JP6536747B2 - Exhaust gas measuring device - Google Patents

Exhaust gas measuring device Download PDF

Info

Publication number
JP6536747B2
JP6536747B2 JP2018518025A JP2018518025A JP6536747B2 JP 6536747 B2 JP6536747 B2 JP 6536747B2 JP 2018518025 A JP2018518025 A JP 2018518025A JP 2018518025 A JP2018518025 A JP 2018518025A JP 6536747 B2 JP6536747 B2 JP 6536747B2
Authority
JP
Japan
Prior art keywords
gas
measurement
flow path
measured
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018518025A
Other languages
Japanese (ja)
Other versions
JPWO2017199404A1 (en
Inventor
奥田 浩史
浩史 奥田
達哉 西尾
達哉 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2017199404A1 publication Critical patent/JPWO2017199404A1/en
Application granted granted Critical
Publication of JP6536747B2 publication Critical patent/JP6536747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、自動車の排ガス等を試料ガスとして取り込み、その試料ガス中に含まれる粒子数を測定する排ガス測定装置に関するものである。   The present invention relates to an exhaust gas measuring apparatus which takes in exhaust gas of a car or the like as a sample gas and measures the number of particles contained in the sample gas.

自動車のエンジン等から排出されるガス中の粒子状物質の数を計測するために、試料ガスにエアなどの希釈用ガスを混合して希釈し、混合されたガスを粒子数計測装置に導入して、排ガス中に含まれる粒子数を計測するように構成されているシステムがある。かかるシステムの粒子数計測装置には、例えば試料ガス中の微粒子をその大きさによって分級して測定する微粒子測定装置が用いられる(特許文献1参照)。   In order to measure the number of particulate matter in the gas discharged from an automobile engine etc., the sample gas is mixed and diluted with a dilution gas such as air, and the mixed gas is introduced into the particle number measuring device. There are systems that are configured to measure the number of particles contained in the exhaust gas. As a particle number measuring device of such a system, for example, a particle measuring device which classifies and measures particles in a sample gas according to their size is used (see Patent Document 1).

WO2013−183652A1WO2013-183652A1 特開2012−127773号公報Unexamined-Japanese-Patent No. 2012-127773

上記システムでは、試料ガスと希釈用ガスとを混合する混合部からの混合ガスの流量を測定する流量計と混合部に供給される希釈用ガスの流量を測定する流量計を備え、これらの流量計の測定値に基づいて、粒子数計測装置に導入される試料ガスの流量とその希釈率を一定に制御することが一般的である。   The above system includes a flow meter that measures the flow rate of the mixed gas from the mixing unit that mixes the sample gas and the dilution gas, and a flow meter that measures the flow rate of the dilution gas that is supplied to the mixing unit. It is general to control the flow rate of the sample gas introduced into the particle number measuring apparatus and its dilution rate constant based on the measurement value of the meter.

上記のガス流量制御方法では、粒子数計測装置に導入される試料ガスの流量を、混合ガス流量の測定値から希釈用ガス流路流量の測定値を差し引くことによって求め、その流量が一定流量になるように試料ガス側に設けられたバルブを制御することとなる。そのため、試料ガス流量の制御のために、混合ガスのための流量計と希釈用ガスのための流量計の2つの流量計の測定値を用いる必要がある。   In the above gas flow rate control method, the flow rate of the sample gas introduced into the particle number measuring device is determined by subtracting the measured value of the dilution gas flow rate from the measured value of the mixed gas flow rate. Thus, the valve provided on the sample gas side is controlled. Therefore, it is necessary to use the measurement values of two flowmeters, one for the mixed gas and the other for the dilution gas, to control the sample gas flow rate.

流量計として、例えばフルスケールが10L/minの流量計を使用し、その精度がフルスケールに対して±1%である場合に、希釈率を10倍として混合ガスの流量を9L/min、希釈用ガスの流量を8.1L/minに設定したとすると、実際の混合ガス流量は9±0.1L/min、希釈用ガス流量は8.1±0.1L/minとなり、試料ガス流量は0.9±0.2L/minとなる。これは、本来の試料ガス流量の設定値から最大で20%程度の誤差が出ることを意味する。試料ガス流量の誤差は測定精度に大きな影響を与えるものであるため、試料ガスの流量制御をより高精度に行なうことが望ましい。   For example, when a full scale 10 l / min flow meter is used and the accuracy is ± 1% with respect to the full scale, the dilution rate is 10 times and the mixed gas flow rate is 9 l / min, and dilution is performed. Assuming that the flow rate of the for-use gas is set to 8.1 L / min, the actual mixed gas flow rate is 9 ± 0.1 L / min, the dilution gas flow rate is 8.1 ± 0.1 L / min, and the sample gas flow rate is It will be 0.9 ± 0.2 L / min. This means that an error of up to about 20% occurs from the setting value of the original sample gas flow rate. Since the error of the sample gas flow rate greatly affects the measurement accuracy, it is desirable to control the flow rate of the sample gas with higher accuracy.

また、排ガスを混合部に導入する流路上に流量計を設置し、その流量計の測定値に基づいて試料ガスの流量を制御すれば、1つの流量計の測定値に基づいて試料ガス流量を制御することはできる。しかし、油分や粒子物質を含んだ高濃度の排ガスを流量計に導入すると、流量計の内部が汚染されて流量計の測定精度が低下したり、排ガス中の粒子物質が流量計内に沈着して測定部に導入されるべき粒子が失われたりすることが懸念される。   In addition, if a flow meter is installed on the flow path for introducing the exhaust gas into the mixing unit and the flow rate of the sample gas is controlled based on the measurement value of the flow meter, the sample gas flow rate is measured based on the measurement value of one flow meter. It can be controlled. However, if a high concentration exhaust gas containing oil and particulate matter is introduced into the flowmeter, the inside of the flowmeter will be contaminated and the measurement accuracy of the flowmeter will decrease, or particulate matter in the exhaust gas will be deposited in the flowmeter. There is a concern that particles to be introduced into the measuring section may be lost.

