JP2017058173A - Exhaust gas measurement device - Google Patents

Exhaust gas measurement device Download PDF

Info

Publication number
JP2017058173A
JP2017058173A JP2015181541A JP2015181541A JP2017058173A JP 2017058173 A JP2017058173 A JP 2017058173A JP 2015181541 A JP2015181541 A JP 2015181541A JP 2015181541 A JP2015181541 A JP 2015181541A JP 2017058173 A JP2017058173 A JP 2017058173A
Authority
JP
Japan
Prior art keywords
gas
measurement
flow rate
dilution
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015181541A
Other languages
Japanese (ja)
Inventor
達哉 西尾
Tatsuya Nishio
達哉 西尾
奥田 浩史
Hiroshi Okuda
浩史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015181541A priority Critical patent/JP2017058173A/en
Publication of JP2017058173A publication Critical patent/JP2017058173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the zero point adjustment of an exhaust gas measurement device to be carried out easily and accurately.SOLUTION: An exhaust gas measurement device comprises: a sample gas passageway 2 for drawing in a sample gas into a mixing unit 12; a dilution gas passageway 6 for introducing a dilution gas into the mixing unit 12; a measurement gas passageway 4 for introducing a measurement gas from the mixing unit 12 into a measurement unit 16; a measurement gas flow rate adjustment unit for adjusting the flow rate of the measurement gas; and a dilution gas flow rate adjustment unit for adjusting the flow rate of the dilution gas. The exhaust gas measurement device further has a zero point adjustment unit for executing the zero point adjustment of a detection signal obtained by the measurement unit 16, controlling the measurement gas flow rate adjustment unit and the dilution gas flow rate adjustment unit so that the flow rate of the dilution gas flowing in the dilution gas passageway is greater than or equal to the flow rate of a gas flowing in the measurement gas passageway.SELECTED DRAWING: Figure 1

Description

本発明は、自動車の排ガス等を試料ガスとして取り込み、その試料ガス中に含まれる粒子数を測定する排ガス測定装置に関するものである。   The present invention relates to an exhaust gas measuring apparatus that takes in exhaust gas from an automobile as a sample gas and measures the number of particles contained in the sample gas.

自動車のエンジン等から排出されるガス中の粒子状物質の数を計測するために、試料ガスにエアなどの希釈用ガスを混合して希釈し、混合されたガスを粒子数計測装置に導入して、排ガス中に含まれる粒子数を計測するように構成されているシステムがある。かかるシステムの粒子数計測装置には、例えば試料ガス中の微粒子をその大きさによって分級して測定する微粒子測定装置が用いられる(特許文献1参照)。   In order to measure the number of particulate matter in the gas discharged from automobile engines, etc., the sample gas is diluted with a dilution gas such as air, and the mixed gas is introduced into the particle number measurement device. Thus, there is a system configured to measure the number of particles contained in exhaust gas. As the particle number measuring device of such a system, for example, a particle measuring device for classifying and measuring particles in a sample gas according to their size is used (see Patent Document 1).

WO2013−183652A1WO2013-183652A1 特開2012−127773号公報JP 2012-127773 A

上記排ガス測定装置では、粒子数を正確に測定するために、排ガスの測定を行う前にゼロ点調整を行って検出信号のゼロ点を装置に記憶させておく必要がある。ゼロ点調整の際は、測定対象の粒子を含まないガスを検出器に導入するため、試料ガスを取り込む入口部にフィルタを取り付け、粒子が存在しないガスを検出器に導入し、そのときの検出器の出力値を測定のゼロ点としていた。   In the exhaust gas measuring device, in order to accurately measure the number of particles, it is necessary to perform zero point adjustment and store the zero point of the detection signal in the device before measuring the exhaust gas. When adjusting the zero point, a gas that does not contain particles to be measured is introduced into the detector, so a filter is attached to the inlet that takes in the sample gas, and a gas that does not contain particles is introduced into the detector. The output value of the instrument was the zero point of the measurement.

しかし、ゼロ点調整の時にだけ試料ガス入口部にフィルタを取り付けることは煩わしい。特に、排ガス測定装置が自動車に搭載されている場合には、自動車の排ガス出口部から一旦装置を取り外してフィルタを取り付け、ゼロ点調整が終了した後でまたフィルタを取り外してから装置を自動車に取り付けるという作業が必要となり、ゼロ点調整時の作業が煩雑なものとなる。   However, it is troublesome to attach a filter to the sample gas inlet only during zero point adjustment. In particular, when the exhaust gas measuring device is mounted on an automobile, remove the device from the exhaust gas outlet of the automobile and attach a filter. After the zero point adjustment is completed, remove the filter and attach the device to the automobile. The operation at the time of zero point adjustment becomes complicated.

また、試料ガスを導入する配管の内壁は汚染されているため、ゼロ点調整の際に試料ガス入口にフィルタを取り付けても配管の内壁に付着した粒子が検出器に導入されてしまい、ゼロ点調整時に検出器に導入されるガス中の粒子数がゼロにならず、正確なベースラインを把握できない虞がある。   In addition, because the inner wall of the pipe that introduces the sample gas is contaminated, particles attached to the inner wall of the pipe are introduced into the detector even if a filter is attached to the sample gas inlet during the zero point adjustment. There is a possibility that the number of particles in the gas introduced into the detector at the time of adjustment does not become zero and an accurate baseline cannot be grasped.

そこで、本発明は、排ガス測定装置のゼロ点調整を容易かつ正確に行うことができるようにすることを目的とするものである。   Accordingly, an object of the present invention is to enable easy and accurate zero point adjustment of an exhaust gas measuring device.

