JP6535571B2 - Heavy duty tire - Google Patents

Heavy duty tire Download PDF

Info

Publication number
JP6535571B2
JP6535571B2 JP2015209693A JP2015209693A JP6535571B2 JP 6535571 B2 JP6535571 B2 JP 6535571B2 JP 2015209693 A JP2015209693 A JP 2015209693A JP 2015209693 A JP2015209693 A JP 2015209693A JP 6535571 B2 JP6535571 B2 JP 6535571B2
Authority
JP
Japan
Prior art keywords
arc
tire
groove
land
shaped portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015209693A
Other languages
Japanese (ja)
Other versions
JP2017081286A (en
Inventor
孝太 高木
孝太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2015209693A priority Critical patent/JP6535571B2/en
Publication of JP2017081286A publication Critical patent/JP2017081286A/en
Application granted granted Critical
Publication of JP6535571B2 publication Critical patent/JP6535571B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、重荷重用タイヤに係り、特に、タイヤの冷却効率を向上させる技術に関する。   The present invention relates to a heavy load tire, and more particularly to a technology for improving the cooling efficiency of the tire.

超大型ORR(オフザロードラジアル)等の重荷重用タイヤは、トレッド部の温度上昇を軽減する目的で、トレッド部に複数のラグ溝を形成している(例えば、特許文献1参照)。即ち、タイヤが路面に接して回転する際に、タイヤの回転方向に対して反対方向となる気流が発生するので、この気流をラグ溝内に空気を流入させることにより、タイヤのトレッド部を冷却する。   In heavy duty tires such as super-large ORR (off-the-road radial), a plurality of lug grooves are formed in the tread portion in order to reduce the temperature rise of the tread portion (see, for example, Patent Document 1). That is, when the tire rotates in contact with the road surface, an air flow is generated in the opposite direction to the rotational direction of the tire, and this air flow causes air to flow into the lug groove to cool the tread portion of the tire. Do.

また、複数のラグ溝により、トレッド部に複数の陸部ブロックが区画される。従来における陸部ブロックは、該陸部ブロックのバッドレス面側となる陸部側面と、ラグ溝を形成する陸部内面とが交差する部位が角部となっている。従って、ラグ溝内へ流入する空気は、この角部に接して流入することになるので、空気抵抗が大きく、ラグ溝内に効率良く空気を流入させることができない。このため、冷却効率が低下するという問題が発生する。   Further, the land portions are divided into the tread portion by the plurality of lug grooves. In the land block in the related art, a corner where the land side surface on the side of the landless block on the landless side of the land block intersects with the land inner surface forming the lug groove is a corner. Therefore, the air flowing into the lug groove comes into contact with the corner, and the air resistance is large, and the air can not efficiently flow into the lug groove. For this reason, the problem that a cooling efficiency falls arises.

更には、陸部ブロックの陸部側面と陸部内面が交差する部位が角部となっているので、タイヤが路面に接する際の摩耗による応力が角部に集中し、該角部にクラックが発生することがある。更に、クラックが拡大してついにはタイヤの一部が破損してしまう可能性がある。   Furthermore, since the portion where the land side surface of the land block and the land inner surface intersect is a corner, stress due to wear when the tire contacts the road surface is concentrated at the corner, and a crack is generated at the corner. It may occur. Furthermore, the cracks may expand and eventually part of the tire may be damaged.

特開2014−12459号公報JP, 2014-12459, A

上述したように、従来における重荷重用タイヤは、ラグ溝内に空気が流入しにくくトレッド部の冷却効率が悪いという問題があった。更に、陸部ブロックの角部に応力が集中してタイヤの一部が破損する可能性があるという問題が発生していた。   As described above, the conventional heavy load tire has a problem that the air does not easily flow into the lug grooves and the cooling efficiency of the tread portion is poor. Furthermore, there has been a problem that stress is concentrated at the corner of the land block and a part of the tire may be broken.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、冷却効率を向上させ、且つ、タイヤの破損を防止することが可能な重荷重用タイヤを提供することにある。   The present invention has been made to solve such conventional problems, and the object of the present invention is to provide a heavy duty tire capable of improving cooling efficiency and preventing damage to the tire. It is to provide.