そこで、本発明は、試料ガス中の粒子の損失を防止しつつ、試料ガス流量の制御を高精度に行なうことができる排ガス分析装置を提供することを目的とするものである。   Therefore, an object of the present invention is to provide an exhaust gas analyzer capable of controlling the flow rate of a sample gas with high accuracy while preventing the loss of particles in the sample gas.

本発明に係る排ガス測定装置の一実施形態は、混合部、入口流路、測定部、測定ガス流路、測定済みガス流路、希釈用ガス流路、排出流路、ガス精製部、ポンプ、排出流量測定部及び排出流量制御部を備えている。混合部は試料ガスと希釈用ガスを混合して測定ガスにするものである。入口流路は試料ガスを混合部に導入するものであり、測定ガス流路は混合部で混合された試料ガス及び希釈用ガスからなる測定ガスを測定部に導入するものである。測定部は測定ガスの測定を行なう。測定済みガス流路は、測定部を経た測定済みガスが流れ、希釈流路と排出流路が、測定済みガス流路の下流端に接続されている。希釈用ガス流路は測定済みガスの一部を希釈用ガスとして混合部へ導く流路であり、排出流路は測定済みガスのうち希釈用ガス以外のガスを外部へ排出する流路である。ガス精製部は、測定済みガスのうち少なくとも希釈用ガスの精製を行なうものである。ポンプは、入口流路を流れる試料ガス流、測定ガス流路を流れる測定ガス流、測定済みガス流路を流れる測定済みガス流、希釈用ガス流路を流れる希釈用ガス流及び排出流路を流れる測定済みガス流を形成する。排出流量測定部は排出流路を流れるガス流量を測定し、排出流量制御部は排出流量測定部の測定値に基づいて、排出流路を流れるガス流量を予め設定された流量に制御する。   One embodiment of the exhaust gas measurement device according to the present invention includes a mixing unit, an inlet flow channel, a measurement unit, a measurement gas flow channel, a measured gas flow channel, a dilution gas flow channel, a discharge flow channel, a gas purification unit, a pump, A discharge flow rate measuring unit and a discharge flow rate control unit are provided. The mixing unit mixes the sample gas and the dilution gas to form a measurement gas. The inlet flow channel is for introducing a sample gas into the mixing unit, and the measurement gas flow channel is for introducing a measurement gas consisting of the sample gas and the dilution gas mixed in the mixing unit into the measurement unit. The measurement unit measures the measurement gas. In the measured gas flow path, the measured gas that has passed through the measurement unit flows, and the dilution flow path and the discharge flow path are connected to the downstream end of the measured gas flow path. The dilution gas flow path is a flow path for guiding a part of the measured gas to the mixing unit as the dilution gas, and the discharge flow path is a flow path for discharging the gas other than the dilution gas among the measured gas to the outside . The gas purification unit is for purifying at least the dilution gas among the measured gases. The pump includes a sample gas flow flowing through the inlet flow path, a measurement gas flow flowing through the measurement gas flow path, a measured gas flow flowing through the measured gas flow path, a dilution gas flow flowing through the dilution gas flow path, and the discharge flow path Form a flowing stream of measured gas. The discharge flow rate measurement unit measures the gas flow rate flowing through the discharge flow path, and the discharge flow rate control unit controls the gas flow rate flowing through the discharge flow path to a preset flow rate based on the measurement value of the discharge flow rate measurement unit.

本発明に係る排ガス測定装置の一実施形態では、測定部を経た測定済みガスの一部が希釈用ガスとして混合部へ導かれ、測定済みガスの残りのガスが排出流路を通じて外部へ排出されるように構成されているので、外部へ排出されるガスと同じ流量の試料ガスが入口流路から流入するようになる。そして、排出流路上には排出流量測定部及び排出流量制御部が設けられ、排出流量測定部の測定値に基づいて排出流路を流れるガス流量が制御されるので、入口流路から流入する試料ガスの流量を排出流量測定部の測定値に基づいて排出流量制御部により制御することができる。1つの流量計(排出流量測定部)によって試料ガス流量を制御できるため、2つの流量計の測定値の差分をとる方法に比べて、流量制御の精度を高めることができる。   In one embodiment of the exhaust gas measurement device according to the present invention, a part of the measured gas that has passed through the measurement unit is led as the dilution gas to the mixing unit, and the remaining gas of the measured gas is discharged to the outside through the discharge flow path. The sample gas of the same flow rate as the gas discharged to the outside flows from the inlet channel. The discharge flow rate measuring unit and the discharge flow rate control unit are provided on the discharge flow passage, and the gas flow rate flowing through the discharge flow passage is controlled based on the measurement value of the discharge flow rate measuring unit. The flow rate of the gas can be controlled by the discharge flow rate control unit based on the measurement value of the discharge flow rate measurement unit. Since the flow rate of the sample gas can be controlled by one flow meter (discharge flow rate measuring unit), the accuracy of flow control can be enhanced as compared to the method of calculating the difference between the measurement values of two flow meters.

排ガス測定装置の一実施例を示す流路構成図である。It is a flow-path block diagram which shows one Example of an exhaust gas measuring apparatus. 同実施例の制御系統の一例を示すブロック図である。It is a block diagram showing an example of a control system of the example. 排ガス測定装置の他の実施例を示す流路構成図である。It is a flow-path block diagram which shows the other Example of an exhaust gas measuring apparatus. 測定部の一例を概略的に示す断面図である。It is a sectional view showing roughly an example of a measurement part.