本発明に係る排ガス測定装置の一実施形態は、試料ガスと希釈用ガスとを混合して測定ガスにする混合部と、測定対象粒子を含まない希釈用ガスを混合部に導入する希釈用ガス流路と、混合部からの測定ガスの測定を行う測定部と、混合部からの測定ガスを測定部へ導入する測定ガス流路と、混合部から測定ガス流路へ測定ガスを引き込むとともに、測定ガス流路を流れる測定ガスの流量を予め設定された流量に調節する測定ガス流量調節部と、希釈用ガス流路を通じて混合部に希釈用ガスを送り込むとともに、希釈用ガス流路を流れる希釈用ガスの流量を予め設定された流量に調節する希釈用ガス流量調節部と、試料ガスを混合部に取り込む試料ガス流路であって、測定ガス流路を流れる測定ガスの流量から希釈用ガス流路を流れる希釈用ガスの流量を差し引いた分の流量で試料ガスが流れる試料ガス流路と、測定部で得られる検出信号のゼロ点調整を実行するゼロ点調整部を有し、ゼロ点調整の際に、希釈用ガス流路を流れる希釈用ガスの流量が測定ガス流路を流れるガスの流量以上となるように、測定ガス流量調節部及び希釈用ガス流量調節部を制御する制御部と、を備えたものである。   One embodiment of the exhaust gas measuring apparatus according to the present invention includes a mixing unit that mixes a sample gas and a dilution gas to make a measurement gas, and a dilution gas that introduces a dilution gas that does not contain particles to be measured into the mixing unit A flow path, a measurement section that measures the measurement gas from the mixing section, a measurement gas flow path that introduces the measurement gas from the mixing section to the measurement section, and draws the measurement gas from the mixing section to the measurement gas flow path, A measurement gas flow rate adjustment unit that adjusts the flow rate of the measurement gas flowing through the measurement gas flow channel to a preset flow rate, and a dilution gas that is sent through the dilution gas flow channel to the mixing unit and the dilution gas flow through the dilution gas flow channel A dilution gas flow rate adjusting unit for adjusting the flow rate of the working gas to a preset flow rate, and a sample gas flow channel for taking the sample gas into the mixing unit, and the dilution gas from the flow rate of the measured gas flowing through the measurement gas flow channel For dilution through the flow path It has a sample gas flow path through which the sample gas flows at a flow rate minus the flow rate of the gas and a zero point adjustment unit that performs zero point adjustment of the detection signal obtained by the measurement unit. A control unit for controlling the measurement gas flow rate adjustment unit and the dilution gas flow rate adjustment unit so that the flow rate of the dilution gas flowing through the measurement gas flow channel is equal to or higher than the flow rate of the gas flowing through the measurement gas flow channel. It is.

本発明に係る排ガス測定装置の一実施形態では、試料ガス流路を流れるガスの流量は、測定ガス流路を流れるガスの流量から希釈用ガス流路を流れる希釈用ガスの流量を差し引いた分の流量となっているため、ゼロ点調整の際に、希釈用ガス流量から混合部に送り込む希釈用ガスの流量を、測定ガス流路を流れるガスの流量以上にすることで、測定ガス流路に希釈用ガスのみを送り込むことが可能となる。これにより、ゼロ点調整の際に、試料ガス流路からのガスが測定部に導入されることがないため、試料ガス流路にフィルタを取り付けることなく、容易かつ正確にゼロ点調整を実行することができる。   In one embodiment of the exhaust gas measuring apparatus according to the present invention, the flow rate of the gas flowing through the sample gas flow channel is the amount obtained by subtracting the flow rate of the dilution gas flowing through the dilution gas flow channel from the flow rate of the gas flowing through the measurement gas flow channel. Therefore, when adjusting the zero point, the flow rate of the dilution gas sent from the dilution gas flow rate to the mixing unit is set to be equal to or higher than the flow rate of the gas flowing through the measurement gas flow channel. It is possible to feed only the dilution gas into the tank. As a result, since the gas from the sample gas flow path is not introduced into the measurement unit during the zero point adjustment, the zero point adjustment is performed easily and accurately without attaching a filter to the sample gas flow path. be able to.

排ガス測定装置の一実施例を示す流路構成図である。It is a channel lineblock diagram showing one example of an exhaust gas measuring device. 同実施例の全体の構成を示すブロック図である。It is a block diagram which shows the whole structure of the Example. 同実施例のゼロ点調整の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement of zero point adjustment of the Example. 測定部の一例を概略的に示す断面図である。It is sectional drawing which shows an example of a measurement part roughly.

本発明に係る排ガス測定装置において、制御部は、ゼロ点調整の際に、希釈用ガス流路から混合部に送り込まれた希釈用ガスの一部が試料ガス流路を流れるように、測定ガス流路を流れるガスの流量を試料測定時の流量から変更することなく、希釈用ガス流路を流れる希釈用ガスの流量を試料測定時の流量よりも増大させるように構成されていることが好ましい。これにより、ゼロ点調整時に、測定部に導入されるガスの流量を試料測定時の流量と同じ流量に維持しながら、希釈用ガスのみを測定部に導入することができるので、ゼロ点調整を正確に実行することができる。さらに、混合部に送り込まれた希釈用ガスの一部が試料ガス流路を流れるため、ゼロ点調整時に試料ガス流路内のパージを行うことができる。   In the exhaust gas measuring apparatus according to the present invention, the control unit is configured to measure the measurement gas so that a part of the dilution gas sent from the dilution gas channel to the mixing unit flows through the sample gas channel when the zero point is adjusted. It is preferable that the flow rate of the dilution gas flowing through the dilution gas flow channel is made larger than the flow rate during sample measurement without changing the flow rate of the gas flowing through the flow channel from the flow rate during sample measurement. . This allows only the dilution gas to be introduced into the measurement unit while maintaining the same flow rate as that used during sample measurement during the zero point adjustment. Can be performed accurately. Furthermore, since a part of the dilution gas sent to the mixing section flows through the sample gas flow path, the sample gas flow path can be purged during zero point adjustment.