上記目的を達成するため、本発明の第1の特徴に係る重荷重用タイヤは、トレッド部を有する重荷重用タイヤであって、前記トレッド部には、少なくとも一方の端部がトレッド端に開口し、且つ、タイヤ周方向に交差する複数のラグ溝と、前記ラグ溝によって区画された複数の陸部ブロックと、タイヤ周方向に沿った中央溝部と、前記中央溝部に対して傾斜した傾斜溝部と、が形成され、前記陸部ブロックのトレッド幅方向の外側に形成される陸部側面と、前記陸部ブロックのラグ溝側に形成される一方の陸部内面とが交差する領域の前記陸部側面は、平面視円弧形状を有する円弧形状部とされており、前記ラグ溝の内側端部は、タイヤ周方向に対して前記傾斜溝部と同一の方向に傾斜して形成され、更に、前記ラグ溝の内側端部は、前記傾斜溝部の一端に連通し、前記傾斜溝部の他端は前記中央溝部に連通していることを特徴とする。 In order to achieve the above object, the heavy load tire according to the first aspect of the present invention is a heavy load tire having a tread portion, and at least one end portion of the tread portion is open at the tread end. Further, a plurality of lug grooves intersecting in the tire circumferential direction, a plurality of land portion blocks partitioned by the lug grooves, a central groove along the tire circumferential direction, and an inclined groove inclined with respect to the central groove Is formed, and the land portion side surface in a region where the land portion side surface formed on the outer side in the tread width direction of the land portion block and one land portion inner surface formed on the lug groove side of the land portion block intersect The inner end of the lug groove is formed to be inclined in the same direction as the inclined groove with respect to the circumferential direction of the tire, and the lug groove is further formed. The inner end of the Communicates with one end of the groove, the other end of the inclined groove, characterized in that communicates with the central groove.

また、第2の特徴に係る重荷重用タイヤは、第1の特徴に係る重荷重用タイヤにおいて、前記円弧形状部は、前記陸部内面に接する第1円弧形状部、及び該第1円弧形状部よりも外側の第2円弧形状部とされ、前記第2円弧形状部の曲率半径は、第1円弧形状部の曲率半径よりも大きいことを特徴とする。   The heavy load tire according to the second aspect is the heavy load tire according to the first aspect, wherein the arc-shaped portion is a first arc-shaped portion contacting the inner surface of the land portion and the first arc-shaped portion The second arc-shaped portion is also an outer side, and the radius of curvature of the second arc-shaped portion is larger than the radius of curvature of the first arc-shaped portion.

本発明に係る重荷重用タイヤでは、ラグ溝内に円滑に空気を流入させることができるので、冷却効率を向上させることができ、ひいてはトレッド部の温度上昇を抑制することができる。更には、陸部ブロックの角部が円弧形状面とされるので、走行時の摩耗による応力が一点に集中することを回避することができ、タイヤの損傷を防止することができる。   In the heavy load tire according to the present invention, since the air can be smoothly introduced into the lug grooves, the cooling efficiency can be improved, and as a result, the temperature rise of the tread portion can be suppressed. Furthermore, since the corner portions of the land block are arc-shaped, stress concentration due to wear during traveling can be avoided from being concentrated at one point, and damage to the tire can be prevented.

図1は、本発明の一実施形態に係る重荷重用タイヤの構成を示す展開図である。FIG. 1 is a developed view showing the configuration of a heavy load tire according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る重荷重用タイヤの構成を示す一部破断斜視図である。FIG. 2 is a partially broken perspective view showing the configuration of the heavy load tire according to the embodiment of the present invention. 図3は、本発明の一実施形態に係る重荷重用タイヤの、ラグ溝の詳細を示す説明図である。FIG. 3 is an explanatory view showing the details of lug grooves of the heavy load tire according to the embodiment of the present invention. 図4は、本発明の一実施形態に係る重荷重用タイヤの、ラグ溝の詳細を示す斜視図である。FIG. 4 is a perspective view showing the details of lug grooves of the heavy load tire according to the embodiment of the present invention. 図5は、比較例に係る重荷重用タイヤの構成を示す展開図である。FIG. 5 is a developed view showing a configuration of a heavy load tire according to a comparative example. 図6は、本発明の一実施形態に係る重荷重用タイヤ、及び比較例に係る重荷重用タイヤの、ネガティブ比と熱伝達率との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the negative ratio and the heat transfer coefficient of the heavy load tire according to the embodiment of the present invention and the heavy load tire according to the comparative example.

以下、本発明の実施形態を図面を参照して説明する。図1は、本発明の一実施形態に係る重荷重用タイヤ100(以下、単に「タイヤ100」と略す)の展開図、図2はタイヤ100の一部破断斜視図、図3は図1に示すラグ溝33の拡大図、図4は図2に示すラグ溝33のトレッド端の拡大図である。なお、図2ではタイヤ100のトレッド幅方向の赤道線CLに対して一方の方向のみ(即ち、半分)を示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a developed view of a heavy load tire 100 (hereinafter simply referred to as “tire 100”) according to an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view of the tire 100, and FIG. FIG. 4 is an enlarged view of the tread end of the lug groove 33 shown in FIG. 2. In FIG. 2, only one direction (that is, half) is shown with respect to the equator line CL in the tread width direction of the tire 100.

図1に示す符号101は、タイヤ100のトレッド部を示しており、符号102,103は、タイヤ100のバットレス部を示している。即ち、トレッド部101が主として路面に接する面であり、バットレス部102,103が展開図として示されている。また、図1に示す矢印twdはタイヤ100のトレッド幅方向を示し、矢印tcdはタイヤ100の周方向(タイヤ周方向)を示し、矢印Y1はタイヤ100の回転方向を示している。   Reference numeral 101 shown in FIG. 1 denotes a tread portion of the tire 100, and reference numerals 102 and 103 denote buttress portions of the tire 100. That is, the tread portion 101 is a surface mainly in contact with the road surface, and the buttress portions 102 and 103 are shown as developed views. Further, the arrow twd shown in FIG. 1 indicates the tread width direction of the tire 100, the arrow tcd indicates the circumferential direction of the tire 100 (tire circumferential direction), and the arrow Y1 indicates the rotation direction of the tire 100.

図1、図2に示すように、トレッド部101には、赤道線CLに沿った細幅の中央溝部11、及び、該中央溝部11に対して平行に形成された細幅の外側溝部12a,12bが形成されている。各外側溝部12a,12bは、中央溝部11に対して等間隔に形成されている。   As shown in FIGS. 1 and 2, in the tread portion 101, a narrow central groove 11 along the equatorial line CL, and a narrow outer groove 12a formed parallel to the central groove 11, 12b is formed. The outer groove portions 12 a and 12 b are formed at equal intervals with respect to the central groove portion 11.

更に、トレッド部101には、周方向tcdに対して一定の傾きを有する複数の傾斜溝部13が形成されている。該傾斜溝部13は、中央溝部11から外側溝部12a、及び中央溝部11から外側溝部12bに達するように、互いに平行に複数形成されている。また、中央溝部11から外側溝部12aに達する傾斜溝部13と、中央溝部11から外側溝部12bに達する傾斜溝部13は、千鳥状に配置されている。   Further, in the tread portion 101, a plurality of inclined groove portions 13 having a constant inclination with respect to the circumferential direction tcd are formed. A plurality of inclined grooves 13 are formed in parallel with each other so as to reach the outer groove 12 a from the central groove 11 and the outer groove 12 b from the central groove 11. Further, the inclined groove portions 13 reaching the outer groove portion 12a from the central groove portion 11 and the inclined groove portions 13 reaching the outer groove portion 12b from the central groove portion 11 are arranged in a zigzag manner.

トレッド部101のトレッド端側には、2つの傾斜溝部13毎に、上述した各溝部11,12a,12b,13よりも相対的に溝幅が広いラグ溝33が形成されている。該ラグ溝33は、タイヤ100の周方向tcdに対して直角(90°)に形成されており、更に、トレッド部101のトレッド端からバットレス部102に延在している。即ち、ラグ溝33は、トレッド端に開口している。   On the tread end side of the tread portion 101, lug grooves 33 having a groove width relatively wider than the groove portions 11, 12a, 12b, and 13 described above are formed for every two inclined groove portions 13. The lug grooves 33 are formed at right angles (90 °) with respect to the circumferential direction tcd of the tire 100, and further extend from the tread end of the tread portion 101 to the buttress portion 102. That is, the lug grooves 33 open at the tread end.

また、ラグ溝33の赤道線CL側の端部は、一定の角度で傾斜しており(図1の符号r1参照)、傾斜溝部13に連通している。従って、ラグ溝33内に流入した空気は、外側溝部12a,12b、各傾斜溝部13、及び中央溝部11に流入することになるので、この空気流によりトレッド部101全体を冷却することができる。なお、本実施形態では、ラグ溝33が周方向tcdに対して直角(90°)に形成される例を示しているが、周方向tcdに対して45°〜90°の範囲とすることができる。   Further, the end on the equatorial line CL side of the lug groove 33 is inclined at a constant angle (see reference numeral r1 in FIG. 1) and is in communication with the inclined groove portion 13. Accordingly, the air flowing into the lug grooves 33 flows into the outer groove portions 12a and 12b, the inclined groove portions 13, and the central groove portion 11, so that the entire tread portion 101 can be cooled by this air flow. In the present embodiment, an example in which the lug grooves 33 are formed at a right angle (90 °) with respect to the circumferential direction tcd is shown, but a range of 45 ° to 90 ° with respect to the circumferential direction tcd it can.

各ラグ溝33で区画されるトレッド部101の領域は、陸部ブロック41とされている。即ち、図2に典型的に示すように、トレッド部101のトレッド端側には、隣接する2つのラグ溝33、及び外側溝部12a(或いは12b)で区画される陸部ブロック41が複数形成されている。また、図2に示すように、タイヤ100は、ビードコア51、カーカス層52及び複数のベルト層53を備えている。   The area of the tread portion 101 divided by each lug groove 33 is a land block 41. That is, as typically shown in FIG. 2, on the tread end side of the tread portion 101, a plurality of land portion blocks 41 partitioned by two adjacent lug grooves 33 and an outer groove portion 12a (or 12b) are formed. ing. Further, as shown in FIG. 2, the tire 100 includes a bead core 51, a carcass layer 52 and a plurality of belt layers 53.

陸部ブロック41のトレッド端の面は陸部側面42とされ、陸部ブロック41の内側の2つの面はそれぞれ第1陸部内面43a、及び第2陸部内面43bとされている。図1、図2に示すように、第1陸部内面43aは、タイヤ100の回転方向Y1の手前側の内面であり、第2陸部内面43bは、回転方向Y1の奥側の内面である。
陸部ブロック41のトレッド端は、角部がテーパ状或いは円弧形状に面取りされた面取り部44とされている。
The surface of the tread end of the land block 41 is a land side surface 42, and the two inner surfaces of the land block 41 are a first land inner surface 43a and a second land inner surface 43b, respectively. As shown in FIGS. 1 and 2, the first land inner surface 43a is the inner surface on the front side of the rotational direction Y1 of the tire 100, and the second land inner surface 43b is the inner surface on the back side of the rotational direction Y1. .
The tread end of the land block 41 is a chamfered portion 44 whose corner portion is chamfered in a tapered or arc shape.

図3、図4に示すように、陸部側面42と第1陸部内面43aとが交差する領域「R1」には、第1円弧形状部45、及び第2円弧形状部46が形成されている。第1円弧形状部45は、例えば平面視で曲率半径30[mm]の円弧(平面視円弧形状)とされている。また、第2円弧形状部46は、例えば平面視で曲率半径190[mm]の円弧(平面視円弧形状)とされている。即ち、第2円弧形状部46の曲率半径は、第1円弧形状部45の曲率半径よりも大きい。なお、本実施形態では、第2円弧形状部46の曲率半径を190[mm]としているが、第2円弧形状部46の曲率半径は、30[mm]よりも大きく、且つ1000[mm]以下とすることが望ましい。より好ましくは、800[mm]以下とするのが望ましい。   As shown in FIGS. 3 and 4, the first arc-shaped portion 45 and the second arc-shaped portion 46 are formed in a region “R1” where the land side surface 42 and the first land inner surface 43 a intersect. There is. The first arc-shaped portion 45 is, for example, an arc with a radius of curvature of 30 mm in a plan view (an arc shape in a plan view). The second arc-shaped portion 46 is, for example, an arc with a radius of curvature of 190 mm in a plan view (an arc shape in a plan view). That is, the radius of curvature of the second arc-shaped portion 46 is larger than the radius of curvature of the first arc-shaped portion 45. In the present embodiment, the radius of curvature of the second arc-shaped portion 46 is 190 [mm], but the radius of curvature of the second arc-shaped portion 46 is greater than 30 [mm] and not greater than 1000 [mm]. It is desirable to More preferably, it is desirable to set it as 800 [mm] or less.

このように、第1陸部内面43aと陸部側面42とが交差する交差領域「R1」に、第1円弧形状部45、及び第2円弧形状部46を形成することにより、タイヤ100が路面に接して回転する際には、ラグ溝33内に空気が流入し易くなる。即ち、図2に示す矢印Y1の方向にタイヤ100が回転すると、相対的に反対側の方向、即ち、矢印Y2の方向からラグ溝33内に空気が流入する。この際、第1円弧形状部45、及び第2円弧形状部46が形成されていることにより、空気が停滞することなく円滑にラグ溝内に流入する。更に、流入した空気は外側溝部12a,12b、傾斜溝部13、及び中央溝部11に流入するので、効率良くトレッド部101を冷却して、発熱を抑制することが可能となる。   Thus, by forming the first arc-shaped portion 45 and the second arc-shaped portion 46 in the intersection region “R1” where the first land portion inner surface 43a and the land portion side surface 42 intersect, the tire 100 is a road surface. When rotating in contact with the air, air can easily flow into the lug groove 33. That is, when the tire 100 rotates in the direction of the arrow Y1 shown in FIG. 2, air flows into the lug groove 33 from the relatively opposite direction, that is, the direction of the arrow Y2. At this time, since the first arc-shaped portion 45 and the second arc-shaped portion 46 are formed, the air smoothly flows into the lug groove without stagnation. Furthermore, since the air that has flowed in flows into the outer groove portions 12a and 12b, the inclined groove portion 13, and the central groove portion 11, the tread portion 101 can be efficiently cooled to suppress heat generation.

次に、本実施形態に係るタイヤ100の比較例として、第1円弧形状部45及び第2円弧形状部46を備えていないタイヤ200について説明する。   Next, as a comparative example of the tire 100 according to the present embodiment, a tire 200 not provided with the first arc-shaped portion 45 and the second arc-shaped portion 46 will be described.

図5は、比較例に係るタイヤ200の展開図を示している。該タイヤ200は、本実施形態で示したタイヤ100のように、第1円弧形状部45、及び第2円弧形状部46を備えておらず、陸部側面42と第1陸部内面43aとが角部を有して接している。即ち、図5の符号「R2」に示すように、ラグ溝33の陸部側面42と第1陸部内面43aは、互いに角部を有して接しており、交差部は角部とされている。より詳細には、図4の符号P1の二点鎖線に示すように、角部とされている。   FIG. 5 shows a developed view of a tire 200 according to a comparative example. The tire 200 does not include the first arc-shaped portion 45 and the second arc-shaped portion 46 as in the tire 100 shown in the present embodiment, and the land portion side surface 42 and the first land portion inner surface 43 a It has contact with the corner. That is, as shown by the code "R2" in FIG. 5, the land side surface 42 of the lug groove 33 and the first land inner surface 43a are in contact with each other with a corner, and the intersection is a corner. There is. More specifically, as shown by the two-dot chain line of the code P1 in FIG.

そして、発明者は図1〜図4に示した本実施形態に係るタイヤ100と、図5に示した比較例に係るタイヤ200について、ネガティブ比[%]と熱伝達率[W/(m2・K)]との対応関係を測定したところ、図6に示す如くの実験データを得た。ここで、「ネガティブ比」とは、タイヤ100のトレッド部101全体の面積に対する、溝等の存在により路面に接しない領域の面積の比率を示す。 The inventor then determined the negative ratio [%] and the heat transfer coefficient [W / (m 2) for the tire 100 according to the embodiment shown in FIGS. 1 to 4 and the tire 200 according to the comparative example shown in FIG. When the correspondence relationship with the (K)] was measured, experimental data as shown in FIG. 6 was obtained. Here, the “negative ratio” indicates the ratio of the area of a region not in contact with the road surface due to the presence of a groove or the like to the entire area of the tread portion 101 of the tire 100.

そして、図6の特性図から理解されるように、比較例で示したタイヤ200(Q1)については、ネガティブ比19.7[%]で、熱伝達率が13.8[W/(m2・K)]であり、本実施形態で示したタイヤ100(Q2)については、ネガティブ比18.7[%]で、熱伝達率が14.6[W/(m2・K)]であった。従って、本実施形態を採用することにより、ネガティブ比を保持しつつ、高い熱伝達率が得られることを見出した。 And as understood from the characteristic diagram of FIG. 6, the heat transfer coefficient of the tire 200 (Q1) shown in the comparative example is 13.8 [W / (m 2 ) at a negative ratio of 19.7 [%]. · K)] and for the tire 100 (Q2) shown in the present embodiment, the heat transfer coefficient is 14.6 [W / (m 2 · K)] at a negative ratio of 18.7 [%]. The Therefore, it has been found that by adopting this embodiment, a high heat transfer coefficient can be obtained while maintaining the negative ratio.

このようにして、本実施形態に係るタイヤ100では、第1陸部内面43aと陸部側面42が接する交差領域R1に、円弧形状部を形成している。詳細には、第1円弧形状部45及び第2円弧形状部46を形成している。従って、タイヤ100のトレッド部101が路面に接して回転する際に、タイヤの回転方向とは反対向きの空気流がラグ溝33内に流入し易くなる。その結果、トレッド部101の冷却効率を向上させることができ、トレッド部101の過大な温度上昇を抑制することが可能となる。   Thus, in the tire 100 according to the present embodiment, an arc-shaped portion is formed in the intersection region R1 where the first land portion inner surface 43a and the land portion side surface 42 are in contact with each other. In detail, the first arc-shaped portion 45 and the second arc-shaped portion 46 are formed. Therefore, when the tread portion 101 of the tire 100 rotates in contact with the road surface, an air flow opposite to the rotation direction of the tire is likely to flow into the lug groove 33. As a result, the cooling efficiency of the tread portion 101 can be improved, and an excessive temperature rise of the tread portion 101 can be suppressed.

また、第2円弧形状部46の曲率半径は第1円弧形状部45の曲率半径よりも大きく設定されている。例えば、第1円弧形状部45の曲率半径が30[mm]、第2円弧形状部46の曲率半径が190[mm]に設定されている。このため、空気流をより円滑にラグ溝内に流入させることが可能となり、更に、摩耗による応力が一点に集中することを防止できる。このため、従来のように陸部ブロックの角部にクラックが生じる等の問題の発生を回避でき、タイヤ100が損傷するというトラブルを防止することができる。   The radius of curvature of the second arc-shaped portion 46 is set larger than the radius of curvature of the first arc-shaped portion 45. For example, the radius of curvature of the first arc-shaped portion 45 is set to 30 [mm], and the radius of curvature of the second arc-shaped portion 46 is set to 190 [mm]. For this reason, it is possible to allow the air flow to more smoothly flow into the lug groove, and further, it is possible to prevent stress due to wear from being concentrated at one point. For this reason, generation | occurrence | production of the problem of a crack arising in the corner | angular part of a land part block conventionally can be avoided, and the trouble that the tire 100 is damaged can be prevented.

また、本実施形態では、第1陸部内面43a(一方の陸部内面)と陸部側面42とが交差する領域(R1)の、陸部側面42に、第1円弧形状部45及び第2円弧形状部46の2つの円弧形状部を形成する例について説明したが、本発明はこれに限定されず、第1円弧形状部45のみを形成するようにしてもよい。   Further, in the present embodiment, the first arc-shaped portion 45 and the second arc-shaped portion 45 are formed on the land side surface 42 in a region (R1) where the first land inner surface 43a (one land inner surface) and the land side surface 42 intersect. Although the example in which the two arc-shaped portions of the arc-shaped portion 46 are formed has been described, the present invention is not limited to this, and only the first arc-shaped portion 45 may be formed.

このような構成とした場合でも、円滑にラグ溝33内に空気を流入させることができ、且つ、応力が集中することによるクラックの発生を回避することが可能となる。   Even in such a configuration, air can be smoothly introduced into the lug grooves 33, and generation of cracks due to stress concentration can be avoided.

以上、本発明の重荷重用タイヤ100を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   The heavy load tire 100 of the present invention has been described above based on the illustrated embodiment, but the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. be able to.

例えば、本実施形態では、ラグ溝33がトレッド部101の周方向に対して直角(90°)の方向となるように形成される例について示したが、本発明はこれに限定されるものではなく、45°〜90°の範囲とすることが可能である。   For example, in the present embodiment, an example is shown in which the lug grooves 33 are formed in a direction perpendicular (90 °) to the circumferential direction of the tread portion 101, but the present invention is not limited to this. Instead, it is possible to make the range of 45 ° to 90 °.

11 中央溝部
12a,12b 外側溝部
13 傾斜溝部
33 ラグ溝
41 陸部ブロック
42 陸部側面
43a 第1陸部内面
43b 第2陸部内面
44 面取り部
45 第1円弧形状部
46 第2円弧形状部
51 ビードコア
52 カーカス層
53 ベルト層
100 タイヤ(重荷重タイヤ)
101 トレッド部
102,103 バットレス部
200 タイヤ(比較例)
CL 赤道線
R1,R2 交差領域
11 central groove portion 12a, 12b outer groove portion 13 inclined groove portion 33 lug groove 41 land portion block 42 land portion side surface 43a first land portion inner surface 43b second land portion inner surface 44 chamfered portion 45 first arc shaped portion 46 second arc shaped portion 51 Bead core 52 Carcass layer 53 Belt layer 100 Tire (heavy load tire)
101 tread portion 102, 103 buttress portion 200 tire (comparative example)
CL equatorial line R1, R2 intersection area

Claims (2)

トレッド部を有する重荷重用タイヤであって、
前記トレッド部には、少なくとも一方の端部がトレッド端に開口し、且つ、タイヤ周方向に交差する複数のラグ溝と、前記ラグ溝によって区画された複数の陸部ブロックと、タイヤ周方向に沿った中央溝部と、前記中央溝部に対して傾斜した傾斜溝部と、が形成され、
前記陸部ブロックのトレッド幅方向の外側に形成される陸部側面と、前記陸部ブロックのラグ溝側に形成される一方の陸部内面とが交差する領域の前記陸部側面は、平面視円弧形状を有する円弧形状部とされており、
前記ラグ溝の内側端部は、タイヤ周方向に対して前記傾斜溝部と同一の方向に傾斜して形成され、更に、前記ラグ溝の内側端部は、前記傾斜溝部の一端に連通し、前記傾斜溝部の他端は前記中央溝部に連通していること
を特徴とする重荷重用タイヤ。
A heavy duty tire having a tread portion,
In the tread portion, a plurality of lug grooves having at least one end opened at the tread end and intersecting in the tire circumferential direction, a plurality of land portion blocks partitioned by the lug grooves, and the tire circumferential direction A central groove along the groove and an inclined groove inclined with respect to the central groove ;
The land portion side surface of a region where a land portion side surface formed on the outer side in the tread width direction of the land portion block and one land portion inner surface formed on the lug groove side of the land portion block intersect in plan view It is considered as an arc-shaped portion having an arc shape ,
The inner end of the lug groove is formed to be inclined in the same direction as the inclined groove with respect to the circumferential direction of the tire, and the inner end of the lug groove communicates with one end of the inclined groove, A heavy load tire, wherein the other end of the inclined groove communicates with the central groove .
前記円弧形状部は、前記陸部内面に接する第1円弧形状部、及び該第1円弧形状部よりも外側の第2円弧形状部とされ、前記第2円弧形状部の曲率半径は、第1円弧形状部の曲率半径よりも大きいこと
を特徴とする請求項1に記載の重荷重用タイヤ。
The arc-shaped portion is a first arc-shaped portion in contact with the inner surface of the land portion, and a second arc-shaped portion outside the first arc-shaped portion, and the curvature radius of the second arc-shaped portion is the first The tire for heavy load according to claim 1, characterized in that the radius of curvature of the arc-shaped portion is larger.
JP2015209693A 2015-10-26 2015-10-26 Heavy duty tire Expired - Fee Related JP6535571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209693A JP6535571B2 (en) 2015-10-26 2015-10-26 Heavy duty tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209693A JP6535571B2 (en) 2015-10-26 2015-10-26 Heavy duty tire

Publications (2)

Publication Number Publication Date
JP2017081286A JP2017081286A (en) 2017-05-18
JP6535571B2 true JP6535571B2 (en) 2019-06-26

Family

ID=58710831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209693A Expired - Fee Related JP6535571B2 (en) 2015-10-26 2015-10-26 Heavy duty tire

Country Status (1)

Country Link
JP (1) JP6535571B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954867B2 (en) 2018-06-19 2021-10-27 株式会社ブリヂストン Heavy load tires

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533246B2 (en) * 1993-11-05 2004-05-31 株式会社ブリヂストン Pneumatic tire
JPH09240220A (en) * 1996-03-11 1997-09-16 Bridgestone Corp Pneumatic radial tire for heavy load
JP3045495B1 (en) * 1998-12-18 2000-05-29 住友ゴム工業株式会社 Pneumatic tire
JP2001180227A (en) * 1999-12-24 2001-07-03 Sumitomo Rubber Ind Ltd Tire for heavy load
ES2597628T3 (en) * 2010-05-20 2017-01-19 Bridgestone Corporation Heavy duty tire
BR112014012179A2 (en) * 2011-11-22 2017-05-30 Bridgestone Corp tire
JP5636399B2 (en) * 2012-07-04 2014-12-03 株式会社ブリヂストン tire
JP6006549B2 (en) * 2012-07-04 2016-10-12 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JP2017081286A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
EP2112005B1 (en) Pneumatic tire
KR20160051873A (en) Pneumatic tire
US20130118664A1 (en) Heavy duty tire
JP6535571B2 (en) Heavy duty tire
US8281829B2 (en) Off-road tire tread having strake and chamfer structure
US11827060B2 (en) Heavy load tire
JP2020015437A (en) Pneumatic tire
US10675916B2 (en) Pneumatic tire
US20180312011A1 (en) Pneumatic tire
JP2019209872A (en) Pneumatic tire
EP3581401B1 (en) Construction vehicle tire
JP6980515B2 (en) Pneumatic tires
JP5506353B2 (en) Pneumatic tires for motorcycles
US10773558B2 (en) Pneumatic tire
JP2008230385A (en) Pneumatic tire
JP6854221B2 (en) Tires for construction vehicles
JP6367107B2 (en) Pneumatic tire
CN107107678B (en) The tire tread of tread element with tool inclination transverse side
US20210039445A1 (en) Pneumatic tire
JP2012006538A (en) Pneumatic tire
JP2006027498A (en) Pneumatic tire
WO2018180230A1 (en) Tire
JP2009202706A (en) Pneumatic radial tire
US11453247B2 (en) Pneumatic tire
US11331954B2 (en) Heavy duty tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6535571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees