JP6536872B2 - Magnetic body for geomagnetic declination correction and geomagnetic declination correction method - Google Patents

Magnetic body for geomagnetic declination correction and geomagnetic declination correction method Download PDF

Info

Publication number
JP6536872B2
JP6536872B2 JP2014225129A JP2014225129A JP6536872B2 JP 6536872 B2 JP6536872 B2 JP 6536872B2 JP 2014225129 A JP2014225129 A JP 2014225129A JP 2014225129 A JP2014225129 A JP 2014225129A JP 6536872 B2 JP6536872 B2 JP 6536872B2
Authority
JP
Japan
Prior art keywords
magnetic
geomagnetic
magnetic member
geomagnetic declination
declination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014225129A
Other languages
Japanese (ja)
Other versions
JP2016090391A (en
Inventor
一幸 三浦
一幸 三浦
成隆 広里
成隆 広里
和弘 村松
和弘 村松
炎輝 高
炎輝 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Takenaka Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY, Takenaka Corp filed Critical NATIONAL UNIVERSITY CORPORATION SAGA UNIVERSITY
Priority to JP2014225129A priority Critical patent/JP6536872B2/en
Publication of JP2016090391A publication Critical patent/JP2016090391A/en
Application granted granted Critical
Publication of JP6536872B2 publication Critical patent/JP6536872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Navigation (AREA)

Description

本発明は、地磁気偏角補正用磁性体及び地磁気の偏角補正方法に関する。   TECHNICAL FIELD The present invention relates to a magnetic body for geomagnetic declination correction and a method for correcting the declination of geomagnetism.

MRI(Magnetic Resonance Imaging)装置に設けられ、乱れた磁界を均一化する鉄片が知られている(例えば、特許文献1参照)。また、基板に対するスパッタリング中に磁石を回転させ、基板に印加される磁界を180度反転させることで当該基板上に成膜される膜厚を均一化する技術が知られている(例えば、特許文献2)。   There is known an iron piece provided in an MRI (Magnetic Resonance Imaging) apparatus to homogenize a disturbed magnetic field (see, for example, Patent Document 1). In addition, there is known a technique to make the film thickness formed on the substrate uniform by rotating the magnet during sputtering on the substrate and reversing the magnetic field applied to the substrate by 180 degrees (for example, Patent Document) 2).

特開平1−254154号公報Unexamined-Japanese-Patent No. 1-254154 国際公開第2009/0040892号WO 2009/0040892

ところで、例えば、航空機に搭載された方位計を校正する場合、地磁気の偏角分布が均一化された調整エリアが必要となる。このような調整エリアを得るために、乱れた地磁気の偏角分布を前述した鉄片や磁石によって補正し、均一化することが考えられる。   By the way, for example, when calibrating an azimuth meter mounted on an aircraft, it is necessary to have an adjustment area in which the declination distribution of the geomagnetism is equalized. In order to obtain such a control area, it is conceivable to correct and equalize the distribution of the declination of the disturbed geomagnetism with the iron piece or magnet described above.

しかしながら、鉄片等の磁性部材では、磁力が弱いため、地磁気の偏角に対する補正範囲が小さく、十分な補正効果を得ることが難しい。一方、磁石では、磁性部材よりも補正範囲を大きくすることができるものの、磁性部材よりも高価であるため、コストがかかる可能性がある。   However, in the case of a magnetic member such as an iron piece, since the magnetic force is weak, the correction range for the geomagnetic declination is small, and it is difficult to obtain a sufficient correction effect. On the other hand, although the correction range can be made larger in the magnet than in the magnetic member, it is more expensive than the magnetic member, which may increase the cost.

本発明は、上記の事実を考慮し、コストを削減しつつ、地磁気の偏角に対する補正範囲を大きくすることを目的とする。   An object of the present invention is, in consideration of the above-mentioned facts, to increase the correction range for the geomagnetic declination while reducing the cost.

第1態様に係る地磁気偏角補正用磁性体は、地磁気の偏角を補正する地磁気偏角補正用磁性体であって、長尺磁性部材と、前記長尺磁性部材に設けられて該長尺磁性部材を磁化し、前記長尺磁性部材の長手方向一端側にN極を形成すると共に長手方向他端側にS極を形成する磁石と、を備える。 The magnetic member for correcting the geomagnetic declination according to the first aspect is a magnetic member for correcting the geomagnetic declination which corrects the declination of the geomagnetism, and is provided on the elongated magnetic member and the elongated magnetic member, and the elongated magnetic member is provided. A magnet is provided to magnetize the magnetic member and form an N pole on one end side in the longitudinal direction of the elongated magnetic member and an S pole on the other end side in the longitudinal direction.

第1態様に係る地磁気偏角補正用磁性体によれば、長尺磁性部材には、磁石が設けられる。この磁石は長尺磁性部材を磁化し、当該長尺磁性部材の長手方向一端側にN極を形成すると共に長手方向他端側にS極を形成する。これにより、長尺磁性部材を備えない構成と比較して、N極とS極との距離が離れるため、地磁気偏角補正用磁性体の周囲に発生する磁界が大きくなる。したがって、地磁気の偏角に対する補正範囲を大きくすることができる。 According to the magnetic member for correcting a geomagnetic declination according to the first aspect , the long magnetic member is provided with a magnet. The magnet magnetizes the elongated magnetic member to form an N pole on one end side in the longitudinal direction of the elongated magnetic member and an S pole on the other end side in the longitudinal direction. As a result, the distance between the N pole and the S pole is greater than in the configuration without the elongated magnetic member, so the magnetic field generated around the geomagnetic declination magnetic member becomes larger. Therefore, the correction range for the geomagnetic declination can be increased.

また、長尺磁性部材は、磁石よりも廉価な鋼材等で形成することができる。したがって、コストを削減することができる。   In addition, the elongated magnetic member can be formed of a steel material or the like that is less expensive than a magnet. Therefore, the cost can be reduced.

このように本発明によれば、コストを削減しつつ、地磁気の偏角に対する補正範囲を大きくすることができる。   As described above, according to the present invention, it is possible to enlarge the correction range for the geomagnetic declination while reducing the cost.

第2態様に係る地磁気偏角補正用磁性体は、第1態様に係る地磁気偏角補正用磁性体において、前記磁石は、前記長尺磁性部材の長手方向両側の端部に設けられると共に、該長尺磁性部材を挟んでN極とS極とを対向させて配置される。 The magnetic member for correcting the geomagnetic declination according to the second aspect is the magnetic member for geomagnetic declination correction according to the first aspect , wherein the magnet is provided at both ends of the elongated magnetic member in the longitudinal direction, The N pole and the S pole are disposed to face each other with the elongated magnetic member interposed therebetween.

第2態様に係る地磁気偏角補正用磁性体によれば、長尺磁性部材の長手方向両側の端部に磁石を設けることにより、長尺磁性部材の長手方向一端側の端部にのみ磁石を設けた場合と比較して、地磁気偏角補正用磁性体の周囲に発生する磁界を大きくすることができる。 According to the magnetic member for correcting the geomagnetic declination according to the second aspect , the magnets are provided only at the end of one end of the elongated magnetic member in the longitudinal direction by providing the magnets at the ends of both ends of the elongated magnetic member in the longitudinal direction. The magnetic field generated around the geomagnetic declination magnetic body can be made larger than in the case where it is provided.

また、複数の長尺磁性部材を磁石で磁化する場合、磁石を設ける前の各長尺磁性部材の残留磁化等に起因した磁力にバラツキ等があると、地磁気偏角補正用磁性体の周囲に発生する磁界が小さくなる可能性がある。   In the case of magnetizing a plurality of elongated magnetic members with a magnet, if there is variation or the like in the magnetic force caused by residual magnetization of each elongated magnetic member before providing the magnet, the magnetic material is corrected around the geomagnetic deflection angle correction magnetic body. The generated magnetic field may be small.

これに対して本発明では、1本の長尺磁性部材の長手方向両側の端部に磁石を設けるため、地磁気偏角補正用磁性体の周囲に所定の磁界を発生させることができる。   On the other hand, in the present invention, since the magnets are provided at the end portions on both sides in the longitudinal direction of one long magnetic member, a predetermined magnetic field can be generated around the magnetic body for correcting the geomagnetic declination.

第3態様に係る地磁気偏角補正用磁性体は、第1態様に係る地磁気偏角補正用磁性体において、前記長尺磁性部材は、長手方向に複数配列され、前記磁石は、隣接する前記長尺磁性部材の間に設けられる。 In the magnetic member for correcting the geomagnetic declination according to the third aspect, in the magnetic member for correcting the geomagnetic declination according to the first aspect , a plurality of the elongated magnetic members are arranged in the longitudinal direction, and the magnets are adjacent to each other for the length It is provided between the scale magnetic members.

第3態様に係る地磁気偏角補正用磁性体によれば、隣接する長尺磁性部材の間に磁石を設けることにより、1本の長尺磁性部材の長手方向一端側の端部にのみ磁石を設けた場合と比較して、地磁気偏角補正用磁性体の周囲に発生する磁界を大きくすることができる。 According to the magnetic member for correcting the geomagnetic declination according to the third aspect , by providing the magnet between the adjacent long magnetic members, the magnet is provided only at one end of the one long magnetic member in the longitudinal direction. The magnetic field generated around the geomagnetic declination magnetic body can be made larger than in the case where it is provided.

第4態様に係る地磁気の偏角補正方法は、補正対象水平面の上方または下方に、第1態様第3態様の何れか1つに係る地磁気偏角補正用磁性体を前記補正対象水平面内の地磁気の向きの分布に応じて長手方向を南北方向、東西方向、または上下方向として設置する。 Declination correction method geomagnetic according to the fourth embodiment, the correction above or below the target horizontal plane, of the magnetic declination in the correction magnetic said corrected horizontal plane according to any one of the first aspect to third aspect The longitudinal direction is set as the north-south direction, the east-west direction, or the vertical direction according to the distribution of the direction of the geomagnetic field.

第4態様に係る地磁気の偏角補正方法によれば、補正対象水平面の上方または下方に、第1態様第3態様の何れか1つに係る地磁気偏角補正用磁性体を設置する。この際、補正対象水平面内の地磁気の向きの分布に応じて、地磁気偏角補正用磁性体の長手方向を南北方向、東西方向、または上下方向とすることで地磁気の偏角を補正し、偏角分布を均一化することができる。 According to magnetic declination correction method according to the fourth embodiment, above or below the corrected horizontal plane, placing the magnetic declination correction magnetic body according to any one of the first aspect to third aspect. At this time, according to the distribution of the direction of the geomagnetism in the horizontal plane to be corrected, the geomagnetic declination is corrected by making the longitudinal direction of the geomagnetic declination magnetic body the north-south direction, the east-west direction, or the up-down direction. Angular distribution can be made uniform.

以上説明したように、本発明によれば、コストを削減しつつ、地磁気の偏角に対する補正範囲を大きくすることができる。   As described above, according to the present invention, it is possible to enlarge the correction range for the geomagnetic declination while reducing the cost.

本発明の第1実施形態に係る地磁気偏角補正用磁性体を示す斜視図である。It is a perspective view which shows the magnetic body for geomagnetic deflection angle correction which concerns on 1st Embodiment of this invention. 図1に示される地磁気偏角補正用磁性体を示す平面図である。It is a top view which shows the magnetic body for geomagnetic declination correction | amendment shown by FIG. (A)〜(C)は、地磁気偏角補正用磁性体の上方にある所定水平面内に発生する磁界の向きの分布を示す分布図である。(A)-(C) are distribution figures which show distribution of direction of the magnetic field generate | occur | produced in the predetermined | prescribed horizontal surface which exists above the magnetic body for geomagnetic declination angle | corners. 図1に示される地磁気偏角補正用磁性体の設置状態を示す平面図である。It is a top view which shows the installation state of the magnetic body for geomagnetic declination correction | amendment shown by FIG. 本発明の第2実施形態に係る地磁気偏角補正用磁性体を示す斜視図である。It is a perspective view which shows the magnetic body for geomagnetic deflection angle correction which concerns on 2nd Embodiment of this invention. (A)及び(B)は、比較例1,2に係る地磁気偏角補正用磁性体の上方にある所定水平面内に発生する磁界の向きの分布を示す分布図である。(A) And (B) is a distribution map which shows distribution of direction of the magnetic field generate | occur | produced in the predetermined horizontal surface which exists above the magnetic body for geomagnetic declination amendment which concerns on the comparative examples 1 and 2. FIG. (A)及び(B)は、実施例1,2に係る地磁気偏角補正用磁性体の上方にある所定水平面内に発生する磁界の向きの分布を示す分布図である。(A) And (B) is a distribution map which shows distribution of direction of the magnetic field generate | occur | produced in the predetermined | prescribed horizontal surface which exists above the magnetic body for geomagnetic declination amendment which concerns on Example 1, 2. FIG. (A)及び(B)は、実施例3,4に係る地磁気偏角補正用磁性体の上方にある所定水平面内に発生する磁界の向きの分布を示す分布図である。(A) And (B) is a distribution map which shows distribution of direction of the magnetic field generate | occur | produced in the predetermined | prescribed horizontal surface which exists above the magnetic body for geomagnetic declination amendment which concerns on Example 3, 4. FIG.

以下、図面を参照しながら本発明の一実施形態に係る地磁気偏角補正用磁性体及び地磁気の偏角補正方法について説明する。なお、各図に適宜示されるS及びNは、磁極を示している。   Hereinafter, a magnetic body for geomagnetic declination correction according to an embodiment of the present invention and a method for correcting the geomagnetic declination will be described with reference to the drawings. In addition, S and N suitably shown by each figure have shown the magnetic pole.

先ず、第1実施形態について説明する。   First, the first embodiment will be described.

図1に示されるように、本実施形態に係る地磁気偏角補正用磁性体10は、一対の長尺磁性部材12,14と、磁石20とを有している。一対の長尺磁性部材12,14は、透磁性を有する断面矩形状の筒状部材(例えば、角形鋼管等)で形成されており、長手方向に間隔を空けて配列されている。この一対の長尺磁性部材12,14は、磁石(強磁性体)以外の磁性体で形成される。なお、長尺磁性部材12,14は、電磁鋼(ケイ素鋼)等の透磁率が高い材料で形成することが望ましい。   As shown in FIG. 1, the geomagnetic declination magnetic body 10 according to the present embodiment includes a pair of elongated magnetic members 12 and 14 and a magnet 20. The pair of elongated magnetic members 12 and 14 is formed of a tubular member (for example, a square steel pipe or the like) having a rectangular cross section having magnetic permeability, and is arranged at intervals in the longitudinal direction. The pair of elongated magnetic members 12 and 14 are formed of a magnetic body other than a magnet (ferromagnetic body). Preferably, the elongated magnetic members 12 and 14 are formed of a material having high magnetic permeability, such as electromagnetic steel (silicon steel).