さらに、試料ガス流路上に試料ガス流路を流れるガスを加熱するヒータが設けられていることが好ましい。そうすれば、ゼロ点調整時に、ヒータにより加熱された希釈用ガスが試料ガス流路を流れるため、試料ガス流路の内壁面に付着した汚染物質の除去効率が向上し、測定精度の向上が図れる。また、かかるヒータによって試料ガスを加熱することで、試料ガス中の粒子に付着した水分や油分などの揮発性物質を除去することができる。   Furthermore, it is preferable that a heater for heating the gas flowing through the sample gas channel is provided on the sample gas channel. Then, when the zero point is adjusted, the dilution gas heated by the heater flows through the sample gas channel, so that the removal efficiency of contaminants attached to the inner wall surface of the sample gas channel is improved and the measurement accuracy is improved. I can plan. Further, by heating the sample gas with such a heater, volatile substances such as moisture and oil adhering to the particles in the sample gas can be removed.

測定ガス流路上に測定ガス中の粒子を帯電させる荷電装置をさらに備え、測定部として、測定ガスが流れる測定流路、その測定流路の内側に沿って設けられた平板状の分級電極、及び分級電極と対向し、測定流路を流れる測定ガス流に沿って配列され、互いに電気的に絶縁された複数の測定電極を備え、分級電極と測定電極との間に電圧を印加して電界を発生させることにより、帯電した粒子をその粒径ごとに分級して各測定電極に捕捉し、その個数をカウントする粒子分級測定装置を用いることができる。かかる粒子分級測定装置は、例えば特許文献1に示されているものであり、送風機構以外に可動部をもたず、単純で堅牢な構造を有するものであるため、携帯可能である。したがって、かかる粒子分級測定装置を用いることで、排ガス測定装置のさらなる小型化が図られ、携帯可能な排ガス測定装置を実現することができる。   A charging device for charging particles in the measurement gas is further provided on the measurement gas flow path, and as a measurement unit, a measurement flow path through which the measurement gas flows, a plate-like classification electrode provided along the inside of the measurement flow path, and A plurality of measurement electrodes arranged opposite to the classification electrode and along the measurement gas flow flowing through the measurement flow path and electrically insulated from each other, and a voltage is applied between the classification electrode and the measurement electrode to generate an electric field. By generating the particles, it is possible to use a particle classification measuring device that classifies charged particles for each particle size, captures them on each measurement electrode, and counts the number of the particles. Such a particle classification measurement apparatus is disclosed in, for example, Patent Document 1, and has a movable structure other than the air blowing mechanism and has a simple and robust structure, and is therefore portable. Therefore, by using such a particle classification measurement device, the exhaust gas measurement device can be further reduced in size, and a portable exhaust gas measurement device can be realized.

排ガス測定装置の一実施例について図面を用いて説明する。
まず、図1を用いて、同実施例の流路構成について説明する。
An embodiment of an exhaust gas measuring device will be described with reference to the drawings.
First, the flow path configuration of the embodiment will be described with reference to FIG.

この実施例の排ガス測定装置は、試料ガス流路2、測定ガス流路4及び希釈ガス流路6を備えている。これらの流路2,4,6は混合部12に接続されている。混合部12は、試料ガス流路2を通じて取り込まれた試料ガスと希釈用ガス流路6から送り込まれた希釈用ガスを混合するものであり、それらの混合ガスが測定ガス流路4を通じて測定ガスとして測定部16に導入される。試料ガス流路2は、自動車の排ガス等の試料ガスを混合部12に取り込むための流路である。希釈用ガス流路4は、測定対象粒子を含まない希釈用ガスを混合部12に送り込むための流路である。   The exhaust gas measuring apparatus of this embodiment includes a sample gas channel 2, a measurement gas channel 4, and a dilution gas channel 6. These flow paths 2, 4, 6 are connected to the mixing unit 12. The mixing unit 12 mixes the sample gas taken in through the sample gas flow path 2 and the dilution gas sent from the dilution gas flow path 6, and these mixed gases pass through the measurement gas flow path 4 to measure gas. Is introduced into the measuring unit 16. The sample gas flow path 2 is a flow path for taking a sample gas such as automobile exhaust gas into the mixing unit 12. The dilution gas flow path 4 is a flow path for sending a dilution gas that does not contain particles to be measured to the mixing unit 12.

試料ガス流路2上には、ヒータ8及びインパクタ10が設けられている。ヒータ8は試料ガスを約300℃に加熱することで、試料ガス中の粒子に付着した水分や油分などの揮発性物質を除去するものである。ヒータ8を設けることで、試料ガス中の粒子が凝縮して大きな粒子になり粒子数が減少することや、混合部12内に粒子が付着することを防止し、測定精度の向上に繋がる。インパクタ10は、試料ガスを、細隙を通して吸引し、一定以上の大きさをもつ粒子を、その細隙の直後に配置した板に衝突させて除去するように調整されたものである。   A heater 8 and an impactor 10 are provided on the sample gas flow path 2. The heater 8 removes volatile substances such as moisture and oil adhering to the particles in the sample gas by heating the sample gas to about 300 ° C. Providing the heater 8 prevents the particles in the sample gas from condensing into large particles, reducing the number of particles, and preventing particles from adhering to the mixing unit 12, leading to improved measurement accuracy. The impactor 10 is adjusted so that the sample gas is sucked through the slit and particles having a certain size or larger are removed by colliding with a plate disposed immediately after the slit.

