸ビニル、イソニコチノイル酢酸ビニル、イソニコチノイルプロピオン酸ビニル、イソニコチノイル酪酸ビニル、イソニコチノイルバレリン酸ビニル、イソニコチノイルヘキサン酸ビニル、イソニコチノイルデカン酸ビニル、イソニコチノイルドデカン酸ビニル等のアシル基と窒素原子含有の六員環とを有するビニル基含有化合物類; For example, vinyl nicotinoyl acetate, vinyl nicotinoyl propionate, vinyl nicotinoyl butyrate, vinyl nicotinoyl valerate, vinyl nicotinoyl hexanoate, vinyl nicotinoyl decanoate, vinyl nicotinoyl didecanoate, vinyl isonicotinoyl vinyl acetate, vinyl isonicotinoyl propionate , Vinyl group containing an acyl group such as vinyl isonicotinoyl vinylbutyrate, vinyl isonicotinoyl valerate, vinyl isonicotinoyl hexanoate, vinyl isonicotinoyl decanoate, vinyl isonicotinoyl didecanoate and a six-membered ring containing a nitrogen atom Compounds;

例えば、1−ビニルインドール、1−ビニル−2−メチル−1H−インドール、1−ビニルイソインドール、1−ビニル−1H−ベンゾイミダゾール、2−ビニル−1H−ベンゾイミダゾール、2−ビニル−5,6−ジメチル−1H−ベンゾイミダゾール、1−ビニルインダゾール、2−ビニルキノリン、4−ビニルキノリン、2−ビニルイソキノリン、2−ビニルイソキサリン、2−ビニルキノキサリン、2−ビニルキナゾリン、2−ビニルシンノリン、1−ビニルカルバゾール等の窒素原子含有の多環系ビニル基含有化合物類; For example, 1-vinylindole, 1-vinyl-2-methyl-1H-indole, 1-vinylisoindole, 1-vinyl-1H-benzoimidazole, 2-vinyl-1H-benzoimidazole, 2-vinyl-5, 6 -Dimethyl-1H-benzoimidazole, 1-vinylindazole, 2-vinylquinoline, 4-vinylquinoline, 2-vinylisoquinoline, 2-vinylisoxaline, 2-vinylquinoxaline, 2-vinylquinazoline, 2-vinylcinnoline And nitrogen-containing polycyclic vinyl-containing compounds such as 1-vinylcarbazole;

例えば、1−メチル−4,5−ジビニル−1H−イミダゾール、1,1'−ジビニル−2,2'−ビ(1H−イミダゾール)、2,3−ジビニルピリジン、2,4−ジビニルピリジン、2,5−ジビニルピリジン、2,6−ジビニルピリジン等の窒素原子含有の環構造と二個以上のビニル基を有する化合物類; For example, 1-methyl-4,5-divinyl-1H-imidazole, 1,1′-divinyl-2,2′-bi (1H-imidazole), 2,3-divinylpyridine, 2,4-divinylpyridine, 2 Compounds having a nitrogen atom-containing ring structure and two or more vinyl groups, such as 5-divinylpyridine and 2,6-divinylpyridine;

例えば、1−(メタ)アリル−1H−イミダゾール〔1−アリル−1H−イミダゾールと1−メタリル−1H−イミダゾールとを併せて「1−(メタ)アリル−1H−イミダゾール」と表記する。以下同様。〕、1−(メタ)アリル−2−メチル−1H−イミダゾール、1−(メタ)アリル−3−メチル−1H−イミダゾール−3−イウム、1−(メタ)アリル−3−エチル−1H−イミダゾール−3−イウム、4−(メタ)アリル−3,5−ジメチル−1H−ピラゾール、5−ブロモ−1−1−(メタ)アリル−1H−ピラゾール、1−(メタ)アリルピペラジン、5−(1−メチルプロピル)−5−(メタ)アリルピリミジン、5−(メタ)アリル−5−イソプロピルピリミジン、1−(メタ)アリル−5,5−ジエチルピリミジン、2−(メタ)アリルピリジン、4−(メタ)アリルピリジン、3,6−ジヒドロ−3−(メタ)アリルピリジン、N−(メタ)アリル−s−トリアジン−2,4,6−トリアミン、N−(メタ)アリル−4,6−ジクロロ−1,3−5−トリアジン−2−アミン等の窒素原子含有の環状構造を有する(メタ)アリル基含有化合物類; For example, 1- (meth) allyl-1H-imidazole [1-allyl-1H-imidazole and 1-methallyl-1H-imidazole are collectively referred to as "1- (meth) allyl-1H-imidazole". Same below. 1- (Meth) allyl-2-methyl-1H-imidazole, 1- (meth) allyl-3-methyl-1H-imidazol-3-ium, 1- (meth) allyl-3-ethyl-1H-imidazole -3-ium, 4- (meth) allyl-3,5-dimethyl-1H-pyrazole, 5-bromo-1--1- (meth) allyl-1H-pyrazole, 1- (meth) allyl piperazine, 5- (5-) 1-methylpropyl) -5- (meth) allyl pyrimidine, 5- (meth) allyl-5-isopropyl pyrimidine, 1- (meth) allyl-5,5-diethyl pyrimidine, 2- (meth) allyl pyridine, 4- (Meth) allylpyridine, 3,6-dihydro-3- (meth) allylpyridine, N- (meth) allyl-s-triazine-2,4,6-triamine, N- (meth) allyl-4,6 Having a cyclic structure containing nitrogen atoms, such as dichloro -1,3-5- triazin-2-amine (meth) allyl group-containing compounds;

例えば、2−(メタ)アリル−1H−インドール、3−(メタ)アリル−1H−インドール、1−(メタ)アリル−1H−ベンゾイミダゾール、2−(メタ)アリルインダゾール、1−(メタ)アリル−3−メチル−1H−インダゾール、1−(メタ)アリル−4−メチル−1H−インダゾール、N−(メタ)アリルキノリン−4−アミン、ジ(メタ)アリルキノリン、3−フェニル−4−(メタ)アリルイソキノリン、1,2−ジ(メタ)アリル−1,2−ジヒドロイソキノリン、9−(メタ)アリル−9H−カルバゾール等の窒素原子含有の多環構造を有する(メタ)アリル基含有化合物類; For example, 2- (meth) allyl-1H-indole, 3- (meth) allyl-1H-indole, 1- (meth) allyl-1H-benzoimidazole, 2- (meth) allyl indazole, 1- (meth) allyl -3-Methyl-1H-indazole, 1- (meth) allyl-4-methyl-1H-indazole, N- (meth) allylquinolin-4-amine, di (meth) allylquinoline, 3-phenyl-4- (4) (Meth) allyl group-containing compounds having a nitrogen atom-containing polycyclic structure such as meta) allylisoquinoline, 1,2-di (meth) allyl-1,2-dihydroisoquinoline, 9- (meth) allyl-9H-carbazole and the like Kind;

環内に窒素原子と酸素原子との双方を含有しているα,β−不飽和二重結合基含有化合物(b2)としては、より具体的に、例えば、イミド(メタ)アクリレート、2−(4−オキサゾリン−3−イル)エチル(メタ)アクリレート、トリ(メタ)アクリル酸エトキシ化イソシアヌル酸、ε−カプロラクトン変性トリス−(2−アクリロイルオキシエチル)イソシアヌレート等の窒素原子以外に酸素原子を含む環状構造を有する(メタ)アクリル酸エステル類; More specifically, examples of the α, β-unsaturated double bond group-containing compound (b2) containing both a nitrogen atom and an oxygen atom in the ring include, for example, imide (meth) acrylate, 2- (2) It contains an oxygen atom other than nitrogen atoms such as 4-oxazolin-3-yl) ethyl (meth) acrylate, tri (meth) acrylic acid ethoxylated isocyanuric acid, ε-caprolactone modified tris- (2-acryloyloxyethyl) isocyanurate, etc. (Meth) acrylic esters having a cyclic structure;

例えば、4−アクリロイルモルホリン等の環状アクリルアミド類; For example, cyclic acrylamides such as 4-acryloyl morpholine;

例えば、N−ビニル−2−ピロリドン、N−ビニル−ε−カプロラクタムなどの窒素原子と酸素原子の双方を有する環状アミド基含有化合物類; For example, cyclic amide group-containing compounds having both a nitrogen atom and an oxygen atom such as N-vinyl-2-pyrrolidone and N-vinyl-ε-caprolactam;

例えば、マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミドなどの窒素原子と酸素原子の双方を有するマレイミド誘導体類; For example, maleimide derivatives having both a nitrogen atom and an oxygen atom such as maleimide, methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, octyl maleimide, dodecyl maleimide, stearyl maleimide, phenyl maleimide, cyclohexyl maleimide and the like;

例えば、2−ビニルオキサゾール、2−フェニル−4−ビニルオキサゾール、2−フェニル−5−ビニルオキサゾール、5−エトキシ−2−ビニルオキサゾール、3−ビニル−5−ニトロソオキサゾール、2−ビニル−4,5−ジフェニルオキサゾール、2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリン−5−オン、2−ビニルベンゾオキサゾール、1−ビニルピリジン−2(1H)−オン等の窒素原子以外に酸素原子を含む環状構造を有するエテニル基含有化合物類; For example, 2-vinyloxazole, 2-phenyl-4-vinyloxazole, 2-phenyl-5-vinyloxazole, 5-ethoxy-2-vinyloxazole, 3-vinyl-5-nitrosooxazole, 2-vinyl-4,5 Nitrogen such as -diphenyloxazole, 2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazolin-5-one, 2-vinylbenzoxazole, 1-vinylpyridine-2 (1H) -one, etc. Ethenyl group-containing compounds having a cyclic structure containing an oxygen atom in addition to the atom;

環内に窒素原子と硫黄原子との双方を有しているα,β−不飽和二重結合基含有化合物(b3)としては、より具体的に、例えば、2−ビニルチアゾ−ル、4−メチル−5−ビニルチアゾール、2−ビニルベンゾチアゾール、2−[2−(1−ナフチル)ビニル]ベンゾチアゾール、2−[2−(ジメチルアミノ)ビニル]ベンゾチアゾール、1−ビニル−2(1H)−ピリジンチオン等の窒素原子以外に硫黄原子を含む環状構造を有するビニル基含有化合物類等が挙げられるが、特にこれらに限定されるものではない。これらは、1種だけを用いてもよいし、あるいは、複数種を併用してもよい。 More specifically, examples of the α, β-unsaturated double bond group-containing compound (b3) having both a nitrogen atom and a sulfur atom in the ring include, for example, 2-vinylthiazole, 4-methyl -5-vinylthiazole, 2-vinylbenzothiazole, 2- [2- (1-naphthyl) vinyl] benzothiazole, 2- [2- (dimethylamino) vinyl] benzothiazole, 1-vinyl-2 (1H)- Although vinyl group containing compounds etc. which have a cyclic structure containing a sulfur atom other than nitrogen atoms, such as pyridinethion, are mentioned, It is not limited in particular in these. These may be used alone or in combination of two or more.

本発明に使用される、窒素原子を含有する環状構造(ca)を有するα,β−不飽和二重結合基含有化合物(B)において、その環構造には酸素原子や硫黄原子を含有しないことが好ましい。環内に窒素原子以外に、周期表の6B族の原子が含有されると塩基性が低下するため、水素結合性能が低下し、活性エネルギー線を照射した重合物の内部凝集力が低下するため、立体造形物の強度低下を招く場合がある。また、窒素原子を含有する環状構造(ca)は、5員環以上が好ましい。3、4員環であると、熱や活性エネルギー線によって、開環反応を引き起こす可能性が高いので好ましくない。さらに、環内に窒素原子が1個であることが好ましい。環内の窒素原子が複数個あれば、水素結合性能も向上するが、窒素原子に由来の黄変が著しくなるため、活性エネルギー線を照射した重合物は微量な酸素の存在で黄変し、無色透明な造形物を得がたくなる。そのため、窒素原子のみを1個だけを含有する環状構造(ca1−1)を含有したα,β−不飽和二重結合基含有化合物(b1−1)が最も好ましい。   In the α, β-unsaturated double bond group-containing compound (B) having a nitrogen atom-containing cyclic structure (ca) used in the present invention, the ring structure does not contain an oxygen atom or a sulfur atom Is preferred. When atoms of group 6B of the periodic table are contained in the ring in addition to nitrogen atoms, the basicity is lowered, so the hydrogen bonding performance is lowered and the internal cohesive force of the polymer irradiated with active energy rays is lowered. The strength of the three-dimensional object may be reduced. The cyclic structure (ca) containing a nitrogen atom is preferably a 5- or more-membered ring. A three- or four-membered ring is not preferable because it is likely to cause a ring-opening reaction by heat or active energy rays. Furthermore, it is preferred that there be one nitrogen atom in the ring. If there are multiple nitrogen atoms in the ring, hydrogen bonding performance is also improved, but yellowing due to nitrogen atoms becomes remarkable, so the polymer irradiated with active energy rays yellows in the presence of a trace amount of oxygen, It is difficult to obtain a colorless and transparent shaped article. Therefore, an α, β-unsaturated double bond group-containing compound (b1-1) containing a cyclic structure (ca1-1) containing only one nitrogen atom is most preferable.

窒素原子を含有する環状構造(ca)を有するα,β−不飽和二重結合基含有化合物(B)のうち、環内に窒素原子だけを1個有するα,β−不飽和二重結合基含有化合物(b1−1)である、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、4−(ピリミジン−2−イル)ピペラジン−1−イル(メタ)アクリレートが特に好ましく使用される。   Among the α, β-unsaturated double bond group-containing compounds (B) having a cyclic structure (ca) containing a nitrogen atom, an α, β-unsaturated double bond group having only one nitrogen atom in the ring In particular, pentamethyl piperidinyl (meth) acrylate, tetramethyl piperidinyl (meth) acrylate, 4- (pyrimidin-2-yl) piperazin-1-yl (meth) acrylate which is the compound (b1-1) containing It is preferably used.

<化合物(C)>
本発明の樹脂組成物において、光重合開始剤(C)は、活性化エネルギー線の照射による重合反応を促進する為に使用する。本発明の一実施形態において、上記活性化エネルギーは紫外線であることが好ましく、紫外線の照射によって重合反応を進行させる場合、樹脂組成物は、紫外線を吸収して樹脂組成物中に含まれるα,β−不飽和二重結合基含有化合物の重合を開始し得る化合物であることが好ましい。
<Compound (C)>
In the resin composition of the present invention, the photopolymerization initiator (C) is used to promote the polymerization reaction by irradiation of activation energy rays. In one embodiment of the present invention, the activation energy is preferably ultraviolet light, and when the polymerization reaction is advanced by irradiation of ultraviolet light, the resin composition absorbs the ultraviolet light to be contained in the resin composition α, It is preferable that it is a compound which can start superposition | polymerization of (beta)-unsaturated double bond group containing compound.

具体例として、例えば、以下が挙げられる。2,2−ジメトキシ−2−フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントフルオレノン、ベンズアルデヒド、アントラキノン、3−メチルアセトフェノン、4−クロロベンゾフェノン、4,4’−ジアミノベンゾフェノン、ベンゾインプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、4−チオキサントン、カンファーキノン、及び2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン等の光ラジカル発生剤。   As a specific example, for example, the following may be mentioned. 2,2-Dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthofluorenone, benzaldehyde, anthraquinone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4'-diaminobenzophenone, benzoin propyl ether, benzoin ethyl ether, benzyl Dimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4-thioxanthone, camphorquinone, and Photoradical generators such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.

また、市販品としては、例えば、以下が挙げられる。イルガキュアー184,907,651,1700,1800,819,369,及び261(BASF社製)、DAROCUR−TPO(BASF社製、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド)、ダロキュア−1173(メルク社製)、エザキュアーKIP150,及びTZT(日本シイベルヘグナー社製)、カヤキュアBMS,及びカヤキュアDMBI(日本化薬社製)等の光ラジカル発生剤。   Moreover, as a commercial item, the following is mentioned, for example. Irgacure 184, 907, 651, 1700, 1800, 819, 369, and 261 (manufactured by BASF), DAROCUR-TPO (manufactured by BASF, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide), Darocure-1173 Photoradical generators such as (manufactured by Merck), Ezacure KIP150, and TZT (manufactured by Nihon Shiber-Hegner), Kayacure BMS, and Kayacure DMBI (manufactured by Nippon Kayaku Co., Ltd.).

また、分子内に少なくとも1個の(メタ)アクリロイル基を有する光重合開始剤を使用することもできる。   It is also possible to use a photoinitiator having at least one (meth) acryloyl group in the molecule.

本発明では、光重合開始剤(C)として、上述の化合物を単独で、又は2種類以上組合せて使用することができる。   In the present invention, as the photopolymerization initiator (C), the above-mentioned compounds can be used alone or in combination of two or more.

本発明の化合物(C)としては、取り扱いが容易な波長380nm以上の紫外線を利用可能なこと、着色材料の造形が可能であること、クリア系の造形物を作製する際に着色の懸念が少ないことから、アシルホスフィン系の化合物であるDAROCUR−TPO(BASF社製、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキサイド)、イルガキュアー819を使用することが好ましい。   As the compound (C) of the present invention, it is possible to use ultraviolet light having a wavelength of 380 nm or more which is easy to handle, to be able to form a colored material, and to be less susceptible to coloring when producing clear shaped objects. Therefore, it is preferable to use DAROCUR-TPO (manufactured by BASF, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide) and Irgacure 819, which are compounds of an acylphosphine type.

本発明における樹脂組成物は、光学的立体造形用活性エネルギー線重合性樹脂組成物全量中、化合物(A)を60〜99.8重量%、化合物(B)を0.1〜20重量%、化合物(C)を0.1〜20重量%含有することが好ましく、化合物(A)を75〜99重量%、化合物(B)を0.5〜15重量%、化合物(C)を0.5〜10重量%含有することが更に好ましい。
樹脂組成物全量中、化合物(B)と化合物(C)とが、それぞれ0.1重量%以上であれば、光硬化の際に樹脂組成物中の溶存酸素による硬化阻害を抑制する等により硬化速度の向上が期待でき、また十分な凝集力が得られ易く耐熱性や耐湿熱性の向上効果が期待できる。また、化合物(A)が60重量%以上であれば十分な凝集力を有する為、耐熱性や耐湿熱性の向上に繋がる。更に樹脂組成物を光造形材料として用いた場合に、立体造形物の硬化収縮が低減でき、可撓性が向上する。一方、樹脂組成物全量中、化合物(B)が20重量%または化合物(C)が20重量%を超えると、黄変の問題や重合に寄与しない化合物の増加による硬化速度の低下や立体造形物の強度低下が懸念され、化合物(A)が60重量%を下回ると立体造形物の強度低下や耐湿熱性の低下が懸念される。
The resin composition in the present invention comprises 60 to 99.8% by weight of the compound (A) and 0.1 to 20% by weight of the compound (B) in the total amount of the active energy ray polymerizable resin composition for optical three-dimensional modeling, It is preferable to contain 0.1 to 20% by weight of the compound (C), 75 to 99% by weight of the compound (A), 0.5 to 15% by weight of the compound (B), and 0.5 for the compound (C). It is more preferable to contain 10 wt%.
If the compound (B) and the compound (C) in the total amount of the resin composition are each 0.1% by weight or more, curing is carried out by suppressing curing inhibition due to dissolved oxygen in the resin composition during photocuring, etc. An improvement in speed can be expected, and a sufficient cohesive force can be easily obtained, and an effect of improving heat resistance and moist heat resistance can be expected. Further, if the compound (A) is 60% by weight or more, it has sufficient cohesion, leading to improvement in heat resistance and moisture and heat resistance. Furthermore, when a resin composition is used as an optical shaping material, the cure shrinkage of a three-dimensional object can be reduced, and the flexibility is improved. On the other hand, when the compound (B) exceeds 20% by weight or the compound (C) exceeds 20% by weight in the total amount of the resin composition, the curing rate decreases or the three-dimensional object decreases due to the problem of yellowing and the increase of compounds not contributing to polymerization. If the compound (A) is less than 60% by weight, there is a concern that the strength of the three-dimensional object may be reduced and the heat and moisture resistance may be reduced.

本発明の樹脂組成物は、本発明の効果を損なわない範囲であれば、重合硬化収縮率低減、熱膨張率低減、寸法安定性向上、弾性率向上、粘度調整、熱伝導率向上、強度向上、靭性向上、着色向上等の観点から各種添加剤を適宜配合することが可能である。例えば、本発明の化合物(A)または化合物(B)に該当しない(メタ)アクリル酸エステル類に代表されるα,β−不飽和二重結合基含有化合物、エポキシ基含有化合物、オキセタニル基含有化合物に代表されるカチオン重合性化合物、α,β−不飽和二重結合基を有するモノマーの重合体及び/又は各種化合物に、α,β−不飽和二重結合基を付加して得られる化合物であり、ポリエステル系、ポリウレタン系、ポリエポキシ系、ポリアクリル系に代表されるオリゴマー、光カチオン重合開始剤、増感剤、シラン化合物、イオウ系酸化防止剤、染料や顔料に代表される色材、ポリマー、セラミックス、金属、金属酸化物、金属塩等の有機・無機充填剤が挙げられる。充填剤の形状については粒子状、繊維状等特に限定されない。なお、上記ポリマーの配合に当っては、柔軟性付与剤、可塑剤、難燃化剤、保存安定剤、チクソトロピー付与剤、分散安定剤、流動性付与剤、消泡剤等、充填剤としてではなくポリマーブレンド、ポリマーアロイとして、光学的立体造形用樹脂組成物中に溶解、半溶解又はミクロ分散させることも可能である。   The resin composition of the present invention is a polymerization cure shrinkage reduction, thermal expansion coefficient reduction, dimensional stability improvement, elastic modulus improvement, viscosity adjustment, thermal conductivity improvement, strength improvement as long as the effects of the present invention are not impaired. It is possible to mix | blend various additives suitably from a viewpoint of toughness improvement, coloring improvement, etc. For example, an α, β-unsaturated double bond group-containing compound represented by (meth) acrylic acid esters not corresponding to the compound (A) or compound (B) of the present invention, an epoxy group-containing compound, an oxetanyl group-containing compound A cationically polymerizable compound represented by the formula, a polymer of a monomer having an .alpha.,. Beta.-unsaturated double bond group and / or a compound obtained by adding an .alpha.,. Beta.-unsaturated double bond group to various compounds Yes, oligomers represented by polyesters, polyurethanes, polyepoxys and polyacrylics, cationic photopolymerization initiators, sensitizers, silane compounds, sulfur based antioxidants, coloring materials represented by dyes and pigments, Organic / inorganic fillers such as polymers, ceramics, metals, metal oxides, metal salts and the like can be mentioned. The shape of the filler is not particularly limited, such as particulate or fibrous. In addition, when compounding the above-mentioned polymer, as a softener, a plasticizer, a flame retardant, a storage stabilizer, a thixotropy imparting agent, a dispersion stabilizer, a fluidity imparting agent, an antifoamer, etc., as a filler It is also possible to dissolve, semi-dissolve or micro-disperse in a resin composition for optical stereolithography as a polymer blend or polymer alloy.

<光学的立体造形用活性エネルギー線重合性樹脂組成物の性状>
次に、光学的立体造形用活性エネルギー線重合性樹脂組成物の性状について、説明する。
本発明の樹脂組成物は、上記、化合物(A)、化合物(B)、化合物(C)を必須成分とし、更に必要に応じて各種添加剤を配合後、均一に混合することによって製造することができる。
攪拌・混合する際には、減圧装置を備えた1軸または多軸エクストルーダー、ニーダー、ディソルバーのような汎用の機器を使用し攪拌・混合することにより調製してもよい。攪拌・混合する際の温度は、通常、10〜60℃に設定されるのが好ましい。調製時の設定温度が10℃未満では、粘度が高すぎて均一な撹拌・混合作業が困難になる場合があり、逆に、調製時の温度が60℃を超えると、熱による硬化反応が起きる場合があり、正常な樹脂組成物が得られない場合があるので、好ましくない。
<Properties of Active Energy Ray Polymerizable Resin Composition for Optical Three-Dimensional Modeling>
Next, the properties of the active energy ray polymerizable resin composition for optical three-dimensional modeling will be described.
The resin composition of the present invention is produced by using the above compound (A), compound (B) and compound (C) as essential components, and further blending various additives as required, and uniformly mixing them. Can.
When stirring and mixing, it may be prepared by stirring and mixing using a general-purpose apparatus such as a single-shaft or multi-shaft extruder, a kneader, and a dissolver equipped with a pressure reduction device. It is preferable that the temperature at the time of stirring and mixing is usually set to 10 to 60 ° C. If the set temperature at preparation is less than 10 ° C., the viscosity may be too high to make uniform stirring and mixing work difficult, and conversely, if the temperature at preparation exceeds 60 ° C., a curing reaction due to heat will occur In some cases, it is not preferable because a normal resin composition may not be obtained.

本発明の樹脂組成物は、液状、ペースト状及びフィルム状のいずれの形態でも使用することができる。
なお、本発明における樹脂組成物は、実質的に有機溶剤を含まないことが好ましいが、有機溶剤を含有することも可能である。 例えば、メタノール、エタノール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、シクロヘキサン、トルエン、キシレンその他の炭化水素系溶媒等の有機溶剤や、水をさらに添加して、光学的立体造形用樹脂組成物の粘度を調整することもできるし、光学的立体造形用樹脂組成物を加熱して粘度を低下させることもできる。
The resin composition of the present invention can be used in any form of liquid, paste and film.
In addition, although it is preferable that the resin composition in this invention does not contain an organic solvent substantially, it is also possible to contain an organic solvent. For example, water, and organic solvents such as methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, butyl acetate, cyclohexane, toluene, xylene and other hydrocarbon solvents, and water are further added, The viscosity of the resin composition for optical three-dimensional model formation can also be adjusted, and the resin composition for optical three-dimensional model formation can also be heated to reduce the viscosity.

本発明における光学的立体造形用樹脂組成物は、25℃の粘度が1〜2000mPa・sであることが重要であり、好ましくは10〜1500mPa・sであり、20〜1000mPa・sであることがより好ましい。粘度が2000mPa・sより高いと樹脂硬化物にした場合、立体造形ができず、硬度が悪化してしまう。一方、粘度が1mPa・sより低いと樹樹脂硬化物寸法安定性の制御が困難になる。
樹脂組成物の粘度は、化合物(A)、及び化合物(B)の粘度で殆ど決定されるため、これらの粘度を1〜100,000mPa・sの範囲で管理することにより、樹脂組成物の粘度も管理が可能である。
It is important that the resin composition for optical three-dimensional modeling in the present invention has a viscosity of 25 ° C. of 1 to 2000 mPa · s, preferably 10 to 1500 mPa · s, and 20 to 1000 mPa · s. More preferable. When the viscosity is higher than 2000 mPa · s, in the case of a cured resin, three-dimensional shaping can not be performed and the hardness is deteriorated. On the other hand, when the viscosity is lower than 1 mPa · s, it becomes difficult to control the dimensional stability of the cured resin.
Since the viscosity of the resin composition is almost determined by the viscosity of the compound (A) and the compound (B), the viscosity of the resin composition can be controlled by controlling these viscosities in the range of 1 to 100,000 mPa · s. Management is also possible.

<光学的立体造形用活性エネルギー線重合性樹脂組成物の造形プロセス>
次に、樹脂硬化物、光学的立体造形用活性エネルギー線重合性樹脂組成物の造形プロセス(光学的立体造形法)について、説明する。
本発明の樹脂組成物は、光学的立体造形法(以下、光造形法ともいう)における光硬化性液状樹脂材料として好適に使用される。すなわち、本発明の樹脂組成物に対して、紫外線等の活性エネルギー線を選択的に照射して重合硬化に必要なエネルギーを供給する光造形法により、所望の立体形状の樹脂硬化物を製造することができる。
<Forming process of active energy ray polymerizable resin composition for optical three-dimensional shaping>
Next, the shaping process (optical three-dimensional modeling method) of the resin cured product and the active energy ray polymerizable resin composition for optical three-dimensional modeling will be described.
The resin composition of the present invention is suitably used as a photocurable liquid resin material in an optical three-dimensional shaping method (hereinafter also referred to as an optical shaping method). That is, the resin composition of the present invention is selectively irradiated with active energy rays such as ultraviolet rays to supply energy necessary for polymerization and curing, thereby producing a desired three-dimensional resin cured product. be able to.

本発明の樹脂組成物は、光学的立体造形法における硬化性液状材料として好適に使用される。即ち、この樹脂組成物の特定箇所に、可視光、紫外光、赤外光等の光を選択的に照射して重合硬化に必要な活性エネルギーを供給することにより、所望形状の立体造形物を得ることができる。
活性エネルギー線の照射光源としては、150〜550nm波長域の光を主体としたもので、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、LEDランプ、キセノンランプ又はメタルハライドランプなどの他、半導体レーザー光線、電子線なども露光用活性エネルギー線として利用できる。コスト面や指向性、収束性の点で紫外線レーザー光線が好ましい。
活性エネルギー線の照射強度は、0.1〜500mW/cm2であることが好ましい。光照射強度が0.1mW/cm2未満であると、硬化に長時間を必要とし、500mW/cm2を超えると、ランプから輻射される熱により、未硬化の樹脂組成物に劣化が生じる可能性があるため好ましくない。照射強度と照射時間の積として表される積算照射量は1〜5,000mJ/cm2とであることが好ましい。積算照射量が1mJ/cm2より少ないと、重合硬化に長時間を必要とし、5,000mJ/cm2より大きいと、照射時間が非常に長くなり、生産性が劣るため、好ましくない。
The resin composition of the present invention is suitably used as a curable liquid material in optical stereolithography. That is, by selectively irradiating light such as visible light, ultraviolet light, infrared light and the like to specific places of this resin composition to supply active energy necessary for polymerization and curing, a three-dimensional object having a desired shape is obtained. You can get it.
The irradiation light source of active energy ray mainly comprises light in the 150 to 550 nm wavelength region, and is a low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, chemical lamp, black light lamp, microwave excitation mercury lamp, LED Other than a lamp, a xenon lamp, a metal halide lamp, etc., a semiconductor laser beam, an electron beam or the like can be used as an active energy ray for exposure. An ultraviolet laser beam is preferable in terms of cost, directivity, and convergence.
The irradiation intensity of the active energy ray is preferably 0.1 to 500 mW / cm 2 . When the light irradiation intensity is less than 0.1 mW / cm 2 , curing takes a long time, and when it exceeds 500 mW / cm 2 , the uncured resin composition may be degraded by the heat radiated from the lamp. Unfavorable because of the nature. The integrated irradiation dose represented as the product of the irradiation intensity and the irradiation time is preferably 1 to 5,000 mJ / cm 2 . If the cumulative irradiation amount is less than 1 mJ / cm 2 , a long time is required for polymerization and curing, and if it is more than 5,000 mJ / cm 2 , the irradiation time becomes very long and productivity is poor, which is not preferable.

このような重合硬化のための活性エネルギー線である光を、樹脂組成物の特定箇所に選択的に照射する方法は特に制限されず、種々の方法によって行うことができる。例えばレーザー光、レンズ、鏡等を用いて得られた集束光等を、特定箇所に照射する方法、非集束光を一定パターンのマスクを介して照射する方法等を採用することができる。ただし、微細加工や加工精度が要求される場合には、集束光の大きさを最小にすることが望ましく、このような場合にはレーザー光を使用することが好適である。さらに、光の照射を受ける樹脂組成物の特定箇所は、容器に入れられた樹脂組成物の液面、容器の側壁ないし底壁と接している樹脂組成物の面あるいは液中でもよい。樹脂組成物の液面または容器壁との接触面に光を照射するには、光を外部から直接または透明な器壁を通して照射すればよく、液中の特定箇所に照射する場合には、光ファイバー等の導光体を用いて照射を行えばよい。   The method of selectively irradiating the light which is the active energy ray for such polymerization curing to a specific part of the resin composition is not particularly limited, and can be performed by various methods. For example, a method of irradiating focused light or the like obtained using a laser beam, a lens, a mirror or the like to a specific place, a method of irradiating non-focused light through a mask of a predetermined pattern, or the like can be employed. However, when fine processing or processing accuracy is required, it is desirable to minimize the size of the focused light, and in such a case, it is preferable to use a laser beam. Furthermore, the specific portion of the resin composition that is irradiated with light may be the liquid surface of the resin composition placed in the container, the surface of the resin composition in contact with the side wall or bottom wall of the container, or a liquid. In order to irradiate light to the liquid surface of the resin composition or the contact surface with the container wall, light may be irradiated from the outside directly or through a transparent vessel wall, and in the case of irradiating a specific location in the liquid, an optical fiber Irradiation may be performed using a light guide such as

また上記の光学的立体造形法においては、通常、樹脂組成物の特定箇所を重合硬化させた後、被照射位置を、既に硬化した部分から未硬化部分に連続的にまたは段階的に移動させることにより、硬化部分を所望の立体形状に成長させることができる。この被照射位置の移動は種々の方法によって行うことができ、例えば光源、樹脂組成物を収容している容器あるいは樹脂組成物の硬化部分の少なくとも何れかを移動させたり、また該容器に未硬化の樹脂組成物(液状硬化性物質)を追加する等の方法によって行うことができる。   In the above-described optical three-dimensional modeling method, usually, after specific portions of the resin composition are polymerized and cured, the irradiated position is continuously or stepwise moved from the already cured portion to the uncured portion. Thus, the hardened portion can be grown into a desired three-dimensional shape. The movement of the irradiated position can be performed by various methods, for example, moving at least one of a light source, a container containing the resin composition, and a cured portion of the resin composition, and the container is not yet cured. It can be carried out by a method such as adding a resin composition (liquid curable substance) of the above.

<立体造形物>
次に、立体造形物について説明する。
本発明の樹脂組成物を用いて立体造形物を得る代表的な方法としては、液状である本発明の光学的立体造形用樹脂組成物に、所望のパターンを有する硬化層が得られるように光を選択的に照射して硬化層を形成し、次に該硬化層に隣接する未硬化の組成物層に同様にして光を照射して先に形成された硬化層と連続する新たな硬化層を形成し、この積層操作を繰り返すことにより、最終的に目的とする立体形状の造形物とする方法を挙げることができる。この方法のさらに具体的態様としては、次に例示する方法を挙げることができる。
<Three-dimensional object>
Next, a three-dimensional object will be described.
As a representative method of obtaining a three-dimensional object by using the resin composition of the present invention, light is applied so that a cured layer having a desired pattern can be obtained from the resin composition for optical three-dimensional formation of the present invention which is liquid. Selectively to form a hardened layer, and then the unhardened composition layer adjacent to the hardened layer is similarly irradiated with light to form a new hardened layer continuous with the previously formed hardened layer. By repeating the laminating operation to finally form a three-dimensional shaped object of interest. As more specific embodiments of this method, the following exemplified methods can be mentioned.

形成された立体造形物は、反応に用いた容器から取り出し、該造形物の表面に残存する未反応の化合物を除去した後、必要に応じて洗浄する。この洗浄剤としては、イソプロピルアルコール、エチルアルコールなどのアルコール類に代表される有機溶剤、アセトン、酢酸エチル、メチルエチルケトンなどに代表される有機溶剤、テルペン類、グリコールエーテル系エステル類に代表される脂肪族系有機溶剤、熱硬化性あるいは光硬化性(活性エネルギー線である光による重合硬化性を意味する。)の低粘度である液状樹脂を使用することができる。また立体造形物に透明性を付与したい場合には、前記の熱硬化性あるいは光硬化性の液状樹脂を洗浄剤として使用することが望ましい。またこの場合には、洗浄に使用した樹脂の種類に応じて、洗浄後に、熱または光で乾燥(ポストキュアーとも称す)を行う必要がある。なお、ポストキュアーは、表面の樹脂を硬化させるのみならず、立体造形物の内部に残存する可能性のある未反応の樹脂組成物をも硬化させる効果を有しているので、有機溶剤により洗浄した場合にも行うことが好適である。   The formed three-dimensional object is removed from the vessel used for the reaction, and after removing the unreacted compound remaining on the surface of the object, it is washed as necessary. Examples of the cleaning agent include organic solvents represented by alcohols such as isopropyl alcohol and ethyl alcohol, organic solvents represented by acetone, ethyl acetate, methyl ethyl ketone and the like, and aliphatics represented by terpenes and glycol ether esters. It is possible to use a liquid resin having a low viscosity of a system organic solvent, thermosetting or light curing (meaning polymerization curing by light which is an active energy ray). When it is desired to impart transparency to a three-dimensional object, it is desirable to use the above-mentioned thermosetting or photocurable liquid resin as a cleaning agent. In this case, depending on the type of resin used for washing, it is necessary to carry out drying with heat or light (also referred to as post cure) after washing. Post curing has the effect of curing not only the resin on the surface but also the unreacted resin composition that may remain inside the three-dimensional object, so cleaning with an organic solvent is possible. It is preferable to carry out in the case of

本発明の光学的立体造形用活性エネルギー線重合性樹脂組成物の樹脂硬化物は、複雑、微細な加工を必要とする電子製品用等の各種立体造形品;新商品のデザイン検討用、プレゼンテーション用、広告用や展示用等のモデル;性能試験用や生産適性確認用など開発用試作品;手術のシミュレーション用等の医療モデルなどの立体造形物として好ましく用いることができる。   The resin cured product of the active energy ray polymerizable resin composition for optical three-dimensional shaping of the present invention is various three-dimensional shaped articles such as electronic products requiring complicated and fine processing; for design study of new products, for presentation It can be preferably used as a three-dimensional object such as a model for advertising or display; a prototype for development for performance test or production aptitude confirmation; a medical model for simulation of surgery or the like.

以下に、本発明の具体的な実施例を比較例と併せて説明するが、本発明は、下記実施例に限定されない。また、下記実施例および比較例中、「部」および「%」は、それぞれ「重量部」および「重量%」を表す。   Hereinafter, specific examples of the present invention will be described together with comparative examples, but the present invention is not limited to the following examples. Further, in the following Examples and Comparative Examples, "parts" and "%" respectively represent "parts by weight" and "% by weight".

[配合例1〜15]
酸素濃度が10%以下に置換された遮光された300mlのマヨネーズ瓶に、化合物(A)、化合物(B)および化合物(C)を表1に示す比率で仕込み、攪拌機にて十分に攪拌を行い、十分に脱泡を行った後、配合例に示す樹脂組成物を得た。
[Composition Examples 1 to 15]
The compound (A), the compound (B) and the compound (C) are charged in the ratio shown in Table 1 into a light-shielded 300 ml mayonnaise bottle having an oxygen concentration of 10% or less, and sufficiently stirred with a stirrer. After sufficient defoaming, the resin composition shown in the formulation example was obtained.

表1に示した配合例の樹脂組成物について、以下の方法に従って外観および粘度(mPa・s)を求め、結果を示した。   The appearance and viscosity (mPa · s) of the resin compositions of the formulation examples shown in Table 1 were determined according to the following method, and the results were shown.

《外観》
各配合例で得られた樹脂組成物の液体外観を目視にて評価した。また、分子量、水酸基価、酸価、及びガラス転移温度の測定方法も記載した。
"appearance"
The liquid appearance of the resin composition obtained in each formulation example was visually evaluated. In addition, methods for measuring molecular weight, hydroxyl value, acid value, and glass transition temperature were also described.

《粘度》
各配合例で得られた樹脂組成物を23℃の雰囲気下でE型粘度計(東機産業社製 TV−22)にて、約1.2mlを測定用試料とし、回転速度0.5〜100rpm、1分間回転の条件で測定し、溶液粘度(mPa・s)とした。
"viscosity"
About 1.2 ml is used as a measurement sample with an E-type viscometer (TV-22 manufactured by Toki Sangyo Co., Ltd.) at 23 ° C. under an atmosphere of 23 ° C., and the rotational speed is 0.5 to 0.5. It measured on conditions of 100 rpm and rotation for 1 minute, and was set as solution viscosity (mPa * s).

《分子量》
数平均分子量(Mn)と重量平均分子量(Mw)の測定は、昭和電工社製GPC(ゲルパーミエーションクロマトグラフィー)「ShodexGPC System−21」を用いた。GPCは溶媒に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーであり、溶媒としてはテトロヒドロフラン、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
Molecular weight
The measurement of a number average molecular weight (Mn) and a weight average molecular weight (Mw) used Showa Denko GPC (gel permeation chromatography) "ShodexGPC System-21." GPC is a liquid chromatography that separates and quantifies a substance dissolved in a solvent based on the difference in molecular size, and the solvent is tetrohydrofuran, and the weight average molecular weight (Mw) is determined in terms of polystyrene.

《水酸基価(OHV)》
共栓三角フラスコ中に試料を、約1gを精密に量り採り、トルエン/エタノール(容量比:トルエン/エタノール=2/1)混合液100mlを加えて溶解する。更にアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mlとした溶液)を正確に5ml加え、約1時間攪拌した。これに、フェノールフタレイン試液を指示薬として加え、30秒間持続する。その後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定する。
水酸基価は次式により求めた。水酸基価は樹脂の乾燥状態の数値とした(単位:mgKOH/g)。
水酸基価(mgKOH/g)=[{(b−a)×F×28.25}/S]/(不揮発分濃度/100)+D
ただし、S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
b:空実験の0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
D:酸価(mgKOH/g)
<< OH value (OHV) >>
About 1 g of a sample is accurately weighed in a stoppered Erlenmeyer flask, and dissolved by adding 100 ml of a toluene / ethanol (volume ratio: toluene / ethanol = 2/1) mixed solution. Furthermore, exactly 5 ml of an acetylating agent (a solution in which 25 g of acetic anhydride was dissolved in pyridine to make a volume of 100 ml) was added and stirred for about 1 hour. To this, add phenolphthalein test solution as an indicator and hold for 30 seconds. It is then titrated with 0.1 N alcoholic potassium hydroxide solution until the solution is pinkish.
The hydroxyl value was determined by the following formula. The hydroxyl value is a numerical value of the dry state of the resin (unit: mg KOH / g).
Hydroxyl value (mg KOH / g) = [{(b-a) × F × 28.25} / S] / (nonvolatile content concentration / 100) + D
However, S: amount of sample collected (g)
a: Consumption of 0.1 N alcoholic potassium hydroxide solution (ml)
b: Consumption of empty 0.1 N alcoholic potassium hydroxide solution (ml)
F: titer of 0.1 N alcoholic potassium hydroxide solution
D: Acid value (mg KOH / g)

《酸価(AV》
共栓三角フラスコ中に試料を、約1gを精密に量り採り、トルエン/エタノール(容積比:トルエン/エタノール=2/1)混合液100mlを加えて溶解した。これに、フェノールフタレイン試液を指示薬として加え、30秒間保持した後、溶液が淡紅色を呈するまで0.1Nアルコール性水酸化カリウム溶液で滴定した。
乾燥状態の樹脂の値として、酸価(mgKOH/g)を次式により求めた。
酸価(mgKOH/g)={(5.611×a×F)/S}/(不揮発分濃度/100)
ただし、S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
<< Acid number (AV)
About 1 g of a sample was accurately weighed in a stoppered Erlenmeyer flask, and dissolved by adding 100 ml of a mixture of toluene / ethanol (volume ratio: toluene / ethanol = 2/1). To this was added phenolphthalein test solution as an indicator, held for 30 seconds, and then titrated with 0.1 N alcoholic potassium hydroxide solution until the solution turned pink.
The acid value (mg KOH / g) was determined by the following equation as the value of the resin in a dry state.
Acid value (mg KOH / g) = {(5.611 × a × F) / S} / (nonvolatile content concentration / 100)
However, S: amount of sample collected (g)
a: Consumption of 0.1 N alcoholic potassium hydroxide solution (ml)
F: titer of 0.1 N alcoholic potassium hydroxide solution

《ガラス転移温度(Tg)》
ロボットDSC(示差走査熱量計、セイコーインスツルメンツ社製「RDC220」)に「SSC5200ディスクステーション」(セイコーインスツルメンツ社製)を接続して、測定に使用した。
表1の樹脂組成物を、剥離処理されたポリエステルフィルムに塗工し、活性エネルギー線を照射し、重合硬化させたものを約10mgかきとり、試料としてアルミニウムパンに入れ、秤量して示差走査熱量計にセットし、試料を入れない同タイプのアルミニウムパンをリファレンスとして、100℃の温度で5分間加熱した後、液体窒素を用いて−120℃まで急冷処理した。その後10℃/分で昇温し、昇温中に得られたDSCチャートからガラス転移温度(Tg、単位:℃)を決定した。
<< Glass transition temperature (Tg) >>
“SSC 5200 disc station” (manufactured by Seiko Instruments Inc.) was connected to a robot DSC (differential scanning calorimeter, “RDC 220” manufactured by Seiko Instruments Inc.) and used for measurement.
The resin composition of Table 1 is coated on a release-treated polyester film, irradiated with active energy rays, polymerized and cured, and scraped about 10 mg, put in an aluminum pan as a sample, weighed, and a differential scanning calorimeter And heated for 5 minutes at a temperature of 100.degree. C. using the same type of aluminum pan as a reference without samples and then quenched to -120.degree. C. using liquid nitrogen. Thereafter, the temperature was raised at 10 ° C./min, and the glass transition temperature (Tg, unit: ° C.) was determined from the DSC chart obtained during the temperature rise.

例示化合物は以下の表1に具体的に示すが、これらに限られるものではない。尚、表1において、記号「−」は、配合なしを意味している。   Exemplary compounds are specifically shown in Table 1 below, but are not limited thereto. In Table 1, the symbol "-" means no blending.

・化合物(A)
BPE100:新中村化学社製 エチレンオキサイド2.6付加体ビスフェノールAジメタクリレート(商品名:BPE−100)
SR540:SARTOMER社製 エチレンオキサイド4付加体ビスフェノールAジメタクリレート(商品名:SR540)
SR480:SARTOMER社製 エチレンオキサイド10付加体ビスフェノールAジメタクリレート(商品名:SR480)
BPE900:新中村化学社製 エチレンオキサイド17付加体ビスフェノールAジメタクリレート(商品名:BPE−900)
・化合物(B)
PMPMA:ペンタメチルピペリジニルメタクリレート
TMPMA:テトラメチルピペリジニルメタアクリレート
TZMA:2,4−ビス(2−メチルフェニル)−6−[2−ヒドロキシ−4−{2−メタクリロイルオキシエトキシ}]−S−トリアジン
OxV:2−フェニル−4−ビニルオキサゾール
ThV:4−メチル−5−ビニルチアゾール
・化合物(C)
TPO:2,4,6−トリメチルベンゾイル-ジフェニル-フォスフィンオキサイト゛(BASF社製,DAROCUR TPO)
819:ビス(2,4,6−トリメチルベンゾイル)-フェニル-フォスフィンオキサイト゛(BASF社製,イルガキュアー819)
・その他
4HBA:アクリル酸4−ヒドロキシブチル
168:BASF社製 リン系酸化防止剤BASF社製 酸化防止剤(商品名:IRGAFOS168)
を示す。
・ Compound (A)
BPE 100: Shin-Nakamura Chemical Co., Ltd. Ethylene oxide 2.6 adduct bisphenol A dimethacrylate (trade name: BPE-100)
SR540: SARTOMER ethylene oxide tetraadduct bisphenol A dimethacrylate (trade name: SR540)
SR480: SARTOMER ethylene oxide 10 adduct bisphenol A dimethacrylate (trade name: SR480)
BPE 900: Shin-Nakamura Chemical Co., Ltd. Ethylene oxide 17 adduct bisphenol A dimethacrylate (trade name: BPE-900)
・ Compound (B)
PMPMA: pentamethyl piperidinyl methacrylate TMPMA: tetramethyl piperidinyl methacrylate TZMA: 2,4-bis (2-methylphenyl) -6- [2-hydroxy-4- {2-methacryloyloxyethoxy}]-S -Triazine OxV: 2-phenyl-4-vinyloxazole ThV: 4-methyl-5-vinylthiazole · Compound (C)
TPO: 2,4,6-trimethyl benzoyl-diphenyl- phosphine oxide (BASF, DAROCUR TPO)
819: bis (2,4,6-trimethyl benzoyl) -phenyl-phosphine oxide (manufactured by BASF, Irgacure 819)
・ Others 4HBA: 4-hydroxybutyl acrylate 168: product of BASF Phosphorus antioxidant product made of BASF antioxidant (trade name: IRGAFOS 168)
Indicates

Figure 0006543974
Figure 0006543974

[実施例1〜12][比較例1〜3]
表1に示した光学的立体造形用樹脂組成物について、次の方法で硬化速度、力学特性を測定し、成型試験を行った。結果を表2に示す。
なお本明細書において、実施例1、4〜7、11および12以外の例は参考例である。
[Examples 1 to 12] [Comparative Examples 1 to 3]
About the resin composition for optical three-dimensional model | molding shown in Table 1, hardening speed and a mechanical property were measured with the following method, and the shaping | molding test was done. The results are shown in Table 2.
In the present specification, examples other than Examples 1, 4 to 7, 11 and 12 are reference examples.

《硬化速度》
アプリケータを用いて、ガラス板上に樹脂組成物を10μm厚に塗布し、この塗膜にウシオ電気株式会社製の水銀−キセノンランプUXM−200YAの光を405nmの光のみを選択的に透過するバンドパスフィルターおよび光量調節のためのNDフィルターを介して0.1J/cm2照射した。光照射後の膜のタックを触診にて評価した。
○:タックなし
△:若干タックがある
×:タックがある
Curing speed
The resin composition is applied to a thickness of 10 μm on a glass plate using an applicator, and the light of a mercury-xenon lamp UXM-200YA made by Ushio Inc. selectively transmits only the light of 405 nm to this coating film It irradiated with 0.1 J / cm < 2 > through the band pass filter and ND filter for light quantity adjustment. The tack of the film after light irradiation was evaluated by palpation.
○: no tack △: some tack ×: some tack

《ヤング率》
アプリケータを用いてガラス板上に樹脂組成物を250μm厚に塗布し、0.5J/cm2(波長 :350nm)の紫外線を照射して硬化フィルムを得た。次いで、ガラス板上から硬化フィルムを剥離し、23℃、相対湿度50%で24時間状態調節し、試験片とした。
測定23℃、相対湿度50%の恒温湿室内で、前記試験片のヤング率を引張り速度1mm/minおよび標線間25mmの条件で測定した。また23℃における前記試験片の破断伸びおよび破断強度を、引張り速度50mm/minおよび標線間25mmの条件で測定した。
このヤング率を4段階で評価した。「△」評価以上の場合、実際の使用時に特に問題ない。
◎:120(kg/mm2)以上。全く問題なし。
○:100(kg/mm2)以上〜120(kg/mm2)未満。若干弱いが、問題なし。
△:80(kg/mm2)以上〜100(kg/mm2)未満。実用上、使用可。
×:80(kg/mm2)未満。実用上、問題あり。
"Young's modulus"
The resin composition was applied to a thickness of 250 μm on a glass plate using an applicator and irradiated with ultraviolet light of 0.5 J / cm 2 (wavelength: 350 nm) to obtain a cured film. Next, the cured film was peeled off from the glass plate, and conditioned at 23 ° C. and 50% relative humidity for 24 hours to obtain a test piece.
Measurement: The Young's modulus of the test piece was measured in a constant temperature and humidity chamber at 23 ° C. and a relative humidity of 50% under the conditions of a pulling speed of 1 mm / min and a distance between marked lines of 25 mm. Further, the elongation at break and the breaking strength of the test piece at 23 ° C. were measured under the conditions of a tensile speed of 50 mm / min and a distance between marked lines of 25 mm.
This Young's modulus was evaluated in four steps. In the case of "以上" evaluation or more, there is no particular problem in actual use.
◎: 120 (kg / mm 2 ) or more. There is no problem at all.
○: not less than 100 (kg / mm 2 ) and less than 120 (kg / mm 2 ). Slightly weak, but no problem.
Δ: 80 (kg / mm 2 ) or more and less than 100 (kg / mm 2 ). Practically usable.
X: less than 80 (kg / mm 2 ). There is a problem in practical use.

《膨潤度の測定》
光源としてArイオンレーザー(波長 351、385nm)を用いた光造形装置(ソリッドクリエーターJSC−2000:ソニー株式会社製)を使用し、液面でのレーザーパワー40mW、走査速度100cm/minで成形して試験片〔(幅50×長さ50×高さ1mm):1回の積層厚0.2mm×5回積層〕とした。
付着している樹脂液を丁寧に拭き取った後、板の重量W1 を測定した。次いで、該試験片を樹脂液中に25℃で24時間浸漬し、付着した樹脂液を拭き取った後、重量W2 を測定した。
次式により膨潤度を算出し、3段階で評価した。「△」評価以上の場合、実際の使用時に特に問題ない。
膨潤度(%)=〔(W2 −W1 )/W1 〕× 100
○:2(%)未満。全く問題なし。
△:2(%)以上〜5(%)未満。実用上、使用可。
×:5(%)以上。実用上、問題あり。
<< Measurement of swelling degree >>
Using an optical forming device (Solid Creator JSC-2000: made by Sony Corporation) using Ar ion laser (wavelength 351, 385 nm) as a light source, molding at a laser power of 40 mW at the liquid surface and a scanning speed of 100 cm / min A test piece [(width 50 × length 50 × height 1 mm): laminating thickness 0.2 mm × five times at one time] was used.
After carefully wiping off the adhering resin liquid, the weight W 1 of the plate was measured. Subsequently, the test piece was immersed in a resin solution at 25 ° C. for 24 hours, and after wiping off the adhered resin solution, the weight W 2 was measured.
The degree of swelling was calculated by the following equation and evaluated in three steps. In the case of "以上" evaluation or more, there is no particular problem in actual use.
Swelling degree (%) = [(W 2 −W 1 ) / W 1 ] × 100
○: less than 2 (%). There is no problem at all.
Δ: 2 (%) or more and less than 5 (%). Practically usable.
X: 5 (%) or more. There is a problem in practical use.

《反りの測定》
前述した光造形装置を用いて、液面でのレーザーパワー40mW、走査速度100cm/minで成形して試験片〔(幅50×長さ50×高さ40mm):1回の積層厚0.2mm×100回積層〕とした。
前述した光造形装置を用いて成形した(1回の積層厚 0.2mm×100回積層)。付着した樹脂液を拭き取った後、UVランプを用いてポストキュアーを行った(照射線量5J/cm2 )。
次いで、試験片の片方を水平な台に固定し、他端の持ち上がり量Δh(mm)で反りの評価を行った。
この反りを4段階で評価した。
◎:0.2(mm)未満。全く問題なし。「△」評価以上の場合、実際の使用時に特に問題ない。
○:0.2(mm)以上〜0.5(mm)未満。若干あるが、問題なし。
△:0.5(mm)以上〜1.0(mm)未満。実用上、使用可。
×:1.0(mm)以上。実用上、問題あり。
<< Measurement of warpage >>
Using the above-mentioned optical shaping apparatus, it is molded at a laser power of 40 mW at the liquid surface and at a scanning speed of 100 cm / min and a test piece [(width 50 × length 50 × height 40 mm): lamination thickness of 0.2 mm × 100 times lamination].
It shape | molded using the optical shaping | molding apparatus mentioned above (single lamination thickness 0.2 mm x 100 times lamination | stacking). After wiping off the adhered resin solution, post curing was performed using a UV lamp (irradiation dose 5 J / cm 2 ).
Next, one of the test pieces was fixed to a horizontal table, and the warpage was evaluated by the lifting amount Δh (mm) of the other end.
This warp was evaluated in four steps.
◎: less than 0.2 (mm). There is no problem at all. In the case of "以上" evaluation or more, there is no particular problem in actual use.
○: 0.2 (mm) or more and less than 0.5 (mm). There are a few, but no problem.
Δ: 0.5 (mm) or more and less than 1.0 (mm). Practically usable.
X: 1.0 (mm) or more. There is a problem in practical use.

《表面滑性》
アプリケータを用いてガラス板上に樹脂組成物を250μm 厚に塗布し、0.5J/cm2(波長 :350nm)の紫外線を照射してガラス積層硬化フィルムを得、23℃、相対湿度50%で24時間状態調節し、試験片とした。
測定23℃、相対湿度50%の恒温湿室内で、前記試験片を#0000のスチールウールにより、硬化フィルムの表面を250g/cm2の荷重をかけながら10回摩擦し、耐擦傷性試験を行った。傷の発生の有無および傷の程度を目視により観察し、表面活性の指標とした。
評価は4段階で行った。「△」評価以上の場合、実際の使用時に特に問題ない。
◎:傷の発生なし。全く問題なし。
○:5本以下の傷が発生する。若干あるが、問題なし。
△:傷が6〜10本発生する。実用上、使用可。
×:傷が無数に発生する。実用上、問題あり。
"Surface smoothness"
The resin composition is applied to a thickness of 250 μm on a glass plate using an applicator and irradiated with ultraviolet light of 0.5 J / cm 2 (wavelength: 350 nm) to obtain a cured glass laminated film, 23 ° C., relative humidity 50% The sample was conditioned for 24 hours to prepare a test piece.
The surface of the cured film was rubbed 10 times with a steel wool of # 0000 under a load of 250 g / cm 2 in a constant temperature and humidity chamber of measurement 23 ° C. and relative humidity 50%, and a scratch resistance test was performed. The The occurrence of scratches and the degree of scratches were visually observed and used as an index of surface activity.
The evaluation was performed in four stages. In the case of "以上" evaluation or more, there is no particular problem in actual use.
◎: no occurrence of scratches. There is no problem at all.
○: Less than 5 scratches occur. There are a few, but no problem.
Fair: 6 to 10 scratches occur. Practically usable.
X: Innumerable scratches occur. There is a problem in practical use.

Figure 0006543974
Figure 0006543974

本発明の光学的立体造形用樹脂組成物を活性エネルギー線にて重合硬化させた場合は、表2に示すように優れた硬化速度を示し、かつヤング率、膨潤度、反り、表面滑性の全ての項目において優れた結果を示した(実施例1〜12)。これに対して、本発明以外の光学的立体造形用樹脂組成物を活性エネルギー線にて重合硬化させた場合は、硬化速度、ヤング率、膨潤度、反り、表面滑性のいずれにも難があり、使用困難であることがわかる。   When the resin composition for optical three-dimensional modeling of the present invention is polymerized and cured by active energy rays, as shown in Table 2, it exhibits excellent curing speed, and has Young's modulus, swelling degree, warpage, and surface lubricity. Excellent results were shown for all items (Examples 1 to 12). On the other hand, when the resin composition for optical three-dimensional modeling other than the present invention is polymerized and cured by active energy rays, it is difficult for any of the curing speed, Young's modulus, swelling degree, warpage, and surface lubricity. Yes, it proves difficult to use.

Claims (6)

分子内に芳香環を2個以上有し、アルキレンオキサイド結合基の平均付加モル数が1〜40であり、窒素原子を含有する環状構造(ca)を含有せず、α,β−不飽和二重結合基を2個含有する化合物(A)と、
窒素原子を含有する環状構造(ca)として2,2,6,6−テトラメチルピペリジン骨格を有する、α,β−不飽和二重結合基含有化合物(B)と、
光重合開始剤(C)と、
を含有する光学的立体造形用活性エネルギー線重合性樹脂組成物であって、化合物(A)および化合物(B)のα,β−不飽和二重結合基はアクリロイル基および/またはメタクリロイル基であり、
前記樹脂組成物全量中、化合物(A)を60〜90.9重量%、化合物(B)を9〜20重量%、光重合開始剤(C)を0.1〜20重量部含有し、かつ、化合物(A)は、アルキレンオキサイド結合基の平均付加モル数が4である化合物を前記樹脂組成物全量に対して12〜22重量%含有する光学的立体造形用活性エネルギー線重合性樹脂組成物。
The aromatic ring possess two or more in the molecule, an average number of moles added of alkylene oxide linking group 1-40 does not contain a cyclic structure (ca) containing nitrogen atoms, alpha, beta-unsaturated double A compound (A) containing two heavy bonding groups,
An α, β-unsaturated double bond group-containing compound (B) having a 2,2,6,6-tetramethylpiperidine skeleton as a cyclic structure (ca) containing a nitrogen atom,
A photopolymerization initiator (C),
And the α, β-unsaturated double bond group of the compound (A) and the compound (B) is an acryloyl group and / or a methacryloyl group. ,
60 to 90.9 wt% of the compound (A), 9 to 20 wt% of the compound (B), and 0.1 to 20 wt parts of the photopolymerization initiator (C) in the total amount of the resin composition, and The compound (A) is an active energy ray polymerizable resin composition for optical three-dimensional modeling, containing 12 to 22% by weight of a compound having an average addition mole number of alkylene oxide bonding group of 4 with respect to the total amount of the resin composition. .
化合物(A)のα,β−不飽和二重結合基が、メタクリロイル基であることを特徴とする請求項記載の光学的立体造形用活性エネルギー線重合性樹脂組成物。 Compounds of (A) alpha, beta-unsaturated double bond group, for stereolithography active energy ray-polymerizable resin composition according to claim 1, wherein the methacryloyl group. 化合物(B)のα,β−不飽和二重結合基が、メタクリロイル基であることを特徴とする請求項1または2記載の光学的立体造形用活性エネルギー線重合性樹脂組成物。 3. The active energy ray polymerizable resin composition for optical stereolithography according to claim 1 or 2 , wherein the α, β-unsaturated double bond group of the compound (B) is a methacryloyl group. 化合物(C)が、リン含有の化合物であることを特徴とする請求項1〜いずれか記載の光学的立体造形用活性エネルギー線重合性樹脂組成物。 The compound (C) is a phosphorus-containing compound, The active energy ray polymerizable resin composition for optical three-dimensional model formation in any one of the Claims 1-3 characterized by the above-mentioned. 請求項1〜いずれか記載の活性エネルギー線重合性樹脂組成物を、活性エネルギー線で重合硬化してなる樹脂硬化物。 A cured resin obtained by polymerizing and curing the active energy ray polymerizable resin composition according to any one of claims 1 to 4 with an active energy ray. 請求項記載の樹脂硬化物からなる立体造形物。 A three-dimensional object made of the resin cured product according to claim 5 .
JP2015052641A 2015-03-16 2015-03-16 Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article Active JP6543974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015052641A JP6543974B2 (en) 2015-03-16 2015-03-16 Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015052641A JP6543974B2 (en) 2015-03-16 2015-03-16 Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article

Publications (2)

Publication Number Publication Date
JP2016172796A JP2016172796A (en) 2016-09-29
JP6543974B2 true JP6543974B2 (en) 2019-07-17

Family

ID=57009541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052641A Active JP6543974B2 (en) 2015-03-16 2015-03-16 Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article

Country Status (1)

Country Link
JP (1) JP6543974B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206995A1 (en) * 2017-05-10 2018-11-15 Elkem Silicones France Sas Method for manufacturing a silicone elastomer article using a 3d printer
WO2020129736A1 (en) * 2018-12-21 2020-06-25 クラレノリタケデンタル株式会社 Resin composition for optical molding
JP7395830B2 (en) 2019-03-11 2023-12-12 Dic株式会社 Medical three-dimensional model, three-dimensional model, and method for producing medical three-dimensional model
EP4163308A1 (en) * 2020-07-07 2023-04-12 Mitsui Chemicals, Inc. Photocurable composition, three-dimensional shaped article, and dental product
WO2023190071A1 (en) * 2022-03-28 2023-10-05 三井化学株式会社 Photosetting composition, three-dimensionally shaped article, mold, method for manufacturing cured product, and method for manufacturing plate denture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0425440B1 (en) * 1989-10-27 1994-11-17 Ciba-Geigy Ag Method of adjusting the photosensitivity of photopolymerizable compositions
JP3176430B2 (en) * 1992-03-30 2001-06-18 ジェイエスアール株式会社 Optical three-dimensional molding resin composition
JPH0895241A (en) * 1994-09-22 1996-04-12 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using same
JP3988201B2 (en) * 1997-04-02 2007-10-10 旭硝子株式会社 UV-curable coating composition and use thereof
WO2008123358A1 (en) * 2007-03-29 2008-10-16 Dic Corporation Active energy ray-curable resin composition for cast polymerization and cured product
JP2011068708A (en) * 2009-09-24 2011-04-07 Nippon Kayaku Co Ltd Energy ray-curable resin composition for lens sheet excellent in light resistance, and cured material of the same
JP2011153179A (en) * 2010-01-26 2011-08-11 Olympus Corp Material composition and optical element using the same
JP2011168746A (en) * 2010-02-22 2011-09-01 Olympus Corp Material composition, and optical element using the same
JP5885585B2 (en) * 2012-05-21 2016-03-15 昭和電工株式会社 Curable composition and cured product thereof
JP5999366B2 (en) * 2013-08-09 2016-09-28 ブラザー工業株式会社 Photocurable resin composition, container, three-dimensional model manufacturing apparatus, and three-dimensional model manufacturing method

Also Published As

Publication number Publication date
JP2016172796A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6543974B2 (en) Active energy ray polymerizable resin composition for optical three-dimensional shaping, and three-dimensional shaped article
JP5587869B2 (en) Curable composition and cured product thereof
JP5885585B2 (en) Curable composition and cured product thereof
JP4457960B2 (en) Active energy ray-curable composition for optical members
JP2010155889A (en) Photocurable liquid resin composition and method for producing support by inkjet stereolithography
JP5556766B2 (en) Active energy ray-curable optical material composition
WO2017177796A1 (en) Applications of novel free radical photocuring system and composition thereof
JP4961744B2 (en) Active energy ray-curable optical material composition
JP2015129074A (en) Composition for reinforcing glass end face, glass plate material, and method of producing glass plate material
JP6812116B2 (en) Method for manufacturing resin composition for model material and stereolithography
JP5935337B2 (en) Liquid photocurable resin composition, optical member, image display device and method for producing the same
JP7070002B2 (en) Multibranched urethane compound-containing polymerizable composition
JP5769636B2 (en) Method for forming lens or lens array
JP5212368B2 (en) Active energy ray-curable composition and optical material
JP2007231138A (en) Active energy ray curable resin composition for hard coat
TW202039608A (en) Photocurable silicone resin composition, silicone resin molded body obtained by curing same and method for manufacturing said molded body
US11939416B2 (en) Composition for optical stereolithography, stereolithographic object, and method for producing the same
JP6965188B2 (en) Active energy ray-curable composition
JP2004323557A (en) Curable composition and cured product thereof
TWI364439B (en)
JP6911420B2 (en) Active energy ray-polymerizable composition
JP4261421B2 (en) Energy ray curable resin composition
JP2020100107A (en) Composition for optical three-dimensional modeling, three-dimensional object, and method for manufacturing thereof
JP2007186603A (en) Active energy ray-curing type resin composition for cast polymerization
JP4923344B2 (en) Active energy ray-curable composition containing an azo polymerization initiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6543974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250