JP2019031726A - Silver nanowire manufacturing method and silver nanowire, silver nanowire ink, and transparent conductive film - Google Patents

Silver nanowire manufacturing method and silver nanowire, silver nanowire ink, and transparent conductive film Download PDF

Info

Publication number
JP2019031726A
JP2019031726A JP2017154737A JP2017154737A JP2019031726A JP 2019031726 A JP2019031726 A JP 2019031726A JP 2017154737 A JP2017154737 A JP 2017154737A JP 2017154737 A JP2017154737 A JP 2017154737A JP 2019031726 A JP2019031726 A JP 2019031726A
Authority
JP
Japan
Prior art keywords
polymer
silver
silver nanowire
acetate
silver nanowires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017154737A
Other languages
Japanese (ja)
Other versions
JP6539315B2 (en
JP2019031726A5 (en
Inventor
王高 佐藤
Kimitaka Sato
王高 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2017154737A priority Critical patent/JP6539315B2/en
Priority to CN201880051097.5A priority patent/CN111032257A/en
Priority to PCT/JP2018/029841 priority patent/WO2019031564A1/en
Priority to TW107127813A priority patent/TWI686484B/en
Publication of JP2019031726A publication Critical patent/JP2019031726A/en
Publication of JP2019031726A5 publication Critical patent/JP2019031726A5/en
Application granted granted Critical
Publication of JP6539315B2 publication Critical patent/JP6539315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

To provide a silver nanowire manufacturing method allowing for stably producing a particularly thin wire upon synthesizing a silver nanowire by an alcohol solvent reduction method.SOLUTION: A silver nanowire manufacturing method has a process of reduction-precipitating silver in a wire form in an alcohol solvent dissolved with a silver compound and an organic protectant. The manufacturing method is for a silver nanowire having an average diameter Dof 30nm or smaller and uses a powder based on a polymer having a vinylpyrrolidone structural unit and containing acetic ester in a ratio of 0.002-0.040 mol to 1 mol of the polymer, as a supply source of the organic protectant.SELECTED DRAWING: Figure 2

Description

本発明は、透明導電膜の導電素材(フィラー)として有用な銀ナノワイヤの製造方法に関する。また、その製造方法によって得られる銀ナノワイヤ、銀ナノワイヤインクおよび透明導電膜に関する。   The present invention relates to a method for producing silver nanowires useful as a conductive material (filler) for a transparent conductive film. Moreover, it is related with the silver nanowire obtained by the manufacturing method, silver nanowire ink, and a transparent conductive film.

本明細書では、太さが200nm程度以下の微細な金属ワイヤを「ナノワイヤ(nanowire(s)」と呼ぶ。   In the present specification, a fine metal wire having a thickness of about 200 nm or less is referred to as “nanowire (s)”.

銀ナノワイヤは、透明基材に導電性を付与するための導電素材として有望視されている。銀ナノワイヤを含有する液(銀ナノワイヤインク)をガラス、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)などの透明基材に塗布したのち、液状成分を蒸発等により除去すると、銀ナノワイヤは当該基材上で互いに接触し合うことにより導電ネットワークを形成するので、透明導電膜を実現することができる。   Silver nanowires are promising as conductive materials for imparting conductivity to transparent substrates. When a liquid containing silver nanowires (silver nanowire ink) is applied to a transparent substrate such as glass, PET (polyethylene terephthalate), or PC (polycarbonate) and then the liquid component is removed by evaporation or the like, the silver nanowires on the substrate Since a conductive network is formed by contact with each other, a transparent conductive film can be realized.

電子機器のタッチパネル等に使用される透明導電膜には、導電性が良好であることに加え、ヘイズの少ないクリアな視認性が要求される。銀ナノワイヤを導電素材とする透明導電膜において導電性と視認性を高いレベルで両立させるためには、できるだけ細く、かつ長い銀ナノワイヤを適用することが有利となる。   A transparent conductive film used for a touch panel of an electronic device is required to have clear visibility with little haze in addition to good conductivity. In order to achieve both conductivity and visibility at a high level in a transparent conductive film using silver nanowires as a conductive material, it is advantageous to apply silver nanowires that are as thin and long as possible.

従来、銀ナノワイヤの合成法として、例えば、エチレングリコール等のポリオール溶媒に銀化合物を溶解させ、ハロゲン化合物と有機保護剤の存在下において、溶媒であるポリオールの還元力を利用して線状形状の金属銀を析出させる手法(以下、「アルコール溶媒還元法」と言う。)が知られている。その有機保護剤として、従来一般的にPVP(ポリビニルピロリドン)が多用されてきた。PVPは細く長い銀ナノワイヤを析出させる上で好適な有機保護剤である。   Conventionally, as a method for synthesizing silver nanowires, for example, a silver compound is dissolved in a polyol solvent such as ethylene glycol, and in the presence of a halogen compound and an organic protective agent, a linear shape is obtained by using the reducing power of the polyol as a solvent. A technique for depositing metallic silver (hereinafter referred to as “alcohol solvent reduction method”) is known. Conventionally, PVP (polyvinylpyrrolidone) has been widely used as the organic protective agent. PVP is a suitable organic protective agent for depositing thin and long silver nanowires.

アルコール溶媒還元法で使用される有機保護剤の分子は、合成後の銀ナノワイヤ表面に吸着し、液状媒体中における銀ナノワイヤの分散性を支配する要因となる。PVPが吸着した銀ナノワイヤは、水に対して良好な分散性を呈する。しかし、PET等の基材に対する濡れ性を改善するためには、水と有機溶媒(例えばアルコール)との混合媒体を用いた銀ナノワイヤインクを適用することが有利となる。また、塗工設備によっては、非水系溶媒を用いた銀ナノワイヤインクを適用することが望ましい場合もある。PVPは、そのような混合媒体や非水系溶媒中での銀ナノワイヤの分散性を考慮した場合、必ずしも満足できる有機保護剤とは言えない。最近では、水以外の液状媒体中での銀ナノワイヤの分散性を改善することができる有機保護剤も種々開発されている。例えば、特許文献1にはビニルピロリドンとジアリルジメチルアンモニウム(Diallyldimethylammonium)塩モノマーとの重合組成を有するコポリマー、特許文献2にはビニルピロリドンとアクリレート系またはメタクリレート系モノマーとのコポリマー、特許文献3にはビニルピロリドンとマレイミド系モノマーとのコポリマーがそれぞれ開示されている。これらのポリマーを有機保護剤に用いたアルコール溶媒還元法では、合成条件を適正化することによって、PVPを用いた場合と同程度あるいはそれ以上に、細くて長い銀ナノワイヤを合成することが可能である。   The organic protective agent molecules used in the alcohol solvent reduction method are adsorbed on the surface of the synthesized silver nanowires, and become a factor governing the dispersibility of the silver nanowires in the liquid medium. Silver nanowires on which PVP is adsorbed exhibit good dispersibility in water. However, in order to improve wettability to a substrate such as PET, it is advantageous to apply a silver nanowire ink using a mixed medium of water and an organic solvent (for example, alcohol). Depending on the coating equipment, it may be desirable to apply a silver nanowire ink using a non-aqueous solvent. PVP is not always a satisfactory organic protective agent when considering the dispersibility of silver nanowires in such a mixed medium or non-aqueous solvent. Recently, various organic protective agents that can improve the dispersibility of silver nanowires in liquid media other than water have been developed. For example, Patent Document 1 discloses a copolymer having a polymerization composition of vinylpyrrolidone and diallyldimethylammonium salt monomer, Patent Document 2 discloses a copolymer of vinylpyrrolidone and acrylate or methacrylate monomer, and Patent Document 3 discloses vinyl. Copolymers of pyrrolidone and maleimide monomers are each disclosed. In the alcohol solvent reduction method using these polymers as organic protective agents, it is possible to synthesize thin and long silver nanowires at the same level or higher than when PVP is used by optimizing the synthesis conditions. is there.

特開2015−180772号公報Japanese Patent Laying-Open No. 2015-180772 特開2017−78207号公報JP 2017-78207 A 特開2016−135919号公報Japanese Patent Laid-Open No. 2006-135919

上述のように、透明導電塗膜の導電素材として使用する銀ナノワイヤは、導電性と視認性を高レベルで両立させる観点から、細くて長い形態であることが有利となる。本発明は、アルコール溶媒還元法で銀ナノワイヤを合成する際に、特に細いワイヤを安定して生成させる効果の高い技術を提供しようというものである。   As described above, the silver nanowires used as the conductive material of the transparent conductive coating film are advantageously thin and long in terms of achieving both high conductivity and visibility. The present invention is intended to provide a technique that is particularly effective in stably producing a thin wire when synthesizing silver nanowires by an alcohol solvent reduction method.

上記目的は、有機保護剤供給源として、所定量の酢酸エステルを配合したポリマー粉体を適用することによって達成される。本明細書では以下の発明を開示する。   The above object is achieved by applying polymer powder blended with a predetermined amount of acetate as an organic protective agent supply source. The present invention discloses the following invention.