希釈用ガス流路6上に、上流側から、希釈用ガスポンプ24、希釈用ガス流量調節バルブ26、流量計28及びフィルタ30が設けられている。希釈用ガスポンプ24は一定駆動されており、希釈用ガスポンプ24により希釈用ガス流路6に大気が取り込まれる。希釈用ガス流路6に取り込まれた大気はフィルタ30を通気されることで粒子が除去され、希釈用ガスとして混合部12に送り込まれる。   A dilution gas pump 24, a dilution gas flow rate adjustment valve 26, a flow meter 28, and a filter 30 are provided on the dilution gas flow path 6 from the upstream side. The dilution gas pump 24 is driven constant, and the atmosphere is taken into the dilution gas flow path 6 by the dilution gas pump 24. Particles are removed from the air taken into the dilution gas flow path 6 by passing through the filter 30 and sent to the mixing unit 12 as a dilution gas.

希釈用ガス流量調節バルブ26は、その開度によって混合部12に送り込まれる希釈用ガスの流量を調節するものである。流量計28は希釈用ガス流路6を流れるガスの流量を計測する。希釈用ガス流量調節バルブ26の開度は、希釈用ガス流路6を流れるガスの流量が予め設定された流量になるように、流量計28の計測値に基づいて、制御部32(図2参照)によりフィードバック制御がなされる。希釈用ガスポンプ24、希釈用ガス流量調節バルブ26及び流量計28は、希釈用ガス流量調節部をなしている。   The dilution gas flow rate adjustment valve 26 adjusts the flow rate of the dilution gas sent into the mixing unit 12 according to the opening degree. The flow meter 28 measures the flow rate of the gas flowing through the dilution gas flow path 6. The opening of the dilution gas flow rate adjustment valve 26 is controlled based on the measured value of the flow meter 28 so that the flow rate of the gas flowing through the dilution gas flow path 6 becomes a preset flow rate (FIG. 2). Feedback control is performed. The dilution gas pump 24, the dilution gas flow rate adjustment valve 26, and the flow meter 28 form a dilution gas flow rate adjustment unit.

測定ガス流路4上に、混合部12側から荷電装置14、測定部16、流量計18、測定ガス流量調節バルブ20及び測定ガスポンプ22が設けられている。荷電装置14及び測定部16については後述する。測定ガスポンプ22は一定駆動される。測定ガス流路4を流れる測定ガスの流量は、測定ガス流量調節バルブ20の開度により調節される。流量計18は測定ガス流路4を流れる測定ガスの流量を計測する。測定ガス流量調節バルブ20の開度は、測定ガス流路4を流れる測定ガスの流量が予め設定された流量になるように、流量計18の計測値に基づいて、制御部32(図2参照)によりフィードバック制御がなされる。流量計18、測定ガス流量調節バルブ20及び測定ガスポンプ22は、測定ガス流量調節部をなしている。   On the measurement gas flow path 4, a charging device 14, a measurement unit 16, a flow meter 18, a measurement gas flow rate adjustment valve 20, and a measurement gas pump 22 are provided from the mixing unit 12 side. The charging device 14 and the measurement unit 16 will be described later. The measurement gas pump 22 is driven constantly. The flow rate of the measurement gas flowing through the measurement gas channel 4 is adjusted by the opening degree of the measurement gas flow rate adjustment valve 20. The flow meter 18 measures the flow rate of the measurement gas flowing through the measurement gas channel 4. The opening of the measurement gas flow rate adjusting valve 20 is controlled based on the measurement value of the flow meter 18 so that the flow rate of the measurement gas flowing through the measurement gas flow path 4 becomes a preset flow rate (see FIG. 2). ) Feedback control is performed. The flow meter 18, the measurement gas flow rate adjustment valve 20, and the measurement gas pump 22 form a measurement gas flow rate adjustment unit.

この実施例の測定部16は、複数の測定電極が測定ガスの流れ方向に沿って配列され、粒子の大きさごとに分級してその数をカウントする粒子分級測定装置である。測定部16の上流側に設けられた荷電装置14は、測定ガス中の粒子を帯電させるものである。なお、測定部16は必ずしもそのような測定装置である必要はなく、特許文献2に示されているような粒子数計測装置を用いることもできる。そのような場合には荷電装置14は不要である。   The measurement unit 16 of this embodiment is a particle classification measurement device in which a plurality of measurement electrodes are arranged along the flow direction of the measurement gas, classified according to particle size, and counted. The charging device 14 provided on the upstream side of the measurement unit 16 charges particles in the measurement gas. Note that the measurement unit 16 does not necessarily need to be such a measurement device, and a particle number measurement device as disclosed in Patent Document 2 can also be used. In such a case, the charging device 14 is unnecessary.

測定部16の一例を図4に示す。   An example of the measurement unit 16 is shown in FIG.

測定部16は内部に測定流路43を有し、ガス入口38から流入した測定ガスが測定流路43を流れてガス出口40から流出する。   The measurement unit 16 has a measurement flow path 43 inside, and the measurement gas flowing in from the gas inlet 38 flows through the measurement flow path 43 and flows out from the gas outlet 40.