また、一対の長尺磁性部材12,14は、同じ構成(断面形状、長さ)とされている。なお、ここでいう一対の長尺磁性部材12,14が同じ構成とは、製造誤差等による僅かなずれを含む概念である。   The pair of elongated magnetic members 12 and 14 have the same configuration (cross-sectional shape and length). Here, the same configuration of the pair of elongated magnetic members 12 and 14 is a concept including a slight deviation due to a manufacturing error or the like.

磁石20は、例えば、ネオジム磁石やフェライト磁石等の永久磁石によって直方体状に形成される。この磁石20は、長手方向一端側にN極を有すると共に長手方向他端側にS極を有し、隣接する長尺磁性部材12,14の間に設けられている。   The magnet 20 is formed in a rectangular parallelepiped shape by permanent magnets, such as a neodymium magnet and a ferrite magnet, for example. The magnet 20 has an N pole on one end side in the longitudinal direction and an S pole on the other end side in the longitudinal direction, and is provided between the adjacent elongated magnetic members 12 and 14.

磁石20のN極側の端部には、一方の長尺磁性部材12の長手方向一端側の端部12Aが磁力によって吸着されている。この磁石20によって、一方の長尺磁性部材12が磁化されている。これにより、一方の長尺磁性部材12の長手方向一端側の端部12AにS極が形成されると共に、長手方向他端側(磁石20と反対側)の端部12BにN極が形成されている。   An end 12A at one end side in the longitudinal direction of one elongated magnetic member 12 is attracted to the end on the N pole side of the magnet 20 by a magnetic force. One long magnetic member 12 is magnetized by the magnet 20. As a result, an S pole is formed at the end 12A at one longitudinal end of one elongated magnetic member 12, and an N pole is formed at the end 12B at the other longitudinal end (opposite to the magnet 20). ing.

一方、磁石20のS極側の端部には、他方の長尺磁性部材14の長手方向一端側の端部14Aが磁力によって吸着されている。この磁石20によって、他方の長尺磁性部材14が磁化されている。これにより、他方の長尺磁性部材14の長手方向一端側の端部14AにN極が形成されると共に、長手方向他端側(磁石20と反対側)の端部14BにS極が形成されている。   On the other hand, an end 14A at one end side in the longitudinal direction of the other long magnetic member 14 is attracted to the end of the magnet 20 on the S pole side by magnetic force. The other long magnetic member 14 is magnetized by the magnet 20. As a result, an N pole is formed at the end 14A at one longitudinal end of the other long magnetic member 14 and an S pole is formed at the other end 14B at the other longitudinal end (opposite to the magnet 20). ing.

このように一対の長尺磁性部材12,14の間に磁石20を設けることにより、地磁気偏角補正用磁性体10全体としては、その長手方向一端側の端部12BにN極が形成されると共に、長手方向他端側の端部14BにS極が形成されている。   By providing the magnet 20 between the pair of elongated magnetic members 12 and 14 as described above, an N pole is formed at the end 12 B on one end side in the longitudinal direction of the geomagnetic declination magnetic body 10 as a whole. At the same time, an S pole is formed at the end 14 B on the other end side in the longitudinal direction.

なお、磁石20と一対の長尺磁性部材12,14とは、接着剤等で接合しても良い。また、磁石20は、一対の長尺磁性部材12,14を磁化可能に設けられていれば良く、磁石20と一対の長尺磁性部材12,14との間には隙間があっても良い。つまり、磁石20と一対の長尺磁性部材12,14とは、非接触であっても良い。また、磁石20は、例えば、電磁石で形成しても良い。   The magnet 20 and the pair of elongated magnetic members 12 and 14 may be joined by an adhesive or the like. The magnet 20 may be provided so as to magnetize the pair of elongated magnetic members 12 and 14, and a gap may be provided between the magnet 20 and the pair of elongated magnetic members 12 and 14. That is, the magnet 20 and the pair of elongated magnetic members 12 and 14 may not be in contact with each other. Moreover, you may form the magnet 20 with an electromagnet, for example.

次に、地磁気の偏角補正方法について説明する。   Next, a method of correcting the declination of the geomagnetism will be described.

図2に破線で示されるように、地磁気偏角補正用磁性体10の周囲には、N極からS極に向う磁界が形成される。なお、図2には、地磁気偏角補正用磁性体10と同じ水平面内の磁界が模式的に示されている。   As shown by a broken line in FIG. 2, a magnetic field from the N pole to the S pole is formed around the geomagnetic declination magnetic body 10. Note that FIG. 2 schematically shows the magnetic field in the same horizontal plane as the geomagnetic declination magnetic body 10.

本実施形態では、地磁気偏角補正用磁性体10の周囲に発生する磁界を利用し、地磁気偏角補正用磁性体10の上方または下方にある所定水平面内(補正対象水平面)の地磁気の偏角を補正する。なお、ここでいう地磁気とは、地球の持つ磁場の総称である。また、地磁気の偏角とは、地理上の北(真北)に対する磁場上の北(磁北)のずれの角度であり、地域や年代により異なる。   In the present embodiment, a magnetic field generated around the magnetic declination magnetic correction member 10 is used to declination of the geomagnetism in a predetermined horizontal plane (correction target horizontal surface) above or below the magnetic declination correction magnetic material 10 Correct the In addition, geomagnetism here is a generic term of the magnetic field which the earth has. Also, the declination of the geomagnetic field is the angle of deviation of north (magnetic north) on the magnetic field with respect to geographical north (true north), and varies depending on the region and age.

図3(A)〜図3(C)には、地磁気偏角補正用磁性体10の上方の所定水平面F内に発生する磁界の向きの分布が示されている。図3(A)〜図3(C)では、地磁気偏角補正用磁性体10の向きが異なっており、この地磁気偏角補正用磁性体10の向きに応じて、地磁気偏角補正用磁性体10の上方の所定水平面内に発生する磁界の向きが異なっている。なお、図3(A)〜図3(C)において、斜線領域は、その外周の領域よりも磁界が強い領域である。   FIGS. 3A to 3C show the distribution of the direction of the magnetic field generated in a predetermined horizontal plane F above the geomagnetic declination magnetic body 10. In FIGS. 3A to 3C, the orientation of the geomagnetic declination magnetic body 10 is different. According to the orientation of the geomagnetic declination magnetic body 10, the geomagnetic declination magnetic body is modified. The direction of the magnetic field generated in the predetermined horizontal plane above 10 is different. In FIGS. 3A to 3C, the hatched area is an area where the magnetic field is stronger than the area of the outer periphery.

具体的には、図3(A)では、地磁気偏角補正用磁性体10が、そのN極(端部12B)を地理上の南に向けた状態で設置されている。この場合、所定水平面F内における地磁気偏角補正用磁性体10の北西側及び南東側には、白矢印で示されるように地磁気を東向きに補正可能な領域(以下、「東向き補正領域」という)32Eが形成される。一方、所定水平面F内における地磁気偏角補正用磁性体10の北東側及び南西側には、黒矢印で示されるように地磁気を西向きに補正可能な領域(以下、「西向き補正領域」という)32Wが形成される。   Specifically, in FIG. 3A, the geomagnetic declination magnetic body 10 is installed with its N pole (the end 12B) facing south on the geographical surface. In this case, on the northwest and southeast sides of the geomagnetic declination magnetic body 10 within the predetermined horizontal plane F, as indicated by the white arrows, an area in which the geomagnetism can be corrected to the east (hereinafter referred to as "eastward correction area" ) 32E is formed. On the other hand, on the northeast and southwest sides of the geomagnetic declination magnetic body 10 within the predetermined horizontal plane F, as indicated by black arrows, a region (hereinafter referred to as "westward correction region") 32W capable of correcting the geomagnetism westward Is formed.

なお、図3(A)とは逆に、地磁気偏角補正用磁性体10のN極(端部12B)を地理上の北に向けた場合は、後述する図7(A)に示されるように、東向き補正領域32Eと西向き補正領域32Wとが入れ替わる。すなわち、所定水平面F内における地磁気偏角補正用磁性体10の北西側及び南東側に西向き補正領域32W(黒矢印)が形成され、地磁気偏角補正用磁性体10の北東側及び南西側に東向き補正領域32E(白矢印)が形成される。   In contrast to FIG. 3 (A), when the N pole (end 12B) of the geomagnetic declination magnetic body 10 is directed to the geographical north, as shown in FIG. 7 (A) described later. Then, the easting correction area 32E and the westing correction area 32W are interchanged. That is, a westward correction region 32W (black arrow) is formed on the northwest side and the southeast side of the magnetic body 10 for correcting the geomagnetic declination in the predetermined horizontal plane F, and the northeast side and the southwest side of the magnetic body 10 for geomagnetic declination correction A direction correction area 32E (white arrow) is formed.

次に、図3(B)では、地磁気偏角補正用磁性体10が、そのN極(端部12B)を地理上の東に向けた状態で設置されている。この場合、所定水平面F内における地磁気偏角補正用磁性体10の周囲には、黒矢印で示されるように西向き補正領域32Wが形成される。   Next, in FIG. 3 (B), the geomagnetic declination magnetic body 10 is installed with its N pole (end 12B) facing east on the geographical surface. In this case, a westward correction area 32W is formed around the geomagnetic declination magnetic correction body 10 in the predetermined horizontal plane F, as shown by the black arrow.

なお、図3(B)とは逆に、地磁気偏角補正用磁性体10のN極を地理上の西に向けた場合は、東向き補正領域32Eと西向き補正領域32Wとが入れ替わる。すなわち、所定水平面F内における地磁気偏角補正用磁性体10の周囲には、東向き補正領域32Eが形成される。   In contrast to FIG. 3B, when the N pole of the geomagnetic declination magnetic body 10 is directed to the west in the geographical direction, the easting correction area 32E and the westing correction area 32W are switched. That is, an easting correction area 32E is formed around the geomagnetic declination magnetic body 10 in the predetermined horizontal plane F.

次に、図3(C)では、地磁気偏角補正用磁性体10が、そのN極(端部12B)を上方に向けた状態で設置されている。この場合、所定水平面F内における地磁気偏角補正用磁性体10の東側には、白矢印で示されるように東向き補正領域32Eが形成される。一方、所定水平面F内における地磁気偏角補正用磁性体10の西側には、黒矢印で示されるように西向き補正領域32Wが形成される。   Next, in FIG. 3 (C), the geomagnetic declination magnetic body 10 is installed with its N pole (end 12B) facing upward. In this case, an easting correction area 32E is formed on the east side of the geomagnetic declination magnetic body 10 in the predetermined horizontal plane F, as indicated by the white arrow. On the other hand, on the west side of the geomagnetic declination magnetic body 10 in the predetermined horizontal plane F, a westward correction area 32W is formed as indicated by a black arrow.

なお、図3(C)とは逆に、地磁気偏角補正用磁性体10のN極を下方に向けた場合は、東向き補正領域32Eと西向き補正領域32Wとが入れ替わる。すなわち、所定水平面F内において、地磁気偏角補正用磁性体10の東側に西向き補正領域32Wが形成され、地磁気偏角補正用磁性体10の西側に東向き補正領域32Eが形成される。   In contrast to FIG. 3C, when the N pole of the geomagnetic declination magnetic body 10 is directed downward, the easting correction area 32E and the westing correction area 32W are switched. That is, in the predetermined horizontal plane F, the westward correction area 32W is formed on the east side of the geomagnetic declination magnetic body 10, and the easting correction area 32E is formed on the west side of the geomagnetic declination magnetic body 10.

さらに補足すると、図3(A)〜図3(C)では、地磁気偏角補正用磁性体10の上方の所定水平面F内に発生する磁界を示したが、地磁気偏角補正用磁性体10の下方の所定水平面内にも、図3(A)〜図3(C)と同様の磁界が発生する。ただし、図3(C)における地磁気偏角補正用磁性体10の下方の所定水平面内では、東向き補正領域32Eと西向き補正領域32Wとが入れ替わる。   In addition, FIGS. 3A to 3C show the magnetic field generated in the predetermined horizontal plane F above the magnetic body 10 for correcting the geomagnetic declination, but the magnetic body 10 for correcting the geomagnetic declination is The same magnetic field as that in FIGS. 3A to 3C is generated in the lower predetermined horizontal plane. However, in the predetermined horizontal plane below the magnetic body 10 for correcting the geomagnetic declination in FIG. 3C, the easting correction area 32E and the westing correction area 32W are switched.

ここで、図4には、一例として、補正対象水平面H内の地磁気34が、地理上の北に対して東側に偏角θで傾斜した状態が示されている。なお、図4には、補正対象水平面H内の測定点Pで測定した地磁気34の大きさ及び向きがベクトルで示している。   Here, FIG. 4 shows, as an example, a state in which the geomagnetism 34 in the horizontal plane H to be corrected is inclined to the east with respect to the geographical north at the declination angle θ. In FIG. 4, the size and the direction of the geomagnetism 34 measured at the measurement point P in the horizontal plane H to be corrected are shown by vectors.

この地磁気34の偏角θを補正する場合には、例えば、測定点Pの下方に、地磁気偏角補正用磁性体10をそのN極(端部12B)を地理上の東に向けた状態で設置する。これにより、補正対象水平面Hにおける地磁気偏角補正用磁性体10の周囲に西向き補正領域32W(図3(B)参照)が形成される。この結果、地磁気34の偏角θが矢印Rで示されるように西向きに補正され、小さくなる。この際、測定点Pからの地磁気偏角補正用磁性体10の距離や磁石20の磁力によって偏角θの補正量を増減し、偏角θが所定範囲(許容範囲)内に納まるように調整する。これにより、地磁気34の偏角θが補正される。   In the case of correcting the declination angle θ of the geomagnetism 34, for example, with the magnetic body 10 for geomagnetic declination angle correction with its N pole (end 12B) directed to the east on the geographical point below the measurement point P Install. As a result, a westward correction area 32W (see FIG. 3B) is formed around the geomagnetic declination magnetic body 10 in the horizontal plane H to be corrected. As a result, the declination angle θ of the geomagnetism 34 is corrected in the west direction as shown by the arrow R and becomes smaller. At this time, the amount of correction of the declination θ is increased or decreased by the distance of the magnetic substance 10 for geomagnetic declination correction from the measurement point P or the magnetic force of the magnet 20 so that the declination θ falls within a predetermined range (permissible range). Do. Thereby, the declination angle θ of the geomagnetism 34 is corrected.

なお、地磁気偏角補正用磁性体10は、例えば、補正対象水平面Hの下方の床を形成するコンクリート(スラブ)等に埋設された状態で設置される。   In addition, the magnetic body 10 for geomagnetic declination angle correction | amendment is installed in the state embed | buried in the concrete (slab) etc. which form the floor under the horizontal plane H for correction | amendment, for example.

また、地磁気34の偏角θの補正方法は、上記したものに限らない。例えば、測定点Pの上方に、地磁気偏角補正用磁性体10のN極(端部12B)を地理上の東に向けた状態で設置しても良い。この場合も、上記と同様に地磁気34の偏角θを小さくすることができる。   Further, the method of correcting the declination angle θ of the geomagnetism 34 is not limited to the one described above. For example, the N pole (end 12B) of the geomagnetic declination magnetic body 10 may be installed above the measurement point P in a state of being directed to the east on the geographical area. Also in this case, the declination angle θ of the geomagnetism 34 can be reduced as described above.

また、例えば、測定点Pの下方かつ東側に、地磁気偏角補正用磁性体10をそのN極を上方に向けた状態で設置する。この場合、補正対象水平面Hにおける地磁気偏角補正用磁性体10の西側には、西向き補正領域32W(図3(C)参照)が形成される。したがって、上記と同様に、地磁気34の偏角θを小さくすることができる。   Also, for example, the geomagnetic declination magnetic material 10 is installed below and to the east of the measurement point P with its N pole facing upward. In this case, a westward correction area 32W (see FIG. 3C) is formed on the west side of the geomagnetic declination magnetic body 10 in the horizontal plane H to be corrected. Therefore, as described above, the declination angle θ of the geomagnetism 34 can be reduced.

このように地磁気偏角補正用磁性体10は、補正対象水平面内の地磁気の向きの分布(地磁気の偏角分布)に応じて、長手方向を南北方向、東西方向、または上下方向として設置される。これにより、地磁気の偏角を補正することができる。また、向きが異なる複数の地磁気偏角補正用磁性体10を適宜組み合わせて、地磁気の偏角を補正することも可能である。   As described above, the magnetic body 10 for geomagnetic declination correction is installed with the longitudinal direction as the north-south direction, the east-west direction, or the up-down direction according to the distribution of geomagnetic direction (drift distribution of geomagnetism) in the horizontal plane to be corrected . Thereby, the declination of the geomagnetism can be corrected. Further, it is also possible to correct the declination of the geomagnetism by appropriately combining a plurality of geomagnetic declination correcting magnetic bodies 10 having different directions.

次に、第1実施形態の作用について説明する。   Next, the operation of the first embodiment will be described.

図1及び図2に示されるように、本実施形態に係る地磁気偏角補正用磁性体10によれば、一対の長尺磁性部材12,14の間に磁石20が設けられている。この磁石20によって一対の長尺磁性部材12,14が磁化されており、一方の長尺磁性部材12の端部12BにN極が形成されると共に、他方の長尺磁性部材14の端部14BにS極が形成される。   As shown in FIGS. 1 and 2, according to the geomagnetic declination magnetic body 10 according to the present embodiment, the magnet 20 is provided between the pair of elongated magnetic members 12 and 14. The pair of elongated magnetic members 12 and 14 is magnetized by the magnet 20, and an N pole is formed at the end 12 B of one elongated magnetic member 12, and the end 14 B of the other elongated magnetic member 14. The S pole is formed on the

これにより、一対の長尺磁性部材12,14を備えない構成と比較して、N極(端部12B)とS極(端部14B)との距離が離れるため、地磁気偏角補正用磁性体10の周囲に発生する磁界を大きくすることができる。したがって、地磁気の偏角に対する補正範囲を大きくすることができる。また、一対の長尺磁性部材12,14は、磁石20よりも廉価な鋼材等で形成することができる。したがって、地磁気偏角補正用磁性体10の製造コストを削減することができる。   As a result, the distance between the N pole (end 12B) and the S pole (end 14B) is greater than in the configuration without the pair of elongated magnetic members 12 and 14, and therefore the magnetic member for correcting the geomagnetic declination The magnetic field generated around 10 can be increased. Therefore, the correction range for the geomagnetic declination can be increased. In addition, the pair of elongated magnetic members 12 and 14 can be formed of a steel material or the like that is less expensive than the magnet 20. Accordingly, the manufacturing cost of the geomagnetic declination magnetic body 10 can be reduced.

このように本実施形態では、地磁気偏角補正用磁性体10のコストを削減しつつ、地磁気の偏角に対する補正範囲を大きくすることができる。特に、本実施形態に係る地磁気偏角補正用磁性体10は、例えば、航空機に搭載された方位計を校正する調整エリアのように、大規模な補正対象水平面内の地磁気の補正に有効である。   As described above, in the present embodiment, it is possible to enlarge the correction range for the geomagnetic declination while reducing the cost of the geomagnetic declination magnetic body 10. In particular, the magnetic body 10 for geomagnetic declination correction according to the present embodiment is effective for correction of geomagnetism in a large correction target horizontal plane, for example, as an adjustment area for calibrating an azimuth meter mounted on an aircraft. .

また、本実施形態では、同じ構成の一対の長尺磁性部材12,14の間に磁石20を設けたことにより、一対の長尺磁性部材12,14を同等に磁化することができる。したがって、地磁気偏角補正用磁性体10に周囲に発生する磁界を効率的に大きくすることができる。   Further, in the present embodiment, by providing the magnet 20 between the pair of elongated magnetic members 12 and 14 having the same configuration, the pair of elongated magnetic members 12 and 14 can be equally magnetized. Therefore, the magnetic field generated around the geomagnetic declination magnetic member 10 can be efficiently increased.

また、地磁気偏角補正用磁性体10をそのN極(端部12B)を上方に向けた状態で設置する場合は、例えば、補正対象水平面Hの下方の床を形成するコンクリート(コンクリートスラブ)に地磁気偏角補正用磁性体10のS極側(長尺磁性部材14の端部14B)を打ち込む。この際、長尺磁性部材14が筒状部材で形成されていると、コンクリートに長尺磁性部材14の端部14Bを打ち込み易くなる。したがって、地磁気偏角補正用磁性体10の設置作業の手間を低減することができる。   When the geomagnetic declination magnetic body 10 is installed with its N pole (end 12B) facing upward, the concrete slab (concrete slab) that forms the floor below the horizontal plane H to be corrected, for example The S pole side (the end 14 B of the elongated magnetic member 14) of the geomagnetic declination magnetic body 10 is driven in. Under the present circumstances, when the elongate magnetic member 14 is formed by the cylindrical member, it becomes easy to drive the edge part 14B of the elongate magnetic member 14 in concrete. Therefore, the effort of the installation operation | work of the magnetic body 10 for geomagnetic declination angle correction can be reduced.

次に、第2実施形態について説明する。なお、第1実施形態と同じ構成のものは、同符号を付して説明を省略する。   Next, a second embodiment will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects a same sign, and abbreviate | omits description.

図5に示されるように、第2実施形態に係る地磁気偏角補正用磁性体40は、長尺磁性部材42と、一対の磁石50,52とを有している。長尺磁性部材42は、断面矩形状の筒状部材(例えば、角形鋼管等)で形成されている。この長尺磁性部材42の長手方向両側の端部42A,42Bには、磁石50,52がそれぞれ設けられている。   As shown in FIG. 5, the geomagnetic declination magnetic body 40 according to the second embodiment has a long magnetic member 42 and a pair of magnets 50 and 52. The elongated magnetic member 42 is formed of a tubular member having a rectangular cross section (for example, a square steel pipe or the like). Magnets 50 and 52 are respectively provided at the end portions 42A and 42B on both sides in the longitudinal direction of the elongated magnetic member 42.

一対の磁石50,52は、長尺磁性部材42を挟んでS極とN極とを対向させて配置されている。この一対の磁石50,52によって長尺磁性部材42が磁化され、長尺磁性部材42の長手方向一端側の端部42AにN極が形成されると共に、長尺磁性部材42の長手方向他端側の端部42BにS極が形成されている。なお、一対の磁石50,52は、S極とN極とを対向させた状態で配置されていれば良く、一対の磁石50,52を入れ替えても良い。   The pair of magnets 50 and 52 are disposed such that the S pole and the N pole face each other with the elongated magnetic member 42 interposed therebetween. The elongated magnetic member 42 is magnetized by the pair of magnets 50 and 52, and an N pole is formed at the end 42A at one end side of the elongated magnetic member 42 in the longitudinal direction, and the other end in the longitudinal direction of the elongated magnetic member 42 An S pole is formed at the side end 42B. The pair of magnets 50 and 52 may be disposed in a state in which the S pole and the N pole face each other, and the pair of magnets 50 and 52 may be interchanged.

次に、第2実施形態の作用について説明する。   Next, the operation of the second embodiment will be described.

図5に示されるように、本実施形態に係る地磁気偏角補正用磁性体40によれば、長尺磁性部材42の長手方向両側の端部42A,42Bに磁石50,52がそれぞれ設けられている。これにより、長尺磁性部材42を備えない構成と比較して、N極とS極との距離が離れるため、地磁気偏角補正用磁性体40の周囲に発生する磁界を大きくすることができる。   As shown in FIG. 5, according to the magnetic member 40 for correcting the geomagnetic declination according to the present embodiment, the magnets 50, 52 are respectively provided at the end portions 42A, 42B on both sides in the longitudinal direction of the elongated magnetic member 42. There is. As a result, the distance between the N pole and the S pole is greater than in the configuration without the elongated magnetic member 42, so the magnetic field generated around the geomagnetic declination magnetic member 40 can be increased.

したがって、地磁気偏角補正用磁性体40のコストを削減しつつ、地磁気の偏角に対する補正範囲を大きくすることができる。   Therefore, it is possible to enlarge the correction range for the geomagnetic declination while reducing the cost of the geomagnetic declination magnetic body 40.

また、1本の長尺磁性部材42の長手方向両側の端部42A,42Bに磁石50,52をそれぞれ設けたことにより、例えば、長尺磁性部材42の長手方向一端側の端部42Aにのみ磁石50を設けた場合と比較して、地磁気偏角補正用磁性体40の周囲に発生する磁界を大きくすることができる。なお、この点については、後述の解析結果で説明する。   Further, by providing the magnets 50 and 52 at the end portions 42A and 42B on both longitudinal sides of one long magnetic member 42, for example, only at the end 42A on one end side in the longitudinal direction of the long magnetic member 42 Compared to the case where the magnet 50 is provided, the magnetic field generated around the geomagnetic declination magnetic body 40 can be increased. This point will be described later in the analysis results.

さらに、例えば、上記第1実施形態のように、複数の長尺磁性部材12,14を磁石20で磁化する場合は、次のことが懸念される、すなわち、磁石20を設ける前の各長尺磁性部材12,14には、部材の製造過程におけるマグネットリフトの使用等により着磁した残留磁化が残っている可能性がある。そして、複数の長尺磁性部材12,14の間で、残留磁化等に起因した磁力にバラツキ等があると、地磁気偏角補正用磁性体10の周囲に発生する磁界が小さくなる可能性がある。そのため、一対の長尺磁性部材12,14の製造管理が煩雑化する虞がある。   Furthermore, for example, in the case where the plurality of elongated magnetic members 12 and 14 are magnetized by the magnet 20 as in the first embodiment, the following may be concerned, that is, each elongated before the magnet 20 is provided. The magnetic members 12 and 14 may have residual magnetization which is magnetized due to the use of a magnet lift or the like in the manufacturing process of the members. Then, if there is variation or the like in the magnetic force caused by residual magnetization etc. among the plurality of elongated magnetic members 12 and 14, the magnetic field generated around the magnetic body 10 for correcting the geomagnetic declination may become small. . Therefore, there is a possibility that the manufacturing control of the pair of elongated magnetic members 12, 14 may be complicated.

これに対して本実施形態では、1本の長尺磁性部材42を磁石50,52によって磁化するため、第1実施形態のように一対の長尺磁性部材12,14の磁力のバラツキ等を考慮する必要がない。したがって、長尺磁性部材42の製造管理が容易となる。   On the other hand, in the present embodiment, since one long magnetic member 42 is magnetized by the magnets 50 and 52, the variation of the magnetic force of the pair of long magnetic members 12 and 14 is taken into consideration as in the first embodiment. There is no need to Therefore, manufacturing control of the elongated magnetic member 42 is facilitated.

次に、上記第1,第2実施形態の変形例について説明する。なお、以下では、第1実施形態を例に各種の変形例について説明するが、これらの変形例は第2実施形態にも適宜適用可能である。   Next, modifications of the first and second embodiments will be described. In the following, various modifications will be described by taking the first embodiment as an example, but these modifications can be appropriately applied to the second embodiment.

上記第1実施形態では、一対の長尺磁性部材12,14の間に1つの磁石20を設けた例を示したが、これに限らない。例えば、一対の長尺磁性部材12,14の間に、複数の磁石を設けても良い。また、例えば、複数の磁石と複数の長尺磁性部材とを交互に配列しても良い。さらに、例えば、筒状に形成された1本の長尺磁性部材の内部に磁石を挿入し、当該長尺磁性部材を磁化しても良い。   Although the example which provided the one magnet 20 between a pair of elongate magnetic members 12 and 14 was shown in the said 1st Embodiment, it does not restrict to this. For example, a plurality of magnets may be provided between the pair of elongated magnetic members 12 and 14. Also, for example, a plurality of magnets and a plurality of elongated magnetic members may be alternately arranged. Furthermore, for example, a magnet may be inserted into the inside of one long magnetic member formed in a cylindrical shape, and the long magnetic member may be magnetized.

また、上記第1実施形態では、長尺磁性部材12,14を断面矩形状の筒状部材で形成した例を示したが、これに限らない。長尺磁性部材12,14は、例えば、断面多角形状や断面円形状の筒状部材で形成しても良い。また、長尺磁性部材12,14は筒状部材に限らず、中実部材で形成しても良い。これと同様に、磁石20の形状も適宜変更可能である。   Moreover, although the example which formed the elongate magnetic members 12 and 14 by the cylindrical member of the cross-sectional rectangular shape was shown in the said 1st Embodiment, it does not restrict to this. The elongated magnetic members 12 and 14 may be formed of, for example, tubular members having a polygonal cross section or a circular cross section. The elongated magnetic members 12 and 14 are not limited to cylindrical members, and may be formed of solid members. Similarly to this, the shape of the magnet 20 can be appropriately changed.

次に、地磁気偏角補正用磁性体の周囲に発生する磁界の解析結果について説明する。   Next, the analysis results of the magnetic field generated around the geomagnetic declination magnetic member will be described.

本解析では、比較例1,2及び実施例1〜4に係る地磁気偏角補正用磁性体について、その上方にある所定水平面Fに発生する磁界を求めた。なお、本解析で用いた長尺磁性部材12,14,42,102及び磁石20,50,52の断面寸法は、全て50mm×50mmである。また、長尺磁性部材12,14,42,102の板厚は、2.3mmである。   In this analysis, the magnetic field generated on a predetermined horizontal plane F above the magnetic substance for geomagnetic declination correction according to Comparative Examples 1 and 2 and Examples 1 to 4 was determined. The cross-sectional dimensions of the elongated magnetic members 12, 14, 102, 102 and the magnets 20, 50, 52 used in this analysis are all 50 mm × 50 mm. Moreover, the plate | board thickness of elongate magnetic member 12, 14, 42, 102 is 2.3 mm.

<比較例の構成>
図6(A)に示されるように、比較例1に係る地磁気偏角補正用磁性体100は、角形鋼管で形成された長尺磁性部材102のみで構成されている。この長尺磁性部材102の全長は、後述する実施例1〜4に係る地磁気偏角補正用磁性体60,62,64,66の全長(100mm)と同じである。一方、図6(B)に示されるように、比較例2に係る地磁気偏角補正用磁性体110は、直方体状に形成された磁石20(長さ100mm×1つ)のみで構成されている。
<Configuration of Comparative Example>
As shown in FIG. 6A, the magnetic body 100 for correcting the geomagnetic declination according to Comparative Example 1 is constituted only by the elongated magnetic member 102 formed of a square steel pipe. The total length of the elongated magnetic member 102 is the same as the total length (100 mm) of the geomagnetic declination magnetic members 60, 62, 64, 66 according to Examples 1 to 4 described later. On the other hand, as shown in FIG. 6 (B), the magnetic body 110 for correcting the geomagnetic declination according to the comparative example 2 is configured only by the magnet 20 (length 100 mm × one) formed in a rectangular parallelepiped shape. .

<実施例の構成>
図7(A)に示されるように、実施例1に係る地磁気偏角補正用磁性体60は、一対の長尺磁性部材12,14(長さ450mm×2本)の間に磁石20(長さ100mm×1つ)を設けたものである。この実施例1に係る地磁気偏角補正用磁性体60は、第1実施形態に係る地磁気偏角補正用磁性体10に相当する。これに対して図7(B)に示されるように、実施例2に係る地磁気偏角補正用磁性体62は、一対の長尺磁性部材12,14と磁石20との間に隙間(1mm)を空けたものである。
<Configuration of Example>
As shown in FIG. 7A, the magnetic member 60 for correcting the geomagnetic declination according to the first embodiment has a magnet 20 (long) between a pair of long magnetic members 12 and 14 (length 450 mm × 2). 100 mm × one) is provided. The geomagnetic declination magnetic body 60 according to the first embodiment corresponds to the geomagnetic declination magnetic body 10 according to the first embodiment. On the other hand, as shown in FIG. 7B, the magnetic member 62 for correcting the geomagnetic declination according to the second embodiment has a gap (1 mm) between the pair of elongated magnetic members 12 and 14 and the magnet 20. The

図8(A)に示されるように、実施例3に係る地磁気偏角補正用磁性体64は、長尺磁性部材42の長手方向両側の端部42A,42Bに磁石50,52(長さ50mm×2つ)をそれぞれ設けたものである。この第3実施例に係る地磁気偏角補正用磁性体64は、第2実施形態に係る地磁気偏角補正用磁性体40に相当する。これに対して図8(B)に示されるように、実施例4に係る地磁気偏角補正用磁性体66は、長尺磁性部材42(長さ900mm×1本)の長手方向一端側の端部42Aに磁石20(長さ100mm×1つ)を設けたものである。   As shown in FIG. 8A, the magnetic member 64 for correcting the geomagnetic declination according to the third embodiment has magnets 50 and 52 (50 mm in length at the end portions 42A and 42B on both sides in the longitudinal direction of the elongated magnetic member 42). 2) are provided respectively. The geomagnetic declination magnetic body 64 according to the third embodiment corresponds to the geomagnetic declination magnetic body 40 according to the second embodiment. On the other hand, as shown in FIG. 8 (B), the magnetic member 66 for correcting the geomagnetic declination according to the fourth embodiment is the end of one longitudinal end of the elongated magnetic member 42 (length 900 mm × one). The magnet 20 (100 mm in length × one) is provided in the portion 42A.

<解析結果>
図6(A)に示されるように、比較例1に係る地磁気偏角補正用磁性体100では、所定水平面F内に発生する磁界が小さく、地磁気(偏角)の補正可能範囲が小さいことが分かる。一方、図6(B)に示されるように、比較例2に係る地磁気偏角補正用磁性体110では、磁石20の磁力の影響により、地磁気の補正可能範囲が大きくなることが分かる。
<Analysis result>
As shown in FIG. 6A, in the magnetic body 100 for correcting the geomagnetic declination according to Comparative Example 1, the magnetic field generated in the predetermined horizontal plane F is small, and the correctable range of the geomagnetism (declination) is small. I understand. On the other hand, as shown in FIG. 6 (B), it can be seen that in the geomagnetic declination magnetic body 110 according to the comparative example 2, the geomagnetic correctable range becomes large due to the influence of the magnetic force of the magnet 20.

これに対して、図7(A)、図7(B)、図8(A)、及び図8(B)に示されるように、実施例1〜4に係る地磁気偏角補正用磁性体60,62,64,66では、比較例2に係る地磁気偏角補正用磁性体110よりも地磁気の補正可能範囲が大きくなることが分かる。   On the other hand, as shown in FIG. 7A, FIG. 7B, FIG. 8A, and FIG. , 62, 64, 66, it can be seen that the geomagnetic correctable range becomes larger than that of the geomagnetic declination magnetic body 110 according to the second comparative example.

また、実施例1〜3に係る地磁気偏角補正用磁性体60,62,64では、地磁気の補正可能範囲が略同じになっている。一方、実施例4に係る地磁気偏角補正用磁性体66では、実施例1〜3に係る地磁気偏角補正用磁性体60,62,64よりも地磁気の補正可能範囲が若干小さくなることが分かる。これは、長尺磁性部材42の長手方向一端側の端部42Aにのみ磁石20を設けたことにより、長尺磁性部材42の長手方向他端側の端部42Bに向かうに従って磁化の度合いが弱くなったためと考えられる。   Further, in the geomagnetic declination magnetic members 60, 62, 64 according to the first to third embodiments, the geomagnetic correctionable range is substantially the same. On the other hand, it can be seen that the geomagnetic deflection correction magnetic body 66 according to the fourth embodiment has a slightly smaller geomagnetic correction range than the geomagnetic deflection correction magnetic bodies 60, 62, 64 according to the first to third embodiments. . This is because the magnet 20 is provided only at the end 42A at one longitudinal end of the elongated magnetic member 42, so that the degree of magnetization is weak toward the end 42B at the other longitudinal end of the elongated magnetic member 42. It is thought that it is because it became.

一方、実施例4に地磁気偏角補正用磁性体66では、長尺磁性部材42の長手方向一端側の端部42Aにのみ磁石20を設けるため、地磁気偏角補正用磁性体66の製造が容易となる。   On the other hand, in the fourth embodiment, the magnet 20 is provided only at the end 42A at one end side of the long magnetic member 42 in the longitudinal direction of the magnetic member 42 for geomagnetic declination correction, so the manufacture of the magnetic body 66 for geomagnetic deflection correction is easy. It becomes.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to such Embodiment, You may use it combining suitably one Embodiment and various modifications, The summary of this invention Of course, various modifications can be made without departing from the scope of the invention.

10 地磁気偏角補正用磁性体
12 長尺磁性部材
14 長尺磁性部材
20 磁石
34 地磁気
40 地磁気偏角補正用磁性体
42 長尺磁性部材
42A 端部(長尺磁性部材の長手方向の端部)
42B 端部(長尺磁性部材の長手方向の端部)
50 磁石
52 磁石
60 地磁気偏角補正用磁性体
62 地磁気偏角補正用磁性体
64 地磁気偏角補正用磁性体
66 地磁気偏角補正用磁性体
θ 偏角
H 補正対象水平面
DESCRIPTION OF SYMBOLS 10 Magnetic body 12 magnetic correction | amendment magnetic correction 12 elongate magnetic member 14 elongate magnetic member 20 magnet 34 geomagnetic 40 magnetic body 40 magnetic correction correction | amendment magnetic field 42 edge part of elongate magnetic member 42A (end part of the longitudinal direction of elongate magnetic member)
42B end (longitudinal end of elongated magnetic member)
50 magnet 52 magnet 60 magnetic body for geomagnetic declination correction 62 magnetic body for geomagnetic declination correction 64 magnetic body for geomagnetic declination correction 66 magnetic body for geomagnetic declination correction θ magnetic body for correction

Claims (3)

補正対象水平面の地磁気の偏角を補正する地磁気偏角補正用磁性体であって、
長尺磁性部材と、
前記長尺磁性部材に設けられて該長尺磁性部材を磁化し、前記長尺磁性部材の長手方向一端側にN極を形成すると共に長手方向他端側にS極を形成する磁石と、
を備え
前記磁石は、前記長尺磁性部材の長手方向両側の端部の端面に設けられると共に、該長尺磁性部材を挟んでN極とS極とを対向させて配置され、
前記補正対象水平面の上方または下方に、前記補正対象水平面内の地磁気の向きの分布に応じて長手方向を南北方向、東西方向、または上下方向として設置される地磁気偏角補正用磁性体。
A magnetic body for geomagnetic declination correction for correcting the geomagnetic declination of a horizontal plane to be corrected,
Long magnetic member,
A magnet provided on the elongated magnetic member to magnetize the elongated magnetic member to form an N pole on one end side in the longitudinal direction of the elongated magnetic member and an S pole on the other end side in the longitudinal direction;
Equipped with
The magnet is provided on end faces of end portions on both sides in the longitudinal direction of the elongated magnetic member, and is disposed so that an N pole and an S pole face each other across the elongated magnetic member,
A magnetic body for geomagnetic declination correction, which is installed above or below the horizontal surface to be corrected, with the longitudinal direction as the north-south direction, the east-west direction, or the vertical direction according to the distribution of geomagnetic direction in the horizontal surface to be corrected.
補正対象水平面の地磁気の偏角を補正する地磁気偏角補正用磁性体であって、A magnetic body for geomagnetic declination correction for correcting the geomagnetic declination of a horizontal plane to be corrected,
長尺磁性部材と、Long magnetic member,
前記長尺磁性部材に設けられて該長尺磁性部材を磁化し、前記長尺磁性部材の長手方向一端側にN極を形成すると共に長手方向他端側にS極を形成する磁石と、A magnet provided on the elongated magnetic member to magnetize the elongated magnetic member to form an N pole on one end side in the longitudinal direction of the elongated magnetic member and an S pole on the other end side in the longitudinal direction;
を備え、Equipped with
前記長尺磁性部材は、長手方向に複数配列され、The plurality of elongated magnetic members are arranged in the longitudinal direction,
前記磁石は、隣接する前記長尺磁性部材の間に設けられ、The magnet is provided between the adjacent long magnetic members,
前記補正対象水平面の上方または下方に、前記補正対象水平面内の地磁気の向きの分布に応じて長手方向を南北方向、東西方向、または上下方向として設置される地磁気偏角補正用磁性体。A magnetic body for geomagnetic declination correction, which is installed above or below the horizontal surface to be corrected, with the longitudinal direction as the north-south direction, the east-west direction, or the vertical direction according to the distribution of geomagnetic direction in the horizontal surface to be corrected.
長尺磁性部材と、前記長尺磁性部材に設けられて該長尺磁性部材を磁化し、前記長尺磁性部材の長手方向一端側にN極を形成すると共に長手方向他端側にS極を形成する磁石と、を備える地磁気偏角補正用磁性体を、補正対象水平面の上方または下方に、前記補正対象水平面内の地磁気の向きの分布に応じて長手方向を南北方向、東西方向、または上下方向として設置する地磁気の偏角補正方法。An elongated magnetic member, provided on the elongated magnetic member to magnetize the elongated magnetic member, forming an N pole on one end side in the longitudinal direction of the elongated magnetic member and an S pole on the other end side in the longitudinal direction The magnetic material for geomagnetic declination correction having a magnet to be formed is positioned above or below the horizontal surface to be corrected, depending on the distribution of the direction of the geomagnetism in the horizontal surface to be corrected; Geomagnetic declination correction method installed as a direction.
JP2014225129A 2014-11-05 2014-11-05 Magnetic body for geomagnetic declination correction and geomagnetic declination correction method Active JP6536872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014225129A JP6536872B2 (en) 2014-11-05 2014-11-05 Magnetic body for geomagnetic declination correction and geomagnetic declination correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225129A JP6536872B2 (en) 2014-11-05 2014-11-05 Magnetic body for geomagnetic declination correction and geomagnetic declination correction method

Publications (2)

Publication Number Publication Date
JP2016090391A JP2016090391A (en) 2016-05-23
JP6536872B2 true JP6536872B2 (en) 2019-07-03

Family

ID=56016786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225129A Active JP6536872B2 (en) 2014-11-05 2014-11-05 Magnetic body for geomagnetic declination correction and geomagnetic declination correction method

Country Status (1)

Country Link
JP (1) JP6536872B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168004A (en) * 1986-01-20 1987-07-24 Fujitsu Ltd Detecting device for rotational angle position
JP4152365B2 (en) * 2004-08-31 2008-09-17 Necモバイリング株式会社 Geomagnetic variation sensing device and geomagnetic variation detecting device
JP5079846B2 (en) * 2010-06-03 2012-11-21 東京コスモス電機株式会社 Position detection device

Also Published As

Publication number Publication date
JP2016090391A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP2014527685A5 (en) Inductively coupled plasma system with magnetic confinement and Faraday shield and method for providing magnetic confinement and Faraday shield
JP6067070B2 (en) Magnetic field measuring device
JPWO2007049639A1 (en) Position detecting device and optical instrument
JP2009192261A (en) Rectilinear displacement detector
JP5079846B2 (en) Position detection device
US20170052233A1 (en) Magnetic sensor device
JP4655701B2 (en) Position detection device, blur correction device, and lens barrel
JP5951647B2 (en) Magnetic circuit
JP6536872B2 (en) Magnetic body for geomagnetic declination correction and geomagnetic declination correction method
WO2019054158A1 (en) Nondestructive inspecting device, nondestructive inspecting system, and nondestructive inspecting method
KR102081254B1 (en) Apparatus for fixing metal mask
JP2006006936A (en) Magnetic field generating device and shimming method therefor
US10088453B2 (en) Apparatus and method of detecting defect of steel plate
JP6464907B2 (en) POSITION DETECTION DEVICE AND USE STRUCTURE OF POSITION DETECTION DEVICE
JP2012128683A5 (en)
US9601251B2 (en) Correction of angle errors in permanent magnets
JP5012130B2 (en) Angle sensor
JP4839027B2 (en) Magnetic shield room and magnetic resonance imaging system including the magnetic shield room
JP5863386B2 (en) Magnetic field generator
JP2010042378A (en) Magnetizing equipment for fluid
JP2018206807A (en) Bar magnet
WO2021181535A1 (en) Magnetic linear position detector
JP5910656B2 (en) Sputtering deposition system
JP2006221757A (en) Magnetic field generating apparatus
EP3006932B1 (en) Transverse-magnetization magnetic system for intra-pipe defectoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190522

R150 Certificate of patent or registration of utility model

Ref document number: 6536872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350