JP2006250661A - Evaluation device and evaluation method for ceramic honeycomb filter - Google Patents

Evaluation device and evaluation method for ceramic honeycomb filter Download PDF

Info

Publication number
JP2006250661A
JP2006250661A JP2005066545A JP2005066545A JP2006250661A JP 2006250661 A JP2006250661 A JP 2006250661A JP 2005066545 A JP2005066545 A JP 2005066545A JP 2005066545 A JP2005066545 A JP 2005066545A JP 2006250661 A JP2006250661 A JP 2006250661A
Authority
JP
Japan
Prior art keywords
filter
test
fine particles
gas
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066545A
Other languages
Japanese (ja)
Inventor
Takashi Otsuki
貴史 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005066545A priority Critical patent/JP2006250661A/en
Publication of JP2006250661A publication Critical patent/JP2006250661A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation device and an evaluation method for a ceramic honeycomb filter for directly evaluating the filter as a whole without necessitating cutting off a partial sample for measurement from a specimen filter, and rapidly measuring the collection performance of the specimen filter by a simple structure without necessitating any expensive and large-scale installation. <P>SOLUTION: This valuation device 1 for a ceramic honeycomb filter, used for measuring the collection performance of the specimen filter 10a by letting test gas containing test particulates of a grain size equal to or more than a prescribed grain size run through the specimen filter 10, is equipped with a dusty-gas generator 3 for generating a material gas containing particulates, an electric dust collector 4 for obtaining the test gas containing the test particulates by eliminating particulates of a grain size less than the prescribed grain size among the above particulates from the material gas, and a concentration meter 5 for measuring the concentration of grains in the test gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミックスハニカムフィルタの粒子の捕集特性を評価するセラミックスハニカムフィルタの評価装置及び評価方法に関する。   The present invention relates to an evaluation apparatus and an evaluation method for a ceramic honeycomb filter for evaluating the particle collection characteristics of the ceramic honeycomb filter.

セラミックスハニカムフィルタが特許文献1に記載されている。このようなセラミックスハニカムフィルタは特に耐熱性に優れるため、車両の排ガスを浄化するためのDPF(ディーゼルパティキュレートフィルタ)として用いられる。このようなセラミックスハニカムフィルタ(以下、フィルタと略す)の捕集効率を評価する場合、実際にディーゼルエンジンを稼動させて実際の排ガスを用いて評価している。このディーゼルエンジンを用いた評価装置を以下に示す。   A ceramic honeycomb filter is described in Patent Document 1. Since such a ceramic honeycomb filter is particularly excellent in heat resistance, it is used as a DPF (diesel particulate filter) for purifying exhaust gas from a vehicle. When evaluating the collection efficiency of such a ceramic honeycomb filter (hereinafter abbreviated as a filter), the diesel engine is actually operated and the actual exhaust gas is used for evaluation. An evaluation apparatus using this diesel engine is shown below.

図4は従来のセラミックスハニカムフィルタの評価装置の概略図である。
図示したように、従来のセラミックスハニカムフィルタの評価装置51は、ディーゼルエンジン52、バルブ53,54、及び粒子センサー55で構成される。セラミックスハニカムフィルタからなる被試験体フィルタ56を評価する場合、まず、評価装置51に被試験体フィルタ56をセットする。次に、ディーゼルエンジン52を稼動させ、排ガスを発生させる。切り替え器57によりバルブ53及び54の流路を切り替え(図の矢印A方向)、排ガスを被評価フィルタ56に対しバイパスさせる。この状態で排ガスを希釈器58に通し排ガスを希釈し、粒子センサー55により排ガス中の粒子の濃度を測定する。次に、バルブ53及び54の流路を切り替え器57により切り替えて被試験体フィルタ56にディーゼルエンジン52からの排ガスを通す(図の矢印B方向)。被試験体フィルタ56を通過した排ガスは希釈器58により希釈され、粒子センサー55によりその濃度を測定される。測定後の排ガスはバイパスされたもの及び被評価フィルタを通したもの両方とも矢印Dのように排気される。このようにして測定された濃度を比較し、被試験体フィルタ56を通過した排ガスは通過しない排ガスに比べてどの程度粒子を捕集したかを評価する。
FIG. 4 is a schematic view of a conventional ceramic honeycomb filter evaluation apparatus.
As shown in the figure, a conventional ceramic honeycomb filter evaluation apparatus 51 includes a diesel engine 52, valves 53 and 54, and a particle sensor 55. When evaluating the DUT filter 56 made of a ceramic honeycomb filter, first, the DUT filter 56 is set in the evaluation device 51. Next, the diesel engine 52 is operated to generate exhaust gas. The switching device 57 switches the flow paths of the valves 53 and 54 (in the direction of arrow A in the figure) to bypass the exhaust gas to the evaluated filter 56. In this state, the exhaust gas is passed through a diluter 58 to dilute the exhaust gas, and the particle sensor 55 measures the concentration of particles in the exhaust gas. Next, the flow paths of the valves 53 and 54 are switched by a switch 57 to allow exhaust gas from the diesel engine 52 to pass through the filter under test 56 (in the direction of arrow B in the figure). Exhaust gas that has passed through the DUT filter 56 is diluted by a diluter 58, and its concentration is measured by a particle sensor 55. The exhaust gas after the measurement is exhausted as indicated by arrow D both by-pass and through the evaluated filter. The concentration measured in this way is compared, and it is evaluated how much particles have been collected by the exhaust gas that has passed through the filter under test 56 compared to the exhaust gas that has not passed.