測定流路43の内側に、分級電極42、トラップ電極44、測定電極46、48、50、52、54及び56が設けられている。分級電極42は測定流路43の測定ガス流に沿って上流側から下流側へ伸びるように設けられた平板電極である。トラップ電極44は測定流路43の上流端側で分級電極42と対向して配置されている。各測定電極46、48、50、52、54及び56は分級電極42と対向するとともに、測定流路43に沿って互いに間隔をもって配置されている。トラップ電極44、測定電極46、48、50、52、54及び56は互いに電気的に絶縁されている。   A classification electrode 42, a trap electrode 44, measurement electrodes 46, 48, 50, 52, 54 and 56 are provided inside the measurement flow path 43. The classification electrode 42 is a flat plate electrode provided so as to extend from the upstream side to the downstream side along the measurement gas flow in the measurement flow path 43. The trap electrode 44 is disposed opposite to the classification electrode 42 on the upstream end side of the measurement channel 43. Each of the measurement electrodes 46, 48, 50, 52, 54, and 56 is opposed to the classification electrode 42 and is disposed along the measurement flow path 43 at a distance from each other. The trap electrode 44 and the measurement electrodes 46, 48, 50, 52, 54 and 56 are electrically insulated from each other.

分級電極42とトラップ電極44、各測定電極46、48、50、52、54及び56との間には分級用の電界がかけられ、測定ガス中の荷電された粒子が粒径ごとに分級されて各測定電極46、48、50、52、54及び56に捕捉され、その数がカウントされる。   An electric field for classification is applied between the classification electrode 42 and the trap electrode 44 and each of the measurement electrodes 46, 48, 50, 52, 54 and 56, and charged particles in the measurement gas are classified for each particle diameter. Are captured by each measurement electrode 46, 48, 50, 52, 54 and 56, and the number thereof is counted.

図1に戻って、測定ガス流路4を流れる測定ガスの流量は、混合部12に取り込まれる試料ガスと混合部12に送り込まれる希釈用ガスの合計流量である。試料ガス流路2を通じて混合部12に取り込まれる試料ガスの流量は、測定ガスの流量から希釈用ガスの流量を差し引いた流量である。例えば、測定ガスの流量が10L/min、希釈用ガスの流量が9L/minに設定されている場合には、試料ガスが試料ガス流路2を通じて1L/minの流量で混合部12に取り込まれることになる。   Returning to FIG. 1, the flow rate of the measurement gas flowing through the measurement gas channel 4 is the total flow rate of the sample gas taken into the mixing unit 12 and the dilution gas fed into the mixing unit 12. The flow rate of the sample gas taken into the mixing unit 12 through the sample gas flow channel 2 is a flow rate obtained by subtracting the flow rate of the dilution gas from the flow rate of the measurement gas. For example, when the flow rate of the measurement gas is set to 10 L / min and the flow rate of the dilution gas is set to 9 L / min, the sample gas is taken into the mixing unit 12 through the sample gas flow path 2 at a flow rate of 1 L / min. It will be.

ここで、希釈用ガス流路6を流れる希釈用ガスの流量を測定ガス流路4に流れるガスの流量以上にすることで、試料ガス流路2からのガスが混合部12に取り込まれず、希釈用ガスのみが測定ガス流路4を流れることとなる。そこで、この実施例では、測定部16の検出信号のゼロ点調整の際に、混合部12に試料ガス流路2からのガスが取り込まれないように、希釈用ガスの流量を通常の排ガス測定時よりも増加させるよう、制御部32が希釈用ガス流量調節バルブ26を制御する。   Here, by making the flow rate of the dilution gas flowing through the dilution gas flow channel 6 equal to or higher than the flow rate of the gas flowing through the measurement gas flow channel 4, the gas from the sample gas flow channel 2 is not taken into the mixing unit 12 and diluted. Only the working gas flows through the measurement gas flow path 4. Therefore, in this embodiment, when adjusting the zero point of the detection signal of the measurement unit 16, the flow rate of the dilution gas is adjusted to the normal exhaust gas measurement so that the gas from the sample gas channel 2 is not taken into the mixing unit 12. The control unit 32 controls the dilution gas flow rate adjustment valve 26 so as to increase the time.

図2を用いてこの実施例全体の構成について説明する。   The overall configuration of this embodiment will be described with reference to FIG.

測定部16、流量計18,28、測定ガス流量調節バルブ20、測定ガスポンプ22、希釈用ガス流量調節バルブ26及び希釈用ガスポンプ28は、共通の制御部32に電気的に接続されている。制御部32はシステムコントローラなどの専用のコンピュータ又は汎用のパーソナルコンピュータによって実現される。制御部32には測定ガス流量制御部33、希釈用ガス流量制御部34、排ガス測定部35、ゼロ点調整部36及び流量設定値保持部37が設けられている。   The measurement unit 16, the flow meters 18 and 28, the measurement gas flow rate adjustment valve 20, the measurement gas pump 22, the dilution gas flow rate adjustment valve 26 and the dilution gas pump 28 are electrically connected to a common control unit 32. The control unit 32 is realized by a dedicated computer such as a system controller or a general-purpose personal computer. The control unit 32 includes a measurement gas flow rate control unit 33, a dilution gas flow rate control unit 34, an exhaust gas measurement unit 35, a zero point adjustment unit 36, and a flow rate set value holding unit 37.