希釈用ガスを外部から取り込む従来の方式では、試料ガスを混合部に導入するためのポンプとは別に希釈用ガスを混合部に導入するためのポンプが必要であるために測定装置が大型化していた。
これに対し、本発明に係る排ガス測定装置の一実施形態では、入口流路を流れる試料ガス流、測定ガス流路を流れる測定ガス流、測定済みガス流路を流れる測定済みガス流、希釈用ガス流路を流れる希釈用ガス流及び排出流路を流れる測定済みガス流を、測定ガス流路上又は測定済みガス流路上に設けられた単一のポンプによって形成することができる。そのため、複数のポンプを必要とせず、装置の小型化を図ることができる。
In the conventional method of taking in the dilution gas from the outside, the measuring device is upsized because a pump for introducing the dilution gas into the mixing unit is necessary in addition to the pump for introducing the sample gas into the mixing unit. The
On the other hand, in one embodiment of the exhaust gas measuring apparatus according to the present invention, the sample gas flow flowing in the inlet flow channel, the measurement gas flow flowing in the measurement gas flow channel, the measured gas flow flowing in the measured gas flow channel, for dilution The dilution gas flow flowing in the gas flow path and the measured gas flow flowing in the discharge flow path can be formed by a single pump provided on the measurement gas flow path or on the measured gas flow path. Therefore, the apparatus can be miniaturized without the need for a plurality of pumps.

排出流量制御部として、排出流量測定部の測定値に基づいて開度が調節されるバルブが挙げられる。   Examples of the discharge flow rate control unit include a valve whose opening degree is adjusted based on the measurement value of the discharge flow rate measurement unit.

本発明に係る排ガス測定装置の一実施形態において、ガス精製部は測定済みガス流路上に設けられていることが好ましい。そうすれば、排出流量測定部で流量を測定するガスを、ガス精製部により精製されたクリーンエアにすることができ、排出流量測定部の内部汚染を防止して測定精度の低下や流量計の故障を防止することができる。   In one embodiment of the exhaust gas measurement device according to the present invention, the gas purification unit is preferably provided on the measured gas flow channel. Then, the gas whose flow rate is measured by the discharge flow rate measurement unit can be made clean air purified by the gas purification unit, and the internal contamination of the discharge flow rate measurement unit can be prevented to reduce the measurement accuracy or the flow meter. Failure can be prevented.

また、測定済みガス流路の途中に設けられ、測定済みガス流路を流れる測定済みガスの少なくとも一部を外部へ排出するか否かを切り替える測定済みガス流量切替部をさらに備えていることが好ましい。そうすれば、測定済みガス流路を流れる測定済みガスの流量を可変にすることができ、測定済みガス流量切替部の切替えによって希釈用ガスの流量を変えることができる。希釈用ガスの流量を変更することで、試料ガスの希釈率を変更することができる。   In addition, a measured gas flow rate switching unit is provided which is provided in the middle of the measured gas flow path and switches whether or not at least a part of the measured gas flowing in the measured gas flow path is discharged to the outside. preferable. Then, the flow rate of the measured gas flowing through the measured gas flow path can be made variable, and the flow rate of the dilution gas can be changed by switching the measured gas flow rate switching unit. The dilution rate of the sample gas can be changed by changing the flow rate of the dilution gas.

測定ガス流路上に測定ガス中の粒子を帯電させる荷電装置をさらに備え、
測定部としては、測定ガスが流れる測定流路、その測定流路の内側に沿って設けられた平板状の分級電極、及び分級電極と対向し、測定流路を流れる測定ガス流に沿って配列され、互いに電気的に絶縁された複数の測定電極を備え、分級電極と測定電極との間に電圧を印加して電界を発生させることにより、帯電した粒子をその粒径ごとに分級して各測定電極に捕捉し、その個数をカウントする粒子分級測定装置を挙げることができる。かかる粒子分級測定装置は特許文献1に示されているものであり、送風機構以外に可動部をもたず、単純で堅牢な構造を有するものであるため、携帯可能である。したがって、かかる粒子分級測定装置を用いることで、排ガス測定装置のさらなる小型化が図られ、携帯可能な排ガス測定装置を実現することもできる。
The measurement gas flow path further includes a charging device for charging particles in the measurement gas,
As the measurement unit, a measurement flow channel through which the measurement gas flows, a flat classification electrode provided along the inner side of the measurement flow channel, and a classification electrode, which are arranged along the measurement gas flow flowing through the measurement flow channel. The charged particles are classified according to their particle sizes by applying a voltage between the classification electrode and the measurement electrode to generate an electric field, and the plurality of measurement electrodes are electrically insulated from each other. There can be mentioned a particle classification measurement device which is captured on the measurement electrode and counts the number thereof. Such a particle classification measuring device is disclosed in Patent Document 1 and is portable since it has a simple and robust structure without a movable part other than the air blowing mechanism. Therefore, by using such a particle classification measurement device, the exhaust gas measurement device can be further miniaturized, and a portable exhaust gas measurement device can also be realized.

排ガス測定装置の一実施例について図面を用いて説明する。   One embodiment of the exhaust gas measuring device will be described with reference to the drawings.

図1に示されているように、この実施例の排ガス測定装置は、入口流路2を通じて試料ガスを混合部16に導入し、混合部16で試料ガスを希釈用ガスによって希釈して測定ガスとし、その測定ガスを測定ガス流路3を通じて測定部18へ導入する。測定部18で測定された測定済みガスは測定済みガス流路4を流れ、分岐部6において、排出流路8を介して外部へ排出される排出ガスと希釈用ガス流路10を介して混合部16に導入される希釈用ガスに分けられる。   As shown in FIG. 1, in the exhaust gas measuring apparatus of this embodiment, a sample gas is introduced into the mixing section 16 through the inlet channel 2, and the sample gas is diluted by the dilution gas in the mixing section 16 to measure the measurement gas. Then, the measurement gas is introduced into the measurement unit 18 through the measurement gas channel 3. The measured gas measured by the measuring unit 18 flows through the measured gas flow channel 4, and in the branching unit 6, the exhaust gas discharged to the outside through the discharge flow channel 8 is mixed with the dilution gas flow channel 10 It is divided into dilution gases introduced into the part 16.