しかし、このような評価装置51は、実際のディーゼルエンジン52を用いるため、排ガス濃度を一定にする調整が困難である。また、設備が大掛かりとなり、設置スペースが必要である。有害な排ガスを使用するため、排気を完全にする等試験に当たっての細心の注意が必要で、しかも排ガスは別名「黒煙」といわれるように被試験体フィルタや評価装置をすすで真黒にし、その後始末も大変である。   However, since such an evaluation apparatus 51 uses an actual diesel engine 52, it is difficult to adjust the exhaust gas concentration to be constant. In addition, the equipment is large and installation space is required. Since harmful exhaust gas is used, it is necessary to pay close attention to the test such as exhaust exhaustion, etc., and so that the exhaust gas is also called “black smoke”, so that the device under test filter and the evaluation device can be soaked in black. The cleanup is also difficult.

一方、フィルタの捕集効率を間接的に評価するために、フィルタの細孔径分布を水銀ポロシメーター(水銀圧入)法を用いることがある。これは液体水銀が圧力の増加とともに大きな孔から順にしみ込む現象を応用したもので、汎用的な細孔径分布の測定方法として広く用いられている。しかし、この測定方法は、測定に用いるサンプルサイズが2〜3mm程度であることが必要であり、被試験体から削り取る等してサンプルを取り出さなければならず、フィルタ製品そのものを被試験体として用いることができない。また、得られる情報はサンプルサイズが小さいことから局所的な情報にとどまり、被試験体フィルタ全体としての捕集効率を知ることはできない。またこの方法は、測定時間がかかり、迅速な評価ができない。   On the other hand, in order to indirectly evaluate the collection efficiency of the filter, a mercury porosimeter (mercury intrusion) method may be used for the pore size distribution of the filter. This is an application of the phenomenon in which liquid mercury infiltrates in order from a large pore as pressure increases, and is widely used as a general-purpose method for measuring pore size distribution. However, this measurement method requires that the sample size used for the measurement is about 2 to 3 mm, and the sample must be taken out by scraping it from the device under test, and the filter product itself is used as the device under test. I can't. Further, since the obtained information is small in sample size, it is limited to local information, and it is impossible to know the collection efficiency of the filter under test as a whole. Also, this method takes a long time and cannot be evaluated quickly.

特開2004−154647号公報JP 2004-154647 A

本発明は、被試験体フィルタから測定のために局所的なサンプルを切取ることを必要とせずにフィルタ全体の直接的な評価が可能で、かつ高価で大掛かりな設備を必要とせず、簡単な構成で迅速に被試験体フィルタの捕集効率を測定できるセラミックスハニカムフィルタの評価装置及び評価方法の提供を目的とする。   The present invention enables direct evaluation of the entire filter without the need to cut out a local sample for measurement from the filter under test, and does not require expensive and large-scale equipment. An object of the present invention is to provide an evaluation device and an evaluation method for a ceramic honeycomb filter that can quickly measure the collection efficiency of a filter under test with the configuration.

前記目的を達成するため、請求項1の発明では、所定の粒径以上の粒径を有する試験微粒子を含む試験ガスを被試験体フィルタに通して該被試験体フィルタの捕集能力を測定するセラミックスハニカムフィルタの評価装置であって、微粒子を含む原料ガスを発生する含塵ガス発生器と、前記微粒子中の所定の粒径未満の粒径を有する微粒子を前記原料ガスから除去して前記試験微粒子を含む試験ガスとする電気集塵器と、前記試験ガス中の粒子濃度を測定する濃度計とを有することを特徴とするセラミックスハニカムフィルタの評価装置を提供する。   In order to achieve the above object, according to the first aspect of the present invention, a test gas containing test fine particles having a particle size equal to or larger than a predetermined particle size is passed through the filter under test, and the collection ability of the filter under test is measured. An evaluation apparatus for a ceramic honeycomb filter, wherein a dust-containing gas generator that generates a raw material gas containing fine particles, and fine particles having a particle size smaller than a predetermined particle size in the fine particles are removed from the raw material gas and the test is performed. There is provided an evaluation apparatus for a ceramic honeycomb filter, comprising: an electrostatic precipitator that uses a test gas containing fine particles; and a densitometer that measures a particle concentration in the test gas.

請求項2の発明では、請求項1記載のセラミックスハニカムフィルタの評価装置を用い、前記被試験体フィルタに通す前の前記試験微粒子を含む試験ガスの粒子濃度と、前記被試験体フィルタに通した後の前記試験微粒子を含む試験ガスの粒子濃度とを比較して前記被試験体フィルタの捕集能力を評価するセラミックスハニカムフィルタの評価方法を提供する。   According to a second aspect of the present invention, the ceramic honeycomb filter evaluation apparatus according to the first aspect is used, the particle concentration of the test gas containing the test fine particles before passing through the filter under test, and the filter under test. There is provided a ceramic honeycomb filter evaluation method for evaluating the collection ability of the filter under test by comparing the particle concentration of a test gas containing the test fine particles later.

請求項3の発明は、請求項2の発明において、前記電気集塵器の印加電圧を変えることにより前記所定の粒径を制御し、前記試験ガス中に含まれる前記試験微粒子の粒度分布を調整して、被試験体フィルタに供給し、前記粒度分布に応じたフィルタの捕集能力を評価することを特徴としている。   According to a third aspect of the present invention, in the second aspect of the present invention, the predetermined particle size is controlled by changing an applied voltage of the electrostatic precipitator, and a particle size distribution of the test fine particles contained in the test gas is adjusted. Then, the filter is supplied to a filter to be tested, and the collection ability of the filter according to the particle size distribution is evaluated.

請求項1の発明によれば、含塵ガス発生器から発生した原料ガスに含まれる微粒子のうち、被試験体フィルタを通す前に所定の粒径未満の粒径を有する微粒子を電気集塵器で原料ガスから除去して試験微粒子を含む試験ガスとするため、被試験体フィルタを通過させる試験ガス中の試験微粒子の粒径を調整できる。したがって、流通させる試験ガス中の試験微粒子の粒径を揃えて粒度分布を調整し、粒度分布に応じたフィルタを評価できる。含塵ガス発生器としては気化燃焼を利用した含塵ガス発生器や、線香等の煙を使用すれば設備が大掛かりとならず、安価で測定できる。また、被試験体フィルタから測定のためのサンプル等を切出して用いる必要がなく、そのまま装置にセットできるので、迅速に作業でき、被試験体フィルタ全体としての捕集能力を測定することができる。   According to the first aspect of the present invention, among the fine particles contained in the raw material gas generated from the dust-containing gas generator, fine particles having a particle size smaller than a predetermined particle size before passing through the filter under test are collected by the electrostatic precipitator. Since the test gas is removed from the raw material gas to obtain the test gas containing the test fine particles, the particle size of the test fine particles in the test gas passing through the filter under test can be adjusted. Therefore, it is possible to adjust the particle size distribution by adjusting the particle size of the test fine particles in the test gas to be circulated, and to evaluate the filter according to the particle size distribution. If a dust-containing gas generator using vaporization combustion or smoke such as incense is used as the dust-containing gas generator, the equipment does not become large and can be measured at low cost. Further, it is not necessary to cut out a sample for measurement from the filter under test and use it, and it can be set in the apparatus as it is, so that it is possible to work quickly and measure the collection ability of the filter under test as a whole.

請求項2の発明によれば、含塵ガス発生器から発生した微粒子のうち、被試験体フィルタを通す前に例えば所定の粒径未満の微粒子を電気集塵器で捕集することにより、被試験体フィルタを通過させる試験微粒子の粒径を調整できる。したがって、この試験微粒子濃度と、被試験体フィルタを通した後の試験微粒子濃度を比較することにより正確に被試験体フィルタの捕集能力を測定できる。   According to the invention of claim 2, among the fine particles generated from the dust-containing gas generator, for example, the fine particles having a particle diameter of less than a predetermined particle size are collected by the electric dust collector before passing through the filter under test. The particle size of the test fine particles that pass through the test specimen filter can be adjusted. Therefore, by comparing the test particle concentration with the test particle concentration after passing through the filter under test, the collection ability of the filter under test can be accurately measured.

請求項3の発明によれば、電気集塵器の印加電圧を調整することにより、容易に試験ガス中の試験微粒子の粒度分布を調製することができる。したがって、所定の電圧を所定時間だけ印加し、電圧を変えてまた所定時間印加することにより、粒度分布に応じたフィルタ捕集能力の評価が容易に確実にできる。   According to the invention of claim 3, the particle size distribution of the test fine particles in the test gas can be easily prepared by adjusting the applied voltage of the electrostatic precipitator. Therefore, by applying a predetermined voltage for a predetermined time, changing the voltage, and applying it for a predetermined time, it is possible to easily and reliably evaluate the filter collection ability according to the particle size distribution.

図1は本発明に係るセラミックスハニカムフィルタの評価装置の概略図である。
図示したように、本発明に係るセラミックスハニカムフィルタの評価装置1は、基本的には被試験体フィルタ10を通る矢印で示す流路を形成し、この流路を通して試験微粒子を含む試験ガスを流すものである。流路に沿ってフィルタ2、含塵ガス発生器3、電気集塵器4、濃度計5、バルブ13,14、流速測定器9、吸引ファン6が備わる。電気集塵器4は集塵器制御器7で電圧制御され、濃度計5とともにパソコン8に接続される。装置1内のガスは、吸引ファン6により装置1内を図の矢印方向に流通する。ガスの流路には流速測定器9が備わる。流速測定器9は、流路に備わるオリフィスの前後の圧力を測定して流速を算出する。流路の途中には、捕集能力を測定して評価の対象となる被試験体フィルタ10がセットされる。このとき、被試験体フィルタ10の両端面は圧損低下の原因がないように端面をなるべく覆わないように保持され、かつ端面からガスが漏れないように着脱が簡単な圧着式のホルダー等を用いて固定される。このように、被試験体フィルタ10全体をそのまま装置1にセットして測定できるので、被試験体フィルタ10の全体としての捕集能力を測定することができる。被試験体フィルタ10の前後には三方弁等のバルブ13,14が備わり、被試験体フィルタ10を通る流路と被試験体フィルタ10を通らないバイパス流路(図のB)に分岐する。フィルタ2は流路入口に備わり、流路内への不純物の流入を防ぐ。
FIG. 1 is a schematic view of a ceramic honeycomb filter evaluation apparatus according to the present invention.
As shown in the figure, the ceramic honeycomb filter evaluation apparatus 1 according to the present invention basically forms a flow path indicated by an arrow passing through the filter under test 10, and allows a test gas containing test fine particles to flow through the flow path. Is. A filter 2, a dust-containing gas generator 3, an electrostatic precipitator 4, a concentration meter 5, valves 13 and 14, a flow velocity measuring device 9, and a suction fan 6 are provided along the flow path. The electric dust collector 4 is voltage-controlled by a dust collector controller 7 and connected to a personal computer 8 together with a concentration meter 5. The gas in the apparatus 1 is circulated in the apparatus 1 in the direction of the arrow by the suction fan 6. A flow rate measuring device 9 is provided in the gas flow path. The flow velocity measuring device 9 measures the pressure before and after the orifice provided in the flow path and calculates the flow velocity. In the middle of the flow path, the DUT filter 10 to be evaluated by measuring the collection ability is set. At this time, both end faces of the filter under test 10 are held so as not to cover the end faces as much as possible so as not to cause a pressure drop, and a crimping type holder that can be easily attached and detached so as not to leak gas from the end faces is used. Fixed. In this way, since the entire DUT filter 10 can be set and measured as it is in the apparatus 1, the collection ability of the DUT filter 10 as a whole can be measured. Valves 13 and 14 such as three-way valves are provided before and after the device under test filter 10 and branch into a flow path that passes through the device filter 10 and a bypass flow path (B in the figure) that does not pass through the device filter 10. The filter 2 is provided at the inlet of the flow path and prevents inflow of impurities into the flow path.

流路は濃度計5に連通する部分を有し、流路中に流れるガス中の粒子濃度がそれぞれ測定される。濃度計5は被試験体フィルタ10の前後の変化が計測できる感度であれば反射式、透過式、または規定のフィルタに粉塵を付着させ、その付着したフィルタに光を当てて粉塵濃度を測るFSN(フィルタスモークナンバー)計のいずれを用いてもよい。濃度が小さい場合は、カスケードインパクタや電子低圧インパクタを用いて測定してもよい。   The flow path has a portion communicating with the densitometer 5, and the concentration of particles in the gas flowing in the flow path is measured. If the density meter 5 is sensitive enough to measure changes before and after the filter under test 10, the FSN measures dust concentration by attaching dust to a reflection type, transmission type, or a specified filter, and applying light to the attached filter. Any (filter smoke number) meter may be used. When the concentration is small, measurement may be performed using a cascade impactor or an electronic low-pressure impactor.

なお、図示したバイパス流路Bを設ける構成に代えて、被試験体フィルタ10の前後にそれぞれ濃度計を備えることにより、又は1つの濃度計を被試験体フィルタ10の前後に連通させて連通位置を切り替えることにより、被試験体フィルタの前後の濃度を計測することもできる。このような構成としても、フィルタ10を通さない粒子濃度とフィルタ10を通した粒子濃度を測定でき、これらを比較してフィルタ能力を評価することができる。この構成の場合、バイパス流路Bは不要となる。   In place of the configuration in which the bypass flow path B shown in the figure is provided, a communication position is provided by providing concentration meters before and after the filter under test 10, or by connecting one concentration meter before and after the filter 10 under test. By switching the above, it is possible to measure the concentration before and after the filter under test. Even with such a configuration, the particle concentration that does not pass through the filter 10 and the particle concentration that passes through the filter 10 can be measured, and the filter ability can be evaluated by comparing these. In the case of this configuration, the bypass flow path B is not necessary.

含塵ガス発生器3からは微粒子を含む原料ガスが発生する。原料ガス中の微粒子濃度の調整は、例えば光学式のダストセンサを含塵ガス発生器3の出口側に設け、微粒子濃度をモニターしながら一定濃度の原料ガスを供給する。このようなダストセンサを設けずに電気集塵器4のみによって微粒子濃度を調整してもよい。微粒子を含む原料ガスとしては例えば線香の煙であり、線香は通常の線香以外に火災感知器の試験用の線香でもよい。蚊取り線香は脂が強いため普通の線香の方が好ましい。この原料ガスは含塵ガス発生器3から装置1内の流路に供給される。ガス濃度は、アナログレベルを設定できる光スイッチや光ダスト計等で一定濃度になるようにモニターしながらコントロールされる。線香の煙を用いた場合、煙濃度が不足するため、また濃度が不安定になるため、線香の煙が所定濃度に保たれた煙箱(不図示)から供給することが好ましい。これにより、煙箱がバッファとなり、流路に所定濃度の煙が吸引される。このように、微粒子を含む原料ガスを線香の煙とすれば、簡単な設備で安価に被試験体フィルタ10のフィルタ効率を測定できる。含塵ガス発生器3としては、気化燃焼を利用した含塵ガス発生器やディーゼルエンジンのスート発生装置を用いてもよい。   A raw material gas containing fine particles is generated from the dust-containing gas generator 3. The fine particle concentration in the raw material gas is adjusted by, for example, providing an optical dust sensor on the outlet side of the dust-containing gas generator 3 and supplying the raw material gas having a constant concentration while monitoring the fine particle concentration. The fine particle concentration may be adjusted only by the electric dust collector 4 without providing such a dust sensor. The raw material gas containing fine particles is, for example, incense smoke, and the incense may be a test incense for a fire detector in addition to a normal incense. Because mosquito coils are strong in fat, ordinary incense is preferable. This source gas is supplied from the dust-containing gas generator 3 to the flow path in the apparatus 1. The gas concentration is controlled while monitoring the gas concentration with an optical switch or an optical dust meter that can set an analog level. When the incense smoke is used, the smoke concentration is insufficient and the concentration becomes unstable. Therefore, the incense smoke is preferably supplied from a smoke box (not shown) maintained at a predetermined concentration. As a result, the smoke box becomes a buffer, and smoke having a predetermined concentration is sucked into the flow path. Thus, if the source gas containing fine particles is incense smoke, the filter efficiency of the filter under test 10 can be measured with simple equipment at low cost. As the dust-containing gas generator 3, a dust-containing gas generator using vaporization combustion or a soot generator for a diesel engine may be used.

電気集塵器4はイオン化部と集塵部(不図示)で構成される。イオン化部は、20〜30mm程度の傘状電極とグリッドの平行電極からなり、電極には直流10kV程度の高電圧が印加される。これにより、プラス極からマイナス極にコロナ放電が発生し、空気分子はプラスマイナスに帯電し、イオンが発生するマイナスイオンはイオン化線に吸収されるがプラスイオンは平行電極に充満し、この間を通過する粉塵はプラスに帯電される。集塵部は、直流5kV程度に帯電されたプラス電極と接地された電極で構成され、プラスに帯電した粉塵はこの集塵部に入るとマイナス極に吸着される。印加電圧に応じて吸着される粉塵粒子の最大粒径が定まる。すなわち、電圧に応じた粒径以下の微粒子が捕集され、それより大きい微粒子が通過する。   The electric dust collector 4 includes an ionization unit and a dust collection unit (not shown). The ionization part is composed of an umbrella-shaped electrode of about 20 to 30 mm and a grid parallel electrode, and a high voltage of about 10 kV direct current is applied to the electrode. As a result, a corona discharge is generated from the positive electrode to the negative electrode, air molecules are charged positively and negatively, and the negative ions generated by the ions are absorbed by the ionization line, but the positive ions fill the parallel electrodes and pass between them. Dust is positively charged. The dust collecting part is composed of a positive electrode charged to about DC 5 kV and a grounded electrode, and the positively charged dust is adsorbed to the negative electrode when entering the dust collecting part. The maximum particle size of the dust particles to be adsorbed is determined according to the applied voltage. That is, fine particles having a particle size or less corresponding to the voltage are collected, and fine particles larger than that are passed.

パソコン8には電気集塵器の集塵器制御器7からの制御信号や、濃度計5からの濃度データ、流路内の流速や温度等が取り込まれ、被試験体フィルタ10の評価計算が行われる。   The personal computer 8 receives the control signal from the dust collector controller 7 of the electric dust collector, the concentration data from the densitometer 5, the flow velocity and temperature in the flow path, etc., and the evaluation calculation of the filter 10 to be tested is performed. Done.

図2は含塵ガス発生器から発生する原料ガス中の微粒子の粒度分布と電気集塵器の制御電圧の関係の説明図である。
(A)は含塵ガス発生器3から発生する原料ガス中の微粒子の粒度分布の概念を示すグラフである。グラフは原料ガスとして線香の煙の例を示し、横軸は粒径(μm)、縦軸は粒子数である。このグラフから、1.0μm付近の粒径を持つ粒子が最も多く含まれていることが分かる。この粒度分布を持った微粒子を含む原料ガスが含塵ガス発生器から供給された場合、電気集塵器に所定の電圧を印加すると、所定粒径未満の微粒子が捕集される(図の一点鎖線より左側のX領域)。したがって、電気集塵器4を通過して流路を流れる試験ガス中の試験微粒子はこれより大きい粒径の微粒子(図の一点鎖線より右側のY領域)となる。電圧を上げると一点鎖線の位置が右に移動する。
FIG. 2 is an explanatory diagram of the relationship between the particle size distribution of fine particles in the raw material gas generated from the dust-containing gas generator and the control voltage of the electrostatic precipitator.
(A) is a graph which shows the concept of the particle size distribution of the fine particles in the raw material gas which generate | occur | produces from the dust containing gas generator 3. FIG. The graph shows an example of incense smoke as a source gas, the horizontal axis is the particle size (μm), and the vertical axis is the number of particles. From this graph, it can be seen that the largest number of particles having a particle size of around 1.0 μm are contained. When a raw material gas containing fine particles having this particle size distribution is supplied from a dust-containing gas generator, when a predetermined voltage is applied to the electrostatic precipitator, fine particles having a particle diameter less than the predetermined particle size are collected (one point in the figure). X region on the left side of the chain line). Therefore, the test fine particles in the test gas flowing through the flow path through the electrostatic precipitator 4 are fine particles having a larger particle size (Y region on the right side of the dashed line in the figure). When the voltage is increased, the position of the alternate long and short dash line moves to the right.

(B)は電気集塵器の制御電圧(印加電圧)と濃度計による粒子濃度の関係を示すグラフである。グラフが示すように、印加電圧に応じて濃度計出力(粒子濃度)は下がる。すなわち、電気集塵器4の印加電圧が上がるとY領域が減少するとともに電気集塵器で捕集される微粒子が増加するため、電気集塵器4を通過する試験微粒子が減少して濃度計出力が下がる。   (B) is a graph which shows the relationship between the control voltage (applied voltage) of an electrostatic precipitator, and the particle concentration by a densitometer. As the graph shows, the densitometer output (particle concentration) decreases according to the applied voltage. That is, when the applied voltage of the electrostatic precipitator 4 increases, the Y region decreases and the fine particles collected by the electrostatic precipitator increase. Therefore, the test fine particles that pass through the electrostatic precipitator 4 decrease and the densitometer Output decreases.

(C)は電気集塵器の制御電圧を変化させたときの時間と微粒子濃度の関係を示すグラフである。V<Vとして、電気集塵器4の電圧を上げたとする。この場合、(B)が示すようにフィルタによる微粒子捕集量は低下するので、濃度計出力(微粒子濃度)はVよりVの方が減少することが分かる。(D)はV<V<Vとして電気集塵器4の電圧をさらに上げたときのグラフであり、(C)と同様に、電圧を上げると(V)、フィルタによる微粒子捕集量がさらに低下し、濃度計出力がさらに低下することが分かる。 (C) is a graph which shows the relationship between time and particulate concentration when the control voltage of an electrostatic precipitator is changed. Assume that the voltage of the electrostatic precipitator 4 is increased as V 1 <V 2 . In this case, since the reduced particulate collection amount by the filter as shown by (B), a concentration meter output (particle concentration) it can be seen that decreases towards V 2 than V 1. (D) is a graph when the voltage of the electrostatic precipitator 4 is further increased as V 1 <V 2 <V 3 , and as in (C), when the voltage is increased (V 3 ), particulate collection by the filter is performed. It can be seen that the collected amount further decreases and the densitometer output further decreases.

図3は本発明に係るセラミックスハニカムフィルタの評価方法のフローチャートである。
ステップS1
フィルタ能力を評価すべき被試験体フィルタ10を評価装置1にセットする。
ステップS2
バルブ13,14により、装置内のガスがバイパス流路Bを通るように流路を切り替える。これにより、装置内のガスは被試験体フィルタ10を通過することはないため、フィルタ10を通過しない微粒子濃度を濃度計5で測定できる。
ステップS3
装置1内の流路にガス(空気)を流通させる。ガスは吸引ファン6が作動することによりフィルタ2を通って装置内を流通して排気される。直径144mm、長さ152mmで(2.54cm)あたり200セルのフィルタの場合、ガスの流速は20リットル/min程度である。
FIG. 3 is a flowchart of a method for evaluating a ceramic honeycomb filter according to the present invention.
Step S1
A device under test filter 10 whose filter capability is to be evaluated is set in the evaluation apparatus 1.
Step S2
The flow paths are switched by the valves 13 and 14 so that the gas in the apparatus passes through the bypass flow path B. Thereby, since the gas in the apparatus does not pass through the DUT filter 10, the concentration of fine particles that do not pass through the filter 10 can be measured by the densitometer 5.
Step S3
Gas (air) is circulated through the flow path in the apparatus 1. The gas is exhausted through the apparatus through the filter 2 when the suction fan 6 is operated. Diameter 144 mm, if the length 152mm in (2.54 cm) 2 per 200 cells of the filter, the flow rate of the gas is about 20 liters / min.

ステップS4
評価装置1の流路に原料ガス(例えば線香の煙)を供給する。原料ガスは含塵ガス発生器3から発生する。
ステップS5
電気集塵器4により所定粒径以下の微粒子を捕集して粒度分布及び微粒子濃度を調整する。捕集は印加電圧を調整して行い、電圧に応じた粒径未満の微粒子が捕集され、それより大きい試験微粒子が電機集塵器4を通過してバイパス流路Bを流れる。
ステップS6
濃度計5により微粒子濃度を測定する。ここで測定されるガス濃度は、流路がバイパス流路Bに切り替えられているため、被試験体フィルタ10を通さない微粒子濃度である。
Step S4
A raw material gas (for example, incense smoke) is supplied to the flow path of the evaluation apparatus 1. The source gas is generated from the dust-containing gas generator 3.
Step S5
Fine particles having a predetermined particle diameter or less are collected by the electric dust collector 4 to adjust the particle size distribution and fine particle concentration. The collection is performed by adjusting the applied voltage. Fine particles having a particle size less than that corresponding to the voltage are collected, and larger test fine particles pass through the electric dust collector 4 and flow through the bypass channel B.
Step S6
The fine particle concentration is measured by the densitometer 5. The gas concentration measured here is a fine particle concentration that does not pass through the DUT filter 10 because the flow path is switched to the bypass flow path B.

ステップS7
バルブ13,14により、装置内のガスが被試験体フィルタ10を通るように流路を切り替える。これにより、装置内のガスは試験体フィルタ10を通過するため、フィルタ10を通した微粒子濃度を濃度計5で測定できる。
ステップS8
ステップS4と同様の条件で含塵ガス発生器3により流路に原料ガスを供給する。これは上記ステップS4で原料ガスを供給しまたまま続行してもよい。
ステップS9
ステップS5と同様の条件で電気集塵器4を用いて微粒子を捕集する。このとき電気集塵器の印加電圧を変えることにより被試験体フィルタに供給する原料ガス中の微粒子の粒度分布を変えて粒度分布の異なる複数種類の試験ガスを供給する。
ステップS10
濃度計5により微粒子濃度を測定する。ここで測定される濃度は、被試験体フィルタ10を通した微粒子濃度である。この場合、電気集塵器の印加電圧調製により粒度分布を変えたガスごとに濃度を測定する。これにより、試験微粒子を含む試験ガスの粒度分布に応じた被試験体フィルタの捕集能力を評価できる。
Step S7
The flow path is switched by the valves 13 and 14 so that the gas in the apparatus passes through the filter under test 10. Thereby, since the gas in the apparatus passes through the test specimen filter 10, the concentration of fine particles passing through the filter 10 can be measured by the densitometer 5.
Step S8
The source gas is supplied to the flow path by the dust-containing gas generator 3 under the same conditions as in step S4. This may be continued while supplying the source gas in step S4.
Step S9
Fine particles are collected using the electric dust collector 4 under the same conditions as in step S5. At this time, by changing the applied voltage of the electrostatic precipitator, the particle size distribution of the fine particles in the raw material gas supplied to the filter to be tested is changed to supply a plurality of types of test gases having different particle size distributions.
Step S10
The fine particle concentration is measured by the densitometer 5. The concentration measured here is the fine particle concentration that has passed through the DUT filter 10. In this case, the concentration is measured for each gas whose particle size distribution is changed by adjusting the applied voltage of the electrostatic precipitator. Thereby, the collection ability of the DUT filter according to the particle size distribution of the test gas containing the test fine particles can be evaluated.

ステップS11
パソコンを用いて、ステップS6とステップS10で得られたフィルタ10を通さない微粒子濃度と通した微粒子濃度の測定値を比較する。この後、被試験体フィルタの捕集能力を演算等により解析し、フィルタ特性を評価する。この方法は、同一条件で発生させた微粒子の、被試験体フィルタを通さない微粒子濃度と通した微粒子濃度を比較するので、正確に被試験体フィルタの捕集能力を測定できる。なお、上述した方法ではバイパス流路Bを通したガスの微粒子濃度を先に測定したが、フィルタ10を通したガスの微粒子濃度を先に測定してもよい。
Step S11
Using a personal computer, the measured value of the fine particle concentration passed through the filter 10 obtained in step S6 and step S10 through the filter 10 is compared. Thereafter, the collection ability of the filter under test is analyzed by calculation or the like, and the filter characteristics are evaluated. In this method, the concentration of fine particles generated under the same conditions is compared with the concentration of fine particles that do not pass through the filter under test, so that the collection ability of the filter under test can be accurately measured. In the above-described method, the fine particle concentration of the gas passing through the bypass channel B is measured first, but the fine particle concentration of the gas passing through the filter 10 may be measured first.

本発明は、セラミックスハニカムフィルタに適用できる。   The present invention can be applied to a ceramic honeycomb filter.

本発明に係るセラミックスハニカムフィルタの評価装置の概略図。1 is a schematic view of a ceramic honeycomb filter evaluation apparatus according to the present invention. 含塵ガス発生器から発生する原料ガス中の微粒子の粒度分布と電気集塵器の制御電圧の関係の説明図Explanatory diagram of the relationship between the particle size distribution of fine particles in the raw material gas generated from the dust-containing gas generator and the control voltage of the electrostatic precipitator 本発明に係るセラミックスハニカムフィルタの評価方法のフローチャート。The flowchart of the evaluation method of the ceramic honeycomb filter which concerns on this invention. 従来のセラミックスハニカムフィルタの評価装置の概略図。Schematic of a conventional ceramic honeycomb filter evaluation apparatus.

符号の説明Explanation of symbols

1:セラミックスハニカムフィルタの評価装置、2:フィルタ、3:含塵ガス発生器、4:電気集塵器、5:濃度計、6:吸引ファン、7:集塵器制御器、8:パソコン、9:流速測定器、10:被試験体フィルタ、13,14:バルブ。
1: Evaluation device for ceramic honeycomb filter, 2: filter, 3: dust-containing gas generator, 4: electric dust collector, 5: concentration meter, 6: suction fan, 7: dust collector controller, 8: personal computer, 9: Flow velocity measuring device, 10: filter under test, 13, 14: valve.

Claims (3)

所定の粒径以上の粒径を有する試験微粒子を含む試験ガスを被試験体フィルタに通して該被試験体フィルタの捕集能力を測定するセラミックスハニカムフィルタの評価装置であって、
微粒子を含む原料ガスを発生する含塵ガス発生器と、
前記微粒子中の所定の粒径未満の粒径を有する微粒子を前記原料ガスから除去して前記試験微粒子を含む試験ガスとする電気集塵器と、
前記試験ガス中の粒子濃度を測定する濃度計とを有することを特徴とするセラミックスハニカムフィルタの評価装置。
An evaluation apparatus for a ceramic honeycomb filter for measuring a collecting ability of a test sample filter by passing a test gas containing test fine particles having a particle size equal to or larger than a predetermined particle size through the test sample filter,
A dust-containing gas generator for generating a raw material gas containing fine particles;
An electrostatic precipitator that removes fine particles having a particle size less than a predetermined particle size from the raw material gas to form a test gas containing the test fine particles;
An evaluation apparatus for a ceramic honeycomb filter, comprising: a concentration meter that measures a particle concentration in the test gas.
請求項1記載のセラミックスハニカムフィルタの評価装置を用い、前記被試験体フィルタに通す前の前記試験微粒子を含む試験ガスの粒子濃度と、前記被試験体フィルタに通した後の前記試験微粒子を含む試験ガスの粒子濃度とを比較して前記被試験体フィルタの捕集能力を評価するセラミックスハニカムフィルタの評価方法。   The apparatus for evaluating a ceramic honeycomb filter according to claim 1, wherein the test gas particle concentration including the test fine particles before passing through the filter under test and the test fine particles after passing through the filter under test are included. A method for evaluating a ceramic honeycomb filter, wherein the collection ability of the filter under test is evaluated by comparing the particle concentration of a test gas. 前記電気集塵器の印加電圧を変えることにより前記所定の粒径を制御し、前記試験ガス中に含まれる前記試験微粒子の粒度分布を調整して、被試験体フィルタに供給し、前記粒度分布に応じたフィルタの捕集能力を評価する請求項2記載のセラミックスハニカムフィルタの評価方法。
The predetermined particle size is controlled by changing the applied voltage of the electrostatic precipitator, the particle size distribution of the test fine particles contained in the test gas is adjusted, and the particle size distribution is supplied to the filter to be tested. The method for evaluating a ceramic honeycomb filter according to claim 2, wherein the collecting ability of the filter according to the condition is evaluated.
JP2005066545A 2005-03-10 2005-03-10 Evaluation device and evaluation method for ceramic honeycomb filter Pending JP2006250661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066545A JP2006250661A (en) 2005-03-10 2005-03-10 Evaluation device and evaluation method for ceramic honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066545A JP2006250661A (en) 2005-03-10 2005-03-10 Evaluation device and evaluation method for ceramic honeycomb filter

Publications (1)

Publication Number Publication Date
JP2006250661A true JP2006250661A (en) 2006-09-21

Family

ID=37091333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066545A Pending JP2006250661A (en) 2005-03-10 2005-03-10 Evaluation device and evaluation method for ceramic honeycomb filter

Country Status (1)

Country Link
JP (1) JP2006250661A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155456A (en) * 2005-12-02 2007-06-21 Takemasa Kamimoto Dpf evaluation apparatus
JP2012117520A (en) * 2010-11-10 2012-06-21 Ngk Insulators Ltd Filter evaluating system and filter evaluating method
JP2013521473A (en) * 2010-03-05 2013-06-10 エックストラリス・テクノロジーズ・リミテッド Filter bypass
JP2014199204A (en) * 2013-03-29 2014-10-23 日本碍子株式会社 Method for evaluating filter
CN108169091A (en) * 2018-01-14 2018-06-15 陕西东方长安航空科技有限公司 A kind of servo valve contaminant sensitivity measures experimental rig and test method
CN114136854A (en) * 2020-09-03 2022-03-04 宁波方太厨具有限公司 Multi-working-condition oil fume purification device performance evaluation system and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155456A (en) * 2005-12-02 2007-06-21 Takemasa Kamimoto Dpf evaluation apparatus
CN104897536B (en) * 2010-03-05 2018-11-20 爱克斯崔里斯科技有限公司 filter bypass technology
JP2013521473A (en) * 2010-03-05 2013-06-10 エックストラリス・テクノロジーズ・リミテッド Filter bypass
CN104897536A (en) * 2010-03-05 2015-09-09 爱克斯崔里斯科技有限公司 Filter bypass
JP2016128815A (en) * 2010-03-05 2016-07-14 エックストラリス・テクノロジーズ・リミテッド Filter bypass
US9702802B2 (en) 2010-03-05 2017-07-11 Garrett Thermal Systems Limited Filter bypass
TWI600462B (en) * 2010-03-05 2017-10-01 愛克斯崔里斯科技有限公司 Filter bypass
JP2012117520A (en) * 2010-11-10 2012-06-21 Ngk Insulators Ltd Filter evaluating system and filter evaluating method
JP2014199204A (en) * 2013-03-29 2014-10-23 日本碍子株式会社 Method for evaluating filter
CN108169091A (en) * 2018-01-14 2018-06-15 陕西东方长安航空科技有限公司 A kind of servo valve contaminant sensitivity measures experimental rig and test method
CN108169091B (en) * 2018-01-14 2023-05-16 陕西东方长安航空科技有限公司 Servo valve pollution sensitivity measurement test device and test method
CN114136854A (en) * 2020-09-03 2022-03-04 宁波方太厨具有限公司 Multi-working-condition oil fume purification device performance evaluation system and method
CN114136854B (en) * 2020-09-03 2024-01-16 宁波方太厨具有限公司 Performance evaluation system and method for multi-working-condition oil smoke purifying device

Similar Documents

Publication Publication Date Title
Johnson et al. A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements
RU2716664C2 (en) Method and system for detection of solid particles in exhaust gases
JP5976619B2 (en) Method and apparatus for measuring the number concentration and average diameter of aerosol particles
JP4579744B2 (en) Filter inspection device
US7836751B2 (en) Ultra fine particle sensor
CN104487817B (en) For the equipment and process of particle mass concentration measurement and to the use of the equipment measured for particle mass concentration
EP0864348A1 (en) Gas purifier
JP2006250661A (en) Evaluation device and evaluation method for ceramic honeycomb filter
JP2015507208A (en) Apparatus and method for generating an approved air stream and use of such apparatus in measuring particle concentration in an approved air stream
Petrovic et al. The possibilities for measurement and characterization of diesel engine fine particles-A review
JP2006194116A (en) Exhaust emission control device for internal combustion engine
CN107631966B (en) Method and system for exhaust particulate matter sensing
US11413628B2 (en) Electrostatic particle filtering
CN109709004B (en) Measurement system and method for simultaneously measuring number concentration and mass concentration of tail gas particulate matters
Fierz et al. Real-time measurement of aerosol size distributions with an electrical diffusion battery
Tian et al. Particle loading characteristics of a two-stage filtration system
CN108801718A (en) A kind of tail gas on-line monitoring system peculiar to vessel
CN102762972B (en) For determining the method and apparatus of the measurement result quality of scattered light measuring equipment
CN106662518A (en) Sensor for detecting particles
CN111122278A (en) Particle measurement system
JP2018522224A (en) Particle sensor and detection method
US10392999B2 (en) Method and system for exhaust particulate matter sensing
CN107916979B (en) Method and system for exhaust particulate matter sensing
CN107167405B (en) Method and system for exhaust particulate matter sensing
JP4956178B2 (en) Particulate matter measuring method and apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20060710

Free format text: JAPANESE INTERMEDIATE CODE: A7422