測定ガス流量制御部33、希釈用ガス流量制御部34、排ガス測定部35及びゼロ点調整部36は、制御部32内に格納されたプログラムが実行されることによって得られる機能である。流量設定値保持部37は測定ガス流路4のガス流量と希釈用ガス流路6のガス流量の設定値を保持する記憶領域である。流量設定値保持部37には、希釈用ガス流路6のガス流量の設定値として、通常の排ガス測定時の流量の設定値とゼロ点調整時の流量の設定値が保持されている。ゼロ点調整時の流量は通常の排ガス測定時の流量よりも大きく設定されている。   The measurement gas flow rate control unit 33, the dilution gas flow rate control unit 34, the exhaust gas measurement unit 35, and the zero point adjustment unit 36 are functions obtained by executing a program stored in the control unit 32. The flow rate set value holding unit 37 is a storage area for holding set values of the gas flow rate of the measurement gas flow channel 4 and the gas flow rate of the dilution gas flow channel 6. The flow rate set value holding unit 37 holds a flow rate set value during normal exhaust gas measurement and a flow rate set value during zero point adjustment as a gas flow rate set value for the dilution gas flow path 6. The flow rate during zero point adjustment is set larger than the flow rate during normal exhaust gas measurement.

測定ガス流量制御部33は、流量計18の出力信号に基づき、測定ガス流路4を流れる測定ガスの流量が流量設定値保持部37に保持された設定値になるように、測定ガス流量調節バルブ20のフィードバック制御を行うように構成されている。   The measurement gas flow rate control unit 33 adjusts the measurement gas flow rate so that the flow rate of the measurement gas flowing through the measurement gas channel 4 becomes the set value held in the flow rate set value holding unit 37 based on the output signal of the flow meter 18. The valve 20 is configured to perform feedback control.

希釈ガス流量制御部34は、流量計28の出力信号に基づき、希釈用ガス流路6を流れる希釈用ガスの流量が流量設定値保持部37に保持された設定値になるように、希釈用ガス流量調節バルブ26のフィードバック制御を行うように構成されている。   The dilution gas flow rate control unit 34 is based on the output signal of the flow meter 28 so that the flow rate of the dilution gas flowing through the dilution gas flow path 6 becomes the set value held in the flow rate set value holding unit 37. The gas flow rate adjusting valve 26 is configured to perform feedback control.

排ガス測定部35は、排ガス測定を実行するように構成されている。排ガス測定が実行されると、測定部16で得られた検出信号が制御部32に取り込まれる。   The exhaust gas measurement unit 35 is configured to perform exhaust gas measurement. When the exhaust gas measurement is performed, the detection signal obtained by the measurement unit 16 is taken into the control unit 32.

ゼロ点調整部36は、測定部16の検出信号のゼロ点を調整するゼロ点調整を実行するように構成されている。ゼロ点調整が実行されると、希釈用ガス流路6を流れる希釈用ガスの流量の測定用の設定値(例えば9L/min)がゼロ点調整用の設定値(例えば11L/min)に変更され、希釈用ガス流路6を流れる希釈用ガスの流量(例えば11L/min)が測定ガス流路4を流れる測定ガスの流量の設定値(例えば10L/min)よりも大きくなる。これにより、測定ガス流路4を希釈用ガスのみからなる測定ガスが流れ、混合部12に送り込まれた希釈用ガスの一部が試料ガス流路2を逆流することとなる。   The zero point adjustment unit 36 is configured to perform zero point adjustment for adjusting the zero point of the detection signal of the measurement unit 16. When the zero point adjustment is executed, the setting value (for example, 9 L / min) for measuring the flow rate of the dilution gas flowing through the dilution gas flow path 6 is changed to the setting value for the zero point adjustment (for example, 11 L / min). Then, the flow rate (for example, 11 L / min) of the dilution gas flowing through the dilution gas flow channel 6 becomes larger than the set value (for example, 10 L / min) of the flow rate of the measurement gas flowing through the measurement gas flow channel 4. As a result, the measurement gas composed only of the dilution gas flows through the measurement gas flow path 4, and a part of the dilution gas sent to the mixing unit 12 flows back through the sample gas flow path 2.

このとき、測定部16で得られる検出信号は制御部32に取り込まれ、ゼロ点として保存される。同時に、試料ガス流路2の内側が逆流する希釈用ガスによってパージされる。試料ガス流路2を流れる希釈用ガスがヒータ8を通ることで約300℃に加熱され、加熱された希釈用ガスが試料ガス流路2を流れることで、試料ガス流路2の内壁面に付着した汚染物質が除去されやすくなる。   At this time, the detection signal obtained by the measurement unit 16 is taken into the control unit 32 and stored as a zero point. At the same time, the inside of the sample gas flow path 2 is purged with the diluting gas flowing backward. The dilution gas flowing through the sample gas flow path 2 is heated to about 300 ° C. by passing through the heater 8, and the heated dilution gas flows through the sample gas flow path 2, so that it is applied to the inner wall surface of the sample gas flow path 2. Adhering contaminants are easily removed.

この実施例におけるゼロ点調整時の動作の一例について、図1及び図2とともに図3のフローチャートを用いて説明する。   An example of the operation at the time of zero point adjustment in this embodiment will be described using the flowchart of FIG. 3 together with FIGS.

ユーザがゼロ点調整の開始の指示を制御部32に入力すると、希釈用ガスの流量の設定値がゼロ点調整用の設定値に変更され、希釈用ガス流路6を流れる希釈用ガスの流量がその設定値になるように、希釈用ガス流量調節バルブ26のフィードバック制御が行われる。制御部32は、流量計18からの信号を監視し、測定ガス流路4の流量が安定しているか否かを確認する。測定ガス流路4の流量が安定しているか否かは、流量計18からの検出信号の最大値と最小値が、測定ガス流路4のガス流量の設定値を基準に設定される許容範囲(例えば、設定値±5%)にあるか否かにより判定する。   When the user inputs an instruction to start zero point adjustment to the control unit 32, the setting value of the flow rate of the dilution gas is changed to the set value for zero point adjustment, and the flow rate of the dilution gas flowing through the dilution gas flow path 6 The feedback control of the dilution gas flow rate adjustment valve 26 is performed so that becomes the set value. The control unit 32 monitors the signal from the flow meter 18 and confirms whether or not the flow rate of the measurement gas channel 4 is stable. Whether or not the flow rate of the measurement gas flow path 4 is stable depends on an allowable range in which the maximum value and the minimum value of the detection signal from the flow meter 18 are set based on the set value of the gas flow rate of the measurement gas flow path 4. Judgment is made based on whether or not (for example, set value ± 5%).

測定ガス流路4の流量が安定してから測定部16の検出信号を読み取り、ゼロ点として保存する。ゼロ点として保存される信号の強度は、例えば測定時間中における測定部16の検出信号強度の平均値である。ゼロ点の保存を終了した後、希釈用ガスの流量の設定値を通常の排ガス測定時の設定値に戻し、ゼロ点調整を終了する。   After the flow rate of the measurement gas channel 4 is stabilized, the detection signal of the measurement unit 16 is read and stored as a zero point. The intensity of the signal stored as the zero point is, for example, an average value of the detection signal intensity of the measurement unit 16 during the measurement time. After storing the zero point, return the setting value of the dilution gas flow rate to the set value for normal exhaust gas measurement, and end the zero point adjustment.

2 試料ガス流路
4 測定ガス流路
6 希釈用ガス流路
8 ヒータ
10 インパクタ
12 混合部
14 荷電装置
16 測定部
17 荷電装置
18,28 流量計
20 測定ガス流量調節バルブ
22 測定ガスポンプ
24 希釈用ガスポンプ
26 希釈用ガス流量調節バルブ
32 制御部
33 測定ガス流量制御部
34 希釈用ガス流量制御部
35 排ガス測定部
36 ゼロ点調整部
38 ガス入口
40 ガス出口
42 分級電極
43 測定流路
44 トラップ電極
46,48,50,52,54,56 測定電極
2 Sample gas flow path 4 Measurement gas flow path 6 Dilution gas flow path 8 Heater 10 Impactor 12 Mixing unit 14 Charging device 16 Measurement unit 17 Charging device 18, 28 Flow meter 20 Measuring gas flow rate adjustment valve 22 Measuring gas pump 24 Dilution gas pump 26 Gas flow control valve for dilution 32 Control unit 33 Gas flow control unit for measurement 34 Gas flow control unit for dilution 35 Exhaust gas measurement unit 36 Zero point adjustment unit 38 Gas inlet 40 Gas outlet 42 Classification electrode 43 Measurement flow path 44 Trap electrode 46, 48, 50, 52, 54, 56 Measuring electrodes

Claims (4)

試料ガスと希釈用ガスとを混合して測定ガスにする混合部と、
測定対象粒子を含まない希釈用ガスを前記混合部に導入する希釈用ガス流路と、
前記混合部からの測定ガスの測定を行う測定部と、
前記混合部からの測定ガスを前記測定部へ導入する測定ガス流路と、
前記混合部から前記測定ガス流路へ測定ガスを引き込むとともに、前記測定ガス流路を流れる測定ガスの流量を予め設定された流量に調節する測定ガス流量調節部と、
前記希釈用ガス流路を通じて前記混合部に希釈用ガスを送り込むとともに、前記希釈用ガス流路を流れる希釈用ガスの流量を予め設定された流量に調節する希釈用ガス流量調節部と、
試料ガスを前記混合部に取り込む試料ガス流路であって、前記測定ガス流路を流れる測定ガスの流量から前記希釈用ガス流路を流れる希釈用ガスの流量を差し引いた分の流量で試料ガスが流れる試料ガス流路と、
前記測定部で得られる検出信号のゼロ点調整を実行するゼロ点調整部を有し、前記ゼロ点調整の際に、前記希釈用ガス流路を流れる希釈用ガスの流量が前記測定ガス流路を流れるガスの流量以上となるように、前記測定ガス流量調節部及び前記希釈用ガス流量調節部を制御する制御部と、を備えた排ガス測定装置。
A mixing section that mixes the sample gas and the dilution gas into a measurement gas;
A dilution gas flow path for introducing a dilution gas that does not contain particles to be measured into the mixing section;
A measurement unit for measuring the measurement gas from the mixing unit;
A measurement gas flow path for introducing a measurement gas from the mixing unit into the measurement unit;
A measurement gas flow rate adjustment unit that draws the measurement gas from the mixing unit into the measurement gas flow channel and adjusts the flow rate of the measurement gas flowing through the measurement gas flow channel to a preset flow rate;
A dilution gas flow rate adjusting unit that feeds the dilution gas to the mixing unit through the dilution gas flow channel and adjusts the flow rate of the dilution gas flowing through the dilution gas flow channel to a preset flow rate;
A sample gas flow path for taking the sample gas into the mixing unit, and the sample gas at a flow rate obtained by subtracting the flow rate of the dilution gas flowing through the dilution gas flow path from the flow rate of the measurement gas flowing through the measurement gas flow path Sample gas flow path through which
A zero point adjustment unit that performs zero point adjustment of a detection signal obtained by the measurement unit, and the flow rate of the dilution gas flowing through the dilution gas channel during the zero point adjustment is the measurement gas channel; An exhaust gas measurement apparatus comprising: a control unit that controls the measurement gas flow rate adjustment unit and the dilution gas flow rate adjustment unit so as to be equal to or higher than a flow rate of the gas flowing through the gas.
前記制御部は、前記ゼロ点調整の際に、前記希釈用ガス流路から前記混合部に送り込まれた希釈用ガスの一部が前記試料ガス流路を流れるように、前記測定ガス流路を流れるガスの流量を試料測定時の流量から変更することなく、前記希釈用ガス流路を流れる希釈用ガスの流量を試料測定時の流量よりも増大させるように構成されている請求項1に記載の排ガス測定装置。   The control unit adjusts the measurement gas flow path so that a part of the dilution gas sent from the dilution gas flow path to the mixing part flows through the sample gas flow path during the zero point adjustment. 2. The structure according to claim 1, wherein the flow rate of the dilution gas flowing through the dilution gas flow path is increased from the flow rate at the time of sample measurement without changing the flow rate of the flowing gas from the flow rate at the time of sample measurement. Exhaust gas measuring device. 前記試料ガス流路上に前記試料ガス流路を流れるガスを加熱するヒータが設けられている請求項2に記載の排ガス測定装置。   The exhaust gas measuring apparatus according to claim 2, wherein a heater for heating the gas flowing through the sample gas channel is provided on the sample gas channel. 前記測定ガス流路上に測定ガス中の粒子を帯電させる荷電装置をさらに備え、
前記測定部は、測定ガスが流れる測定流路、その測定流路の内側に沿って設けられた平板状の分級電極、及び前記分級電極と対向し、前記測定流路を流れる測定ガス流に沿って配列され、互いに電気的に絶縁された複数の測定電極を備え、前記分級電極と前記測定電極との間に電圧を印加して電界を発生させることにより、帯電した粒子をその粒径ごとに分級して各測定電極に捕捉し、その個数をカウントする粒子分級測定装置である請求項1から3のいずれか一項に記載の排ガス測定装置。
A charging device for charging particles in the measurement gas on the measurement gas flow path;
The measurement unit includes a measurement channel through which a measurement gas flows, a plate-like classification electrode provided along the inside of the measurement channel, and a measurement gas flow that faces the classification electrode and flows through the measurement channel. Are arranged and electrically insulated from each other, and a voltage is applied between the classification electrode and the measurement electrode to generate an electric field. The exhaust gas measuring device according to any one of claims 1 to 3, wherein the exhaust gas measuring device is a particle classification measuring device that classifies and captures each measuring electrode and counts the number thereof.
JP2015181541A 2015-09-15 2015-09-15 Exhaust gas measurement device Pending JP2017058173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015181541A JP2017058173A (en) 2015-09-15 2015-09-15 Exhaust gas measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015181541A JP2017058173A (en) 2015-09-15 2015-09-15 Exhaust gas measurement device

Publications (1)

Publication Number Publication Date
JP2017058173A true JP2017058173A (en) 2017-03-23

Family

ID=58389717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015181541A Pending JP2017058173A (en) 2015-09-15 2015-09-15 Exhaust gas measurement device

Country Status (1)

Country Link
JP (1) JP2017058173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655799A (en) * 2017-09-24 2018-02-02 中国科学院合肥物质科学研究院 A kind of Portable movable discharge of pollutant sources particle sampling measuring system and method
CN109765154A (en) * 2019-01-31 2019-05-17 中国计量科学研究院 The on-line calibration system and calibration method of PM2.5/PM10 optical scatter object monitor
JP2020008530A (en) * 2018-07-12 2020-01-16 東亜ディーケーケー株式会社 Particulate matter measuring device, and zero-air supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655799A (en) * 2017-09-24 2018-02-02 中国科学院合肥物质科学研究院 A kind of Portable movable discharge of pollutant sources particle sampling measuring system and method
CN107655799B (en) * 2017-09-24 2019-11-01 中国科学院合肥物质科学研究院 A kind of Portable movable discharge of pollutant sources particle sampling measuring system and method
JP2020008530A (en) * 2018-07-12 2020-01-16 東亜ディーケーケー株式会社 Particulate matter measuring device, and zero-air supply device
CN109765154A (en) * 2019-01-31 2019-05-17 中国计量科学研究院 The on-line calibration system and calibration method of PM2.5/PM10 optical scatter object monitor

Similar Documents

Publication Publication Date Title
US9606038B2 (en) Particle count measurement device
CN104487817B (en) For the equipment and process of particle mass concentration measurement and to the use of the equipment measured for particle mass concentration
US10428715B2 (en) Exhaust gas analyzing system and pumping device
US9574986B2 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
US20140083167A1 (en) Particle sampling and measurement in the ambient air
JP2018536872A (en) Method and apparatus for measuring aerosol particles suspended in a gas
JP4579744B2 (en) Filter inspection device
JP2017058173A (en) Exhaust gas measurement device
EP2815226B1 (en) Apparatus and process for producing air flow and the use of such apparatus in measuring particle concentration in air flow
Joshi et al. Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers
Petrovic et al. The possibilities for measurement and characterization of diesel engine fine particles-A review
JP2018535435A5 (en)
EP3371582A1 (en) Apparatus and process for measuring characteristics of particle flow
KR101559765B1 (en) Particles Collecting Apparatus Using Bipolar Discharge for Increasing Filtration Efficiency, and Particles Collecting System Having the Same
CN102939523A (en) Air pre-treatment device
JP4710787B2 (en) Particle classifier
KR101462948B1 (en) Impactor Performance Evaluation System
JP2010281788A (en) Aerosol fine particle measuring system
CN104792676A (en) Method for measuring nanoparticle concentration of air with ionization method
JP2008128739A (en) Method and instrument for measuring number of fine particles
JP2008096168A (en) Particle classifier
JP2023513160A (en) Method and apparatus for monitoring aerosol particles
JP2012127773A (en) Particulate number measuring device
JP2008096170A (en) Charging device and particle classifier
JP4888597B2 (en) Fine particle measuring device