[1]銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる工程を有する銀ナノワイヤの製造法において、前記有機保護剤の供給源として、ビニルピロリドン構造単位を持つポリマーを主成分とし、前記ポリマー1モルに対し酢酸エステルを0.002〜0.040モルの割合で含有する粉体を用いる、平均直径DMが30nm以下である銀ナノワイヤの製造法。
[2]有機保護剤の供給源として前記粉体を用いることにより、下記(1)式により定まる平均アスペクト比AMが下記(2)式の関係を満たす銀ナノワイヤを還元析出させる、上記[1]に記載の銀ナノワイヤの製造法。
M=LM/DM …(1)
M≧45DM−650 …(2)
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。
[3]前記酢酸エステルが、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルの1種または2種以上である上記[1]または[2]に記載の銀ナノワイヤの製造法。
[4]前記ポリマーが、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーである上記[1]〜[3]のいずれかに記載の銀ナノワイヤの製造法。
[5]前記ポリマーが、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレート、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミドおよびN−tert−ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するものである上記〜[3]のいずれかに記載の銀ナノワイヤの製造法。
[6]前記ポリマーは、重量平均分子量Mwが30,000〜300,000である上記[1]〜[5]のいずれかに記載の銀ナノワイヤの製造法。
[7]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤ。
[8]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤが液状媒体中に分散している銀ナノワイヤインク。
[9]上記[1]〜[6]のいずれかに記載の製造法によって得られた銀ナノワイヤを導電素材として含有する透明導電膜。
[1] In a method for producing a silver nanowire having a step of reducing and depositing silver into a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved, a vinylpyrrolidone structural unit is used as a source of the organic protective agent. A method for producing silver nanowires having an average diameter D M of 30 nm or less, using a powder containing as a main component a powder containing 0.002 to 0.040 mol of acetate ester per mol of the polymer.
The use of the powder as a source of [2] an organic protective agent, the average aspect ratio A M determined by the following equation (1) causes the reduction precipitation of silver nanowires satisfies the following equation (2), [1 ] The manufacturing method of the silver nanowire of description.
A M = L M / D M (1)
A M ≧ 45D M −650 (2)
Here, L M is the average length of the silver nanowires (nm), D M is the average diameter of the silver nanowires (nm).
[3] The method for producing a silver nanowire according to [1] or [2], wherein the acetate is one or more of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate.
[4] The method for producing a silver nanowire according to any one of [1] to [3], wherein the polymer is PVP (polyvinylpyrrolidone) or a copolymer of vinylpyrrolidone and a hydrophilic monomer.
[5] The polymer is vinylpyrrolidone, diallyldimethylammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methylmaleimide, N-ethylmaleimide, N-propyl. The method for producing a silver nanowire according to any one of the above-[3], which has a polymerization composition with one or more monomers selected from maleimide and N-tert-butylmaleimide.
[6] The method for producing a silver nanowire according to any one of [1] to [5], wherein the polymer has a weight average molecular weight Mw of 30,000 to 300,000.
[7] A silver nanowire obtained by the production method according to any one of [1] to [6].
[8] A silver nanowire ink in which silver nanowires obtained by the production method according to any one of [1] to [6] are dispersed in a liquid medium.
[9] A transparent conductive film containing, as a conductive material, silver nanowires obtained by the production method according to any one of [1] to [6].

本明細書において、銀ナノワイヤの平均長さ、平均直径、平均アスペクト比は以下の定義に従う。   In this specification, the average length of silver nanowire, an average diameter, and an average aspect ratio follow the following definitions.

〔平均長さLM
電界放出形走査電子顕微鏡(FE−SEM)による観察画像上で、ある1本の銀ナノワイヤの一端から他端までのトレース長さを、そのワイヤの長さと定義する。顕微鏡画像上に存在する個々の銀ナノワイヤの長さを平均した値を、平均長さLMと定義する。平均長さを算出するためには、測定対象のワイヤの総数を100以上とする。ここでは、還元反応を終えた液から回収される銀ナノワイヤを洗浄した段階(クロスフローろ過などの精製工程に供給する前の段階)での平均長さを評価するため、回収物中に不可避的に含まれる粒状物や短いワイヤ状生成物などの不純物を除外したワイヤの平均長さを算出する必要がある。そのため、長さが3.0μm未満のワイヤ状生成物は測定対象から外す。
[Average length L M ]
The trace length from one end to the other end of one silver nanowire on the observation image by a field emission scanning electron microscope (FE-SEM) is defined as the length of the wire. The value obtained by averaging the lengths of the individual silver nanowires present on the microscope image, is defined as the average length L M. In order to calculate the average length, the total number of wires to be measured is set to 100 or more. Here, in order to evaluate the average length at the stage of washing the silver nanowires recovered from the liquid after the reduction reaction (the stage before supplying to the purification process such as cross-flow filtration), it is inevitable in the recovered material. It is necessary to calculate the average length of the wire excluding impurities such as particulates and short wire-like products. Therefore, a wire-like product having a length of less than 3.0 μm is excluded from the measurement target.

〔平均直径DM
透過型電子顕微鏡(TEM)による明視野観察画像上で、ある1本の銀ナノワイヤにおける太さ方向両側の輪郭間距離を、そのワイヤの直径と定義する。図4に本発明に従う銀ナノワイヤについてのTEMによる明視野観察画像(以下「TEM画像」という。)を例示する。各ワイヤは全長にわたってほぼ均等な太さを有しているとみなすことができる。従って、太さの計測は他のワイヤと重なっていない部分を選択して行うことができる。1つの視野を写したTEM画像において、その画像内に観察される銀ナノワイヤのうち、他のワイヤと完全に重なって直径の計測が困難であるワイヤを除く全てのワイヤの直径を測定する、という操作を無作為に選んだ複数の視野について行い、合計100本以上の異なる銀ナノワイヤの直径を求め、個々の銀ナノワイヤの直径の平均値を算出し、その値を平均直径DMと定義する。ここでは、上述のように長さが3.0μm未満のワイヤ状生成物は測定対象から外す。
[Average diameter D M ]
The distance between contours on both sides in the thickness direction of a single silver nanowire on a bright-field observation image obtained by a transmission electron microscope (TEM) is defined as the diameter of the wire. FIG. 4 illustrates a bright field observation image by TEM (hereinafter referred to as “TEM image”) of the silver nanowire according to the present invention. Each wire can be considered to have a substantially uniform thickness over its entire length. Therefore, the thickness can be measured by selecting a portion not overlapping with another wire. In a TEM image showing one field of view, the diameters of all of the silver nanowires observed in the image, except for the wires that completely overlap with other wires and whose diameter is difficult to measure, are measured. operation performed for a plurality of field chosen randomly determines the diameter of a total of 100 or more different silver nanowires, calculates the average value of the individual silver nanowires diameter, defining its value and the average diameter D M. Here, as described above, the wire-like product having a length of less than 3.0 μm is excluded from the measurement target.

〔平均アスペクト比〕
上記の平均直径DMおよび平均長さLMを下記(1)式に代入することにより平均アスペクト比AMを算出する。ただし、(1)式に代入するDM、LMはいずれもnmの単位で表された値とする。
M=LM/DM …(1)
[Average aspect ratio]
The average aspect ratio A M is calculated by substituting the average diameter D M and the average length L M into the following equation (1). However, both D M and L M to be substituted into the equation (1) are values expressed in units of nm.
A M = L M / D M (1)

本発明に従えば、平均直径が30nm以下、あるいは特に28nm以下と非常に細い銀ナノワイヤを安定して得ることができる。これを透明導電膜の導電素材として使用すると、高い導電性を維持しながら、ヘイズの少ない視認性に優れる透明導電膜が実現できる。   According to the present invention, a very thin silver nanowire having an average diameter of 30 nm or less, or particularly 28 nm or less can be stably obtained. When this is used as a conductive material for a transparent conductive film, a transparent conductive film having excellent visibility with little haze can be realized while maintaining high conductivity.

ビニルピロリドン構造単位の構造式。Structural formula of vinylpyrrolidone structural unit. 実施例1で使用したポリマー粉体のNMRスペクトル。The NMR spectrum of the polymer powder used in Example 1. 比較例1で使用したポリマー粉体のNMRスペクトル。The NMR spectrum of the polymer powder used in Comparative Example 1. 本発明に従う銀ナノワイヤについてのTEM画像の一例。1 is an example of a TEM image for a silver nanowire according to the present invention.

本明細書ではポリマーを主成分とする粉体を「ポリマー粉体」と呼んでいる。粉体は固体粒子の集合体であり、液体成分を含まない乾燥粉体と、固体粒子間に液体成分が存在している未乾燥粉体に分類される。後者の態様としては、例えば固液分離を終えて回収された状態の固形分が挙げられる。ポリマー粉体を構成する固体粒子は主としてポリマー分子が凝集した粒子であると考えられる。「ポリマーを主成分とする」とは、粉体を構成する物質のうち当該ポリマーが少なくとも50質量%を占めていることを意味するが、当該ポリマーが90質量%以上である粉体がより好ましい対象となり、当該ポリマーが95質量%以上である粉体が更に好ましい対象となる。   In the present specification, a powder mainly composed of a polymer is referred to as “polymer powder”. The powder is an aggregate of solid particles, and is classified into a dry powder that does not contain a liquid component and an undried powder in which a liquid component exists between solid particles. As the latter aspect, for example, the solid content recovered after the solid-liquid separation is completed. The solid particles constituting the polymer powder are considered to be mainly particles in which polymer molecules are aggregated. “Containing a polymer as a main component” means that the polymer occupies at least 50% by mass of a substance constituting the powder, and a powder in which the polymer is 90% by mass or more is more preferable. A powder in which the polymer is 95% by mass or more is a more preferable target.

〔有機保護剤のポリマー粉体〕
銀ナノワイヤの金属銀表面を覆う有機保護剤として、ここではビニルピロリドン構造単位を持つポリマーを採用する。図1にビニルピロリドン構造単位の構造式を示す。ホモポリマーであるPVP(ポリビニルピロリドン)や、ビニルピロリドンとビニルピロリドン以外のモノマーとのコポリマーが、ビニルピロリドン構造単位を持つポリマーに該当する。PVPは実用的な銀ナノワイヤを合成するために適した有機保護剤として従来から使用されている。しかし上述のように、PET等の基材に対する濡れ性を改善するアルコール類を添加した液状媒体中では、ワイヤ分散性が低下するという欠点がある。発明者の検討によれば、ビニルピロリドンとビニルピロリドン以外のモノマーとのコポリマーを使うことにより、アルコール類を添加した液状媒体中での分散性を改善できる。また、このようなコポリマーであっても細く長い実用的な形状の銀ナノワイヤが得られることが確認された。
[Organic protective polymer powder]
Here, a polymer having a vinylpyrrolidone structural unit is employed as an organic protective agent covering the metallic silver surface of the silver nanowire. FIG. 1 shows the structural formula of the vinylpyrrolidone structural unit. PVP (polyvinylpyrrolidone) which is a homopolymer or a copolymer of vinylpyrrolidone and a monomer other than vinylpyrrolidone corresponds to a polymer having a vinylpyrrolidone structural unit. PVP is conventionally used as an organic protective agent suitable for synthesizing practical silver nanowires. However, as described above, in a liquid medium to which alcohols that improve wettability to a substrate such as PET are added, there is a drawback that wire dispersibility is lowered. According to the inventor's study, dispersibility in a liquid medium to which alcohols are added can be improved by using a copolymer of vinylpyrrolidone and a monomer other than vinylpyrrolidone. Moreover, it was confirmed that a silver nanowire having a thin and long practical shape can be obtained even with such a copolymer.

ところが最近では、透明導電体の導電性と低ヘイズ性の更なる改善へのニーズが高まっている。導電性向上と低ヘイズ性向上を同時に実現するためには、導電素材として用いる銀ナノワイヤの形状を、より細くしてアスペクト比を上げることが極めて有効である。発明者は鋭意研究を進めた結果、アルコール溶媒還元法でビニルピロリドン構造単位を持つポリマーを有機保護剤として使用して銀ナノワイヤを還元析出させる際に、その有機保護剤の供給源として、上記ポリマーを主成分とし、所定量の酢酸エステルを配合するポリマー粉体を使用することによって、非常に細い銀ナノワイヤがより安定して合成できることを新たに見いだした。しかも、長さも十分に確保され、平均アスペクト比の高い銀ナノワイヤが回収できる。   Recently, however, there is an increasing need for further improvement of the conductivity and low haze of the transparent conductor. In order to achieve both improvement in conductivity and improvement in low haze at the same time, it is extremely effective to increase the aspect ratio by making the shape of the silver nanowire used as the conductive material thinner. As a result of earnest research, the inventor used the polymer having a vinylpyrrolidone structural unit as an organic protective agent in the alcohol solvent reduction method to reduce and deposit silver nanowires. It was newly found that very thin silver nanowires can be synthesized more stably by using a polymer powder containing a main component of bismuth and a predetermined amount of acetate ester. In addition, silver nanowires with a sufficiently long length and a high average aspect ratio can be recovered.

ビニルピロリドン構造単位を持つポリマーとして、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーが好適な対象となる。後者のコポリマーとしては、例えば、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレート、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミドおよびN−tert−ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するコポリマーが挙げられる。コポリマーの重合組成は、ビニルピロリドン以外のモノマー0.1〜10質量%、残部ビニルピロリドンであることが好ましい。   As the polymer having a vinylpyrrolidone structural unit, PVP (polyvinylpyrrolidone) or a copolymer of vinylpyrrolidone and a hydrophilic monomer is a suitable target. Examples of the latter copolymer include vinylpyrrolidone, diallyldimethylammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methylmaleimide, N-ethylmaleimide, N- Examples thereof include a copolymer having a polymerization composition with one or more monomers selected from propylmaleimide and N-tert-butylmaleimide. The copolymer composition of the copolymer is preferably 0.1 to 10% by mass of a monomer other than vinylpyrrolidone and the remainder vinylpyrrolidone.

有機保護剤に使用するポリマーの重量平均分子量Mwは30,000〜300,000の範囲にあることが好ましく、30,000〜150,000の範囲であることがより好ましい。MwはGPC(ゲル浸透クロマトグラフィー)により求めることができる。   The weight average molecular weight Mw of the polymer used for the organic protective agent is preferably in the range of 30,000 to 300,000, and more preferably in the range of 30,000 to 150,000. Mw can be determined by GPC (gel permeation chromatography).

酢酸エステルは、上記ポリマーを合成する過程で、生成したポリマーを精製する際の有機溶剤として添加されることがある。その場合には、通常、ポリマー分子に付着している酢酸エステルが粉体製品中に存在する。その存在量が本発明で必要な所定量(後述)に満たない場合や、酢酸エステルを添加しない合成方法で得られたポリマー粉体を使用する場合は、例えば「ポリマー精製処理」などの手法によりポリマー分子に酢酸エステル分子を付着させることができ、酢酸エステル含有量を所定範囲に調整した有機保護剤のポリマー粉体を用意することができる。ポリマー精製処理は、合成されたポリマーの製品中に混入する未反応モノマー、重合開始剤、溶媒物質等の不純物を除去してポリマーの純度を高める処理である。銀ナノワイヤの還元析出時に使用する有機保護剤は一般的に極性の大きい親水性ポリマーであることから、精製処理は例えば以下のような操作によって行うことができる。重合反応によって合成された親水性ポリマーが溶解している有機溶媒を、極性の小さいジメチルエーテル、ジエチルエーテル、エチルメチルエーテル等のエーテル類や、酢酸メチル、酢酸エチル等の酢酸エステル類からなる大過剰の有機溶剤中に滴下すると、極性の大きい水溶性ポリマーは析出する。不純物である未反応モノマー、重合開始剤、溶媒物質等は上記有機溶剤中に溶解した状態を維持しているので、析出した固体物質(ポリマー)をろ過などにより回収することにより、不純物が少ない高純度化されたポリマーを得ることができる。目的とする純度のポリマーが得られるまで、この高純度化の操作を繰り返す。このようにして行う「ポリマー精製処理」において、極性の小さい大過剰の有機溶剤として酢酸エステルを使用すると、酢酸エステルの分子が付着したポリマー分子を回収することができる。上記高純度化の操作回数をコントロールすることなどにより、酢酸エステルの付着量(ポリマー粉体中の酢酸エステル含有量)を調整することができる。   In the process of synthesizing the polymer, acetate ester may be added as an organic solvent for purifying the produced polymer. In that case, acetic acid esters usually attached to the polymer molecules are present in the powder product. When the abundance is less than the predetermined amount necessary for the present invention (described later), or when polymer powder obtained by a synthesis method without adding acetate is used, for example, by a technique such as “polymer purification treatment” An acetic acid ester molecule can be attached to the polymer molecule, and a polymer powder of an organic protective agent having an acetic acid ester content adjusted to a predetermined range can be prepared. The polymer purification treatment is a treatment for removing impurities such as unreacted monomers, polymerization initiators and solvent substances mixed in the synthesized polymer product to increase the purity of the polymer. Since the organic protective agent used at the time of reduction deposition of the silver nanowire is generally a hydrophilic polymer having a large polarity, the purification treatment can be performed by the following operation, for example. An organic solvent in which the hydrophilic polymer synthesized by the polymerization reaction is dissolved is used in a large excess of ethers such as dimethyl ether, diethyl ether, and ethyl methyl ether having a low polarity, and acetate esters such as methyl acetate and ethyl acetate. When dropped into an organic solvent, a highly polar water-soluble polymer is precipitated. Since the unreacted monomer, polymerization initiator, solvent substance, and the like that are impurities maintain the dissolved state in the above organic solvent, the precipitated solid substance (polymer) can be recovered by filtration or the like to reduce impurities. A purified polymer can be obtained. This purification operation is repeated until a polymer with the desired purity is obtained. In the “polymer purification treatment” performed in this manner, when acetate is used as a large excess organic solvent having a small polarity, polymer molecules to which acetate molecules are attached can be recovered. The amount of acetic acid attached (the content of acetic acid ester in the polymer powder) can be adjusted by controlling the number of operations for the purification.

本発明では、有機保護剤の供給源として酢酸エステルの含有量が所定範囲にあるポリマー粉体を使用する。すなわち、有機保護剤が溶解した液を作製するための有機保護剤含有物質として、上記のようなポリマー粉体を使用する。換言すれば、アルコール溶媒還元法で銀ナノワイヤを合成する際の当該溶媒中に、上記のようなポリマー粉体に由来する有機保護剤を存在させる。   In the present invention, a polymer powder having an acetate content within a predetermined range is used as a supply source of the organic protective agent. That is, the polymer powder as described above is used as an organic protective agent-containing substance for preparing a solution in which an organic protective agent is dissolved. In other words, the organic protective agent derived from the polymer powder as described above is present in the solvent when the silver nanowire is synthesized by the alcohol solvent reduction method.

アルコール溶媒還元法で金属銀をワイヤ状に析出させるには、銀の多重双晶であると考えられる核結晶の{100}面に、有機保護剤のポリマー分子が選択的に吸着することが必要である。それにより{100}面の成長が抑制され、{111}面が優先的に成長し、金属銀の線状構造体が形成される。ポリマー分子の選択吸着性は、ポリマー分子の表面電位と銀の結晶面の表面電位の相互作用によって生じると考えられている。ポリマー分子の表面電位は、そのポリマー分子に付着している有機化合物分子の付着(吸着)状態によって変化する。すなわち、付着している有機化合物の種類やその付着量によってポリマー分子の電荷の偏りが変化し、銀の{100}面への選択吸着性が変わってくる。後述のように所定量の酢酸エステルを含有するポリマー粉体は、細い銀ナノワイヤの合成に極めて有効である。このことから、酢酸エステルは、ビニルピロリドン構造単位を持つポリマーに、銀{100}面への選択吸着性を向上させるような表面電位を付与するうえで、極めて有効な物質であると推察される。   In order to deposit metallic silver in the form of a wire by the alcohol solvent reduction method, it is necessary that the polymer molecule of the organic protective agent is selectively adsorbed on the {100} face of the core crystal that is considered to be a multiple twin of silver. It is. Thereby, the growth of the {100} plane is suppressed, the {111} plane grows preferentially, and a metallic silver linear structure is formed. The selective adsorption of polymer molecules is considered to be caused by the interaction between the surface potential of the polymer molecules and the surface potential of the crystal plane of silver. The surface potential of a polymer molecule changes depending on the adhesion (adsorption) state of the organic compound molecule adhering to the polymer molecule. That is, the bias of the charge of the polymer molecule changes depending on the kind of organic compound attached and the amount of the organic compound attached, and the selective adsorption property to the {100} plane of silver changes. As will be described later, a polymer powder containing a predetermined amount of acetate is extremely effective for the synthesis of thin silver nanowires. From this, it is inferred that acetate ester is a very effective substance for imparting a surface potential that improves the selective adsorptivity to the silver {100} plane to a polymer having a vinylpyrrolidone structural unit. .

また、酢酸エステルは、アルコール溶媒還元法で銀ナノワイヤを合成する際に、銀が優先的に析出していく{111}結晶面を清浄化する作用、すなわち{111}結晶面への有機保護剤分子の吸着を抑止するとともに露出している{111}結晶面を活性化させて新たな銀の析出を促進させる作用を有すると考えられる。{111}結晶面を活性化させる作用は、従来一般的な添加剤であるハロゲン化物等が主として担うが、酢酸エステルもこれと類似の働きをするものと推察される。既に析出した金属銀の線状構造体の近傍に、ハロゲンに加えて酢酸エステルが存在すると、上記清浄化の作用が増大し、線状構造体の太さ方向の表面({100}結晶面)への銀の析出のし易さに対する、長さ方向の露出表面({111}結晶面)への相対的な析出のし易さがより一層高まり、結果的に細いナノワイヤの析出成長が促進されるものと考えられる。   The acetate ester has an action of purifying the {111} crystal plane where silver is preferentially deposited when synthesizing silver nanowires by an alcohol solvent reduction method, that is, an organic protective agent for the {111} crystal plane. It is considered that the adsorption of molecules is suppressed and the exposed {111} crystal plane is activated to promote the precipitation of new silver. The action of activating the {111} crystal plane is mainly borne by halides and the like, which are conventionally common additives, and it is presumed that the acetate ester functions similarly to this. When acetic acid ester is present in addition to halogen in the vicinity of the already deposited metallic silver linear structure, the cleaning action increases, and the thickness direction surface of the linear structure ({100} crystal plane) Relative easiness of deposition on the exposed surface ({111} crystal plane) in the longitudinal direction with respect to easiness of silver deposition on the surface further increases, and as a result, precipitation growth of thin nanowires is promoted. It is thought that.

{111}結晶面の活性化作用を強化する目的でハロゲン化物の添加量を増大させることには問題がある。合成された銀ナノワイヤの表面を被覆する有機保護剤には、合成時に添加された塩素等のハロゲン原子が付着しており、そのハロゲン原子は、銀ナノワイヤに随伴して透明導電膜の中に入り込む。発明者の調査によれば、透明導電膜中の塩素濃度が高いと、透明導電膜の経時劣化が促進され、早期に導電性が低下するという問題が生じやすいことが確認されている。この点、酢酸エステルの添加によって{111}結晶面の清浄化作用を強化する手法では、上記のような透明導電膜の経時劣化の問題は回避される。   There is a problem in increasing the amount of halide added for the purpose of enhancing the activation of the {111} crystal plane. Halogen atoms such as chlorine added during synthesis are attached to the organic protective agent that covers the surface of the synthesized silver nanowires, and the halogen atoms enter the transparent conductive film accompanying the silver nanowires. . According to the inventor's investigation, it has been confirmed that when the chlorine concentration in the transparent conductive film is high, the deterioration of the transparent conductive film with time is promoted, and the problem that the conductivity is lowered at an early stage is likely to occur. In this regard, the method of enhancing the cleaning action of the {111} crystal plane by adding acetate ester avoids the above-described problem of deterioration of the transparent conductive film with time.

銀ナノワイヤの合成時に溶媒中に存在させる有機保護剤のポリマー分子は、電子密度が比較的低い金属銀の{100}結晶面に優先的に吸着する。同種の有機保護剤であっても、ポリマーの分子量が小さいほど金属銀への吸着力は大きくなる傾向があるため、分子量の小さいポリマーを使うことは細いワイヤを合成する上で有利となる。しかし、吸着力が大きくなると、優先的に析出を進行させたい{111}結晶面への吸着も生じ易くなる。そのため、過度に分子量の小さいポリマーを有機保護剤として使用すると、長さの短いワイヤが形成されやすく、アスペクト比の向上が難しくなる。酢酸エステルによる上述の銀{100}結晶面への選択吸着性の強化と、{111}結晶面の清浄化作用の強化によって、比較的低分子量のポリマーを選択できる自由度が拡がり、細くて長いワイヤの合成が容易となるメリットがある。   The polymer molecule of the organic protective agent that is present in the solvent during the synthesis of the silver nanowire is preferentially adsorbed on the {100} crystal plane of metallic silver having a relatively low electron density. Even with the same kind of organic protective agent, the smaller the molecular weight of the polymer, the greater the adsorption power to metallic silver. Therefore, the use of a polymer having a low molecular weight is advantageous in synthesizing a thin wire. However, when the adsorption force is increased, adsorption to the {111} crystal plane on which precipitation is to proceed preferentially is likely to occur. Therefore, when a polymer having an excessively small molecular weight is used as the organic protective agent, a short-length wire is likely to be formed, and it becomes difficult to improve the aspect ratio. With the enhancement of selective adsorption to the silver {100} crystal plane and the enhancement of the cleaning action of the {111} crystal plane by acetate, the degree of freedom to select a relatively low molecular weight polymer is expanded, and it is thin and long. There is an advantage that the wire can be easily synthesized.

種々検討の結果、ポリマー粉体中の酢酸エステル含有量は、当該ポリマー粉体の主成分であるビニルピロリドン構造単位を持つポリマー1モルに対し酢酸エステル0.002〜0.040モルの割合とすることが望ましい。以下、上記ポリマー1モルに対する酢酸エステルのモル比を「酢酸エステル/ポリマーモル比」と言うことがある。酢酸エステル/ポリマーモル比は0.0025以上とすることがより好ましく、例えば0.0025〜0.030の範囲に管理してもよい。酢酸エステル/ポリマーモル比は、ポリマー粉体のNMR(核磁気共鳴)スペクトルから求めることができる。酢酸エステルの含有量が少なすぎると細いワイヤを生成し易くする上述の作用が十分に得られない。逆に含有量が多すぎると、銀ナノワイヤ分散液を作製したときに、液状媒体の種類によってはワイヤの凝集が生じ易くなる。なお、酢酸エステルとポリマーの量比を質量割合で見ると、例えば酢酸エチルを適用する場合、重量平均分子量Mwが30,000〜150,000程度のビニルピロリドン構造単位を持つポリマー100質量部に対し、酢酸エチルの含有量を0.2〜3.5質量部の範囲で調整することが好ましい。   As a result of various studies, the acetate content in the polymer powder is set to 0.002 to 0.040 mol of acetate with respect to 1 mol of the polymer having the vinylpyrrolidone structural unit as the main component of the polymer powder. It is desirable. Hereinafter, the molar ratio of acetate to 1 mol of the polymer may be referred to as “acetate / polymer molar ratio”. The molar ratio of acetate / polymer is more preferably 0.0025 or more, and may be controlled in the range of 0.0025 to 0.030, for example. The acetate ester / polymer molar ratio can be determined from the NMR (nuclear magnetic resonance) spectrum of the polymer powder. If the content of acetate is too small, the above-described action that facilitates production of a fine wire cannot be obtained sufficiently. On the other hand, when the content is too large, the aggregation of the wire is likely to occur depending on the type of the liquid medium when the silver nanowire dispersion liquid is produced. In addition, when the amount ratio of the acetate ester and the polymer is viewed in terms of mass ratio, for example, when ethyl acetate is applied, with respect to 100 parts by mass of the polymer having a vinylpyrrolidone structural unit having a weight average molecular weight Mw of about 30,000 to 150,000. It is preferable to adjust the content of ethyl acetate in the range of 0.2 to 3.5 parts by mass.

ポリマー粉体に占める「ビニルピロリドン構造単位を持つポリマー」の含有量は50質量%以上とすることが望ましく、残部成分として上記所定量の酢酸エステルの他に、銀ナノワイヤの製造が可能な範囲で別の成分を含有していても構わない。有機保護剤として機能するポリマーの純度ができるだけ高いポリマー粉体を適用したい場合は、例えば前記ポリマー含有量が90質量%以上、より好ましくは95質量%以上であり、残部が上記所定量の酢酸エステルと、ポリマーの製造過程で混入する成分で構成されているものを使用すればよい。ポリマーの製造過程で混入する成分としては、残存するモノマー成分のVP(ビニルピロリドン)の他、TBME(tert−ブチルメチルエーテル)、MIBK(メチルイソブチルケトン)などの添加物質が挙げられる。これまでの調査によれば、MIBKの含有量が低いほど、平均アスペクト比の大きい銀ナノワイヤを合成するうえで有利となる傾向が見られた。MIBK含有量はポリマー100質量部に対し1.0質量部以下の範囲で調整することが好ましい。銀ナノワイヤ合成時に使用するポリマー粉体の量は、製造条件に応じて従来技術における適正使用量の範囲で設定することができる。   The content of the “polymer having a vinylpyrrolidone structural unit” in the polymer powder is desirably 50% by mass or more, and in addition to the predetermined amount of acetate as the remaining component, silver nanowires can be produced. You may contain another component. In the case where it is desired to apply a polymer powder having as high a purity as possible of a polymer that functions as an organic protective agent, for example, the polymer content is 90% by mass or more, more preferably 95% by mass or more, and the balance is the predetermined amount of acetate ester. And what is comprised with the component mixed in the manufacture process of a polymer should just be used. Examples of components mixed in the process of polymer production include additive substances such as TBME (tert-butyl methyl ether) and MIBK (methyl isobutyl ketone) in addition to VP (vinyl pyrrolidone) as the remaining monomer component. According to previous studies, it was found that the lower the content of MIBK, the more advantageous the synthesis of silver nanowires with a large average aspect ratio. The MIBK content is preferably adjusted within a range of 1.0 part by mass or less with respect to 100 parts by mass of the polymer. The amount of the polymer powder to be used at the time of synthesizing the silver nanowire can be set within the range of the appropriate amount used in the conventional technique according to the production conditions.

酢酸エステルとしては、例えば、酢酸メチル(C362)、酢酸エチル(C482)、酢酸プロピル(C5102)、酢酸ブチル(C6122)等が挙げられる。これらの酢酸エステルは、単体では常温で液体であるが、有機保護剤のポリマー分子に上述の含有量範囲で付着して存在しているときには、全体として固体物質(粉体)の形態を呈する。酢酸エステルは、1種または2種以上を使用することができる。 Examples of the acetate ester include methyl acetate (C 3 H 6 O 2 ), ethyl acetate (C 4 H 8 O 2 ), propyl acetate (C 5 H 10 O 2 ), and butyl acetate (C 6 H 12 O 2 ). Etc. These acetates are liquid at room temperature as a single substance, but when present in the form of a solid substance (powder) as a whole when they are attached to the polymer molecules of the organic protective agent in the above-mentioned content range. 1 type (s) or 2 or more types can be used for an acetate ester.

ポリマー粉体中の各種成分の含有量は、核磁気共鳴分光法(NMR)で測定されるNMRスペクトルから求めることができる。例えば、NMRスペクトルにおいて酢酸エチルのピークは4.1ppm付近や1.2〜1.3ppm付近に現れ、TBMEのピークは3.2〜3.3ppm付近や1.2ppm付近に現れ、MIBKのピークは0.9ppm付近などに現れる。また、残存モノマーであるVPの含有率VPRは下記(3)式により求めることができる。
VPR(mol%)=[2×(I1+I2)/(3×I3)]×100 …(3)
ここで、I1はVPモノマーのC=C二重結合に関わるメチンプロトンに由来するピーク(7.0−7.2ppm)の積分値、I2は同モノマーのC=C二重結合に関わるメチレンプロトンに由来するピーク(4.3−4.4ppm)の積分値、I3はポリマーのN原子に隣接するメチレンプロトンに由来するピーク(3.0−3.4ppm)の積分値である。
The content of various components in the polymer powder can be determined from an NMR spectrum measured by nuclear magnetic resonance spectroscopy (NMR). For example, in the NMR spectrum, the ethyl acetate peak appears in the vicinity of 4.1 ppm or 1.2 to 1.3 ppm, the TBME peak appears in the vicinity of 3.2 to 3.3 ppm or 1.2 ppm, and the MIBK peak Appears in the vicinity of 0.9 ppm. Further, the content VP R of the residual monomer VP can be obtained by the following equation (3).
VP R (mol%) = [2 × (I 1 + I 2 ) / (3 × I 3 )] × 100 (3)
Here, I 1 is the integrated value of the peak (7.0-7.2 ppm) derived from the methine proton related to the C═C double bond of the VP monomer, and I 2 is related to the C═C double bond of the monomer. The integrated value of the peak derived from the methylene proton (4.3 to 4.4 ppm), and I 3 is the integrated value of the peak derived from the methylene proton adjacent to the N atom of the polymer (3.0 to 3.4 ppm).

酢酸エステルを使用して合成されたポリマーの分子には酢酸エステル分子が吸着している。そのような方法で合成されたポリマーを主成分とするポリマー粉体製品は、酢酸エステルの含有量が上記所定範囲にある場合には、そのままの状態の粉体を銀ナノワイヤ合成時に有機保護剤供給源として直接使用しても構わない。一方、ポリマー粉体製品中に酢酸エステルが含まれていない場合や、含まれていてもその含有量が上記所定範囲に満たないような場合には、ポリマー分子に酢酸エステルを付着させる処理を施して、ポリマー粉体中の酢酸エステル含有量を調整する必要がある。また、ポリマー粉体製品中には通常、銀ナノワイヤの合成に不要な不純物成分(硫黄を含む連鎖移動剤成分や残存ビニルピロリドンモノマーなど)が含まれている。以下に、ポリマー粉体中の不純物成分含有量を低減する「ポリマー粉体の精製処理」を利用してポリマー分子に酢酸エステルを付着させる処理を行う手法を例示する。   Acetate molecules are adsorbed on the polymer molecules synthesized using acetate. In the case of a polymer powder product composed mainly of a polymer synthesized by such a method, when the content of acetate is within the predetermined range, an organic protective agent is supplied as it is when synthesizing silver nanowires. It may be used directly as a source. On the other hand, if the polymer powder product does not contain acetate ester, or if it is contained, but its content is less than the above specified range, the polymer powder product is treated to attach acetate ester to the polymer molecule. Therefore, it is necessary to adjust the acetate content in the polymer powder. Further, the polymer powder product usually contains impurity components (such as a sulfur-containing chain transfer agent component and residual vinyl pyrrolidone monomer) that are unnecessary for the synthesis of silver nanowires. The following is an example of a technique for performing a process of attaching an acetate ester to a polymer molecule using a “polymer powder refining process” that reduces the content of impurity components in the polymer powder.

(ポリマー精製処理の例示)
まず、被処理物であるポリマー粉体をクロロホルム溶媒に溶解させて、ポリマー含有液を得る。クロロホルム溶媒には 当該ポリマーの他、種々の不純物成分も溶解する。この液を酢酸エステル(例えば酢酸エチル)からなる溶媒中に滴下すると、当該ポリマーは酢酸エステル溶媒に不溶であるため、酢酸エステル溶媒中に析出してくる。他方、酢酸エステル溶媒に可溶である不純物成分の大部分は液中に溶解したまま残る。ただし、一部は析出したポリマーに随伴して存在する。上記の析出した固形分をろ過して回収する。回収された固形分のポリマー分子には酢酸エチルが付着している。この固形分の乾燥物を再び新たなクロロホルム溶媒に溶解させ、その溶液を新たな酢酸エステル中に滴下してポリマーを析出させ、固形分として回収する。この溶解と析出の操作を繰り返す精製処理によってポリマー粉体中の不純物量を低減することができるとともに、当該ポリマー分子に付着して存在する酢酸エステルの量を調整することができる。
(Example of polymer purification treatment)
First, a polymer powder that is an object to be processed is dissolved in a chloroform solvent to obtain a polymer-containing liquid. In addition to the polymer, various impurity components dissolve in the chloroform solvent. When this solution is dropped into a solvent composed of an acetic ester (for example, ethyl acetate), the polymer is insoluble in the acetic ester solvent, and thus precipitates in the acetic ester solvent. On the other hand, most of the impurity components that are soluble in the acetate solvent remain dissolved in the liquid. However, some are present accompanying the precipitated polymer. The precipitated solid is collected by filtration. Ethyl acetate is attached to the collected polymer molecules of the solid content. The dried product of the solid content is dissolved again in a new chloroform solvent, and the solution is dropped into a new acetate to precipitate a polymer, which is recovered as a solid content. The amount of impurities in the polymer powder can be reduced by the purification treatment in which the dissolution and precipitation operations are repeated, and the amount of acetate present attached to the polymer molecule can be adjusted.

〔銀ナノワイヤの寸法形状〕
銀ナノワイヤは、導電性と視認性に優れた透明導電塗膜を形成する観点から、できるだけ細くて長い形状であるものが好ましい。本発明では、平均直径が30nm以下、好ましくは28nm以下であるものを対象とする。平均アスペクト比は一般的に大きいほど好ましいが、ワイヤの平均直径が細くなるほど透明導電膜のヘイズ低減には有利となるため、それに伴って平均アスペクト比に関する自由度も拡大する。種々検討の結果、銀ナノワイヤ合成後の段階において下記(2)式を満たす平均アスペクトAMであることが好ましく、下記(2)’式を満たすものがより好適な対象となる。ただし、これらの式を満たす場合でも、平均長さは6.5μm以上であることが望まれる。
M≧45DM−650 …(2)
M≧45DM−630 …(2)’
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。
[Dimensions and shape of silver nanowires]
From the viewpoint of forming a transparent conductive film excellent in conductivity and visibility, the silver nanowire is preferably as thin and long as possible. In the present invention, the average diameter is 30 nm or less, preferably 28 nm or less. In general, the larger the average aspect ratio, the better. However, the thinner the average diameter of the wire, the more advantageous the haze reduction of the transparent conductive film. As a result of various investigations, it is preferable that at a later stage the silver nanowire synthesis an average aspect A M satisfying the following equation (2), those satisfying the following (2) 'expression is more preferred target. However, even when these formulas are satisfied, the average length is desirably 6.5 μm or more.
A M ≧ 45D M −650 (2)
A M ≧ 45D M −630 (2) ′
Here, L M is the average length of the silver nanowires (nm), D M is the average diameter of the silver nanowires (nm).

平均長さに関しては、銀ナノワイヤ合成後にワイヤの精製操作(例えばクロスフロー精製)を行うことによって短いワイヤを除去することで向上させることは可能である。しかし、平均直径については還元析出反応時に細いワイヤが安定して合成されるかどうかによって、ほぼ決まってしまう。すなわち、細いワイヤが合成されない限り、その後に平均直径をコントロールすることは非常に難しい。本発明に従えば平均直径30nm未以下、あるいは28nm以下といった非常に細い銀ナノワイヤを還元析出させることができる。   The average length can be improved by removing a short wire by performing a wire purification operation (for example, cross-flow purification) after the synthesis of silver nanowires. However, the average diameter is almost determined depending on whether a thin wire is stably synthesized during the reduction precipitation reaction. That is, unless a thin wire is synthesized, it is very difficult to control the average diameter thereafter. According to the present invention, very thin silver nanowires having an average diameter of 30 nm or less or 28 nm or less can be reduced and deposited.

〔銀ナノワイヤの合成〕
銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる手法(アルコール溶媒還元法)で銀ナノワイヤを合成する。この手法は、銀ナノワイヤの合成法として実用化されている。銀化合物、有機保護剤の他に、塩化物、臭化物が溶解しているアルコール溶媒中で還元析出を進行させることが好ましい。更にアルカリ金属水酸化物、アルミニウム塩が溶解しているアルコール溶媒中で還元析出を進行させてもよい。例えば、上記特許文献1に開示される手法を利用することができる。ただし、本発明では有機保護剤の供給源として、ビニルピロリドン構造単位を持つポリマーを主成分とし、前記ポリマー1モルに対し酢酸エステルを0.002〜0.040モルの割合で含有する粉体を用い、その粉体から供給される前記ポリマーを前記アルコール溶媒中に溶解させる。粉体中に存在する酢酸エステルは、ポリマー分子に付着しており、ポリマーに随伴して前記アルコール溶媒中に導入される。
[Synthesis of silver nanowires]
Silver nanowires are synthesized by a method (alcohol solvent reduction method) in which silver is reduced and precipitated in a wire form in an alcohol solvent in which a silver compound and an organic protective agent are dissolved. This technique has been put to practical use as a method for synthesizing silver nanowires. In addition to the silver compound and the organic protective agent, it is preferable to proceed the reduction precipitation in an alcohol solvent in which chloride and bromide are dissolved. Further, the reduction deposition may proceed in an alcohol solvent in which an alkali metal hydroxide and an aluminum salt are dissolved. For example, the technique disclosed in Patent Document 1 can be used. However, in the present invention, as a source of the organic protective agent, a powder containing, as a main component, a polymer having a vinylpyrrolidone structural unit and containing 0.002 to 0.040 mol of acetate with respect to 1 mol of the polymer. Used, the polymer supplied from the powder is dissolved in the alcohol solvent. The acetic acid ester present in the powder adheres to the polymer molecules and is introduced into the alcohol solvent along with the polymer.

〔ポリマー粉体の作製〕
(ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマーの例)
原料ポリマー粉体として、溶媒であるメチルイソブチルケトンに、1−ビニル2ピロリドンと、ジアリルジメチルアンモニウムナイトレート(diallyldimethylammonium nitrate)を溶解させ、重合開始剤を添加して共重合させる手法で合成された、いくつかの製造ロットの粉体を用意した。各製造ロットにおいて、重合組成は、モル比で1−ビニル2ピロリドン:ジアリルジメチルアンモニウムナイトレート=99:1と共通であるが、合成過程での酢酸エチルの使用量が異なっている。酢酸エチルを使用せずに合成した製造ロットもある。これら複数種類の原料ポリマー粉体の1種からなるもの、あるいは2種以上をブレンドしたものを用いて、前述の「ポリマー精製処理」を施し、その処理での溶解−析出操作の繰り返し回数を変えることによって種々の酢酸エチル含有量に調整したポリマー粉体A〜Gを作製した。
[Production of polymer powder]
(Example of copolymer of vinylpyrrolidone and diallyldimethylammonium salt)
The raw material polymer powder was synthesized by a method in which 1-vinyl-2-pyrrolidone and diallyldimethylammonium nitrate were dissolved in methyl isobutyl ketone as a solvent, and a polymerization initiator was added and copolymerized. Several production lots of powder were prepared. In each production lot, the polymerization composition has a molar ratio of 1-vinyl-2-pyrrolidone: diallyldimethylammonium nitrate = 99: 1, but the amount of ethyl acetate used in the synthesis process is different. Some production lots were synthesized without using ethyl acetate. Using one of these multiple types of raw material polymer powders or a blend of two or more, the above-mentioned “polymer purification treatment” is performed, and the number of repetitions of the dissolution-precipitation operation in the treatment is changed. Thus, polymer powders A to G having various ethyl acetate contents were prepared.

〔ポリマー粉体の分析〕
ポリマー粉体中の酢酸エチル、TBME(tert−ブチルメチルエーテル)、MIBK(メチルイソブチルケトン)、残存モノマーであるVP(ビニルピロリドン)の含有量を核磁気共鳴分光法(NMR)で測定される1H NMRスペクトルから求めた。ここで、酢酸エチルは4.1ppm付近のピークの積分値を、TBMEは1.2ppm付近のピークの積分値を、MIBKは0.9ppm付近のピークの積分値を用いて各成分のモル%を算出した。VP含有量は前記(3)式により定めた。1H NMRスペクトルの測定には、日本電子社製、JNM−LA400(400MHz)のNMR装置を用いた。
[Analysis of polymer powder]
The content of ethyl acetate, TBME (tert-butyl methyl ether), MIBK (methyl isobutyl ketone), and residual monomer VP (vinyl pyrrolidone) in the polymer powder is measured by nuclear magnetic resonance spectroscopy (NMR). It was determined from the NMR spectrum. Here, ethyl acetate uses the integrated value of the peak near 4.1 ppm, TBME uses the integrated value of the peak near 1.2 ppm, and MIBK uses the integrated value of the peak around 0.9 ppm to calculate the mol% of each component. Calculated. The VP content was determined by the above formula (3). For the measurement of 1H NMR spectrum, an NMR apparatus manufactured by JEOL Ltd., JNM-LA400 (400 MHz) was used.

また、粉体中のポリマーの重量平均分子量MwをGPC(ゲル浸透クロマトグラフィー)により下記の条件で求めた。
・装置:HLC−8320GPC EcoSEC(東ソー社製)
・カラム:TSKgel GMPWXL(×2)+G2500PWXL
・溶離液:100mM硝酸ナトリウム水溶液/アセトニトリル=80/20
・流速:1.0mL/min
・温度:40℃
・注入量:200μL
・多角度光散乱検出器:DAWN HELEOS II(Wyatt Technology社製)
・屈折率(RI)検出器:Optilab T−rEX(Wyatt Technology社製)
Further, the weight average molecular weight Mw of the polymer in the powder was determined by GPC (gel permeation chromatography) under the following conditions.
・ Device: HLC-8320GPC EcoSEC (manufactured by Tosoh Corporation)
Column: TSKgel GMPWXL (x2) + G2500PWXL
Eluent: 100 mM sodium nitrate aqueous solution / acetonitrile = 80/20
・ Flow rate: 1.0 mL / min
・ Temperature: 40 ℃
・ Injection volume: 200 μL
Multi-angle light scattering detector: DAWN HELEOS II (manufactured by Wyatt Technology)
Refractive index (RI) detector: Optilab T-rEX (manufactured by Wyatt Technology)

〔実施例1〕
(銀ナノワイヤの合成)
常温にて、プロピレングリコール8116.3g中に、塩化リチウム含有量が10質量%であるプロピレングリコール溶液4.84g、臭化カリウム0.1037g、水酸化リチウム0.426g、硝酸アルミニウム九水和物含有量が20質量%であるプロピレングリコール溶液4.994g、および有機保護剤の供給源であるポリマー粉体83.875g溶解させ、溶液Aとした。ここでは、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0299モルを含有するポリマー粉体Aを使用した。これとは別の容器中で、プロピレングリコール95.70gと純水8.00gの混合溶液中に硝酸銀67.96gを添加して、35℃で撹拌して溶解させ、銀を含有する溶液Bを得た。上記の溶液Aを反応容器に入れ、常温から90℃まで回転数175rpmで撹拌しながら昇温したのち、溶液Aの中に、溶液Bの全量を2個の添加口から1分かけて添加した。溶液Bの添加終了後、さらに撹拌状態を維持して90℃で24時間保持した。その後、反応液を常温まで冷却することで、銀ナノワイヤを合成した。
[Example 1]
(Synthesis of silver nanowires)
At room temperature, in 846.33 g of propylene glycol, 4.84 g of propylene glycol solution having a lithium chloride content of 10% by mass, 0.1037 g of potassium bromide, 0.426 g of lithium hydroxide, and aluminum nitrate nonahydrate Solution A was prepared by dissolving 4.994 g of a propylene glycol solution having an amount of 20% by mass and 83.875 g of polymer powder as a source of the organic protective agent. Here, polymer powder A containing 0.0299 mol of ethyl acetate with respect to 1 mol of a copolymer of vinylpyrrolidone and diallyldimethylammonium salt was used as a source of the organic protective agent. In a separate container, 67.96 g of silver nitrate was added to a mixed solution of 95.70 g of propylene glycol and 8.00 g of pure water, and stirred at 35 ° C. to dissolve, and solution B containing silver was added. Obtained. The solution A was put in a reaction vessel and heated from room temperature to 90 ° C. with stirring at a rotation speed of 175 rpm, and then the entire amount of the solution B was added into the solution A from two addition ports over 1 minute. . After completion of the addition of the solution B, the stirring state was further maintained and maintained at 90 ° C. for 24 hours. Then, silver nanowire was synthesize | combined by cooling a reaction liquid to normal temperature.

(銀ナノワイヤの平均直径、平均長さ測定)
常温まで冷却された上記反応液20gを遠沈管に分取し、純水180g添加し、遠心分離機により1500rpmで15分間の遠心分離操作を行った。濃縮物と上澄みが観察されたため、上澄み部分は除去し、濃縮物を回収した。この洗浄操作を更に数回繰り返し、濃縮物を得た。得られた濃縮物を純水に分散させた。銀ナノワイヤの長さ測定においては、その分散液をSEM用の観察台にとり、観察台上で水を揮発させたのち、電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ製;S−4700)により、加速電圧3kV、倍率1,500〜2,500倍で観察を行った。無作為に選んだ3以上の視野について、視野内で全長が確認できるすべてのワイヤを対象として、上述の定義に従って平均長さを測定した。直径測定においては、上記分散液をTEM用の観察台にとり、透過型電子顕微鏡(日本電子株式会社製;JEM-1011)により、加速電圧100kV、倍率40,000〜100,000倍で明視野像の観察を行い、上述の定義に従って平均直径を測定した。この平均長さおよび平均直径の値を前記(1)式に代入することにより平均アスペクト比を求めた。銀ナノワイヤの平均直径は25.1nm、平均長さは14.3μmであった。平均アスペクト比は、14300(nm)/25.1(nm)≒570であった。結果を他の実施例、比較例とともに表1にまとめてある。なお、参考のため、ポリマー粉体の組成を質量割合に換算したものを他の実施例、比較例とともに表2に示してある。
(Measurement of average diameter and average length of silver nanowires)
20 g of the reaction solution cooled to room temperature was collected in a centrifuge tube, 180 g of pure water was added, and centrifugation was performed at 1500 rpm for 15 minutes using a centrifuge. Since a concentrate and a supernatant were observed, the supernatant was removed and the concentrate was recovered. This washing operation was further repeated several times to obtain a concentrate. The obtained concentrate was dispersed in pure water. In measuring the length of the silver nanowire, the dispersion liquid was taken on an observation table for SEM, water was volatilized on the observation table, and then a field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation; S-4700) was used. Observation was performed at an acceleration voltage of 3 kV and a magnification of 1,500 to 2,500. For three or more fields selected at random, the average length was measured according to the above definition for all the wires whose total length could be confirmed within the field. In the diameter measurement, the above dispersion is placed on a TEM observation stand, and a bright-field image is obtained with a transmission electron microscope (manufactured by JEOL Ltd .; JEM-1011) at an acceleration voltage of 100 kV and a magnification of 40,000 to 100,000. And the average diameter was measured according to the above definition. The average aspect ratio was determined by substituting the values of the average length and average diameter into the equation (1). The average diameter of the silver nanowires was 25.1 nm, and the average length was 14.3 μm. The average aspect ratio was 14300 (nm) /25.1 (nm) ≈570. The results are summarized in Table 1 together with other examples and comparative examples. For reference, Table 2 shows the composition of the polymer powder converted to mass ratio together with other examples and comparative examples.

〔実施例2〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0102モルを含有するポリマー粉体Bを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は25.3nm、平均長さは15.8μmであった。平均アスペクト比は、15800(nm)/25.3(nm)≒625であった。
[Example 2]
In synthesizing silver nanowires, except that polymer powder B containing 0.0102 mol of ethyl acetate per 1 mol of copolymer of vinylpyrrolidone and diallyldimethylammonium salt was used as a source of organic protective agent, The experiment was performed under the same conditions as in Example 1. As a result, the obtained silver nanowire had an average diameter of 25.3 nm and an average length of 15.8 μm. The average aspect ratio was 15800 (nm) /25.3 (nm) ≈625.

〔実施例3〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0031モルを含有するポリマー粉体Cを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は26.3nm、平均長さは15.8μmであった。平均アスペクト比は、15800(nm)/26.3(nm)≒601であった。
Example 3
In synthesizing silver nanowires, except that polymer powder C containing 0.0031 mol of ethyl acetate was used as a source of organic protective agent per mol of copolymer of vinylpyrrolidone and diallyldimethylammonium salt, The experiment was performed under the same conditions as in Example 1. As a result, the obtained silver nanowire had an average diameter of 26.3 nm and an average length of 15.8 μm. The average aspect ratio was 15800 (nm) /26.3 (nm) ≈601.

〔実施例4〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0196モルを含有するポリマー粉体Dを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は24.7nm、平均長さは16.1μmであった。平均アスペクト比は、16100(nm)/24.7(nm)≒652であった。
Example 4
In synthesizing silver nanowires, except that polymer powder D containing 0.0196 mol of ethyl acetate per 1 mol of a copolymer of vinylpyrrolidone and diallyldimethylammonium salt was used as a source of the organic protective agent, The experiment was performed under the same conditions as in Example 1. As a result, the obtained silver nanowire had an average diameter of 24.7 nm and an average length of 16.1 μm. The average aspect ratio was 16100 (nm) /24.7 (nm) ≈652.

〔実施例5〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0242モルを含有するポリマー粉体Eを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は26.8nm、平均長さは20.4μmであった。平均アスペクト比は、20400(nm)/26.8(nm)≒761であった。
Example 5
In synthesizing silver nanowires, except that polymer powder E containing 0.0242 mol of ethyl acetate was used as a source of organic protective agent per mol of copolymer of vinylpyrrolidone and diallyldimethylammonium salt, The experiment was performed under the same conditions as in Example 1. As a result, the obtained silver nanowire had an average diameter of 26.8 nm and an average length of 20.4 μm. The average aspect ratio was 20400 (nm) /26.8 (nm) ≈761.

〔比較例1〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル含有量が0.000モル(測定限界未満)であるポリマー粉体Fを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は39.6nm、平均長さは19.6μmであった。平均アスペクト比は、19600(nm)/39.6(nm)≒495であった。
[Comparative Example 1]
In synthesizing silver nanowires, as a source of organic protective agent, polymer powder F having an ethyl acetate content of 0.000 mol (less than the measurement limit) with respect to 1 mol of a copolymer of vinylpyrrolidone and diallyldimethylammonium salt. An experiment was conducted under the same conditions as in Example 1 except that was used. As a result, the obtained silver nanowire had an average diameter of 39.6 nm and an average length of 19.6 μm. The average aspect ratio was 19600 (nm) /39.6 (nm) ≈495.

〔比較例2〕
銀ナノワイヤを合成するに際し、有機保護剤の供給源として、ビニルピロリドンとジアリルジメチルアンモニウム塩とのコポリマー1モルに対し、酢酸エチル0.0004モルを含有するポリマー粉体Gを使用したことを除き、実施例1と同様の条件で実験を行った。その結果、得られた銀ナノワイヤの平均直径は35.8nm、平均長さは14.1μmであった。平均アスペクト比は、14100(nm)/35.8(nm)≒394であった。
[Comparative Example 2]
In synthesizing silver nanowires, except that polymer powder G containing 0.0004 mol of ethyl acetate was used as a source of organic protective agent for 1 mol of a copolymer of vinylpyrrolidone and diallyldimethylammonium salt, The experiment was performed under the same conditions as in Example 1. As a result, the obtained silver nanowire had an average diameter of 35.8 nm and an average length of 14.1 μm. The average aspect ratio was 14100 (nm) /35.8 (nm) ≈394.

表1からわかるように、有機保護剤の供給源として、本発明で規定する含有量範囲で酢酸エチルを含有するポリマー粉体を使用した各実施例では、平均直径30nm未満の非常に細い銀ナノワイヤを合成することができた。これらの銀ナノワイヤの平均アスペクト比は500を大きく超えるものであった。これに対し、本発明で規定する含有量範囲の酢酸エチルを含有していないポリマー粉体を使用した各比較例では、平均直径30nm未満のワイヤが合成できなかった。   As can be seen from Table 1, in each Example using polymer powder containing ethyl acetate in the content range defined in the present invention as a source of organic protective agent, very thin silver nanowires having an average diameter of less than 30 nm Was able to be synthesized. The average aspect ratio of these silver nanowires greatly exceeded 500. On the other hand, in each comparative example using a polymer powder not containing ethyl acetate in the content range specified in the present invention, a wire having an average diameter of less than 30 nm could not be synthesized.

参考のため、図2に実施例1で使用したポリマー粉体AのNMRスペクトル、図3に比較例1で使用したポリマー粉体FのNMRスペクトルを例示する。これらの図中に記入した記号aは酢酸エチルに起因するピーク、記号bはTBME(tert−ブチルメチルエーテル)に起因するピーク、記号cはMIBK(メチルイソブチルケトン)に起因するピーク、記号pはポリマーに起因するピークである。   For reference, FIG. 2 illustrates the NMR spectrum of the polymer powder A used in Example 1, and FIG. 3 illustrates the NMR spectrum of the polymer powder F used in Comparative Example 1. In these figures, symbol a is a peak due to ethyl acetate, symbol b is a peak due to TBME (tert-butyl methyl ether), symbol c is a peak due to MIBK (methyl isobutyl ketone), and symbol p is It is a peak attributed to the polymer.

Claims (9)

銀化合物、有機保護剤が溶解しているアルコール溶媒中で、銀をワイヤ状に還元析出させる工程を有する銀ナノワイヤの製造法において、前記有機保護剤の供給源として、ビニルピロリドン構造単位を持つポリマーを主成分とし、前記ポリマー1モルに対し酢酸エステルを0.002〜0.040モルの割合で含有する粉体を用いる、平均直径DMが30nm以下である銀ナノワイヤの製造法。 A polymer having a vinylpyrrolidone structural unit as a supply source of the organic protective agent in a method for producing a silver nanowire having a step of reducing and depositing silver into a wire in an alcohol solvent in which a silver compound and an organic protective agent are dissolved A method for producing silver nanowires having an average diameter D M of 30 nm or less, using a powder containing, as a main component, an acetate ester in a proportion of 0.002 to 0.040 mol per mol of the polymer. 有機保護剤の供給源として前記粉体を用いることにより、下記(1)式により定まる平均アスペクト比AMが下記(2)式の関係を満たす銀ナノワイヤを還元析出させる、請求項1に記載の銀ナノワイヤの製造法。
M=LM/DM …(1)
M≧45DM−650 …(2)
ここで、LMは当該銀ナノワイヤの平均長さ(nm)、DMは当該銀ナノワイヤの平均直径(nm)である。
The use of the powder as a source of organic protective agent, the average aspect ratio A M determined by the following equation (1) causes the reduction precipitation of silver nanowires satisfies the following equation (2), according to claim 1 A method for producing silver nanowires.
A M = L M / D M (1)
A M ≧ 45D M −650 (2)
Here, L M is the average length of the silver nanowires (nm), D M is the average diameter of the silver nanowires (nm).
前記酢酸エステルが、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルの1種または2種以上である請求項1または2に記載の銀ナノワイヤの製造法。   The method for producing silver nanowires according to claim 1 or 2, wherein the acetate is one or more of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate. 前記ポリマーが、PVP(ポリビニルピロリドン)またはビニルピロリドンと親水性モノマーとのコポリマーである請求項1〜3のいずれか1項に記載の銀ナノワイヤの製造法。   The method for producing a silver nanowire according to any one of claims 1 to 3, wherein the polymer is PVP (polyvinylpyrrolidone) or a copolymer of vinylpyrrolidone and a hydrophilic monomer. 前記ポリマーが、ビニルピロリドンと、ジアリルジメチルアンモニウム塩、エチルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、4−ヒドロキシブチルアクリレート、N−メチルマレイミド、N−エチルマレイミド、N−プロピルマレイミドおよびN−tert−ブチルマレイミドから選ばれる1種または2種以上のモノマーとの重合組成を有するものである請求項1〜3のいずれか1項に記載の銀ナノワイヤの製造法。   The polymer is vinylpyrrolidone and diallyldimethylammonium salt, ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide and N The method for producing a silver nanowire according to any one of claims 1 to 3, which has a polymerization composition with one or more monomers selected from -tert-butylmaleimide. 前記ポリマーは、重量平均分子量Mwが30,000〜300,000である請求項1〜5のいずれか1項に記載の銀ナノワイヤの製造法。   The method for producing a silver nanowire according to any one of claims 1 to 5, wherein the polymer has a weight average molecular weight Mw of 30,000 to 300,000. 請求項1〜6のいずれか1項に記載の製造法によって得られた銀ナノワイヤ。   The silver nanowire obtained by the manufacturing method of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載の製造法によって得られた銀ナノワイヤが液状媒体中に分散している銀ナノワイヤインク。   A silver nanowire ink in which silver nanowires obtained by the production method according to any one of claims 1 to 6 are dispersed in a liquid medium. 請求項1〜6のいずれか1項に記載の製造法によって得られた銀ナノワイヤを導電素材として含有する透明導電膜。   The transparent conductive film which contains the silver nanowire obtained by the manufacturing method of any one of Claims 1-6 as an electroconductive material.
JP2017154737A 2017-08-09 2017-08-09 Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film Expired - Fee Related JP6539315B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017154737A JP6539315B2 (en) 2017-08-09 2017-08-09 Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film
CN201880051097.5A CN111032257A (en) 2017-08-09 2018-08-08 Method for manufacturing silver nanowire, silver nanowire ink, and transparent conductive film
PCT/JP2018/029841 WO2019031564A1 (en) 2017-08-09 2018-08-08 Method for producing silver nanowires, silver nanowires, silver nanowire ink and transparent conductive film
TW107127813A TWI686484B (en) 2017-08-09 2018-08-09 Method for producing silver nanowire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017154737A JP6539315B2 (en) 2017-08-09 2017-08-09 Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film

Publications (3)

Publication Number Publication Date
JP2019031726A true JP2019031726A (en) 2019-02-28
JP2019031726A5 JP2019031726A5 (en) 2019-04-18
JP6539315B2 JP6539315B2 (en) 2019-07-03

Family

ID=65272006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154737A Expired - Fee Related JP6539315B2 (en) 2017-08-09 2017-08-09 Method of producing silver nanowire and method of producing silver nanowire ink and transparent conductive film

Country Status (4)

Country Link
JP (1) JP6539315B2 (en)
CN (1) CN111032257A (en)
TW (1) TWI686484B (en)
WO (1) WO2019031564A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069626A (en) * 2020-01-07 2020-04-28 南京信息职业技术学院 Environment-friendly silver nanowire preparation method and silver nanowire film post-treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768113B (en) * 2020-12-31 2023-06-27 合肥工业大学 Preparation method of responsive nanocomposite polymer conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114370A1 (en) * 2015-01-15 2016-07-21 公立大学法人滋賀県立大学 Silver nanowire, method for manufacturing same, and ink
JP2016138313A (en) * 2015-01-27 2016-08-04 星光Pmc株式会社 Metal nanowire growth control agent, meal nanowire synthesized by using metal nanowire growth control agent, metal nanowire dispersion, and manufacturing method of metal nanowire dispersion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140609A (en) * 2009-04-07 2011-07-21 Seiko Epson Corp Water-resistant aluminum pigment, water-resistant aluminum pigment dispersion, aqueous ink composition containing them, and method for producing water-resistant aluminum pigment dispersion
GB2486190A (en) * 2010-12-06 2012-06-13 P V Nano Cell Ltd Concentrated dispersion of nanometric silver particles
CN106068166B (en) * 2014-03-07 2018-10-09 同和控股(集团)有限公司 The manufacturing method and nano silver wire of nano silver wire and the ink for using the nano silver wire
SG11201608454XA (en) * 2014-04-11 2016-11-29 Cam Holding Corp Methods of controlling nanowire morphology
CN104874813A (en) * 2015-05-28 2015-09-02 东华大学 Preparation method of ultrathin super-long silver nanowire
JP2017078207A (en) * 2015-10-20 2017-04-27 公立大学法人 滋賀県立大学 Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114370A1 (en) * 2015-01-15 2016-07-21 公立大学法人滋賀県立大学 Silver nanowire, method for manufacturing same, and ink
JP2016138313A (en) * 2015-01-27 2016-08-04 星光Pmc株式会社 Metal nanowire growth control agent, meal nanowire synthesized by using metal nanowire growth control agent, metal nanowire dispersion, and manufacturing method of metal nanowire dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111069626A (en) * 2020-01-07 2020-04-28 南京信息职业技术学院 Environment-friendly silver nanowire preparation method and silver nanowire film post-treatment method

Also Published As

Publication number Publication date
CN111032257A (en) 2020-04-17
TWI686484B (en) 2020-03-01
JP6539315B2 (en) 2019-07-03
TW201917220A (en) 2019-05-01
WO2019031564A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6703802B2 (en) Silver nanowire, method for producing the same, and ink
JP6321566B2 (en) Silver nanowire manufacturing method, silver nanowire and ink using the same
JP6526739B2 (en) Silver nanowire, method for producing the same, silver nanowire ink and transparent conductive film
JP2017078207A (en) Silver nanowire and manufacturing method thereof as well as fluid dispersion and ink
US10213838B2 (en) Silver nanowire production method
WO2016104359A1 (en) Method for producing silver nanowires, silver nanowires obtained by said method, and ink containing said silver nanowires
WO2018105642A1 (en) Silver nanowire, production method therefor, and silver nanowire ink
JP2017082305A (en) Silver nanowire and method for producing the same, and fluid dispersion
KR20190128670A (en) Manufacturing method of silver nanowire ink and silver nanowire ink and transparent conductive coating film
TW201941221A (en) Silver nanowire ink and method for producing the same
JP2019147983A (en) Silver nanowire synthesizing organic protection agent, and silver nanowire and method for manufacturing same
TWI686484B (en) Method for producing silver nanowire
TWI696669B (en) Method for manufacturing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film
JP2020158857A (en) Method for producing silver nanowire
JP2020158858A (en) Method for producing silver nanowire
TWI697526B (en) Method for manufacturing silver nanowire and silver nanowire, silver nanowire ink and transparent conductive film
JP2018070946A (en) Organic protection agent for synthesizing silver nanowire, silver nanowire and manufacturing method therefor
WO2020175255A1 (en) Silver nanowires, production method therefor, silver nanowire-containing reaction solution, and silver nanowire dispersion
JP2010260994A (en) Metal-containing block copolymer and method for producing the same
JP2020143341A (en) Alcohol-based silver nanowire dispersion liquid
JP2023168911A (en) Method of producing silver nanowire

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190306

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6539315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees