JP6543946B2 - ブレ補正装置、カメラ及び電子機器 - Google Patents

ブレ補正装置、カメラ及び電子機器 Download PDF

Info

Publication number
JP6543946B2
JP6543946B2 JP2015021814A JP2015021814A JP6543946B2 JP 6543946 B2 JP6543946 B2 JP 6543946B2 JP 2015021814 A JP2015021814 A JP 2015021814A JP 2015021814 A JP2015021814 A JP 2015021814A JP 6543946 B2 JP6543946 B2 JP 6543946B2
Authority
JP
Japan
Prior art keywords
reference value
unit
motion vector
image
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015021814A
Other languages
English (en)
Other versions
JP2016145856A (ja
Inventor
英志 三家本
英志 三家本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2015021814A priority Critical patent/JP6543946B2/ja
Publication of JP2016145856A publication Critical patent/JP2016145856A/ja
Application granted granted Critical
Publication of JP6543946B2 publication Critical patent/JP6543946B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ブレ補正装置、カメラ及び電子機器に関するものである。
カメラの撮像画像を解析して得られる画像動き信号を取得し、画像動き信号に基づいて角速度センサ(ジャイロ)の基準値を修正する技術が提案されている(特許文献1参照)。
特許第4419466号公報
本発明の課題は、動きベクトルを用いた好適な像ブレ補正が可能なブレ補正装置、カメラ及び電子機器を提供することである。
本発明の一態様は、被写体の像を形成する光学系及び前記被写体の像を撮像する機器の少なくともいずれか一方の振れを検出するセンサと、前記センサの出力信号の基準値を演算する基準値演算部と、前記被写体の像を撮像した画像の動きベクトルを取得する動きベクトル取得部と、前記センサに関する情報を記憶する記憶部と、前記動きベクトルを用いて前記基準値演算部が演算した前記基準値を補正する基準値補正部と、前記基準値補正部により補正された前記基準値が、前記センサに関する情報に基づく範囲を超えるか否かを判定する判定部と、前記判定部の判定結果により、前記基準値演算部が演算した前記基準値及び前記基準値補正部により補正された前記基準値のいずれか一方と、前記センサの前記出力信号とを用いて像ブレを補正する制御をする制御部と、を有するブレ補正装置である。
また、本発明の他の一態様は、被写体の像を形成する光学系及び前記被写体の像を撮像する機器の少なくともいずれか一方の振れを検出するセンサと、前記センサの出力信号の基準値を演算する基準値演算部と、前記被写体の像を撮像した画像の動きベクトルを取得する動きベクトル取得部と、前記センサに関する情報を記憶する記憶部と、前記動きベクトルを用いて前記基準値演算部が演算した前記基準値を補正する基準値補正部と、前記基準値補正部により補正された前記基準値が、前記センサに関する情報に基づく範囲を超えるか否かを判定する判定部と、前記判定部の判定結果により、前記被写体の像に基づく画像から、像ブレを補正する制御部と、を有するブレ補正装置である。
また、本発明の別の一態様は、上記ブレ補正装置を有するカメラである。
また、本発明の更に別の一態様は、上記ブレ補正装置を有する電子機器である。
第1実施形態のブレ補正装置を備えるカメラを模式的に示す断面図である。 第1実施形態のブレ補正装置のブロック図である。 ワイド側以外の場合における動きベクトルの演算タイミングを説明する図である。 (a)から(c)は、レンズ鏡筒の焦点距離がワイドの場合に、レンズ側送受信部よりカメラ側送受信部に送られる、動きベクトル演算方法の情報を説明する図である。 第1実施形態のブレ補正装置の動作の流れを示したフローチャートである。 基準値演算部を説明する図であり、(a)は、基準値演算部、(b)は基準値演算部のLPFを示した図である。 基準値補正演算を示すフローチャートである。 基準値誤差と動きベクトルの関係図であり、(a)は基準値演算結果、(b)は動きベクトルである。 基準値誤差成分を動きベクトルにより正確に検出できた場合の補正後の基準値を示したグラフである。 誤検出された動きベクトルを示したグラフである。 被写体ブレ成分の動きベクトル情報を用いて基準値補正を行った場合の、基準値演算結果である。 本実施形態と比較形態とを比較したグラフである。 第2実施形態のブレ補正装置のブロック図である。
(第1実施形態)
以下、図面等を参照して、本発明の第1実施形態について説明する。
図1は、第1実施形態のブレ補正装置を備えるカメラシステム1を模式的に示す断面図である。
カメラシステム1は、デジタル一眼レフカメラ1Aと、このカメラ1Aに対して着脱自在に装着されるレンズ鏡筒1Bとを備えている。
(カメラ)
カメラ1Aは、カメラCPU(カメラ制御部)2A、撮像素子3、記録媒体13、カメラ記憶部14、信号処理回路15、AFセンサ16、レリーズスイッチ17、背面液晶18、ミラー19、シャッタ20、及びレンズ鏡筒1Bとの通信用のカメラ側送受信部21を備えている。
カメラCPU2Aは、カメラシステム1の全体の制御を行う中央処理装置である。
撮像素子3は、撮影レンズ(4,5,6)により形成された被写体像を撮像する素子であり、被写体光を露光して電気的な画像信号に変換し、信号処理回路15へ出力する。撮像素子3は、例えばCCD、CMOSなどの素子により構成されている。
記録媒体13は、撮像された画像データを記録するための媒体であり、SDカード、CFカード等が使用される。
カメラ記憶部14は、例えばEEPROMであり、角速度センサ12のゲイン値などの調整値情報、レンズ鏡筒固有の情報等を記憶し、CPU2A又はCPU2Bに出力する。
信号処理回路15は、撮像素子3からの出力を受けて、ノイズ処理やA/D変換等の処理を行う回路である。
AFセンサ16は、AF(自動焦点調節)を行うためのセンサであって、CCD等を用いることができる。
レリーズスイッチ17は、カメラシステム1の撮影操作を行う部材であって、シャッタ駆動のタイミング等を操作するスイッチである。
背面液晶(表示部)18は、カメラ1Aの背面に設けられ、撮像素子3で撮影した被写体像(再生画像、ライブビュー画像)や操作に関連した情報(メニュー)などを表示するカラー液晶ディスプレイである。
シャッタ20は、ミラー19の後方に配置されている。シャッタ20には、ミラー19が上へ回転して撮影可能状態となったときに、被写体光が入射される。シャッタ20は、レリーズスイッチ17などによる撮影指示に応じてシャッタ幕を走行させ、撮像素子3に入射する被写体光を制御する。
カメラ側送受信部21は、カメラ1Aにレンズ鏡筒1Bが装着されたときに、後述するレンズ側送受信部22と接触する。これにより、カメラ1Aとレンズ鏡筒1Bとの送受信が可能となる。カメラ1Aとレンズ鏡筒1Bとの送受信される情報については後述する。
(レンズ鏡筒)
レンズ鏡筒1Bは、ズームレンズ群4、フォーカスレンズ群5、ブレ補正レンズ群(光学素子)6、ズームレンズ群駆動機構7、フォーカスレンズ群駆動機構8、ブレ補正レンズ群駆動機構(光学素子駆動部)9、絞り10、絞り駆動機構11、角速度センサ12、レンズCPU(制御部)2B及びレンズ側送受信部22を備える。
レンズCPU2Bは、ズームレンズ群4、フォーカスレンズ群5、ブレ補正レンズ群6等のレンズ群の移動量演算を行う。ズームレンズ群駆動機構7、フォーカスレンズ群駆動機構8、ブレ補正レンズ群駆動機構9、及び絞り駆動機構11に移動量を指示してズームレンズ群4、フォーカスレンズ群5、ブレ補正レンズ群6を移動させる。
ズームレンズ群4は、ズームレンズ群駆動機構7により駆動され、光軸方向に沿って移動することにより、像の倍率を連続的に変化させるレンズ群である。
フォーカスレンズ群5は、フォーカスレンズ群駆動機構8により駆動され、光軸方向に移動して、焦点を合わせるレンズ群である。
ブレ補正レンズ群6(光学素子)は、VCM等のブレ補正レンズ群駆動機構9により光学的にブレ補正駆動され、光軸に垂直な面上で可動なレンズ群である。
絞り10は、絞り駆動機構11に駆動され、撮影レンズ(4,5,6)を通過する被写体光の光量を制御する機構である。
角速度センサ12は、レンズ鏡筒1Bに生じる振れの角速度を検出するセンサである。
レンズ側送受信部22は、上述したように、カメラ1Aにレンズ鏡筒1Bが装着されると、カメラ側送受信部21と接触し、カメラ1Aとレンズ鏡筒1Bとの送受信が可能なる。
(ブレ補正装置)
図2は、本実施形態のブレ補正装置100を説明するブロック図である。
ブレ補正装置100は、カメラCPU2A、レンズCPU2B、角速度センサ12、ブレ補正レンズ群駆動機構(レンズ駆動部)9、レンズ位置検出部23、ブレ補正レンズ群6、カメラ側送受信部21及びレンズ側送受信部22を備える。
カメラCPU2Aは、信号処理部40及び動きベクトル演算部41を備える。
レンズCPU2Bは、増幅部31と、第1A/D変換部32、第2A/D変換部33、基準値演算部34、基準値補正量演算部35、積分部を内部に含む目標位置演算部36、センタバイアス演算部37、センタバイアス除去部38、駆動量演算部39、基準値判定部44、レンズ記憶部45を備える。
角速度センサ12は、レンズ鏡筒1BのX軸回り(Pitch)、Y軸回り(Yaw)、Z軸回り(Roll)の角速度を検出する振動ジャイロ等のセンサである。
増幅部31は、角速度センサ12の出力を増幅する。
第1A/D変換部32は、増幅部31の出力をA/D変換する。
基準値演算部34は、角速度センサ12から得られた振動検出信号(第1A/D変換部32の出力)の基準値を演算する。角速度の基準値とは、例えば、カメラシステム1(カメラ1A、レンズ鏡筒1B)が静止しているときに角速度センサ12から出力される振動検出信号である。基準値演算部34は、例えば、角速度センサ12の出力から所定の高周波成分を低減するローパスフィルタの出力に基づいて基準値を求めることができる。
そして、基準値演算部34において演算された基準値を、第1A/D変換部32の出力から減算部43において減算する。
目標位置演算部36は、減算部43において基準値が減算された後の角速度センサ12の出力を基に、ブレ補正レンズ群6の目標位置を演算する。
センタバイアス演算部37は、目標位置演算部36によって算出されたブレ補正レンズ群6の目標位置に基づいて、ブレ補正レンズ群6を、その可動範囲の中心に向かって移動させるための向心力をバイアス量として演算する。
そして、ブレ補正レンズ群6の目標位置から、算出したバイアス量を減算することによりブレ補正レンズ群6の制御位置を算出する。
このようにセンタリングバイアス処理を行うことで、ブレ補正レンズ群6がハードリミットに衝突することを有効に防止することができ、さらには、撮影画像の見栄えを向上させることができる。
駆動量演算部39は、目標位置演算部36からの目標位置と、レンズ位置検出部23により検出され、第2A/D変換部33によりA/D変換された値から求められたブレ補正レンズ群6の現在位置から、ブレ補正レンズ群駆動機構9の駆動量を演算する。
撮像素子3は、撮影光学系の予定焦点面に設けられている。撮像素子3はCCDやCMOSなどのデバイスから構成され、入力される被写体の像を光電変換してアナログ画像信号を生成する。
信号処理部40は、撮像素子3により生成された画像信号について、所定の処理を行なう。
動きベクトル演算部41は、信号処理部40により処理された撮影された画像から、像の動き(動き方向、動き量)を示す動きベクトル(第1動きベクトル、MV1)を演算する。
具体的には、動きベクトル演算部41は、撮像素子3により撮像された連続する2つのフレーム画像データに含まれる輝度情報を比較することで、像の動き方向及び動き量を検出し、第1動きベクトルを演算する。なお、第1動きベクトルは、例えば、ある第1時刻に撮像されたフレーム画像データと、第1時刻よりも後の第2時刻に撮像されたフレーム画像データとを比較することで演算することができ、撮像された連続する2つのフレーム画像データに含まれる輝度情報を比較することで演算するものには限定されない。
センタバイアス除去部38は、動きベクトル演算部41の出力である第1動きベクトル(MV1)から、センタバイアス演算部37において演算された(ブレ補正レンズ群6の目標位置から減算された)バイアス量を減算する。
基準値補正量演算部35は、センタバイアス除去部38においてセンタバイアス量が除去された第2動きベクトル(MV2)をもとに、基準値補正量を演算する。
基準値判定部44は、基準値補正量を用いて基準値が補正された場合に、補正後の基準値(基準値電圧、ヌル電圧)がリミット範囲(リミット電圧範囲)を超える否かを判定する。
基準値のリミット範囲は、例えば、角速度センサ12の製造メーカが設定するものであり、基準値のリミット範囲は、EEPROM等であるレンズ記憶部45に記憶されている。基準値のリミット範囲は、例えば、角速度センサごとに保証されている最大振れ幅(振れ幅の範囲の最大値及び最大値、又は絶対値)である。例えば、角速度センサ12は、角速度センサの基準値が基準値リミット範囲を超えることがないように設計されている。リミット範囲は、例えば出荷時において±1dpsである。
減算部(基準値補正部)42は、基準値判定部44の判定結果により、基準値演算部34の出力が、基準値のリミット範囲の範囲内にある場合、基準値演算部34の出力から、基準値補正量演算部35により求めた基準値補正量を減算する。
また減算部(基準値補正部)42は、基準値演算部34の出力が、基準値のリミット範囲の範囲外の場合、基準値演算部34の出力から、基準値補正量演算部35により求めた基準値補正量の減算を行わない。
(カメラ側送受信部とレンズ側送受信部との間の送受信情報)
次に、カメラ側送受信部21とレンズ側送受信部22との間で送受信される情報について説明する。
カメラ側送受信部21よりレンズ側送受信部22に送られる情報は、例えば、動きベクトル情報やカメラ情報である。
動きベクトル情報は、第1動きベクトルMV1を含み、それはX軸方向、Y軸方向、Roll方向の大きさ等で表される。さらに動きベクトル情報は、検出遅れ時間、動きベクトルの有効/無効フラグ(X軸方向、Y軸方向、Roll方向)、動きベクトルを演算したエンジンのバージョン情報等も含む。
バージョン情報とは、例えば、動きベクトルを演算するためのソフトウエアの改定の回数を表すものである。例えば、動きベクトルが第1カメラに内蔵された第1エンジンの第1ソフトウエアにより演算された場合、動きベクトル情報は、第1動きベクトルMV1、検出遅れ時間、動きベクトルの有効/無効フラグ、第1バージョンであることを示す情報(バージョン情報)等が含まれる。同様に、動きベクトルが第2カメラに内蔵された第2エンジンの第2ソフトウエア(第1ソフトウエアを改定したソフトウエア)により演算された場合、動きベクトル情報は、第1動きベクトルMV1、検出遅れ時間、動きベクトルの有効/無効フラグ、第2バージョンであることを示す情報等が含まれる。バージョン情報は、例えば、1、2、3・・・というように、バージョンが上がるほど値が大きくなるものでもよいし、a,b、c・・・というようにアルファベット順に変化するものでもよいし、8d5、feh、2lu・・というような任意の数字、文字列等であってもよい。
例えば、動きベクトルMV1の定義、動きベクトルMV1の演算方法(動きベクトルMV1を演算する数式等)、動きベクトルMV1の更新周期、動きベクトルMV1の精度等は、カメラに内蔵されたエンジンのソフトウエアのバージョンに依存して変化する場合がある。
動きベクトルMV1の内容は、エンジンのソフトウエアのバージョンに依存して変化する場合があるので、仮に、レンズCPU2Bがバージョンがわからない動きベクトルMV1(バージョン情報が関連付けられていない動きベクトルMV1)を用いてブレ補正制御をした場合、動きベクトルMV1を使用しない場合よりもブレ補正性能が劣化するおそれがある。
本実施形態によれば、レンズ鏡筒1Bは、第1動きベクトルMV1に関連付けてバージョン情報を受信するので、レンズCPU2Bはバージョン情報に適したブレ補正演算を行うことができ、好適なブレ補正を行うことができる。
また、本実施形態において、レンズCPU2Bは、第1動きベクトルMV1と、バージョン情報とを用いてブレ補正制御を行うことが好ましい。例えば、レンズCPU2Bは、第1動きベクトルMV1に関係付けられたバージョン情報があるか否かを判断する判断部(図示せず)を有し、第1動きベクトルMV1に関係付けられたバージョン情報がない場合、第1動きベクトルMV1を使用しないで像ブレ補正を行い、第1動きベクトルMV1に関係付けられたバージョン情報がある場合、第1動きベクトルMV1を使用して像ブレ補正を行うことが好ましい。レンズCPU2Bに不適切な第1動きベクトルMV1を使用すると動きベクトルMV1を使用しない場合よりもブレ補正性能が劣化するおそれがあるからである。
また、本実施形態において、レンズCPU2Bは、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切であるか否かを判断する判断部を有し、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切でない場合(例えば、バージョンが古すぎる場合や、バージョンが新しすぎてレンズCPU2Bでは処理できない場合など)、第1動きベクトルMV1を使用しないで像ブレ補正を行い、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切である場合、第1動きベクトルMV1を使用して像ブレ補正を行うことが好ましい。レンズCPU2Bに不適切な第1動きベクトルMV1を使用すると動きベクトルMV1を使用しない場合よりもブレ補正性能が劣化するおそれがあるからである。
また、本実施形態において、レンズCPU2Bは、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切な度合いを判断する判断部を有し、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切な度合いが低いほど第1動きベクトルMV1を使用しない像ブレ補正に近い特性となり、第1動きベクトルMV1に関係付けられたバージョン情報がレンズCPU2Bに適切な度合いが高いほど第1動きベクトルMV1を使用した上述の像ブレ補正に近い特性になるように像ブレ補正を行うことが好ましい。例えば、レンズCPU2Bで処理できるバージョンであってバージョンが新しいほど適切な度合いが高いと判断することができる。
また、カメラ情報は、パンニング判定度、チルティング判定度、フレームレート、露光時間情報、動画撮影中であることを示す情報、表示部にメニューを表示中であることを示す情報、カメラの電源がオンであることを示す情報、カメラの電源がオフであることを示す情報、カメラがスリープ状態であることを示す情報等である。
例えば、カメラ側送受信部21は、カメラ1Aが動画撮影中の場合、動きベクトル情報をレンズ側送受信部22に送信しない。また、背面液晶18での画像や文字の表示中も、動きベクトル情報をレンズ側送受信部22に送信しない。これらは、CPUの負荷を低減させる、もしくは電力消費量を抑えるためである。
また、カメラ1Aが動画撮影中の場合、カメラ側送受信部21が動きベクトル情報を送信しても、レンズ側送受信部22がカメラ側送受信部21から動きベクトル情報を受信しないものであってもよい。また、背面液晶18での画像や文字の表示中、カメラ側送受信部21が動きベクトル情報を送信しても、レンズ側送受信部22がカメラ側送受信部21からの動きベクトル情報を受信しないものであってもよい。
例えば、カメラ側送受信部21は、カメラ1Aが動画撮影中の場合や、背面液晶18での画像や文字の表示中の場合等に、カメラ情報(動画撮影中であることを示す情報や、表示部にメニューを表示中であることを示す情報)をレンズ側送受信部22に送信することができる。レンズ側送受信部22がカメラ情報に基づいてカメラ1Aの状態を判断し、動きベクトル情報を受信しないものであってもよい。
一方、レンズ側送受信部22よりカメラ側送受信部21には、焦点距離情報や、その焦点距離情報に基づく動きベクトル演算方法の指示情報が送られる。
動きベクトルの演算方法の指示情報とは、例えば、動きベクトル演算時のフレーム間隔である。図3は通常の場合(後述するワイド側以外の場合)における、動きベクトルの演算タイミングを説明する図である。図示するように、n−1番目のフレームの画像と、その次のn番目のフレームの画像とから動きベクトルが演算され、図示する時刻t6においてカメラ側送受信部21からレンズ側送受信部22へ送信される。
なお、時刻t1はn−1番目のフレームの画像の露光が開始される時間である。時刻t2はn−1番目のフレーム内の画像の検出時刻の平均時間である。時刻t4はn番目のフレームの画像の露光が開始される時間である。時刻t5はn番目のフレーム内の画像の検出時刻の平均時間である。時刻t6はn−1の画像とnの画像とから演算された動きベクトルがカメラ側送受信部21からレンズ側送受信部22に送信されるタイミングであるが、この動きベクトルの発生時刻は、t5とt2との間のt3と考えるのが妥当で、t6−t3の検出遅れ時間が生じている。
図4(a)から(c)は、レンズ鏡筒1Bの焦点距離がワイドの場合に、レンズ側送受信部22よりカメラ側送受信部21に送られる、動きベクトル演算方法の指示情報を説明する図である。
ワイド(広角)側では像面ブレ量が小さい。このため、テレ(望遠)側と同様に連続するフレーム間で動きベクトルを演算すると、動きベクトルの信頼度が低下する可能性がある。このため、本実施形態では、ワイド側の場合、動きベクトル演算時のフレーム間隔を長くする演算を行うことで、動きベクトル検出精度を向上させる。
この演算方法は、レンズCPU2Bで決定され、レンズ側送受信部22、カメラ側送受信部21を介してカメラCPU2Aの動きベクトル演算部41に指示される。
図4(a)は、この動きベクトル演算方法の第1の例を説明する図である。
第1の例では、フレーム間隔を長くするために、例えばn−3番目のフレームの画像と、その2つ先のn−1番目のフレームの画像とから動きベクトルを演算する。そして、n−2番目のフレームの画像と、その2つ先のn番目のフレームの画像とから、次の動きベクトルを演算する。
図4(b)は、動きベクトル演算方法の第2の例を説明する図である。
第2の例では、フレーム間隔をさらに長くするために、例えばn−6番目のフレームの画像と、その4つ先のn−2番目のフレームの画像とから動きベクトルを演算する。
そして、n−5番目のフレームの画像と、その4つ先のn−1番目のフレームの画像とから、次の動きベクトルを演算する。さらに、n−4番目のフレームの画像と、その4つ先のn番目のフレームの画像とから、さらに次の動きベクトルを演算する。
図4(c)は、動きベクトル演算方法の第3の例を説明する図である。
第3の例では、例えばn−4番目のフレームの画像と、その2つ先のn−2番目のフレームの画像とから動きベクトルを演算する。そして、n−3番目のフレームの画像、次はn−2番目のフレームの画像と、その2つ先のn番目のフレームの画像とから、次の動きベクトルを演算する。
このように本実施形態では、ワイド側の場合、動きベクトル演算時のフレーム間隔を長くすることで、動きベクトル検出精度を向上させることができる。
動きベクトルの演算方法の指示情報とは、例えば、後述するレンズ鏡筒1Bに設定された通信バージョンであってもよい。カメラCPU2Aは、レンズ鏡筒1Bに設定された通信バージョンに基づいてレンズ鏡筒1Bのブレ補正性能を判断し、レンズ鏡筒1Bのブレ補正性能に適した動きベクトル情報(動きベクトルMV1、バージョン情報等)を送信することができる。
例えば、カメラ1Aの通信バージョンが7であり、レンズ鏡筒1Bの通信バージョンが6である場合、カメラ1Aとレンズ鏡筒1Bとの通信には通信バージョン6が使用される。例えば、カメラ1Aの電源がオンされた後、カメラ1Aにレンズ鏡筒1Bが装着された後等に、レンズCPU2BからカメラCPU2Aに動きベクトルの演算方法の指示情報(レンズ鏡筒1Bに設定された通信バージョン6)が送信される。カメラCPU2Aは、通信バージョン6という情報に基づいてレンズ鏡筒1Bのブレ補正性能を判断し、レンズ鏡筒1Bのブレ補正性能に適した動きベクトル情報(動きベクトルMV1、バージョン情報等)を送信することができる。
(ブレ補正装置の動作)
次に、本実施形態のブレ補正装置100の動作の流れについて説明する。
図5は、本実施形態のブレ補正装置100の動作の流れを示したフローチャートである。
カメラシステム1の電源がONにされた後、ブレ補正装置100は光学防振の為の演算を開始する。カメラによっては、半押しスイッチが押された場合、ブレ補正装置100が光学防振の為の演算を開始する(ステップS001)。
角速度センサ12の出力を、増幅部31で増幅した後、第1A/D変換部32によりA/D変換する(ステップS002)。
基準値演算部34は、角速度センサ12の出力のA/D変換後の信号を基に、演算上の角速度の基準値(ゼロdeg/s相当の値)を算出する。角速度の基準値は、温度特性や、起動直後のドリフト特性等により変化するため、例えば、工場出荷時における角速度センサ12の静止時出力を基準値に用いることはできない。
基準値を算出方法について、所定時間の移動平均を演算する方法や、LPF処理により演算する方法が知られている。本実施形態では、LPF処理による基準値演算を用いることとする。
図6は基準値演算部34を説明する図であり、図6(a)は、基準値演算部34(HPF)、図6(b)は基準値演算部34のLPF34aを示した図である。
LPF34のカットオフ周波数fcは、0.1[Hz]程度の低い周波数に設定するのが一般的である。これは、手ブレは1〜10[Hz程度の周波数が支配的であることに起因する。0.1[Hz]のfcであれば、手ブレ成分に与える影響は少なく、良好なブレ補正を行うことができる。
しかしながら、実際の撮影時には、構図の微調整(パンニング検出できないレベルの)等、低周波の動きが加わるため、ω0演算結果に誤差を持ってしまうこともある。また、fcが低い(時定数が大きい)為に、一端誤差が大きくなってしまった場合、真値に収束するまでに時間を要してしまうという課題がある。本実施形態は、このω0の誤差を補正するものである。
図5に戻り、第1動きベクトルMV1の情報が更新された場合(S004,YES)、S005へ進み、更新されていない場合(S004,NO)は、S006へ進む。なお、このS004〜S005の説明については後に詳述する。
また、露光中は第1動きベクトルMV1の情報が得られないため、このステップは、露光直前までの実施となる。
基準値減算後の角速度センサ12の出力を積算し、焦点距離、被写体距離、撮影倍率、ブレ補正レンズ特性情報を基に、ブレ補正レンズ群6の目標位置を演算する(S006)。
ブレ補正レンズ群6が可動端へ到達することを防ぐため、センタバイアス処理を行う(S007)。
センタバイアス処理の方法については、目標位置情報に応じてバイアス量を設定する方法や、HPF処理、不完全積分処理(S006にて)等、種々あるが、ここでは方法は問わない。
センタバイアス成分を加味した目標位置情報と、ブレ補正レンズ位置情報の差分から、レンズ駆動量を演算する(S008)。
ブレ補正レンズ群6を目標位置まで駆動させ(S009)、S002へ戻る。
次に、基準値補正(S004〜S005、S011〜S016)について説明する。図7は、基準値補正演算を示すフローチャートである。
上述のように、第1動きベクトルMV1の情報が更新された場合(S004)、S005へ進む。更新されていない場合は、S006へ進む。
光学ブレ補正の制御周期は、MV1の更新周期に対して十分早い為、MV1が更新されるまでは、通常の防振と同様の演算処理を行う。ここでは、光学ブレ補正の制御周期1[ms]、第1動きベクトルMV1の更新周期:33[ms](=30[fps])とする。第1動きベクトルMV1の演算方法については、公知技術を用いる。
受信した第1動きベクトルMV1を全て合計する(S011)。
S007にて演算したセンタバイアス成分を、第1動きベクトルMV1と同一スケールに換算する(S012)。
換算方法は、焦点距離、被写体距離、撮影倍率、第1動きベクトルMV1の分解能情報を基に演算する。

Bias_MV=Bias_θ*f1+β/MV_pitch
Bias_MV:センタバイアス成分(動きベクトル同一スケール)
Bias_θ:センタバイアス成分(角度)
f:焦点距離
β:撮影倍率
MV_pitch:MV1ピッチサイズ
また、第1動きベクトルMV1は検出するまでに遅れ時間が発生するため、センタバイアス成分も、第1動きベクトルMV1と同等の遅れ時間を持たせることが好ましい。例えば、30[fps]で、3フレーム分の遅れ時間を持っている場合、約100[ms]遅れることになる。このため、100[ms]前のバイアス情報を用いることで、より正確に第1動きベクトルMV1に含まれる、センタバイアス成分が演算できる。
S012で演算したセンタバイアス成分を第1動きベクトルMV1から減算する(S013)。これにより、基準値誤差による第2動きベクトルMV2の情報を取得することができる。
最新の第2動きベクトルMV2(n)と1フレーム前の第2動きベクトルMV2(n−1)の差分:MV_diffを取得(S014)。
MV_diffを基に、基準値を補正する量を設定する。基準値は、以下の考えにより、補正量を設定する(S015)。

MV_diff>0:ω0_comp=−ω0_comp_def
MV_diff<0:ω0_comp=+ω0_comp_def
MV_diff=0:ω0_comp=0

ω0_comp :基準値補正量
ω0_comp_def:基準値補正常数
S016において、現状のω0とω0_compとから、補正後のω0値を算出する。この結果と基準値電圧調整値を比較し、ω0(基準値)<基準値リミット範囲(基準値リミット電圧範囲)の関係にあるか否かを判定する。
この関係を満たしていれば、算出された動きベクトル情報が正しいと判定し、S017へ進む。
ここで、S015にて演算したω0_compを、S003にて演算した基準値から減算(S017)。具体的には、図6(b)中の、V4’の値を補正した場合、動きベクトルを用いて基準値を補正することは、露光準備期間(半押し防振中、動画撮影時)のみであり、露光中は通常の基準値演算を実施する。
本実施形態によると、露光準備期間のみの基準値補正であるが、露光直前の基準値が、より真値に近い状態で露光を開始することが可能となるため、露光中においても、良好なブレ補正が可能となる。
図8は基準値誤差と動きベクトルの関係図である。(a)は基準値演算結果であり、(b)は動きベクトルである。
図8は、基準値誤差と、検出される動きベクトル量(バイアス成分除去後)とを表す。動きベクトルは、検出遅れ時間を有する為、遅れて検出されている。ここでは、検出遅れ時間:T1=1フレームとしている。
ここで、まず、本実施形態の理解容易のため、比較形態について説明する。比較形態では、図8(b)の動きベクトル情報を基に、基準値を補正する。以下、補正後の基準値を示す。
比較形態は、図7のフローチャートのステップS016を含まず、ステップS016において基準値補正量を演算すると、補正後の基準値の大きさによらず、その基準値補正量を用いて基準値を演算する。
図9に示すように、基準値誤差成分を動きベクトルにより正確に検出できた場合、基準値誤差を低減することが可能となり、防振性能の向上につながる。
しかし、検出された動きベクトル情報は、撮影シーンによっては、被写体ブレ成分と基準値誤差成分の切り分けを行うことができず、誤った情報を検出してしまう場合もある。図10は、誤検出された動きベクトル(被写体ブレ成分)を示したグラフである。
また、図11は、被写体ブレ成分の動きベクトル情報を用いて基準値補正を行った場合の、基準値演算結果である。図11に示すように、被写体ブレ成分等、誤った動きベクトル情報が送られた場合、基準値誤差をかえって増大させてしまうことになる。
これを防ぐ為には、動きベクトル検出部において、検出された動きベクトルが、手ブレ成分なのか、被写体ブレ成分なのか、切り分ける必要があるが、撮影シーンによっては、判別ができず、誤検出してしまう場合もある。
近年、角速度センサの性能も向上し、基準値電圧の取り得る範囲が、極小さい(手ブレ成分以下)のセンサも提案されている。そこで、この情報を用いることで、動きベクトル誤検出時の基準値誤差を、抑制させることが可能となる。
本実施形態においては、図7のステップS016において、動きベクトルにより補正した基準値情報と、角速度センサの基準値リミット範囲とを比較し、補正後の基準値が基準値リミット範囲を超える場合には、得られた動きベクトル情報に誤りがあると判定し、基準値の補正を行わないこととする。
すなわち、上述したようにS016において、現状のω0とω0_compとから、補正後のω0値を算出する。この結果と基準値電圧調整値を比較し、ω0(基準値)<基準値リミット範囲の関係にあるか否かを判定する。
この関係を満たしていれば、算出された動きベクトル情報が正しいと判定し、S017へ進む。この関係を満たしていない場合には、動きベクトル誤検出(被写体ブレ成分等)と判定し、基準値補正処理を行わず、S006へ進む。
図12は、本実施形態と比較形態とを比較したグラフである。
本実施形態によると、動きベクトル情報を用いて基準値を補正する際に、角速度センサの基準値リミット範囲を記憶しておき、補正後の基準値が基準値電圧調整範囲内に収まっているか否かの判定部を設ける。
これにより図12に示すように、動きベクトル情報が正しい場合(手ブレ成分検出時)には、基準値誤差を低減させ、動きベクトル誤検出(被写体ブレ成分検出)時においても、基準値誤差の増大を抑制することが可能なブレ補正システムを実現することができる。
以上、本実施形態によると、判定部44の判定結果を基に、動きベクトルによる基準値補正処理を変更するので、動きベクトル誤検出による、光学防振への悪影響を防止することが可能となる。
基準値補正部42は、判定部44の判定結果において、補正後の基準値がリミット範囲内となる場合には、基準値の補正を実施し、補正後の基準値がリミット範囲外となる場合には、基準値の補正を実施しない。
基準値がリミット範囲外の場合は、動きベクトル誤検出(被写体ブレ成分検出)時と考えられる。この場合、基準値を補正しないので基準値誤差の増大を抑制することが可能なブレ補正システムを実現することができる。
一方、基準値がリミット範囲内の場合は、動きベクトル情報が正しい場合(手ブレ成分検出時)と考えられる。この場合、基準値を補正するので、基準値誤差を低減させることができる。
本実施形態によると、動きベクトル情報はカメラ側送受信部21からレンズ側送受信部22に送信される。したがって、カメラ1Aとレンズ鏡筒1Bとが別体な本実施形態の場合であっても、レンズ鏡筒1Bは動きベクトル情報を受信することができる。
カメラ1Aにおいて撮像部3による動画撮影中又は表示部18にメニューを表示中の場合、カメラ側送受信部21とレンズ側送受信部22との間で、動きベクトル情報の送受信が行われないので、電力消費を抑えることができる。
動きベクトル情報に、動きベクトル情報演算部41のバージョン情報も含めた場合、レンズCPU2Bにおいて動きベクトルの精度を把握することができ、各部において適切な演算を行うことができる。
レンズ側送受信部22は、カメラ1Aに対して動きベクトル演算部41が行う演算方法を送信するので、精度のよい動きベクトル情報を得ることができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。図13は、第1実施形態のブレ補正装置200のブロック図である。第2実施形態のブレ補正装置200が第1実施形態のブレ補正装置100と異なる点は、基準値判定部44の判定結果に応じて、カメラCPU2A内の信号処理部40で行う電子ブレ補正処理方法が変更される点である。第2実施形態において、第1実施形態と同様の部分には同一の符号を付し、その説明を省略する。
第2実施形態では、基準値判定部44における、補正後の基準値が基準値リミット範囲内であるか否かの判定結果情報は、レンズ側送受信部22に送信される。
そして、レンズ側送受信部22からカメラ側送受信部21を介して信号処理部40にその判定結果が送られる。
信号処理部40は、電子ブレ補正処理部の機能を有しており、その判定結果に応じて、電子ブレ補正を行うかどうか決定する。
電子ブレ補正は、動きベクトル演算部41において演算された動きベクトル量に応じて、撮像素子3に取り込まれた画像の切り取り位置を変えて表示部18に表示する電子式の切り出し防振処理である。
本実施形態では、補正後の基準値が、基準値リミット範囲内の場合、信号処理部40は、動きベクトルが手ブレ成分と判定し、電子ブレ補正処理を行う。
また、補正後の基準値が、基準値リミット範囲を超える場合には、検出した動きベクトルが被写体ブレ成分等、誤検出したと判断し、この場合には電子ブレ補正を実施しない。
第2実施形態によると、第1実施形態と同様の効果に加え、補正後の基準値が、基準値リミット範囲を超える場合には、検出した動きベクトルが被写体ブレ成分等、誤検出したと判断し、この場合には電子ブレ補正を実施しないので、表示画像の劣化を防止することができる。
(第3実施形態)
次に、本発明の第3実施形態について説明する。第3実施形態において、第1実施形態又は第2実施形態と同様の部分には同一の符号を付し、その説明を省略する。
第3実施形態において、カメラ1Aとレンズ鏡筒1Bとの通信には通信バージョンが定められている。本実施形態においては、通信バージョンの数が大きくなるほど高度な通信を行うことができる。カメラ1A、及び、レンズ鏡筒1Bは、工場出荷時に所定の通信バージョンが設定されている。なお、カメラメーカから供給された通信バージョンのアップデートをユーザが行った場合、通信バージョンをアップさせることができる。
カメラ1Aとレンズ鏡筒1Bとの通信は、カメラ1Aの通信バージョンとレンズ鏡筒1Bの通信バージョンとの共通する最も上位のバージョンが選択される。
例えば、カメラ1Aの通信バージョンが5であり、レンズ鏡筒1Bの通信バージョンが8である場合、カメラ1Aとレンズ鏡筒1Bとの通信には通信バージョン5が使用される。同様に、カメラ1Aの通信バージョンが7であり、レンズ鏡筒1Bの通信バージョンが2である場合、カメラ1Aとレンズ鏡筒1Bとの通信には通信バージョン2が使用される。
本実施形態において、カメラCPU2Aは、レンズ鏡筒1Bが対応できる通信バージョンが所定のバージョン(例えば、バージョン5以上である場合)であり、かつ、レンズ鏡筒1Bから要求信号があったときには、上述した動きベクトル情報(第1動きベクトルMV1、バージョン情報等を含む)を送信する。レンズCPU2Bにより、所定のバージョン要件を満たし、かつ、レンズ鏡筒1Bから要求信号があるので、レンズ鏡筒1Bにより動きベクトル情報を用いたブレ補正制御が可能であると思われるからである。
一方、カメラCPU2Aは、レンズ鏡筒1Bが対応できる通信バージョンが所定のバージョン(例えば、バージョン5未満である場合)である場合、又は、レンズ鏡筒1Bから要求信号がない場合には、上述した動きベクトル情報(第1動きベクトルMV1、バージョン情報等を含む)を送信しない。所定のバージョン要件を満たさない場合、又は、レンズ鏡筒1Bから要求信号がない場合の少なくとも一方であるので、レンズ鏡筒1Bにより動きベクトル情報を用いたブレ補正制御が不可能であると思われるからである。この場合、動きベクトル情報を送信しない分だけ通信の効率化(通信データ容量の削減)が可能となる。また、レンズ鏡筒1Bが所定のバージョン要件を満たさない場合において、レンズ鏡筒1Bが動きベクトル情報を用いた好ましくない制御(例えば、動きベクトルMV1を使用しない場合と比較してブレ補正性能が劣化したブレ補正制御)がされることを回避するためである。
レンズ鏡筒1Bからの要求信号は、例えば、カメラ1Aの電源がオンされた後、レンズ鏡筒1Bがブレ補正を開始するとき(例えば、撮影者により撮影準備操作(例えば、レリーズボタンの半押し)がされた後、撮影者により像ブレ補正を開始する指示(例えば、ブレ補正を禁止するか否かを操作するスイッチをブレ補正を禁止しない状態する操作)がされた後)等にレンズ鏡筒1Bからカメラ1Aに送信される。
(変形形態)
以上、説明した実施形態に限定されることなく、以下に示すような種々の変形や変更が可能であり、それらも本発明の範囲内である。
(1)上述の実施形態では、レンズ鏡筒がカメラに対して着脱可能な形態について説明したが、これに限定されない。例えば、レンズ鏡筒とカメラとが一体となったいわゆるコンパクトカメラでもよい。また、カメラ内にミラーがある形態について説明したが、これに限定されず、ミラーレス構造のカメラであってもよい。さらに、カメラに限らず、携帯電話、他の携帯情報端末等であってもよい。
(2)上述の実施形態では、レンズ鏡筒の焦点距離が広角の場合、複数フレームごとの画像より動きベクトルを用いる例について説明したが、これに限らず、カメラ1Aは、レンズ鏡筒1Bより焦点距離が広角側であるという情報を受信した場合、カメラ側送受信部21からレンズ側送受信部22への動きベクトル情報等の送信を中止するようにしても良い。
なお、実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態によって限定されることはない。
(3)上述の第2実施形態では、基準値判定部44の判定結果に応じて、カメラCPU2A内の信号処理部40で行う電子ブレ補正処理方法が変更される実施例を説明したが、例えば、カメラ1Aが像ブレを補正するために駆動可能な撮像素子3を有し、基準値判定部44の判定結果に応じて撮像素子3の駆動制御を行うものであってもよい。また、ブレ補正レンズを用いた像ブレを補正、カメラCPU2A内の信号処理部40で行う電子ブレ補正、駆動可能な撮像素子3を用いた像ブレを補正のうち少なくとも2つ以上のブレを補正を行うものであってもよい。
(4)上述の実施形態において、基準値補正部42は、基準値演算部34の出力が基準値のリミット範囲の範囲内にある場合、基準値演算部34の出力から基準値補正量演算部35により求めた基準値補正量を減算し、基準値演算部34の出力が基準値のリミット範囲の範囲外の場合、基準値演算部34の出力から基準値補正量演算部35により求めた基準値補正量の減算を行わない実施例を説明したがこれに限定されるものではない。
例えば、基準値補正部42は、基準値演算部34の出力から基準値補正量演算部35により求めた基準値補正量を減算したものに第1の重み付けをしたものと、基準値演算部34の出力から基準値補正量演算部35により求めた基準値補正量の減算しないものに第2の重み付けをしたものとを平均してもよい。この場合、基準値演算部34の出力が基準値のリミット範囲の範囲内にあるときは第1の重み付けを第2の重み付けよりも大きくし、基準値演算部34の出力が基準値のリミット範囲の範囲外にあるときは第2の重み付けを第1の重み付けよりも大きくすることが好ましい。
1:カメラシステム1A:カメラ、1B:レンズ鏡筒1B:カメラCPU、2B:レンズCPU、3:撮像素子、4:ズームレンズ群、5:フォーカスレンズ群、6:ブレ補正レンズ群、7:ズームレンズ群駆動機構、8:フォーカスレンズ群駆動機構、9:ブレ補正レンズ群駆動機構、12:角速度センサ、21:レンズ位置検出部、31:増幅部、32:第1A/D変換部、33:第2A/D変換部、34:基準値演算部、35:センタバイアス除去部38:基準値補正量演算部、36:目標位置演算部、37:センタバイアス演算部、38:センタバイアス除去部、39:駆動量演算部、40:信号処理部、41:ベクトル演算部、42:基準値補正部、43:減算部、44:基準値判定部、45:レンズ記憶部、100,200:ブレ補正装置

Claims (9)

  1. 被写体の像を形成する光学系及び前記被写体の像を撮像する機器の少なくともいずれか一方の振れを検出するセンサと、
    記センサの出力信号基準値を演算する基準値演算部と、
    前記被写体の像を撮像した画像の動きベクトルを取得する動きベクトル取得部と、
    前記センサに関する情報を記憶する記憶部と、
    前記動きベクトルを用いて前記基準値演算部が演算した前記基準値を補正する基準値補正部と、
    前記基準値補正部により補正された前記基準値が、前記センサに関する情報に基づく範囲を超える否かを判定する判定部と、
    前記判定部の判定結果により、前記基準値演算部が演算した前記基準値及び前記基準値補正部により補正された前記基準値のいずれか一方と、前記センサの前記出力信号とを用いて像ブレを補正する制御をする制御部と、
    を有するブレ補正装置。
  2. 請求項1に記載のブレ補正装置において、
    前記記憶部に記憶される前記センサに関する情報は、前記センサごとに定められた前記基準値の取りうる範囲の情報である、ブレ補正装置。
  3. 請求項1又は請求項2に記載のブレ補正装置において、
    前記制御部は、前記基準値補正部により補正された前記基準値が前記範囲を超えないと判定されると、前記基準値補正部により補正された前記基準値を用いて像ブレを補正する制御をする、ブレ補正装置。
  4. 請求項1から請求項3までのいずれか一項に記載のブレ補正装置において、
    前記制御部は、前記基準値補正部により補正された前記基準値が前記範囲を超えると判定されると、前記基準値演算部が演算した前記基準値を前記基準値補正部により補正することなく用いて像ブレを補正する制御をする、ブレ補正装置。
  5. 請求項1から請求項4までのいずれか一項に記載のブレ補正装置において、
    前記光学系の少なくとも一部であり、前記光学系の光軸に交わる方向に駆動可能なブレ補正レンズと、
    前記ブレ補正レンズを駆動する駆動部とを有し、
    前記制御部は、前記判定部の判定結果により、
    前記基準値演算部が演算した前記基準値及び前記基準値補正部により補正された前記基準値のいずれか一方と、前記センサの前記出力信号とを用いて前記ブレ補正レンズの目標位置を演算、前記目標位置を用いて前記駆動部の駆動制御をする、ブレ補正装置。
  6. 請求項1から請求項5までのいずれか一項に記載のブレ補正装置において、
    前記被写体の像を撮像し、前記光学系の光軸と交わる方向に駆動可能な撮像素子と、
    前記撮像素子を駆動する撮像素子駆動部と、を有し、
    前記制御部は、前記判定部の判定結果に応じて、前記基準値演算部が演算した前記基準値及び前記基準値補正部により補正された前記基準値のいずれか一方と、前記センサの前記出力信号とを用いて前記撮像素子の目標位置を演算し、前記目標位置を用いて前記撮像素子駆動部の駆動制御をする、ブレ補正装置。
  7. 被写体の像を形成する光学系及び前記被写体の像を撮像する機器の少なくともいずれか一方の振れを検出するセンサと、
    前記センサの出力信号の基準値を演算する基準値演算部と、
    前記被写体の像を撮像した画像の動きベクトルを取得する動きベクトル取得部と、
    前記センサに関する情報を記憶する記憶部と、
    前記動きベクトルを用いて前記基準値演算部が演算した前記基準値を補正する基準値補正部と、
    前記基準値補正部により補正された前記基準値が、前記センサに関する情報に基づく範囲を超えるか否かを判定する判定部と、
    前記判定部の判定結果により、前記被写体の像に基づく画像から、像ブレを補正する制御部と、
    を有するブレ補正装置。
  8. 請求項1から請求項7までのいずれか一項に記載のブレ補正装置を有するカメラ。
  9. 請求項1から請求項7までのいずれか一項に記載のブレ補正装置を有する電子機器。
JP2015021814A 2015-02-06 2015-02-06 ブレ補正装置、カメラ及び電子機器 Active JP6543946B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021814A JP6543946B2 (ja) 2015-02-06 2015-02-06 ブレ補正装置、カメラ及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021814A JP6543946B2 (ja) 2015-02-06 2015-02-06 ブレ補正装置、カメラ及び電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019114806A Division JP2019152888A (ja) 2019-06-20 2019-06-20 撮像装置

Publications (2)

Publication Number Publication Date
JP2016145856A JP2016145856A (ja) 2016-08-12
JP6543946B2 true JP6543946B2 (ja) 2019-07-17

Family

ID=56686299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021814A Active JP6543946B2 (ja) 2015-02-06 2015-02-06 ブレ補正装置、カメラ及び電子機器

Country Status (1)

Country Link
JP (1) JP6543946B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910765B2 (ja) * 2016-08-26 2021-07-28 キヤノン株式会社 制御装置、防振制御方法および防振制御プログラム
US10911675B2 (en) 2017-12-28 2021-02-02 Samsung Electronics Co., Ltd. Method for providing shake correction, signal processing device performing the method, and imaging device including the signal processing device
WO2019203147A1 (ja) * 2018-04-17 2019-10-24 株式会社ニコン 撮像装置
JP7119678B2 (ja) * 2018-07-13 2022-08-17 株式会社ニコン 交換レンズ及びカメラボディ
US11290650B2 (en) 2019-07-04 2022-03-29 Canon Kabushiki Kaisha Image blur information acquisition apparatus and method, and storage medium
JP7362457B2 (ja) 2019-12-04 2023-10-17 株式会社日立国際電気 撮像装置の駆動制御方法、撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3799598B2 (ja) * 2001-11-13 2006-07-19 フジノン株式会社 レンズ駆動装置及びレンズ装置
JP6039212B2 (ja) * 2012-03-29 2016-12-07 キヤノン株式会社 像ブレ補正装置、撮像装置及び像ブレ補正装置の制御方法

Also Published As

Publication number Publication date
JP2016145856A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6543946B2 (ja) ブレ補正装置、カメラ及び電子機器
US10554891B2 (en) Image stabilization apparatus, image stabilization method, image capturing apparatus, image capturing system and non-transitory storage medium
JP6171575B2 (ja) ブレ補正装置及び光学機器
CN111953891B (zh) 控制设备、镜头设备、摄像设备、控制方法和存储介质
JP6268981B2 (ja) ブレ補正装置、交換レンズ及びカメラ
JP2019216374A (ja) 撮像装置およびその制御方法
JP6171576B2 (ja) ブレ補正装置及び光学機器
JP6943323B2 (ja) 交換レンズ
JP2019091063A (ja) ブレ補正装置、電子機器及びカメラ
JP2019152888A (ja) 撮像装置
JP6468343B2 (ja) 交換レンズ及び光学機器
JP6590013B2 (ja) 交換レンズおよび撮像装置
JP6717396B2 (ja) ブレ補正装置及び撮像装置
JP6414285B2 (ja) ブレ補正装置及び光学機器
JP6590018B2 (ja) ブレ補正装置及びカメラ
JP6610722B2 (ja) ブレ補正装置及び光学機器
JP7266480B2 (ja) 撮像装置、レンズ装置、撮像システム、撮像装置の制御方法、レンズ装置の制御方法
JP6485499B2 (ja) ブレ補正装置及び光学機器
JP6299188B2 (ja) ブレ補正装置、レンズ鏡筒及びカメラ
WO2020012960A1 (ja) 撮像装置
JP7119678B2 (ja) 交換レンズ及びカメラボディ
JP6318502B2 (ja) ブレ補正装置及び光学機器
WO2020012961A1 (ja) 撮像装置
JP2019003220A (ja) 交換レンズ
JP2015106086A (ja) ブレ補正装置及び光学機器

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6543946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250