入口流路2上における混合部16よりも上流側に、試料ガスの加熱を行なうヒータ12と、試料ガスを、細隙を通して吸引し、一定以上の大きさをもつ粒子を、その細隙の直後に配置した板に衝突させて除去するように調整されたインパクタ14が設けられている。ヒータ12は、試料ガス中の粒子に付着した水分や油分などの揮発性物質を除去するものである。混合部16に導入される試料ガスを加熱するヒータ12を設けることで、試料ガス中の粒子が凝縮して大きな粒子になり粒子数が減少することや、混合部16内に粒子が付着することを防止し、測定精度の向上に繋がる。混合部16と測定部18の間の測定ガス流路3上に、測定部18に導入される測定ガス中の粒子を帯電させるための荷電装置17が設けられている。   The heater 12 for heating the sample gas on the upstream side of the mixing unit 16 on the inlet channel 2 and the sample gas are drawn through the slit, and particles having a certain size or more are immediately after the slit An impactor 14 is provided which is adjusted to strike against and remove the plate placed there. The heater 12 is for removing volatile substances such as water and oil attached to particles in the sample gas. By providing the heater 12 for heating the sample gas introduced into the mixing unit 16, the particles in the sample gas condense to become large particles and the number of particles decreases, or the particles adhere to the inside of the mixing unit 16. Leading to an improvement in measurement accuracy. A charging device 17 for charging particles in the measurement gas introduced to the measurement unit 18 is provided on the measurement gas flow path 3 between the mixing unit 16 and the measurement unit 18.

なお、この実施例の測定部18は、後述のように、複数の測定電極が測定ガスの流れ方向に沿って配列され、粒子の大きさごとに分級してその数をカウントする粒子分級測定装置であるために、荷電装置17が設けられている。しかし、測定部18は必ずしもそのような測定装置である必要はなく、特許文献2に示されているような粒子数計測装置を用いることもできる。そのような場合には荷電装置17は不要である。   As described later, in the measurement unit 18 of this embodiment, a plurality of measurement electrodes are arrayed along the flow direction of the measurement gas, and the particle classification measurement device counts and classifies the particles according to their size. Charging device 17 is provided. However, the measuring unit 18 does not necessarily have to be such a measuring device, and a particle number measuring device as shown in Patent Document 2 can also be used. In such a case, the charging device 17 is unnecessary.

測定部18の一例を図4に示す。   An example of the measurement unit 18 is shown in FIG.

測定部18は内部に測定流路43を有し、ガス入口38から流入した測定ガスが測定流路43を流れてガス出口40から流出する。ガス入口38には測定ガス流路3(図1参照)が接続され、ガス出口40には測定済みガス流路4(図1参照)が接続されている。   The measurement unit 18 has a measurement flow channel 43 inside, and the measurement gas flowing from the gas inlet 38 flows through the measurement flow channel 43 and flows out from the gas outlet 40. A measurement gas flow path 3 (see FIG. 1) is connected to the gas inlet 38, and a measured gas flow path 4 (see FIG. 1) is connected to the gas outlet 40.

測定流路43の内側に、分級電極42、トラップ電極44、測定電極46、48、50、52、54及び56が設けられている。分級電極42は測定流路43の測定ガス流に沿って上流側から下流側へ伸びるように設けられた平板電極である。トラップ電極44は測定流路43の上流端側で分級電極42と対向して配置されている。各測定電極46、48、50、52、54及び56は分級電極42と対向するとともに、測定流路43に沿って互いに間隔をもって配置されている。トラップ電極44、測定電極46、48、50、52、54及び56は互いに電気的に絶縁されている。   A classification electrode 42, a trap electrode 44, and measurement electrodes 46, 48, 50, 52, 54 and 56 are provided inside the measurement flow channel 43. The classification electrode 42 is a flat plate electrode provided so as to extend from the upstream side to the downstream side along the measurement gas flow of the measurement flow path 43. The trap electrode 44 is disposed on the upstream end side of the measurement flow channel 43 so as to face the classification electrode 42. The respective measurement electrodes 46, 48, 50, 52, 54 and 56 face the classification electrode 42 and are arranged along the measurement flow path 43 at intervals. The trap electrode 44 and the measurement electrodes 46, 48, 50, 52, 54 and 56 are electrically isolated from one another.

分級電極42とトラップ電極44、各測定電極46、48、50、52、54及び56との間には分級用の電界がかけられ、測定ガス中の荷電された粒子が粒径ごとに分級されて各測定電極46、48、50、52、54及び56に捕捉され、その数がカウントされる。   An electric field for classification is applied between the classification electrode 42 and the trap electrode 44, and each of the measurement electrodes 46, 48, 50, 52, 54 and 56, and charged particles in the measurement gas are classified according to particle size. Is captured by each of the measurement electrodes 46, 48, 50, 52, 54 and 56, and the number is counted.

図1に戻って、測定部18を経た測定済みガスが流れる測定済みガス流路4上には、上流側から、測定済みガス流量制御部20、ポンプ22、3方弁24、精製カラム26及びフィルタ28が設けられている。測定済みガス流量制御部20は、測定済みガスの流量を測定する流量計とその流量計の測定値が予め設定された値になるように開度が制御される流量制御弁により構成されている。ポンプ22は例えばダイヤフラムポンプであり、一定駆動される。測定部18に導入される測定ガス(試料ガス+希釈用ガス)の流量は測定済みガス流量制御部20により制御される。   Returning to FIG. 1, the measured gas flow rate control unit 20, the pump 22, the three-way valve 24, the purification column 26, and the measured gas flow path 4 on the measured gas flow path 4 through which the measured gas passed through the measuring unit 18 flows. A filter 28 is provided. The measured gas flow rate control unit 20 is configured of a flow meter that measures the flow rate of the measured gas, and a flow control valve whose opening degree is controlled so that the measured value of the flow meter becomes a preset value. . The pump 22 is, for example, a diaphragm pump, and is constantly driven. The flow rate of the measurement gas (sample gas + dilution gas) introduced to the measurement unit 18 is controlled by the measured gas flow rate control unit 20.

この排ガス測定装置におけるガスの流れ、すなわち、入口流路2から混合部に導入される試料ガスの流れ、測定部18に導入される測定ガスの流れ、希釈用ガス流路10から混合部16に導入される希釈用ガスの流れ、及び排出流路8から排出される測定済みガスの流れは、すべて1台のポンプ22によって形成される。これにより、試料ガス導入用のポンプとは別に希釈用ガス導入用のポンプを設ける必要がなく、装置の小型化を図ることができる。なお、ポンプ22は測定ガス流路3上に設けられていてもよい。   The flow of gas in this exhaust gas measuring apparatus, that is, the flow of sample gas introduced from the inlet channel 2 to the mixing unit, the flow of measurement gas introduced to the measuring unit 18, the dilution gas channel 10 to the mixing unit 16 The flow of the introduced dilution gas and the flow of the measured gas discharged from the discharge flow path 8 are all formed by a single pump 22. As a result, there is no need to provide a dilution gas introduction pump separately from the sample gas introduction pump, and the apparatus can be miniaturized. The pump 22 may be provided on the measurement gas flow path 3.

精製カラム26及びフィルタ28は、測定済みガスを精製してクリーンエアにするガス精製部を構成するものである。精製カラム26には、例えば、測定済みガス中の水分を除去するためのシリカゲルと、測定済みガス中の窒素酸化物や炭化水素を除去するための活性炭が充填されている。フィルタ28は、測定済みガス中の粒子を含む固形物を除去するものである。   The purification column 26 and the filter 28 constitute a gas purification unit that purifies the measured gas into clean air. The purification column 26 is packed with, for example, silica gel for removing water in the measured gas, and activated carbon for removing nitrogen oxides and hydrocarbons in the measured gas. The filter 28 removes solids including particles in the measured gas.

測定済みガス流路4の下流端は、排出流路8と希釈用ガス流路10に分岐する分岐部6となっている。分岐部6に到達した測定済みガスの一部は排出流路8を通じて外部へ排出され、残りの測定済みガスが希釈用ガスとして希釈用ガス流路10を通じて混合部16に供給される。混合部16に供給される希釈用ガスは測定済みガスを精製したものであるため、希釈用ガスをさらにヒータに導入して水分の除去を行なうことは必ずしも必要ではない。外部から別途希釈用ガスを導入する場合には希釈用ガス中の水分を除去するためのヒータを試料ガス用のヒータとは別に設ける必要があるが、この実施例のように、希釈用ガス専用のヒータを設けないことで、装置の小型化をさらに図ることができる。なお、図において破線で示されているように、水分の凝集を防ぐために、希釈用ガス流路10上にヒータ29を設けてもよい。   The downstream end of the measured gas flow path 4 is a branch portion 6 which branches into the discharge flow path 8 and the dilution gas flow path 10. A part of the measured gas that has reached the branch portion 6 is discharged to the outside through the discharge flow path 8, and the remaining measured gas is supplied to the mixing portion 16 through the dilution gas flow path 10 as a dilution gas. Since the dilution gas supplied to the mixing unit 16 is a purified gas, it is not always necessary to remove the water by introducing the dilution gas into the heater. In the case where a dilution gas is separately introduced from the outside, it is necessary to provide a heater for removing water in the dilution gas separately from the heater for the sample gas. The device can be further miniaturized by not providing the heater of the above. In addition, as shown by a broken line in the figure, a heater 29 may be provided on the dilution gas channel 10 in order to prevent the aggregation of water.

排出流路8上に流量計30(排出流量測定部)及び排出流量制御バルブ32(排出流量制御部)が設けられており、排出流路8を通じて排出される測定済みガスの流量が予め設定された流量となるように、流量計30の測定値に基づいて排出流量制御バルブ32の開度が調節される。   A flowmeter 30 (discharge flow rate measuring unit) and a discharge flow rate control valve 32 (discharge flow rate control unit) are provided on the discharge flow passage 8, and the flow rate of the measured gas discharged through the discharge flow passage 8 is preset. The degree of opening of the discharge flow control valve 32 is adjusted based on the measurement value of the flow meter 30 so as to achieve the above flow rate.

測定部18を流れる測定ガスの流量は、混合部16に供給される入口流路2からの試料ガスの流量と希釈用ガス流路10からの希釈用ガスの流量の合計の流量である。希釈用ガス流路10からの希釈用ガスの流量は、測定ガスの流量から排出流路8を通じて排出される測定済みガスの流量を差し引いたものであるから、混合部16に供給される試料ガスの流量は排出流路8から排出される測定済みガスの流量に等しい。すなわち、この実施例のシステムでは、1つの流量計30の測定値に基づいて入口流路2からの試料ガスの流量の制御がなされることになる。   The flow rate of the measurement gas flowing through the measurement unit 18 is the total flow rate of the flow rate of the sample gas from the inlet channel 2 supplied to the mixing unit 16 and the flow rate of the dilution gas from the dilution gas channel 10. Since the flow rate of the dilution gas from the dilution gas flow path 10 is the flow rate of the measurement gas minus the flow rate of the measured gas discharged through the discharge flow path 8, the sample gas supplied to the mixing unit 16 Is equal to the flow rate of the measured gas discharged from the discharge passage 8. That is, in the system of this embodiment, the flow rate of the sample gas from the inlet channel 2 is controlled based on the measurement value of one flowmeter 30.

したがって、測定部18に導入する試料ガスの流量を1つの流量計30の測定値のみに基づいて制御することができるため、2つの流量計の測定値の差分に基づいて試料ガスの流量を制御する場合に比べて、より高精度の制御が可能になる。   Therefore, since the flow rate of the sample gas introduced to the measurement unit 18 can be controlled based on only the measurement value of one flowmeter 30, the flow rate of the sample gas is controlled based on the difference between the measurement values of the two flowmeters. Control with higher accuracy is possible compared to the case of

例えば、測定済みガス流量制御部20の設定値を9L/min、希釈率を10倍に設定した場合には、試料ガスの流量を0.9L/minに制御する必要がある。流量計30の精度がフルスケール10L/minに対して±1%であったとすると、試料ガスの流量は流量計30の測定値にのみ基づいて制御されるため、試料ガス流量の誤差は0.1L/min程度であり、約10%である。これに対し、同じ条件で2つの流量計の測定値の差分に基づいて制御する場合には、既述のように約20%の誤差が生じることになる。したがって、この実施例の構成により、試料ガス流量の制御精度の向上を図ることができる。   For example, when the set value of the measured gas flow rate control unit 20 is set to 9 L / min and the dilution rate is set to 10 times, it is necessary to control the flow rate of the sample gas to 0.9 L / min. Assuming that the accuracy of the flow meter 30 is ± 1% with respect to the full scale 10 L / min, the flow rate of the sample gas is controlled based only on the measurement value of the flow meter 30, so the error of the sample gas flow is 0. It is about 1 L / min, which is about 10%. On the other hand, when the control is performed based on the difference between the measurement values of the two flow meters under the same conditions, an error of about 20% occurs as described above. Therefore, the configuration of this embodiment can improve the control accuracy of the sample gas flow rate.

さらに、この実施例の構成では、精製カラム26及びフィルタ28によって精製されたクリーンエアが流量計30及び排出流量制御バルブ32を流れるため、流量計30や流量制御バルブ32内に、試料ガス中に含まれていた油分や粒子物質が沈着するなどの問題が生じることはない。   Furthermore, in the configuration of this embodiment, the clean air purified by the purification column 26 and the filter 28 flows through the flow meter 30 and the discharge flow control valve 32, so that the sample gas is contained in the flow meter 30 and the flow control valve 32. There is no problem such as deposition of contained oil and particulate matter.

この実施例では、試料ガスの希釈を行なうか否かを切り替えるための3方弁24が設けられている。以上における説明では、試料ガスの希釈を行なうことを前提として説明しているが、この実施例では、3方弁24の切替えによって、測定済みガス流路4を流れる測定済みガスを分岐部6に到達させることなく、外部へ排出することができるようになっている。測定済みガス流路4の途中で測定済みガスを排出すると、混合部16には希釈用ガス流路10から希釈用ガスが供給されないため、測定済みガス流量制御部20で設定された流量の試料ガスが希釈されずに測定部18に導入されることとなる。   In this embodiment, a three-way valve 24 is provided to switch whether to dilute the sample gas. In the above description, it is assumed that the sample gas is diluted, but in this embodiment, the measured gas flowing in the measured gas flow path 4 is branched to the branch portion 6 by switching the three-way valve 24. It can be discharged outside without reaching it. When the measured gas is discharged in the middle of the measured gas flow path 4, the dilution gas is not supplied to the mixing unit 16 from the dilution gas flow path 10, so the sample of the flow rate set by the measured gas flow rate control unit 20 The gas is introduced into the measurement unit 18 without being diluted.

なお、図において破線で示されているように、外部へ測定済みガスを排出するために3方弁24に接続された流路上に、外部へ排出する測定済みガスの流量を調節するバルブ25を設け、3方弁24の切替えによって測定済みガス流路4を流れる測定済みガスの一部を外部へ排出することができるようにしてもよい。そうすれば、希釈用ガス流路10を通じて混合部16に導入される希釈用ガスの流量が変化し、それに応じて入口流路2から混合部16に導入される試料ガスの流量も変化するため、試料ガスの希釈率を変更することができるようになる。   As indicated by the broken line in the figure, a valve 25 for adjusting the flow rate of the measured gas to be discharged to the outside is provided on the flow path connected to the three-way valve 24 in order to discharge the measured gas to the outside. It may be provided so that part of the measured gas flowing in the measured gas flow path 4 can be discharged to the outside by switching the three-way valve 24. Then, the flow rate of the dilution gas introduced into the mixing section 16 through the dilution gas flow path 10 changes, and the flow rate of the sample gas introduced into the mixing section 16 from the inlet flow path 2 also changes accordingly. , It becomes possible to change the dilution rate of the sample gas.

図2を用いてこの実施例の制御系統の一例について説明する。   An example of the control system of this embodiment will be described with reference to FIG.

測定済みガス流量制御部20、ポンプ22、3方弁24及び排出流量制御バルブ32は制御部34から与えられた情報に基づいた動作を行なうようになっている。ユーザは、測定部18に導入する試料ガス流量や希釈率といった測定条件を制御部34に対して設定し、その設定値が測定済みガス流量制御部20、ポンプ22、3方弁24及び排出流量制御バルブ32に与えられる。排出流量制御バルブ32は、流量計30の測定値が制御部34から与えられた設定値となるように開度の調節を行なう。測定部18で得られた測定データ18は制御部34に取り込まれる。   The measured gas flow rate control unit 20, the pump 22, the three-way valve 24, and the discharge flow rate control valve 32 perform operations based on the information given from the control unit 34. The user sets measurement conditions such as the sample gas flow rate and dilution rate to be introduced to the measurement unit 18 to the control unit 34, and the set values thereof are measured gas flow rate control unit 20, pump 22, three-way valve 24 and discharge flow rate Control valve 32 is provided. The discharge flow control valve 32 adjusts the opening degree so that the measured value of the flow meter 30 becomes the set value given from the control unit 34. The measurement data 18 obtained by the measurement unit 18 is taken into the control unit 34.

制御部34は、例えばシステムコントローラなどの専用のコンピュータ又は汎用のパーソナルコンピュータによって実現されるものである。   The control unit 34 is realized by, for example, a dedicated computer such as a system controller or a general-purpose personal computer.

他の実施形態として、図3に示されているように、精製カラム26及びフィルタ28を希釈用ガス流路10上に設けてもよい。この場合、流量計30及び排出流量制御バルブ32には、水分や窒素酸化物等の物資を含むガスが導入されることとなるが、排出流路を流れるガスは希釈されているため、入口流路2を流れる排ガスに比べて低濃度になっており、入口流路2上に流量計やバルブを設ける場合に比べて、それらの物質による影響は小さい。   As another embodiment, as shown in FIG. 3, the purification column 26 and the filter 28 may be provided on the dilution gas channel 10. In this case, a gas containing a substance such as water or nitrogen oxide is introduced to the flow meter 30 and the discharge flow control valve 32, but since the gas flowing through the discharge flow path is diluted, the inlet flow The concentration is lower than that of the exhaust gas flowing through the passage 2, and the influence of these substances is small as compared with the case where a flow meter or a valve is provided on the inlet passage 2.

2 入口流路
3 測定ガス流路
4 測定済みガス流路
6 分岐部
8 排出流路
10 希釈用ガス流路
12,29 ヒータ
14 インパクタ
16 混合部
17 荷電装置
18 測定部
20 測定済みガス流量制御部
22 ポンプ
24 3方弁
25 バルブ
26 精製カラム
28 フィルタ
30 流量計(排出流量測定部)
32 排出流量制御バルブ(排出流量制御部)
34 制御部
38 ガス入口
40 ガス出口
42 分級電極
43 測定流路
44 トラップ電極
46,48,50,52,54,56 測定電極
DESCRIPTION OF SYMBOLS 2 inlet flow path 3 measurement gas flow path 4 measured gas flow path 6 branch part 8 discharge flow path 10 gas flow path for dilution 12, 29 heater 14 impactor 16 mixing part 17 charging device 18 measurement part 20 measured gas flow rate control part 22 pump 24 three-way valve 25 valve 26 purification column 28 filter 30 flow meter (discharge flow rate measuring unit)
32 Discharge flow control valve (discharge flow control unit)
34 control unit 38 gas inlet 40 gas outlet 42 classification electrode 43 measurement flow path 44 trap electrode 46, 48, 50, 52, 54, 56 measurement electrode

Claims (6)

試料ガスと希釈用ガスとを混合して測定ガスにする混合部と、
試料ガスを前記混合部に導入する入口流路と、
前記混合部からの測定ガスの測定を行なう測定部と、
前記混合部で混合された試料ガス及び希釈用ガスからなる測定ガスを前記測定部へ導入する測定ガス流路と、
前記測定部を経た測定済みガスが流れる測定済みガス流路と、
前記測定済みガス流路の下流端に接続され、前記測定済みガスの一部を希釈用ガスとして前記混合部へ導く希釈用ガス流路と、
前記測定済みガス流路の下流端に接続され、前記測定済みガスのうち前記希釈用ガス以外のガスを外部へ排出するための排出流路と、
前記測定済みガスのうち少なくとも前記希釈用ガスの精製を行なうガス精製部と、
前記入口流路を流れる試料ガス流、前記測定ガス流路を流れる測定ガス流、前記測定済みガス流路を流れる測定済みガス流、前記希釈用ガス流路を流れる希釈用ガス流及び前記排出流路を流れる測定済みガス流を形成するためのポンプと、
前記排出流路を流れるガス流量を測定する排出流量測定部と、
前記排出流量測定部の測定値に基づいて、前記排出流路を流れるガス流量を予め設定された流量に制御する排出流量制御部と、を備えた排ガス測定装置。
A mixing unit for mixing the sample gas and the dilution gas into a measurement gas;
An inlet channel for introducing a sample gas into the mixing section;
A measurement unit that measures the measurement gas from the mixing unit;
A measurement gas flow path for introducing a measurement gas composed of the sample gas and the dilution gas mixed in the mixing unit into the measurement unit;
A measured gas flow path through which the measured gas that has passed through the measurement unit flows;
A dilution gas flow path connected to the downstream end of the measured gas flow path for guiding a portion of the measured gas to the mixing unit as a dilution gas;
A discharge flow path connected to the downstream end of the measured gas flow path, for discharging the gas other than the dilution gas among the measured gas to the outside;
A gas purification unit for purifying at least the dilution gas among the measured gases;
A sample gas flow flowing through the inlet flow path, a measurement gas flow flowing through the measurement gas flow path, a measured gas flow flowing through the measured gas flow path, a dilution gas flow flowing through the dilution gas flow path, and the discharge flow A pump for forming a measured gas flow through the passage;
A discharge flow rate measuring unit that measures a gas flow rate flowing through the discharge flow path;
An exhaust gas flow control unit configured to control a gas flow rate flowing through the discharge flow path to a preset flow rate based on a measurement value of the discharge flow rate measurement unit.
前記ポンプは、前記測定ガス流路上又は前記測定済みガス流路上に設けられた単一のポンプである請求項1に記載の排ガス測定装置。   The exhaust gas measurement device according to claim 1, wherein the pump is a single pump provided on the measurement gas flow channel or on the measured gas flow channel. 前記排出流量制御部は、前記排出流量測定部の測定値に基づいて開度が調節されるバルブである請求項1又は2に記載の排ガス測定装置。   The exhaust gas measurement device according to claim 1, wherein the discharge flow rate control unit is a valve whose opening degree is adjusted based on the measurement value of the discharge flow rate measurement unit. 前記ガス精製部は前記測定済みガス流路上に設けられている請求項1から3のいずれか一項に記載の排ガス測定装置。   The exhaust gas measurement device according to any one of claims 1 to 3, wherein the gas purification unit is provided on the measured gas flow channel. 前記測定済みガス流路の途中に設けられ、前記測定済みガス流路を流れる測定済みガスの少なくとも一部を外部へ排出するか否かを切り替える測定済みガス流量切替部をさらに備えている請求項1から4のいずれか一項に記載の排ガス測定装置。   The present invention further includes a measured gas flow rate switching unit which is provided in the middle of the measured gas flow path and switches whether or not at least a part of the measured gas flowing in the measured gas flow path is discharged to the outside. The exhaust gas measuring device according to any one of 1 to 4. 前記測定ガス流路上に測定ガス中の粒子を帯電させる荷電装置をさらに備え、
前記測定部は、測定ガスが流れる測定流路、その測定流路の内側に沿って設けられた平板状の分級電極、及び前記分級電極と対向し、前記測定流路を流れる測定ガス流に沿って配列され、互いに電気的に絶縁された複数の測定電極を備え、前記分級電極と前記測定電極との間に電圧を印加して電界を発生させることにより、帯電した粒子をその粒径ごとに分級して各測定電極に捕捉し、その個数をカウントする粒子分級測定装置である請求項1から5のいずれか一項に記載の排ガス測定装置。
The measurement gas flow path further includes a charging device for charging particles in the measurement gas,
The measurement unit faces the measurement flow path through which the measurement gas flows, the flat classification electrode provided along the inside of the measurement flow path, and the classification electrode, and flows along the measurement gas flow flowing through the measurement flow path. The charged particles are arranged for each particle diameter by providing a plurality of measurement electrodes which are arranged in series and electrically isolated from each other, and a voltage is applied between the classification electrode and the measurement electrodes to generate an electric field. The exhaust gas measurement device according to any one of claims 1 to 5, wherein the exhaust gas measurement device is a particle classification measurement device that classifies and captures on each measurement electrode and counts the number thereof.
JP2018518025A 2016-05-19 2016-05-19 Exhaust gas measuring device Expired - Fee Related JP6536747B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064920 WO2017199404A1 (en) 2016-05-19 2016-05-19 Exhaust gas measurement device

Publications (2)

Publication Number Publication Date
JPWO2017199404A1 JPWO2017199404A1 (en) 2018-11-08
JP6536747B2 true JP6536747B2 (en) 2019-07-03

Family

ID=60325066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518025A Expired - Fee Related JP6536747B2 (en) 2016-05-19 2016-05-19 Exhaust gas measuring device

Country Status (2)

Country Link
JP (1) JP6536747B2 (en)
WO (1) WO2017199404A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020102120A1 (en) * 2019-02-15 2020-08-20 HELLA GmbH & Co. KGaA Method for controlling a sensor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376163A (en) * 1993-05-18 1994-12-27 Andros Incorporated Filter system
US6007235A (en) * 1998-02-25 1999-12-28 Honeywell Inc. Sampling and diluting system for particle size distribution measurement
JP2008096170A (en) * 2006-10-06 2008-04-24 Shimadzu Corp Charging device and particle classifier

Also Published As

Publication number Publication date
JPWO2017199404A1 (en) 2018-11-08
WO2017199404A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
US10428715B2 (en) Exhaust gas analyzing system and pumping device
CN103415768B (en) Measurement device for total organic carbon
US9541488B2 (en) Particle sampling and measurement in the ambient air
US6761752B2 (en) Gas particle partitioner
JP6155036B2 (en) Exhaust gas sampling device
CA2944111C (en) Detector inlet and sampling method
JP2006181572A (en) Collection device, bio-enrichment device, and bio-enrichment method
EP2815226B1 (en) Apparatus and process for producing air flow and the use of such apparatus in measuring particle concentration in air flow
CN106769728A (en) PM2.5 quality and concentration monitor calibrating installations
JP6536747B2 (en) Exhaust gas measuring device
WO2018053165A1 (en) Passive aerosol diluter mechanism
CN116727105A (en) Electrostatic particle filtration
WO2008079813A3 (en) Flow splitter for a solid particle counting system
CN106662518A (en) Sensor for detecting particles
CN103471876A (en) Dilution sampling probe
JP2006250661A (en) Evaluation device and evaluation method for ceramic honeycomb filter
JP5094520B2 (en) Ion filter, mass spectrometry system and ion mobility spectrometer
JP2017058173A (en) Exhaust gas measurement device
US20190168955A1 (en) Device and process for diluting an aerosol
WO2013121115A1 (en) Apparatus and method for flushing particle measurement device
JP6317567B2 (en) Particle sensor
RU2178929C2 (en) Spectrometer of non-linearity of drift of ions
JP4066989B2 (en) Aerosol analyzer
CN207163912U (en) A kind of system of the cutting efficiency of quick measurement sampler
Asbach et al. Development of an electrostatic partitioner for highly efficient partitioning of gas and particles with minimal effect on the gas phase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees