JP6539315B2 - Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film - Google Patents
Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film Download PDFInfo
- Publication number
- JP6539315B2 JP6539315B2 JP2017154737A JP2017154737A JP6539315B2 JP 6539315 B2 JP6539315 B2 JP 6539315B2 JP 2017154737 A JP2017154737 A JP 2017154737A JP 2017154737 A JP2017154737 A JP 2017154737A JP 6539315 B2 JP6539315 B2 JP 6539315B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- silver
- silver nanowires
- silver nanowire
- protective agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Non-Insulated Conductors (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Conductive Materials (AREA)
Description
本発明は、透明導電膜の導電素材(フィラー)として有用な銀ナノワイヤの製造方法に関する。また、その製造方法によって得られる銀ナノワイヤ、銀ナノワイヤインクおよび透明導電膜に関する。 The present invention relates to a method for producing silver nanowires useful as a conductive material (filler) of a transparent conductive film. The present invention also relates to a silver nanowire, a silver nanowire ink, and a transparent conductive film obtained by the production method.
本明細書では、太さが200nm程度以下の微細な金属ワイヤを「ナノワイヤ(nanowire(s)」と呼ぶ。 In this specification, a fine metal wire having a thickness of about 200 nm or less is referred to as "nanowire (s)".
銀ナノワイヤは、透明基材に導電性を付与するための導電素材として有望視されている。銀ナノワイヤを含有する液(銀ナノワイヤインク)をガラス、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などの透明基材に塗布したのち、液状成分を蒸発等により除去すると、銀ナノワイヤは当該基材上で互いに接触し合うことにより導電ネットワークを形成するので、透明導電膜を実現することができる。 Silver nanowires are considered promising as a conductive material for imparting conductivity to transparent substrates. After the liquid containing silver nanowires (silver nanowire ink) is applied to a transparent substrate such as glass, PET (polyethylene terephthalate), PC (polycarbonate), etc., the liquid component is removed by evaporation or the like, the silver nanowires are on the substrate Since a conductive network is formed by contacting each other, a transparent conductive film can be realized.
電子機器のタッチパネル等に使用される透明導電膜には、導電性が良好であることに加え、ヘイズの少ないクリアな視認性が要求される。銀ナノワイヤを導電素材とする透明導電膜において導電性と視認性を高いレベルで両立させるためには、できるだけ細く、かつ長い銀ナノワイヤを適用することが有利となる。 A transparent conductive film used for a touch panel or the like of an electronic device is required to have clear visibility with little haze, in addition to good conductivity. In order to achieve both conductivity and visibility at a high level in a transparent conductive film using silver nanowires as a conductive material, it is advantageous to apply silver nanowires that are as thin and long as possible.
従来、銀ナノワイヤの合成法として、例えば、エチレングリコール等のポリオール溶媒に銀化合物を溶解させ、ハロゲン化合物と有機保護剤の存在下において、溶媒であるポリオールの還元力を利用して線状形状の金属銀を析出させる手法(以下、「アルコール溶媒還元法」と言う。)が知られている。その有機保護剤として、従来一般的にPVP(ポリビニルピロリドン)が多用されてきた。PVPは細く長い銀ナノワイヤを析出させる上で好適な有機保護剤である。 Conventionally, as a synthesis method of silver nanowires, for example, a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and an organic protective agent, a linear shape is obtained using the reducing power of the solvent polyol. A method of precipitating metallic silver (hereinafter referred to as "alcohol solvent reduction method") is known. As the organic protective agent, PVP (polyvinyl pyrrolidone) has generally been widely used. PVP is a suitable organic protective agent for depositing thin and long silver nanowires.
アルコール溶媒還元法で使用される有機保護剤の分子は、合成後の銀ナノワイヤ表面に吸着し、液状媒体中における銀ナノワイヤの分散性を支配する要因となる。PVPが吸着した銀ナノワイヤは、水に対して良好な分散性を呈する。しかし、PET等の基材に対する濡れ性を改善するためには、水と有機溶媒(例えばアルコール)との混合媒体を用いた銀ナノワイヤインクを適用することが有利となる。また、塗工設備によっては、非水系溶媒を用いた銀ナノワイヤインクを適用することが望ましい場合もある。PVPは、そのような混合媒体や非水系溶媒中での銀ナノワイヤの分散性を考慮した場合、必ずしも満足できる有機保護剤とは言えない。最近では、水以外の液状媒体中での銀ナノワイヤの分散性を改善することができる有機保護剤も種々開発されている。例えば、特許文献1にはビニルピロリドンとジアリルジメチルアンモニウム(Diallyldimethylammonium)塩モノマーとの重合組成を有するコポリマー、特許文献2にはビニルピロリドンとアクリレート系またはメタクリレート系モノマーとのコポリマー、特許文献3にはビニルピロリドンとマレイミド系モノマーとのコポリマーがそれぞれ開示されている。これらのポリマーを有機保護剤に用いたアルコール溶媒還元法では、合成条件を適正化することによって、PVPを用いた場合と同程度あるいはそれ以上に、細くて長い銀ナノワイヤを合成することが可能である。 The molecules of the organic protective agent used in the alcohol solvent reduction method adsorb on the surface of the silver nanowire after synthesis, and become a factor governing the dispersibility of the silver nanowire in the liquid medium. Silver nanowires adsorbed with PVP exhibit good dispersibility in water. However, in order to improve the wettability to a substrate such as PET, it is advantageous to apply a silver nanowire ink using a mixed medium of water and an organic solvent (for example, alcohol). In addition, depending on the coating equipment, it may be desirable to apply a silver nanowire ink using a non-aqueous solvent. When considering the dispersibility of silver nanowires in such mixed media and non-aqueous solvents, PVP is not necessarily a satisfactory organic protective agent. Recently, various organic protective agents have been developed which can improve the dispersibility of silver nanowires in liquid media other than water. For example, Patent Document 1 is a copolymer having a polymerization composition of vinyl pyrrolidone and Diallyldimethylammonium salt monomer, Patent Document 2 is a copolymer of vinyl pyrrolidone and an acrylate based or methacrylate based monomer, and Patent Document 3 is Vinyl. Copolymers of pyrrolidone and maleimide based monomers are disclosed, respectively. In the alcohol solvent reduction method using these polymers as organic protective agents, it is possible to synthesize thin and long silver nanowires by optimizing the synthesis conditions, as well as or more than using PVP. is there.
上述のように、透明導電塗膜の導電素材として使用する銀ナノワイヤは、導電性と視認性を高レベルで両立させる観点から、細くて長い形態であることが有利となる。本発明は、アルコール溶媒還元法で銀ナノワイヤを合成する際に、特に細いワイヤを安定して生成させる効果の高い技術を提供しようというものである。 As described above, it is advantageous that the silver nanowires used as the conductive material of the transparent conductive coating film have a thin and long form from the viewpoint of achieving both conductivity and visibility at a high level. The present invention is intended to provide a highly effective technique for producing a particularly thin wire stably when synthesizing silver nanowires by an alcohol solvent reduction method.
上記目的は、有機保護剤供給源として、所定量の酢酸エステルを配合したポリマー粉体を適用することによって達成される。本明細書では以下の発明を開示する。 The above object is achieved by applying a polymer powder blended with a predetermined amount of acetic acid ester as an organic protective agent source. The following invention is disclosed in the present specification.
[1]銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる工程を有する銀ナノワイヤの製造法において、前記有機保護剤の供給源として、ビニルピロリドン構造単位を持つポリマーを主成分とし、前記ポリマー1モルに対し酢酸エステルを0.002〜0.040モルの割合で含有する粉体を用いる、平均直径DMが30nm以下である銀ナノワイヤの製造法。
[2]有機保護剤の供給源として前記粉体を用いることにより、下記(1)式により定まる平均アスペクト比AMが下記(2)式の関係を満たす銀ナノワイヤを還元析出させる、上記[1]に記載の銀ナノワイヤの製造法。
AM=LM/DM …(1)
AM≧45DM−650 …(2)
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。
[3]前記酢酸エステルが、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルの1種または2種以上である上記[1]または[2]に記載の銀ナノワイヤの製造法。
[4]前記ポリマーが、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーである上記[1]〜[3]のいずれかに記載の銀ナノワイヤの製造法。
[5]前記ポリマーが、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレート、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミドおよびN−tert−ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するものである上記〜[3]のいずれかに記載の銀ナノワイヤの製造法。
[6]前記ポリマーは、重量平均分子量Mwが30,000〜300,000である上記[1]〜[5]のいずれかに記載の銀ナノワイヤの製造法。
[7]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤ。
[8]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤが液状媒体中に分散している銀ナノワイヤインク。
[9]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤを導電素材として含有する透明導電膜。
[1] A method for producing a silver nanowire comprising the step of reducing and precipitating silver in the form of a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved, wherein a vinylpyrrolidone structural unit is used as a source of the organic protective agent. A method for producing a silver nanowire, which comprises a powder having a polymer having as a main component and containing a ratio of 0.002 to 0.040 moles of acetic ester to 1 mole of the polymer, wherein the average diameter D M is 30 nm or less.
The use of the powder as a source of [2] an organic protective agent, the average aspect ratio A M determined by the following equation (1) causes the reduction precipitation of silver nanowires satisfies the following equation (2), [1 ] The manufacturing method of the silver nanowire as described in.
A M = L M / D M (1)
A M 45 45 D M- 650 (2)
Here, L M is the average length (nm) of the silver nanowires, and D M is the average diameter (nm) of the silver nanowires.
[3] The method for producing a silver nanowire according to the above [1] or [2], wherein the acetate ester is one or more of methyl acetate, ethyl acetate, propyl acetate and butyl acetate.
[4] The method for producing silver nanowires according to any one of the above [1] to [3], wherein the polymer is PVP (polyvinyl pyrrolidone) or a copolymer of vinyl pyrrolidone and a hydrophilic monomer.
[5] The polymer is vinyl pyrrolidone, diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N-propyl The manufacturing method of silver nanowire in any one of said-[3] which is what has a polymerization composition with 1 type, or 2 or more types of monomers chosen from maleimide and N-tert- butyl maleimide.
[6] The method for producing silver nanowires according to any one of the above [1] to [5], wherein the polymer has a weight average molecular weight Mw of 30,000 to 300,000.
[7] A silver nanowire obtained by the method according to any one of the above [1] to [6].
[8] A silver nanowires ink, wherein the silver nanowires obtained by the method according to any one of the above [1] to [6] are dispersed in a liquid medium.
[9] A transparent conductive film containing, as a conductive material, the silver nanowire obtained by the method according to any one of the above [1] to [6].
本明細書において、銀ナノワイヤの平均長さ、平均直径、平均アスペクト比は以下の定義に従う。 In the present specification, the average length, average diameter and average aspect ratio of silver nanowires follow the definitions below.
〔平均長さLM〕
電界放出形走査電子顕微鏡(FE−SEM)による観察画像上で、ある1本の銀ナノワイヤの一端から他端までのトレース長さを、そのワイヤの長さと定義する。顕微鏡画像上に存在する個々の銀ナノワイヤの長さを平均した値を、平均長さLMと定義する。平均長さを算出するためには、測定対象のワイヤの総数を100以上とする。ここでは、還元反応を終えた液から回収される銀ナノワイヤを洗浄した段階(クロスフローろ過などの精製工程に供給する前の段階)での平均長さを評価するため、回収物中に不可避的に含まれる粒状物や短いワイヤ状生成物などの不純物を除外したワイヤの平均長さを算出する必要がある。そのため、長さが3.0μm未満のワイヤ状生成物は測定対象から外す。
[Average length L M ]
The trace length from one end of one silver nanowire to the other end of one silver nanowire is defined as the length of the wire on the image observed with a field emission scanning electron microscope (FE-SEM). A value obtained by averaging the lengths of the individual silver nanowires present on the microscopic image is defined as an average length L M. In order to calculate the average length, the total number of wires to be measured is set to 100 or more. Here, in order to evaluate the average length of the stage where the silver nanowires recovered from the solution after the reduction reaction were washed (the stage before being supplied to the purification step such as cross flow filtration) It is necessary to calculate the average length of the wire excluding impurities such as particulate matter and short wire-like products contained in the above. Therefore, wire-like products having a length of less than 3.0 μm are excluded from the measurement target.
〔平均直径DM〕
透過型電子顕微鏡(TEM)による明視野観察画像上で、ある1本の銀ナノワイヤにおける太さ方向両側の輪郭間距離を、そのワイヤの直径と定義する。図4に本発明に従う銀ナノワイヤについてのTEMによる明視野観察画像(以下「TEM画像」という。)を例示する。各ワイヤは全長にわたってほぼ均等な太さを有しているとみなすことができる。従って、太さの計測は他のワイヤと重なっていない部分を選択して行うことができる。1つの視野を写したTEM画像において、その画像内に観察される銀ナノワイヤのうち、他のワイヤと完全に重なって直径の計測が困難であるワイヤを除く全てのワイヤの直径を測定する、という操作を無作為に選んだ複数の視野について行い、合計100本以上の異なる銀ナノワイヤの直径を求め、個々の銀ナノワイヤの直径の平均値を算出し、その値を平均直径DMと定義する。ここでは、上述のように長さが3.0μm未満のワイヤ状生成物は測定対象から外す。
[Average diameter D M ]
On a bright field observation image by a transmission electron microscope (TEM), the distance between contours on both sides in the thickness direction of one silver nanowire is defined as the diameter of the wire. FIG. 4 exemplifies a TEM bright-field observation image (hereinafter referred to as “TEM image”) of silver nanowires according to the present invention. Each wire can be considered to have a substantially even thickness over its entire length. Therefore, thickness measurement can be performed by selecting a portion that does not overlap other wires. In the TEM image of one field of view, among the silver nanowires observed in the image, the diameters of all the wires except for the wires completely overlapping with other wires and whose diameter is difficult to measure are measured. The operation is performed on a plurality of randomly selected fields of view, the diameters of a total of 100 or more different silver nanowires are determined, the average value of the diameters of the individual silver nanowires is calculated, and the value is defined as the average diameter D M. Here, as described above, wire-like products having a length of less than 3.0 μm are excluded from the measurement object.
〔平均アスペクト比〕
上記の平均直径DMおよび平均長さLMを下記(1)式に代入することにより平均アスペクト比AMを算出する。ただし、(1)式に代入するDM、LMはいずれもnmの単位で表された値とする。
AM=LM/DM …(1)
[Average aspect ratio]
The average aspect ratio AM is calculated by substituting the above average diameter D M and the average length L M into the following equation (1). However, it is assumed that D M and L M to be substituted into the equation (1) are both values expressed in nm.
A M = L M / D M (1)
本発明に従えば、平均直径が30nm以下、あるいは特に28nm以下と非常に細い銀ナノワイヤを安定して得ることができる。これを透明導電膜の導電素材として使用すると、高い導電性を維持しながら、ヘイズの少ない視認性に優れる透明導電膜が実現できる。 According to the present invention, silver nanowires having an average diameter of 30 nm or less, or particularly 28 nm or less, can be stably obtained. When this is used as a conductive material of a transparent conductive film, a transparent conductive film excellent in visibility with little haze can be realized while maintaining high conductivity.
本明細書ではポリマーを主成分とする粉体を「ポリマー粉体」と呼んでいる。粉体は固体粒子の集合体であり、液体成分を含まない乾燥粉体と、固体粒子間に液体成分が存在している未乾燥粉体に分類される。後者の態様としては、例えば固液分離を終えて回収された状態の固形分が挙げられる。ポリマー粉体を構成する固体粒子は主としてポリマー分子が凝集した粒子であると考えられる。「ポリマーを主成分とする」とは、粉体を構成する物質のうち当該ポリマーが少なくとも50質量%を占めていることを意味するが、当該ポリマーが90質量%以上である粉体がより好ましい対象となり、当該ポリマーが95質量%以上である粉体が更に好ましい対象となる。 In the present specification, a powder containing a polymer as a main component is referred to as "polymer powder". The powder is an aggregate of solid particles, and is classified into a dry powder containing no liquid component and a non-dried powder in which the liquid component is present between solid particles. The latter embodiment includes, for example, solid content in a state of being recovered after completion of solid-liquid separation. The solid particles constituting the polymer powder are considered to be mainly particles in which polymer molecules are aggregated. "Based on a polymer" means that the polymer accounts for at least 50% by mass of the material constituting the powder, but a powder having 90% by mass or more of the polymer is more preferable It is an object of the present invention to be a further preferable object of powder in which the polymer is 95% by mass or more.
〔有機保護剤のポリマー粉体〕
銀ナノワイヤの金属銀表面を覆う有機保護剤として、ここではビニルピロリドン構造単位を持つポリマーを採用する。図1にビニルピロリドン構造単位の構造式を示す。ホモポリマーであるPVP(ポリビニルピロリドン)や、ビニルピロリドンとビニルピロリドン以外のモノマーとのコポリマーが、ビニルピロリドン構造単位を持つポリマーに該当する。PVPは実用的な銀ナノワイヤを合成するために適した有機保護剤として従来から使用されている。しかし上述のように、PET等の基材に対する濡れ性を改善するアルコール類を添加した液状媒体中では、ワイヤ分散性が低下するという欠点がある。発明者の検討によれば、ビニルピロリドンとビニルピロリドン以外のモノマーとのコポリマーを使うことにより、アルコール類を添加した液状媒体中での分散性を改善できる。また、このようなコポリマーであっても細く長い実用的な形状の銀ナノワイヤが得られることが確認された。
[Polymer powder of organic protective agent]
Here, a polymer having a vinylpyrrolidone structural unit is adopted as an organic protective agent covering the metallic silver surface of the silver nanowire. The structural formula of a vinyl pyrrolidone structural unit is shown in FIG. The homopolymer PVP (polyvinyl pyrrolidone) or a copolymer of vinyl pyrrolidone and a monomer other than vinyl pyrrolidone corresponds to the polymer having a vinyl pyrrolidone structural unit. PVP is conventionally used as an organic protective agent suitable for synthesizing practical silver nanowires. However, as described above, in a liquid medium to which an alcohol is added to improve the wettability to a substrate such as PET, there is a disadvantage that the wire dispersibility is lowered. According to the inventor's study, the use of a copolymer of vinyl pyrrolidone and a monomer other than vinyl pyrrolidone can improve the dispersibility in a liquid medium to which an alcohol is added. In addition, it has been confirmed that silver nanowires having a thin and long practical shape can be obtained even with such a copolymer.
ところが最近では、透明導電体の導電性と低ヘイズ性の更なる改善へのニーズが高まっている。導電性向上と低ヘイズ性向上を同時に実現するためには、導電素材として用いる銀ナノワイヤの形状を、より細くしてアスペクト比を上げることが極めて有効である。発明者は鋭意研究を進めた結果、アルコール溶媒還元法でビニルピロリドン構造単位を持つポリマーを有機保護剤として使用して銀ナノワイヤを還元析出させる際に、その有機保護剤の供給源として、上記ポリマーを主成分とし、所定量の酢酸エステルを配合するポリマー粉体を使用することによって、非常に細い銀ナノワイヤがより安定して合成できることを新たに見いだした。しかも、長さも十分に確保され、平均アスペクト比の高い銀ナノワイヤが回収できる。 However, in recent years, the need for further improvement of the conductivity and low haze of a transparent conductor is increasing. In order to simultaneously realize the improvement of the conductivity and the improvement of the low haze property, it is extremely effective to make the shape of the silver nanowire used as the conductive material thinner to increase the aspect ratio. As a result of the inventor's intensive research, when the polymer having a vinyl pyrrolidone structural unit is used as an organic protective agent in alcohol solvent reduction method to deposit silver nanowires by reductive deposition, the above polymer is used as a source of the organic protective agent. It has been newly found that very thin silver nanowires can be synthesized more stably by using a polymer powder containing as a main component and a predetermined amount of acetate ester. Moreover, the length is sufficiently secured, and silver nanowires having a high average aspect ratio can be recovered.
ビニルピロリドン構造単位を持つポリマーとして、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーが好適な対象となる。後者のコポリマーとしては、例えば、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレート、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミドおよびN−tert−ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するコポリマーが挙げられる。コポリマーの重合組成は、ビニルピロリドン以外のモノマー0.1〜10質量%、残部ビニルピロリドンであることが好ましい。 As polymers having vinylpyrrolidone structural units, PVP (polyvinylpyrrolidone) or copolymers of vinylpyrrolidone with hydrophilic monomers are suitable targets. The latter copolymers include, for example, vinyl pyrrolidone and diallyl dimethyl ammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methyl maleimide, N-ethyl maleimide, N- Copolymers having a polymerization composition with one or more monomers selected from propyl maleimide and N-tert-butyl maleimide may be mentioned. The polymerization composition of the copolymer is preferably 0.1 to 10% by mass of monomers other than vinyl pyrrolidone, with the balance being vinyl pyrrolidone.
有機保護剤に使用するポリマーの重量平均分子量Mwは30,000〜300,000の範囲にあることが好ましく、30,000〜150,000の範囲であることがより好ましい。MwはGPC(ゲル浸透クロマトグラフィー)により求めることができる。 The weight average molecular weight Mw of the polymer used for the organic protective agent is preferably in the range of 30,000 to 300,000, and more preferably in the range of 30,000 to 150,000. Mw can be determined by GPC (gel permeation chromatography).
酢酸エステルは、上記ポリマーを合成する過程で、生成したポリマーを精製する際の有機溶剤として添加されることがある。その場合には、通常、ポリマー分子に付着している酢酸エステルが粉体製品中に存在する。その存在量が本発明で必要な所定量(後述)に満たない場合や、酢酸エステルを添加しない合成方法で得られたポリマー粉体を使用する場合は、例えば「ポリマー精製処理」などの手法によりポリマー分子に酢酸エステル分子を付着させることができ、酢酸エステル含有量を所定範囲に調整した有機保護剤のポリマー粉体を用意することができる。ポリマー精製処理は、合成されたポリマーの製品中に混入する未反応モノマー、重合開始剤、溶媒物質等の不純物を除去してポリマーの純度を高める処理である。銀ナノワイヤの還元析出時に使用する有機保護剤は一般的に極性の大きい親水性ポリマーであることから、精製処理は例えば以下のような操作によって行うことができる。重合反応によって合成された親水性ポリマーが溶解している有機溶媒を、極性の小さいジメチルエーテル、ジエチルエーテル、エチルメチルエーテル等のエーテル類や、酢酸メチル、酢酸エチル等の酢酸エステル類からなる大過剰の有機溶剤中に滴下すると、極性の大きい水溶性ポリマーは析出する。不純物である未反応モノマー、重合開始剤、溶媒物質等は上記有機溶剤中に溶解した状態を維持しているので、析出した固体物質(ポリマー)をろ過などにより回収することにより、不純物が少ない高純度化されたポリマーを得ることができる。目的とする純度のポリマーが得られるまで、この高純度化の操作を繰り返す。このようにして行う「ポリマー精製処理」において、極性の小さい大過剰の有機溶剤として酢酸エステルを使用すると、酢酸エステルの分子が付着したポリマー分子を回収することができる。上記高純度化の操作回数をコントロールすることなどにより、酢酸エステルの付着量(ポリマー粉体中の酢酸エステル含有量)を調整することができる。 Acetic acid ester may be added as an organic solvent when purifying the produced polymer in the process of synthesizing the above-mentioned polymer. In that case, an acetate ester attached to the polymer molecules is usually present in the powder product. In the case where the amount thereof is less than the predetermined amount required in the present invention (described later) or when using a polymer powder obtained by a synthesis method without adding an acetate ester, for example, by a method such as "polymer purification treatment" An acetic acid ester molecule can be attached to a polymer molecule, and a polymer powder of an organic protective agent whose acetic acid ester content is adjusted to a predetermined range can be prepared. The polymer purification process is a process for removing impurities such as unreacted monomers, polymerization initiators, solvent substances and the like mixed in the product of the synthesized polymer to increase the purity of the polymer. Since the organic protective agent used at the time of reductive deposition of silver nanowires is a hydrophilic polymer with large polarity in general, purification treatment can be performed by the following operations, for example. The organic solvent in which the hydrophilic polymer synthesized by the polymerization reaction is dissolved is composed of a large excess of an ether such as small polar dimethyl ether, diethyl ether, ethyl methyl ether or an acetate such as methyl acetate or ethyl acetate. When dropped in an organic solvent, a highly polar water-soluble polymer precipitates. Since the unreacted monomer, polymerization initiator, solvent substance, etc., which are impurities, are maintained in the above-mentioned organic solvent in a dissolved state, the precipitated solid substance (polymer) is recovered by filtration or the like to reduce impurities. A purified polymer can be obtained. This purification operation is repeated until the desired purity of the polymer is obtained. In the “polymer purification process” performed in this manner, using acetic acid ester as a large excess of small-polarity organic solvent, polymer molecules to which acetic acid molecules are attached can be recovered. The attached amount of acetic acid ester (the content of acetic acid ester in the polymer powder) can be adjusted by controlling the number of operations of the above-mentioned purification.
本発明では、有機保護剤の供給源として酢酸エステルの含有量が所定範囲にあるポリマー粉体を使用する。すなわち、有機保護剤が溶解した液を作製するための有機保護剤含有物質として、上記のようなポリマー粉体を使用する。換言すれば、アルコール溶媒還元法で銀ナノワイヤを合成する際の当該溶媒中に、上記のようなポリマー粉体に由来する有機保護剤を存在させる。 In the present invention, a polymer powder having an acetate content in a predetermined range is used as a source of the organic protective agent. That is, the polymer powder as described above is used as an organic protective agent-containing substance for producing a solution in which the organic protective agent is dissolved. In other words, the organic protective agent derived from the polymer powder as described above is present in the solvent for synthesizing silver nanowires by the alcohol solvent reduction method.
アルコール溶媒還元法で金属銀をワイヤ状に析出させるには、銀の多重双晶であると考えられる核結晶の{100}面に、有機保護剤のポリマー分子が選択的に吸着することが必要である。それにより{100}面の成長が抑制され、{111}面が優先的に成長し、金属銀の線状構造体が形成される。ポリマー分子の選択吸着性は、ポリマー分子の表面電位と銀の結晶面の表面電位の相互作用によって生じると考えられている。ポリマー分子の表面電位は、そのポリマー分子に付着している有機化合物分子の付着(吸着)状態によって変化する。すなわち、付着している有機化合物の種類やその付着量によってポリマー分子の電荷の偏りが変化し、銀の{100}面への選択吸着性が変わってくる。後述のように所定量の酢酸エステルを含有するポリマー粉体は、細い銀ナノワイヤの合成に極めて有効である。このことから、酢酸エステルは、ビニルピロリドン構造単位を持つポリマーに、銀{100}面への選択吸着性を向上させるような表面電位を付与するうえで、極めて有効な物質であると推察される。 In order to deposit metallic silver in the form of a wire by alcohol solvent reduction method, it is necessary for the polymer molecule of the organic protective agent to be selectively adsorbed on the {100} face of the nucleus crystal that is considered to be multiple twins of silver. It is. Thereby, the growth of the {100} plane is suppressed, the {111} plane preferentially grows, and a linear structure of metallic silver is formed. The selective adsorptivity of polymer molecules is believed to be caused by the interaction between the surface potential of the polymer molecules and the surface potential of the silver crystal face. The surface potential of a polymer molecule changes depending on the attached (adsorbed) state of the organic compound molecule attached to the polymer molecule. That is, the bias of the charge of the polymer molecule changes depending on the kind of the attached organic compound and the amount of adhesion thereof, and the selective adsorption on the {100} plane of silver changes. A polymer powder containing a predetermined amount of acetic acid ester as described later is extremely effective for the synthesis of thin silver nanowires. From this, it is surmised that acetic acid ester is a very effective substance in imparting a surface potential to the polymer having a vinyl pyrrolidone structural unit to improve the selective adsorption to the silver {100} surface. .
また、酢酸エステルは、アルコール溶媒還元法で銀ナノワイヤを合成する際に、銀が優先的に析出していく{111}結晶面を清浄化する作用、すなわち{111}結晶面への有機保護剤分子の吸着を抑止するとともに露出している{111}結晶面を活性化させて新たな銀の析出を促進させる作用を有すると考えられる。{111}結晶面を活性化させる作用は、従来一般的な添加剤であるハロゲン化物等が主として担うが、酢酸エステルもこれと類似の働きをするものと推察される。既に析出した金属銀の線状構造体の近傍に、ハロゲンに加えて酢酸エステルが存在すると、上記清浄化の作用が増大し、線状構造体の太さ方向の表面({100}結晶面)への銀の析出のし易さに対する、長さ方向の露出表面({111}結晶面)への相対的な析出のし易さがより一層高まり、結果的に細いナノワイヤの析出成長が促進されるものと考えられる。 Acetic acid ester also functions to clean the {111} crystal face on which silver preferentially precipitates when synthesizing silver nanowires by the alcohol solvent reduction method, ie, an organic protective agent to the {111} crystal face It is thought that it has an action of suppressing the adsorption of molecules and activating the exposed {111} crystal face to promote the deposition of new silver. The action to activate the {111} crystal face is mainly borne by the conventional additives such as halides, but it is speculated that acetic acid ester also acts in a similar manner. If an acetate ester is present in addition to the halogen in the vicinity of the linear structure of metallic silver that has already been deposited, the above-mentioned cleaning action is increased, and the surface in the thickness direction of the linear structure ({100} crystal plane) The relative ease of deposition on the lengthwise exposed surface ({111} crystal plane) relative to the ease of silver deposition is further enhanced, and as a result, the deposition growth of thin nanowires is promoted. It is thought that
{111}結晶面の活性化作用を強化する目的でハロゲン化物の添加量を増大させることには問題がある。合成された銀ナノワイヤの表面を被覆する有機保護剤には、合成時に添加された塩素等のハロゲン原子が付着しており、そのハロゲン原子は、銀ナノワイヤに随伴して透明導電膜の中に入り込む。発明者の調査によれば、透明導電膜中の塩素濃度が高いと、透明導電膜の経時劣化が促進され、早期に導電性が低下するという問題が生じやすいことが確認されている。この点、酢酸エステルの添加によって{111}結晶面の清浄化作用を強化する手法では、上記のような透明導電膜の経時劣化の問題は回避される。 There is a problem in increasing the amount of halide added for the purpose of enhancing the activation action of the {111} crystal face. The organic protective agent which coats the surface of the synthesized silver nanowire is attached with a halogen atom such as chlorine added at the time of synthesis, and the halogen atom is entrained into the transparent conductive film in association with the silver nanowire. . According to the inventor's investigation, it is confirmed that when the concentration of chlorine in the transparent conductive film is high, the deterioration with time of the transparent conductive film is promoted, and a problem that the conductivity is deteriorated early tends to occur. In this respect, in the method of strengthening the cleaning action of the {111} crystal face by the addition of acetic acid ester, the problem of the above-mentioned deterioration of the transparent conductive film with time is avoided.
銀ナノワイヤの合成時に溶媒中に存在させる有機保護剤のポリマー分子は、電子密度が比較的低い金属銀の{100}結晶面に優先的に吸着する。同種の有機保護剤であっても、ポリマーの分子量が小さいほど金属銀への吸着力は大きくなる傾向があるため、分子量の小さいポリマーを使うことは細いワイヤを合成する上で有利となる。しかし、吸着力が大きくなると、優先的に析出を進行させたい{111}結晶面への吸着も生じ易くなる。そのため、過度に分子量の小さいポリマーを有機保護剤として使用すると、長さの短いワイヤが形成されやすく、アスペクト比の向上が難しくなる。酢酸エステルによる上述の銀{100}結晶面への選択吸着性の強化と、{111}結晶面の清浄化作用の強化によって、比較的低分子量のポリマーを選択できる自由度が拡がり、細くて長いワイヤの合成が容易となるメリットがある。 The polymer molecules of the organic protective agent, which are present in the solvent during synthesis of the silver nanowires, preferentially adsorb to the {100} crystal plane of metallic silver, which has a relatively low electron density. Even with the same kind of organic protective agent, the smaller the molecular weight of the polymer, the larger the adsorptivity to metallic silver tends to be, and therefore, using a polymer with a lower molecular weight is advantageous in synthesizing a thin wire. However, when the adsorptive power is increased, adsorption to the {111} crystal plane where precipitation is desired to be promoted preferentially occurs easily. Therefore, when a polymer with an excessively small molecular weight is used as an organic protective agent, a wire with a short length is easily formed, and it becomes difficult to improve the aspect ratio. The above-mentioned selective adsorption of silver {100} crystal faces by acetic acid ester and the cleaning action of {111} crystal faces enhance the ability to select polymers of relatively low molecular weight, and the length is longer and thinner. There is an advantage that the synthesis of the wire becomes easy.
種々検討の結果、ポリマー粉体中の酢酸エステル含有量は、当該ポリマー粉体の主成分であるビニルピロリドン構造単位を持つポリマー1モルに対し酢酸エステル0.002〜0.040モルの割合とすることが望ましい。以下、上記ポリマー1モルに対する酢酸エステルのモル比を「酢酸エステル/ポリマーモル比」と言うことがある。酢酸エステル/ポリマーモル比は0.0025以上とすることがより好ましく、例えば0.0025〜0.030の範囲に管理してもよい。酢酸エステル/ポリマーモル比は、ポリマー粉体のNMR(核磁気共鳴)スペクトルから求めることができる。酢酸エステルの含有量が少なすぎると細いワイヤを生成し易くする上述の作用が十分に得られない。逆に含有量が多すぎると、銀ナノワイヤ分散液を作製したときに、液状媒体の種類によってはワイヤの凝集が生じ易くなる。なお、酢酸エステルとポリマーの量比を質量割合で見ると、例えば酢酸エチルを適用する場合、重量平均分子量Mwが30,000〜150,000程度のビニルピロリドン構造単位を持つポリマー100質量部に対し、酢酸エチルの含有量を0.2〜3.5質量部の範囲で調整することが好ましい。 As a result of various investigations, it is assumed that the content of acetic acid ester in the polymer powder is a ratio of 0.002 to 0.040 mol of acetic acid ester to 1 mol of the polymer having a vinylpyrrolidone structural unit which is the main component of the polymer powder. Is desirable. Hereinafter, the molar ratio of acetic acid ester to 1 mole of the polymer may be referred to as "acetic acid ester / polymer molar ratio". The acetate ester / polymer molar ratio is more preferably 0.0025 or more, and may be controlled, for example, in the range of 0.0025 to 0.030. The acetate ester / polymer molar ratio can be determined from the NMR (nuclear magnetic resonance) spectrum of the polymer powder. If the content of acetic acid ester is too low, the above-mentioned action of facilitating the formation of a thin wire can not be sufficiently obtained. On the other hand, if the content is too large, wire aggregation tends to occur depending on the type of liquid medium when producing a silver nanowire dispersion. In addition, when the mass ratio of acetic acid ester to polymer is seen in mass ratio, for example, when ethyl acetate is applied, 100 parts by mass of polymer having a vinylpyrrolidone structural unit with a weight average molecular weight Mw of about 30,000 to 150,000. It is preferable to adjust the content of ethyl acetate in the range of 0.2 to 3.5 parts by mass.
ポリマー粉体に占める「ビニルピロリドン構造単位を持つポリマー」の含有量は50質量%以上とすることが望ましく、残部成分として上記所定量の酢酸エステルの他に、銀ナノワイヤの製造が可能な範囲で別の成分を含有していても構わない。有機保護剤として機能するポリマーの純度ができるだけ高いポリマー粉体を適用したい場合は、例えば前記ポリマー含有量が90質量%以上、より好ましくは95質量%以上であり、残部が上記所定量の酢酸エステルと、ポリマーの製造過程で混入する成分で構成されているものを使用すればよい。ポリマーの製造過程で混入する成分としては、残存するモノマー成分のVP(ビニルピロリドン)の他、TBME(tert−ブチルメチルエーテル)、MIBK(メチルイソブチルケトン)などの添加物質が挙げられる。これまでの調査によれば、MIBKの含有量が低いほど、平均アスペクト比の大きい銀ナノワイヤを合成するうえで有利となる傾向が見られた。MIBK含有量はポリマー100質量部に対し1.0質量部以下の範囲で調整することが好ましい。銀ナノワイヤ合成時に使用するポリマー粉体の量は、製造条件に応じて従来技術における適正使用量の範囲で設定することができる。 The content of “a polymer having a vinylpyrrolidone structural unit” in the polymer powder is desirably 50% by mass or more, and within the range in which silver nanowires can be produced in addition to the above-mentioned predetermined amount of acetic acid ester as the remaining component. You may contain another component. When it is desired to apply a polymer powder in which the purity of the polymer functioning as an organic protective agent is as high as possible, for example, the polymer content is 90% by mass or more, more preferably 95% by mass or more, And what is necessary is just to use what is comprised with the component mixed in the manufacturing process of a polymer. As a component mixed in the manufacturing process of a polymer, additive substances, such as TBME (tert- butyl methyl ether) and MIBK (methyl isobutyl ketone) other than VP (vinyl pyrrolidone) of the remaining monomer component, are mentioned. According to the research so far, the lower the content of MIBK, the more advantageous the synthesis of silver nanowires having a large average aspect ratio. The MIBK content is preferably adjusted in the range of 1.0 part by mass or less with respect to 100 parts by mass of the polymer. The amount of polymer powder used at the time of silver nanowire synthesis can be set within the range of the appropriate amount used in the prior art depending on the production conditions.
酢酸エステルとしては、例えば、酢酸メチル(C3H6O2)、酢酸エチル(C4H8O2)、酢酸プロピル(C5H10O2)、酢酸ブチル(C6H12O2)等が挙げられる。これらの酢酸エステルは、単体では常温で液体であるが、有機保護剤のポリマー分子に上述の含有量範囲で付着して存在しているときには、全体として固体物質(粉体)の形態を呈する。酢酸エステルは、1種または2種以上を使用することができる。 Examples of acetic acid esters include methyl acetate (C 3 H 6 O 2 ), ethyl acetate (C 4 H 8 O 2 ), propyl acetate (C 5 H 10 O 2 ), butyl acetate (C 6 H 12 O 2 ) Etc. These acetic acid esters are liquid alone at ordinary temperature as they are, but when attached and attached to the polymer molecule of the organic protective agent in the above-mentioned content range, take the form of a solid substance (powder) as a whole. Acetic acid esters can be used alone or in combination of two or more.
ポリマー粉体中の各種成分の含有量は、核磁気共鳴分光法(NMR)で測定されるNMRスペクトルから求めることができる。例えば、NMRスペクトルにおいて酢酸エチルのピークは4.1ppm付近や1.2〜1.3ppm付近に現れ、TBMEのピークは3.2〜3.3ppm付近や1.2ppm付近に現れ、MIBKのピークは0.9ppm付近などに現れる。また、残存モノマーであるVPの含有率VPRは下記(3)式により求めることができる。
VPR(mol%)=[2×(I1+I2)/(3×I3)]×100 …(3)
ここで、I1はVPモノマーのC=C二重結合に関わるメチンプロトンに由来するピーク(7.0−7.2ppm)の積分値、I2は同モノマーのC=C二重結合に関わるメチレンプロトンに由来するピーク(4.3−4.4ppm)の積分値、I3はポリマーのN原子に隣接するメチレンプロトンに由来するピーク(3.0−3.4ppm)の積分値である。
The content of various components in the polymer powder can be determined from an NMR spectrum measured by nuclear magnetic resonance spectroscopy (NMR). For example, in the NMR spectrum, ethyl acetate peaks appear around 4.1 ppm and 1.2 to 1.3 ppm, TBME peaks appear around 3.2 to 3.3 ppm and 1.2 ppm, and MIBK peaks It appears around 0.9 ppm. The content VP R of VP is the residual monomer can be obtained by the following equation (3).
VP R (mol%) = [2 × (I 1 + I 2 ) / (3 × I 3 )] × 100 (3)
Here, I 1 is the integrated value of the peak (7.0-7.2 ppm) derived from the methine proton related to the C = C double bond of the VP monomer, and I 2 is related to the C = C double bond of the same monomer integral value of peaks derived from the methylene protons (4.3-4.4ppm), I 3 is the integral value of the peak (3.0-3.4ppm) derived from the methylene protons adjacent to the N atom of the polymer.
酢酸エステルを使用して合成されたポリマーの分子には酢酸エステル分子が吸着している。そのような方法で合成されたポリマーを主成分とするポリマー粉体製品は、酢酸エステルの含有量が上記所定範囲にある場合には、そのままの状態の粉体を銀ナノワイヤ合成時に有機保護剤供給源として直接使用しても構わない。一方、ポリマー粉体製品中に酢酸エステルが含まれていない場合や、含まれていてもその含有量が上記所定範囲に満たないような場合には、ポリマー分子に酢酸エステルを付着させる処理を施して、ポリマー粉体中の酢酸エステル含有量を調整する必要がある。また、ポリマー粉体製品中には通常、銀ナノワイヤの合成に不要な不純物成分(硫黄を含む連鎖移動剤成分や残存ビニルピロリドンモノマーなど)が含まれている。以下に、ポリマー粉体中の不純物成分含有量を低減する「ポリマー粉体の精製処理」を利用してポリマー分子に酢酸エステルを付着させる処理を行う手法を例示する。 Acetic acid ester molecules are adsorbed to the molecules of the polymer synthesized using acetic acid ester. A polymer powder product mainly composed of a polymer synthesized by such a method is supplied with an organic protective agent at the time of silver nanowire synthesis when the acetic acid ester content is in the above-mentioned predetermined range. You may use it directly as a source. On the other hand, if the polymer powder product does not contain an acetate ester or if the content is below the above-mentioned predetermined range, the polymer molecules are subjected to a treatment to attach the acetate ester to the polymer molecule. Thus, it is necessary to adjust the acetate content in the polymer powder. In addition, the polymer powder product usually contains impurity components (such as a chain transfer agent component containing sulfur and a residual vinyl pyrrolidone monomer) which are unnecessary for the synthesis of silver nanowires. Hereinafter, a method of performing a process of attaching an acetic acid ester to a polymer molecule using “a purification process of a polymer powder” for reducing the content of impurity components in the polymer powder will be exemplified.
(ポリマー精製処理の例示)
まず、被処理物であるポリマー粉体をクロロホルム溶媒に溶解させて、ポリマー含有液を得る。クロロホルム溶媒には 当該ポリマーの他、種々の不純物成分も溶解する。この液を酢酸エステル(例えば酢酸エチル)からなる溶媒中に滴下すると、当該ポリマーは酢酸エステル溶媒に不溶であるため、酢酸エステル溶媒中に析出してくる。他方、酢酸エステル溶媒に可溶である不純物成分の大部分は液中に溶解したまま残る。ただし、一部は析出したポリマーに随伴して存在する。上記の析出した固形分をろ過して回収する。回収された固形分のポリマー分子には酢酸エチルが付着している。この固形分の乾燥物を再び新たなクロロホルム溶媒に溶解させ、その溶液を新たな酢酸エステル中に滴下してポリマーを析出させ、固形分として回収する。この溶解と析出の操作を繰り返す精製処理によってポリマー粉体中の不純物量を低減することができるとともに、当該ポリマー分子に付着して存在する酢酸エステルの量を調整することができる。
(Example of polymer purification process)
First, a polymer powder to be treated is dissolved in a chloroform solvent to obtain a polymer-containing liquid. In the chloroform solvent, in addition to the polymer concerned, various impurity components are dissolved. When this solution is dropped into a solvent composed of acetic acid ester (for example, ethyl acetate), the polymer is insoluble in the acetic acid ester solvent, and thus, the polymer precipitates in the acetic acid ester solvent. On the other hand, most of the impurity components that are soluble in acetic acid ester solvent remain dissolved in the solution. However, some of them are present in association with the precipitated polymer. The precipitated solid content is filtered and recovered. Ethyl acetate adheres to the recovered solid polymer molecules. The dried solid is again dissolved in fresh chloroform solvent, and the solution is dropped into fresh acetic ester to precipitate a polymer, which is recovered as a solid. The amount of impurities in the polymer powder can be reduced by the purification treatment which repeats the operation of dissolution and precipitation, and the amount of acetic acid ester attached to the polymer molecule can be adjusted.
〔銀ナノワイヤの寸法形状〕
銀ナノワイヤは、導電性と視認性に優れた透明導電塗膜を形成する観点から、できるだけ細くて長い形状であるものが好ましい。本発明では、平均直径が30nm以下、好ましくは28nm以下であるものを対象とする。平均アスペクト比は一般的に大きいほど好ましいが、ワイヤの平均直径が細くなるほど透明導電膜のヘイズ低減には有利となるため、それに伴って平均アスペクト比に関する自由度も拡大する。種々検討の結果、銀ナノワイヤ合成後の段階において下記(2)式を満たす平均アスペクトAMであることが好ましく、下記(2)’式を満たすものがより好適な対象となる。ただし、これらの式を満たす場合でも、平均長さは6.5μm以上であることが望まれる。
AM≧45DM−650 …(2)
AM≧45DM−630 …(2)’
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。
[Dimensional shape of silver nanowires]
The silver nanowire is preferably as thin and long as possible from the viewpoint of forming a transparent conductive coating film excellent in conductivity and visibility. The present invention is directed to those having an average diameter of 30 nm or less, preferably 28 nm or less. Generally, the larger the average aspect ratio, the better. However, as the average diameter of the wire is smaller, it is advantageous to reduce the haze of the transparent conductive film, and accordingly, the freedom with respect to the average aspect ratio is also expanded. As a result of various investigations, it is preferable that at a later stage the silver nanowire synthesis an average aspect A M satisfying the following equation (2), those satisfying the following (2) 'expression is more preferred target. However, even when these expressions are satisfied, it is desirable that the average length be 6.5 μm or more.
A M 45 45 D M- 650 (2)
A M 45 45 D M- 630 (2) '
Here, L M is the average length (nm) of the silver nanowires, and D M is the average diameter (nm) of the silver nanowires.
平均長さに関しては、銀ナノワイヤ合成後にワイヤの精製操作(例えばクロスフロー精製)を行うことによって短いワイヤを除去することで向上させることは可能である。しかし、平均直径については還元析出反応時に細いワイヤが安定して合成されるかどうかによって、ほぼ決まってしまう。すなわち、細いワイヤが合成されない限り、その後に平均直径をコントロールすることは非常に難しい。本発明に従えば平均直径30nm未以下、あるいは28nm以下といった非常に細い銀ナノワイヤを還元析出させることができる。 With regard to the average length, it is possible to improve the removal of short wires by performing a purification operation (for example, cross flow purification) of the wires after silver nanowire synthesis. However, the mean diameter is almost determined by whether or not a thin wire is stably synthesized during the reductive deposition reaction. That is, it is very difficult to control the mean diameter thereafter unless thin wires are synthesized. According to the present invention, very thin silver nanowires having an average diameter of 30 nm or less or 28 nm or less can be reductively deposited.
〔銀ナノワイヤの合成〕
銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる手法(アルコール溶媒還元法)で銀ナノワイヤを合成する。この手法は、銀ナノワイヤの合成法として実用化されている。銀化合物、有機保護剤の他に、塩化物、臭化物が溶解しているアルコール溶媒中で還元析出を進行させることが好ましい。更にアルカリ金属水酸化物、アルミニウム塩が溶解しているアルコール溶媒中で還元析出を進行させてもよい。例えば、上記特許文献1に開示される手法を利用することができる。ただし、本発明では有機保護剤の供給源として、ビニルピロリドン構造単位を持つポリマーを主成分とし、前記ポリマー1モルに対し酢酸エステルを0.002〜0.040モルの割合で含有する粉体を用い、その粉体から供給される前記ポリマーを前記アルコール溶媒中に溶解させる。粉体中に存在する酢酸エステルは、ポリマー分子に付着しており、ポリマーに随伴して前記アルコール溶媒中に導入される。
[Synthesis of silver nanowires]
Silver nanowires are synthesized by a method of reducing and precipitating silver in the form of a wire (alcohol solvent reduction method) in an alcohol solvent in which a silver compound and an organic protective agent are dissolved. This method is put to practical use as a method of synthesizing silver nanowires. It is preferable to proceed reduction deposition in an alcohol solvent in which chloride and bromide are dissolved in addition to the silver compound and the organic protective agent. Furthermore, reduction deposition may be allowed to proceed in an alcohol solvent in which an alkali metal hydroxide or aluminum salt is dissolved. For example, the method disclosed in Patent Document 1 can be used. However, in the present invention, as a source of the organic protective agent, a powder comprising a polymer having a vinyl pyrrolidone structural unit as a main component and containing an acetic ester at a ratio of 0.002 to 0.040 mol with respect to 1 mol of the polymer Used, the polymer supplied from the powder is dissolved in the alcohol solvent. The acetate ester present in the powder is attached to the polymer molecules and is introduced into the alcohol solvent in association with the polymer.
〔ポリマー粉体の作製〕
(ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマーの例)
原料ポリマー粉体として、溶媒であるメチルイソブチルケトンに、1−ビニル2ピロリドンと、ジアリルジメチルアンモニウムナイトレート(diallyldimethylammonium nitrate)を溶解させ、重合開始剤を添加して共重合させる手法で合成された、いくつかの製造ロットの粉体を用意した。各製造ロットにおいて、重合組成は、モル比で1−ビニル2ピロリドン:ジアリルジメチルアンモニウムナイトレート=99:1と共通であるが、合成過程での酢酸エチルの使用量が異なっている。酢酸エチルを使用せずに合成した製造ロットもある。これら複数種類の原料ポリマー粉体の1種からなるもの、あるいは2種以上をブレンドしたものを用いて、前述の「ポリマー精製処理」を施し、その処理での溶解−析出操作の繰り返し回数を変えることによって種々の酢酸エチル含有量に調整したポリマー粉体A〜Gを作製した。
[Preparation of polymer powder]
(Example of copolymer of vinyl pyrrolidone and diallyl dimethyl ammonium salt)
As raw material polymer powder, it was synthesized by dissolving 1-vinyldipyrrolidone and diallyldimethylammonium nitrate in methyl isobutyl ketone which is a solvent, and adding a polymerization initiator for copolymerization. Several production lots of powder were prepared. In each production lot, the polymerization composition is common in molar ratio to 1-vinyldipyrrolidone: diallyldimethylammonium nitrate = 99: 1, but the amount of ethyl acetate used in the synthesis process is different. Some production lots were synthesized without using ethyl acetate. The above-mentioned "polymer purification treatment" is carried out using one or a mixture of two or more kinds of raw material polymer powders, and the number of repetition of dissolution-precipitation operation in the treatment is changed. Thus, polymer powders A to G adjusted to various ethyl acetate contents were produced.
〔ポリマー粉体の分析〕
ポリマー粉体中の酢酸エチル、TBME(tert−ブチルメチルエーテル)、MIBK(メチルイソブチルケトン)、残存モノマーであるVP(ビニルピロリドン)の含有量を核磁気共鳴分光法(NMR)で測定される1H NMRスペクトルから求めた。ここで、酢酸エチルは4.1ppm付近のピークの積分値を、TBMEは1.2ppm付近のピークの積分値を、MIBKは0.9ppm付近のピークの積分値を用いて各成分のモル%を算出した。VP含有量は前記(3)式により定めた。1H NMRスペクトルの測定には、日本電子社製、JNM−LA400(400MHz)のNMR装置を用いた。
[Analysis of polymer powder]
The content of ethyl acetate, TBME (tert-butyl methyl ether), MIBK (methyl isobutyl ketone) and residual monomer VP (vinyl pyrrolidone) in polymer powder is measured by nuclear magnetic resonance spectroscopy (NMR) 1H It calculated | required from the NMR spectrum. Here, ethyl acetate uses the integral value of the peak around 4.1 ppm, TBME uses the integral value of the peak around 1.2 ppm, and MIBK uses the integral value of the peak around 0.9 ppm, and the mol% of each component is Calculated. The VP content was determined by the equation (3). For measurement of 1 H NMR spectrum, an NMR apparatus manufactured by JEOL Ltd. JNM-LA400 (400 MHz) was used.
また、粉体中のポリマーの重量平均分子量MwをGPC(ゲル浸透クロマトグラフィー)により下記の条件で求めた。
・装置:HLC−8320GPC EcoSEC(東ソー社製)
・カラム:TSKgel GMPWXL(×2)+G2500PWXL
・溶離液:100mM硝酸ナトリウム水溶液/アセトニトリル=80/20
・流速:1.0mL/min
・温度:40℃
・注入量:200μL
・多角度光散乱検出器:DAWN HELEOS II(Wyatt Technology社製)
・屈折率(RI)検出器:Optilab T−rEX(Wyatt Technology社製)
Further, the weight average molecular weight Mw of the polymer in the powder was determined by GPC (gel permeation chromatography) under the following conditions.
・ Device: HLC-8320GPC EcoSEC (made by Tosoh Corporation)
・ Column: TSKgel GMPWXL (× 2) + G2500PWXL
Eluent: 100 mM aqueous sodium nitrate solution / acetonitrile = 80/20
・ Flow rate: 1.0 mL / min
Temperature: 40 ° C
Injection volume: 200 μL
-Multi-angle light scattering detector: DAWN HELEOS II (manufactured by Wyatt Technology)
Refractive index (RI) detector: Optilab T-rEX (manufactured by Wyatt Technology)
〔実施例1〕
(銀ナノワイヤの合成)
常温にて、プロピレングリコール8116.3g中に、塩化リチウム含有量が10質量%であるプロピレングリコール溶液4.84g、臭化カリウム0.1037g、水酸化リチウム0.426g、硝酸アルミニウム九水和物含有量が20質量%であるプロピレングリコール溶液4.994g、および有機保護剤の供給源であるポリマー粉体83.875g溶解させ、溶液Aとした。ここでは、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0299モルを含有するポリマー粉体Aを使用した。これとは別の容器中で、プロピレングリコール95.70gと純水8.00gの混合溶液中に硝酸銀67.96gを添加して、35℃で撹拌して溶解させ、銀を含有する溶液Bを得た。上記の溶液Aを反応容器に入れ、常温から90℃まで回転数175rpmで撹拌しながら昇温したのち、溶液Aの中に、溶液Bの全量を2個の添加口から1分かけて添加した。溶液Bの添加終了後、さらに撹拌状態を維持して90℃で24時間保持した。その後、反応液を常温まで冷却することで、銀ナノワイヤを合成した。
Example 1
(Synthesis of silver nanowires)
4.84 g of a propylene glycol solution having a lithium chloride content of 10% by mass in 0.1816 g of propylene glycol at normal temperature, 0.1037 g of potassium bromide, 0.426 g of lithium hydroxide, containing aluminum nitrate nonahydrate A solution A was prepared by dissolving 4.994 g of a propylene glycol solution having an amount of 20% by mass and 83.875 g of a polymer powder as a source of the organic protective agent. Here, polymer powder A containing 0.0299 mol of ethyl acetate to 1 mol of a copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt was used as a source of the organic protective agent. In a separate container from this, 67.96 g of silver nitrate is added to a mixed solution of 95.70 g of propylene glycol and 8.00 g of pure water, and the solution B containing silver is dissolved by stirring at 35 ° C. Obtained. The solution A was placed in a reaction vessel and heated from normal temperature to 90 ° C. while stirring at a rotational speed of 175 rpm, and then the whole solution B was added to the solution A from two addition ports over 1 minute . After the addition of solution B was completed, stirring was further maintained and maintained at 90 ° C. for 24 hours. Then, the silver nanowire was synthesize | combined by cooling a reaction liquid to normal temperature.
(銀ナノワイヤの平均直径、平均長さ測定)
常温まで冷却された上記反応液20gを遠沈管に分取し、純水180g添加し、遠心分離機により1500rpmで15分間の遠心分離操作を行った。濃縮物と上澄みが観察されたため、上澄み部分は除去し、濃縮物を回収した。この洗浄操作を更に数回繰り返し、濃縮物を得た。得られた濃縮物を純水に分散させた。銀ナノワイヤの長さ測定においては、その分散液をSEM用の観察台にとり、観察台上で水を揮発させたのち、電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ製;S−4700)により、加速電圧3kV、倍率1,500〜2,500倍で観察を行った。無作為に選んだ3以上の視野について、視野内で全長が確認できるすべてのワイヤを対象として、上述の定義に従って平均長さを測定した。直径測定においては、上記分散液をTEM用の観察台にとり、透過型電子顕微鏡(日本電子株式会社製;JEM-1011)により、加速電圧100kV、倍率40,000〜100,000倍で明視野像の観察を行い、上述の定義に従って平均直径を測定した。この平均長さおよび平均直径の値を前記(1)式に代入することにより平均アスペクト比を求めた。銀ナノワイヤの平均直径は25.1nm、平均長さは14.3μmであった。平均アスペクト比は、14300(nm)/25.1(nm)≒570であった。結果を他の実施例、比較例とともに表1にまとめてある。なお、参考のため、ポリマー粉体の組成を質量割合に換算したものを他の実施例、比較例とともに表2に示してある。
(Average diameter of silver nanowires, average length measurement)
20 g of the reaction solution cooled to room temperature was taken into a centrifuge tube, 180 g of pure water was added, and centrifugation was performed at 1500 rpm for 15 minutes using a centrifuge. Since the concentrate and the supernatant were observed, the supernatant portion was removed and the concentrate was recovered. This washing operation was repeated several more times to obtain a concentrate. The obtained concentrate was dispersed in pure water. In measuring the length of silver nanowires, the dispersion is placed on an observation table for SEM, water is volatilized on the observation table, and then a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; S-4700) The observation was performed at an acceleration voltage of 3 kV and a magnification of 1,500 to 2,500. For three or more randomly selected fields of view, the average length was measured according to the above definition for all wires whose full length can be confirmed in the field of view. In the diameter measurement, the above dispersion is placed on an observation table for TEM, and bright field image with an acceleration voltage of 100 kV and a magnification of 40,000 to 100,000 by a transmission electron microscope (manufactured by JEOL Ltd .; JEM-1011) The average diameter was measured according to the above definition. The average aspect ratio was determined by substituting the values of the average length and the average diameter into the equation (1). The average diameter of the silver nanowires was 25.1 nm, and the average length was 14.3 μm. The average aspect ratio was 14300 (nm) /25.1 (nm) 570 570. The results are summarized in Table 1 together with other examples and comparative examples. In addition, what converted the composition of polymer powder into the mass ratio is shown in Table 2 with the other Example and the comparative example for reference.
〔実施例2〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0102モルを含有するポリマー粉体Bを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は25.3nm、平均長さは15.8μmであった。平均アスペクト比は、15800(nm)/25.3(nm)≒625であった。
Example 2
When synthesizing silver nanowires, except that a polymer powder B containing 0.0102 mol of ethyl acetate was used as a source of organic protective agent per mol of copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt, The experiment was conducted under the same conditions as in Example 1. As a result, the average diameter of the obtained silver nanowires was 25.3 nm, and the average length was 15.8 μm. The average aspect ratio was 15800 (nm) /25.3 (nm) 625 625.
〔実施例3〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0031モルを含有するポリマー粉体Cを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は26.3nm、平均長さは15.8μmであった。平均アスペクト比は、15800(nm)/26.3(nm)≒601であった。
[Example 3]
When synthesizing silver nanowires, except that polymer powder C containing 0.0031 mol of ethyl acetate to 1 mol of copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt was used as a source of organic protective agent, The experiment was conducted under the same conditions as in Example 1. As a result, the average diameter of the obtained silver nanowires was 26.3 nm, and the average length was 15.8 μm. The average aspect ratio was 15800 (nm) /26.3 (nm) ≒ 601.
〔実施例4〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0196モルを含有するポリマー粉体Dを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は24.7nm、平均長さは16.1μmであった。平均アスペクト比は、16100(nm)/24.7(nm)≒652であった。
Example 4
When synthesizing silver nanowires, except that polymer powder D containing 0.0196 mol of ethyl acetate to 1 mol of copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt was used as a source of organic protective agent, The experiment was conducted under the same conditions as in Example 1. As a result, the average diameter of the obtained silver nanowires was 24.7 nm, and the average length was 16.1 μm. The average aspect ratio was 16100 (nm) /24.7 (nm) ≒ 652.
〔実施例5〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0242モルを含有するポリマー粉体Eを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は26.8nm、平均長さは20.4μmであった。平均アスペクト比は、20400(nm)/26.8(nm)≒761であった。
[Example 5]
When synthesizing silver nanowires, except that a polymer powder E containing 0.0242 moles of ethyl acetate per mole of copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt was used as a source of organic protective agent, The experiment was conducted under the same conditions as in Example 1. As a result, the obtained silver nanowires had an average diameter of 26.8 nm and an average length of 20.4 μm. The average aspect ratio was 20400 (nm) /26.8 (nm) ≒ 761.
〔比較例1〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル含有量が0.000モル(測定限界未満)であるポリマー粉体Fを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は39.6nm、平均長さは19.6μmであった。平均アスペクト比は、19600(nm)/39.6(nm)≒495であった。
Comparative Example 1
Polymer powder F having an ethyl acetate content of 0.000 mol (less than the detection limit) per mol of a copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt as a source of an organic protective agent when synthesizing silver nanowires The experiment was conducted under the same conditions as in Example 1 except that As a result, the obtained silver nanowires had an average diameter of 39.6 nm and an average length of 19.6 μm. The average aspect ratio was 19600 (nm) /39.6 (nm) ≒ 495.
〔比較例2〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0004モルを含有するポリマー粉体Gを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は35.8nm、平均長さは14.1μmであった。平均アスペクト比は、14100(nm)/35.8(nm)≒394であった。
Comparative Example 2
When synthesizing silver nanowires, except that polymer powder G containing 0.0004 mol of ethyl acetate to 1 mol of copolymer of vinyl pyrrolidone and diallyldimethyl ammonium salt was used as a source of organic protective agent, The experiment was conducted under the same conditions as in Example 1. As a result, the average diameter of the obtained silver nanowires was 35.8 nm, and the average length was 14.1 μm. The average aspect ratio was 14100 (nm) /35.8 (nm) ≒ 394.
表1からわかるように、有機保護剤の供給源として、本発明で規定する含有量範囲で酢酸エチルを含有するポリマー粉体を使用した各実施例では、平均直径30nm未満の非常に細い銀ナノワイヤを合成することができた。これらの銀ナノワイヤの平均アスペクト比は500を大きく超えるものであった。これに対し、本発明で規定する含有量範囲の酢酸エチルを含有していないポリマー粉体を使用した各比較例では、平均直径30nm未満のワイヤが合成できなかった。 As can be seen from Table 1, in each example using a polymer powder containing ethyl acetate in the content range specified in the present invention as a source of organic protective agent, very thin silver nanowires having an average diameter of less than 30 nm Could be synthesized. The average aspect ratio of these silver nanowires was much over 500. On the other hand, in each comparative example using the polymer powder which does not contain the ethyl acetate of the content range prescribed | regulated by this invention, the wire with an average diameter of less than 30 nm was not able to be synthesize | combined.
参考のため、図2に実施例1で使用したポリマー粉体AのNMRスペクトル、図3に比較例1で使用したポリマー粉体FのNMRスペクトルを例示する。これらの図中に記入した記号aは酢酸エチルに起因するピーク、記号bはTBME(tert−ブチルメチルエーテル)に起因するピーク、記号cはMIBK(メチルイソブチルケトン)に起因するピーク、記号pはポリマーに起因するピークである。 For reference, the NMR spectrum of the polymer powder A used in Example 1 is shown in FIG. 2 and the NMR spectrum of the polymer powder F used in Comparative Example 1 is shown in FIG. The symbol a in these figures is the peak due to ethyl acetate, the symbol b is the peak due to TBME (tert-butyl methyl ether), the symbol c is the peak due to MIBK (methyl isobutyl ketone), the symbol p is It is a peak attributed to a polymer.
Claims (8)
AM=LM/DM …(1)
AM≧45DM−650 …(2)
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。 The use of the powder as a source of organic protective agent, the average aspect ratio A M determined by the following equation (1) causes the reduction precipitation of silver nanowires satisfies the following equation (2), according to claim 1 Silver nanowire manufacturing method.
A M = L M / D M (1)
A M 45 45 D M- 650 (2)
Here, L M is the average length (nm) of the silver nanowires, and D M is the average diameter (nm) of the silver nanowires.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154737A JP6539315B2 (en) | 2017-08-09 | 2017-08-09 | Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film |
PCT/JP2018/029841 WO2019031564A1 (en) | 2017-08-09 | 2018-08-08 | Method for producing silver nanowires, silver nanowires, silver nanowire ink and transparent conductive film |
CN201880051097.5A CN111032257A (en) | 2017-08-09 | 2018-08-08 | Method for manufacturing silver nanowire, silver nanowire ink, and transparent conductive film |
TW107127813A TWI686484B (en) | 2017-08-09 | 2018-08-09 | Method for producing silver nanowire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017154737A JP6539315B2 (en) | 2017-08-09 | 2017-08-09 | Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019031726A JP2019031726A (en) | 2019-02-28 |
JP2019031726A5 JP2019031726A5 (en) | 2019-04-18 |
JP6539315B2 true JP6539315B2 (en) | 2019-07-03 |
Family
ID=65272006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017154737A Expired - Fee Related JP6539315B2 (en) | 2017-08-09 | 2017-08-09 | Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6539315B2 (en) |
CN (1) | CN111032257A (en) |
TW (1) | TWI686484B (en) |
WO (1) | WO2019031564A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111069626A (en) * | 2020-01-07 | 2020-04-28 | 南京信息职业技术学院 | Environment-friendly silver nanowire preparation method and silver nanowire film post-treatment method |
CN112768113B (en) * | 2020-12-31 | 2023-06-27 | 合肥工业大学 | Preparation method of responsive nanocomposite polymer conductive film |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011140609A (en) * | 2009-04-07 | 2011-07-21 | Seiko Epson Corp | Water-resistant aluminum pigment, water-resistant aluminum pigment dispersion, aqueous ink composition containing them, and method for producing water-resistant aluminum pigment dispersion |
GB2486190A (en) * | 2010-12-06 | 2012-06-13 | P V Nano Cell Ltd | Concentrated dispersion of nanometric silver particles |
US10220441B2 (en) * | 2014-03-07 | 2019-03-05 | Dowa Holdings Co., Ltd. | Method for producing silver nanowires, silver nanowires, and ink using same |
CN106573299B (en) * | 2014-04-11 | 2020-02-18 | 凯姆控股有限公司 | Method for controlling nanowire morphology |
WO2016114370A1 (en) * | 2015-01-15 | 2016-07-21 | 公立大学法人滋賀県立大学 | Silver nanowire, method for manufacturing same, and ink |
JP6440093B2 (en) * | 2015-01-27 | 2018-12-19 | 星光Pmc株式会社 | Metal nanowire growth control agent, metal nanowire synthesized using the metal nanowire growth control agent, metal nanowire dispersion, and method for producing metal nanowire dispersion |
CN104874813A (en) * | 2015-05-28 | 2015-09-02 | 东华大学 | Preparation method of ultrathin super-long silver nanowire |
JP2017078207A (en) * | 2015-10-20 | 2017-04-27 | 公立大学法人 滋賀県立大学 | Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink |
-
2017
- 2017-08-09 JP JP2017154737A patent/JP6539315B2/en not_active Expired - Fee Related
-
2018
- 2018-08-08 CN CN201880051097.5A patent/CN111032257A/en active Pending
- 2018-08-08 WO PCT/JP2018/029841 patent/WO2019031564A1/en active Application Filing
- 2018-08-09 TW TW107127813A patent/TWI686484B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201917220A (en) | 2019-05-01 |
WO2019031564A1 (en) | 2019-02-14 |
JP2019031726A (en) | 2019-02-28 |
CN111032257A (en) | 2020-04-17 |
TWI686484B (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6703802B2 (en) | Silver nanowire, method for producing the same, and ink | |
JP6526739B2 (en) | Silver nanowire, method for producing the same, silver nanowire ink and transparent conductive film | |
JP2017078207A (en) | Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink | |
KR20160129895A (en) | Method for producing silver nanowires, silver nanowires and ink using same | |
TWI665037B (en) | Silver nanowire and manufacturing method thereof and silver nanowire ink | |
WO2016104359A1 (en) | Method for producing silver nanowires, silver nanowires obtained by said method, and ink containing said silver nanowires | |
JP2017082305A (en) | Silver nanowire and method for producing the same, and fluid dispersion | |
JP6539315B2 (en) | Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film | |
KR20190128670A (en) | Manufacturing method of silver nanowire ink and silver nanowire ink and transparent conductive coating film | |
JP2019147983A (en) | Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same | |
TWI696669B (en) | Method for manufacturing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film | |
JP2020158857A (en) | Method for producing silver nanowire | |
JP2020158858A (en) | Method for producing silver nanowire | |
TWI697526B (en) | Method for manufacturing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film | |
WO2020175255A1 (en) | Silver nanowires, production method therefor, silver nanowire-containing reaction solution, and silver nanowire dispersion | |
JP2018070946A (en) | Organic protection agent for synthesizing silver nanowire, silver nanowire and manufacturing method therefor | |
JP2010260994A (en) | Metal-containing block copolymer and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190306 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190306 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190306 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6539315 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |