JP6535485B2 - Method of manufacturing annular piezoelectric element - Google Patents
Method of manufacturing annular piezoelectric element Download PDFInfo
- Publication number
- JP6535485B2 JP6535485B2 JP2015043339A JP2015043339A JP6535485B2 JP 6535485 B2 JP6535485 B2 JP 6535485B2 JP 2015043339 A JP2015043339 A JP 2015043339A JP 2015043339 A JP2015043339 A JP 2015043339A JP 6535485 B2 JP6535485 B2 JP 6535485B2
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- electrodes
- annular
- sintered body
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 230000010287 polarization Effects 0.000 claims description 146
- 230000005684 electric field Effects 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 37
- 239000000919 ceramic Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 12
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 6
- 239000012212 insulator Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 description 16
- 230000011514 reflex Effects 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
本発明は、進行波型超音波モーターなどに用いられる円環状圧電素子の製造方法に関する。具体的には圧電歪15モードを用いて駆動する円環状圧電素子の製造方法に関する。 The present invention relates to a method of manufacturing an annular piezoelectric element used for a traveling wave ultrasonic motor or the like. Specifically, the present invention relates to a method of manufacturing an annular piezoelectric element driven by using the piezoelectric strain 15 mode.
周知のごとく、互いに対面する二つの電極板で圧電体を狭持してなる圧電素子は、電界の印加方向と振動方向との関係によって様々な振動モード(圧電歪モードとも言う)がある。そして進行波形超音波モーター(以下、超音波モーター)やランジュバン振動子などに利用される圧電素子は、円環状の圧電体の表裏両面を電極板で狭持した構造を有した円環状圧電素子であり、圧電歪モードとしては電界の印加方向と振動方向が一致する圧電歪31モードを用いることが多い。概略的には円環状の圧電体の表裏両面の円環中央を貫く軸方向を上下方向とすると、圧電体の分極方向は上下方向であり、円周が複数の分極領域に分割されて互いに隣り合う分極領域ではその分極方向が上下反対方向となっている。 As is well known, a piezoelectric element in which a piezoelectric body is held between two electrode plates facing each other has various vibration modes (also referred to as piezoelectric strain modes) depending on the relationship between the application direction of an electric field and the vibration direction. A piezoelectric element used for a traveling waveform ultrasonic motor (hereinafter, ultrasonic motor) or a Langevin oscillator is an annular piezoelectric element having a structure in which the front and back sides of an annular piezoelectric body are sandwiched by electrode plates. In many cases, the piezoelectric strain 31 mode in which the application direction of the electric field and the vibration direction coincide with each other is used as the piezoelectric strain mode. Roughly speaking, assuming that the axial direction passing through the center of the annular ring on the front and back sides of the annular piezoelectric body is the vertical direction, the polarization direction of the piezoelectric body is the vertical direction, and the circumference is divided into a plurality of polarization regions and adjacent to each other The polarization direction is opposite in the vertical direction in the matching polarization region.
しかしながら圧電体において圧電歪31モードに対応する圧電定数d31は、d33やd15に比べて約半分の値であり、超音波モーターであれば高いモータトルクを得ることが難しい。そこで大きな圧電定数d15を利用した圧電歪15モードで円環状圧電素子を駆動させることが考えられる。そして圧電歪15モードで駆動する円環状圧電素子では、圧電体の分極方向が円環を周回する方向となる。なお圧電歪15モードで駆動する円環状圧電素子の応用例としては、周知の「ねじり式モーター」がある。また圧電素子の振動モードや圧電素子の評価方法などについては以下の非特許文献1に記載されている。 However, in the piezoelectric body, the piezoelectric constant d 31 corresponding to the piezoelectric strain 31 mode is about half the value of d 33 and d 15 , and it is difficult to obtain a high motor torque with an ultrasonic motor. Therefore it is conceivable to drive the annular piezoelectric element of a piezoelectric strain 15 mode using a large piezoelectric constant d 15. Then, in the annular piezoelectric element driven in the piezoelectric strain 15 mode, the polarization direction of the piezoelectric body is the direction in which the annular circuit is circulated. As an application example of the annular piezoelectric element driven in the piezoelectric strain 15 mode, there is a well-known "torsion type motor". The vibration mode of the piezoelectric element, the evaluation method of the piezoelectric element, and the like are described in Non-Patent Document 1 below.
上述したように、圧電歪15モードを利用した円環状圧電素子では、円環状の圧電体を周方向に一方向に分極する必要がある。周知のごとく、圧電体を分極するためには圧電体を二つの電極板で狭持して大きな電界を印加する。圧電歪31モードであれば一体的な円環状圧電体の上面と下面に電極を配置して電界を印加すれば上下方向に分極する。しかし圧電歪15モードで使用する円環状圧電素子では、円環の円周に沿う方向に分極している。図1に圧電歪15モードで使用する円環状圧電素子における従来の分極手順を示した。まず図1(A)に示したように、扇状に円周分割された圧電材料からなるセラミックス焼結体110の端面に導電性ペーストなどを塗布して電極120を形成し、この電極間(120−120)の電圧Vによって扇状の圧電体110に電界Eを印加する。そして図1(B)に示したように電極120を除去して扇状の圧電体111を作製する。なお図中では分極方向を矢印Pで示した。つぎに図1(C)に示したように扇状の圧電体111の表裏両面に駆動用の電極(以下、駆動用電極130)を形成する。そして図1(D)に示したように表裏両面に駆動用電極130が形成された扇状の圧電体111を円環状に配置した状態で固定すると、図1(D)に示した円環状圧電素子100が完成する。このように圧電歪15モードで使用する円環状圧電素子は極めて複雑な工程を経て作製される。そのため製造コストが嵩み圧電素子を安価に提供することが難しくなる。 As described above, in the annular piezoelectric element utilizing the piezoelectric strain 15 mode, it is necessary to polarize the annular piezoelectric body in one direction in the circumferential direction. As is well known, in order to polarize the piezoelectric body, the piezoelectric body is held between two electrode plates to apply a large electric field. In the case of the piezoelectric strain 31 mode, electrodes are arranged on the upper surface and the lower surface of the integral ring-shaped piezoelectric body and an electric field is applied to polarize in the vertical direction. However, in an annular piezoelectric element used in the piezoelectric strain 15 mode, polarization is in a direction along the circumference of the annular ring. FIG. 1 shows a conventional polarization procedure in an annular piezoelectric element used in the piezoelectric strain 15 mode. First, as shown in FIG. 1 (A), a conductive paste or the like is applied to the end face of the ceramic sintered body 110 made of a piezoelectric material divided circumferentially in a fan shape to form an electrode 120, An electric field E is applied to the fan-shaped piezoelectric body 110 by the voltage V of −120). Then, as shown in FIG. 1B, the electrode 120 is removed to manufacture a fan-shaped piezoelectric body 111. The polarization direction is indicated by an arrow P in the drawing. Next, as shown in FIG. 1C, driving electrodes (hereinafter, driving electrodes 130) are formed on both sides of the fan-shaped piezoelectric body 111. And if it fixes in the state which arrange | positioned the fan-shaped piezoelectric material 111 in which the drive electrode 130 was formed in front and back both surfaces as shown in FIG.1 (D), the annular piezoelectric element shown in FIG.1 (D) 100 is completed. As described above, the annular piezoelectric element used in the piezoelectric strain 15 mode is manufactured through a very complicated process. Therefore, the manufacturing cost is high and it becomes difficult to provide the piezoelectric element at low cost.
そこで本発明は、圧電歪15モードで使用する円環状圧電素子をより簡素な工程を用いてより安価に製造するための方法を提供することを目的としている。 An object of the present invention is to provide a method for manufacturing an annular piezoelectric element used in the piezoelectric strain 15 mode at a lower cost using a simpler process.
上記目的を達成するための本発明は、円環状の圧電体の表裏に電極が形成されて、当該電極間に電界を印加すると圧電歪15モードで振動する円環状圧電素子の製造方法であって、
円環の軸方向を上下方向として、
圧電材料からなる一体的な円環状セラミックス焼結体を成形する焼結体成形ステップと、
前記円環状セラミックス焼結体の上面に半径方向に延長する分極用電極を複数箇所に配置する電極配置ステップと、
前記複数箇所に配置された分極用電極のうち、互いに隣り合う二つの電極の一方を接地電極として当該二つの電極間に電位差を与えることで、前記円環状セラミックス焼結体において当該二つの分極用電極によって区分される円周分割領域を円周方向に向かって分極させる分極ステップと、
を含むことを特徴とする円環状圧電素子の製造方法としている。
The present invention for achieving the above object is a method of manufacturing an annular piezoelectric element having electrodes formed on the front and back of an annular piezoelectric body and vibrating in a piezoelectric strain 15 mode when an electric field is applied between the electrodes. ,
With the axial direction of the ring being the vertical direction,
A sintered body forming step of forming an integral annular ceramic sintered body made of a piezoelectric material;
An electrode arranging step of arranging polarization electrodes extending in a radial direction on the upper surface of the annular ceramic sintered body at a plurality of places;
Of the polarization electrodes arranged at the plurality of locations, one of the two adjacent electrodes is used as a ground electrode to apply a potential difference between the two electrodes, whereby the two annular electrodes are used for polarization in the annular ceramic sintered body . A polarization step of circumferentially polarizing a circumferential division region divided by the electrodes;
And a method of manufacturing an annular piezoelectric element.
前記電極配置ステップでは、分極用電極を配置する角度位置を3カ所以上とし、
前記分極ステップでは、互いに隣り合う二つの分極用電極を順次選択するとともに、当該二つの分極用電極の延長方向がなす劣角側の円周分割領域を円周の所定方向に向かって分極させる、
ことを特徴とする円環状圧電素子の製造方法とすることもできる。
In the electrode disposing step, angular positions at which the polarization electrodes are disposed are three or more,
In the polarization step, two polarization electrodes adjacent to each other are sequentially selected, and the circumferential division region on the inferior angle side formed by the extension directions of the two polarization electrodes is polarized in a predetermined direction of the circumference.
The method for manufacturing an annular piezoelectric element can also be used.
前記電極配置ステップでは、前記円環状セラミックス焼結体の半径方向に延長する前記分極用電極が、所定の半径となる位置にて分割されて、内周側から外周側に向かって複数の分極用電極片が形成され、
前記分極ステップでは、同じ半径となる領域に形成されて互いに周方向で隣接する二つの前記分極用電極片を選択するともに、選択した二つの前記分極用電極片が属する分極用電極の延長方向がなす劣角側の円周分割領域に同じ強度の電界が印加されるように電位差を与える、
ことを特徴とする円環状圧電素子の製造方法としてもよい。
In the electrode disposing step, the polarization electrode extending in the radial direction of the annular ceramic sintered body is divided at a position of a predetermined radius, and a plurality of polarization electrodes are formed from the inner peripheral side toward the outer peripheral side . An electrode piece is formed,
In the polarization step, both the selection of two of the polarizing electrode pieces adjacent formed in a region having the same radius in the circumferential direction from each other, the extending direction of the polarizing electrodes two of said polarizing electrode pieces selected belongs Provide a potential difference so that an electric field of the same strength is applied to the circumferential division area on the side of the lesser angle,
It is good also as a manufacturing method of a ring-shaped piezoelectric element characterized by the above.
前記焼結体成形ステップでは、上面に半径方向に延長する溝が形成された円環状セラミックス焼結体を成形し、
前記分極用電極配置ステップでは、前記溝内に導電体を配置する、
ことを特徴とする円環状圧電素子の製造方法としてもよい。
In the sintered body forming step, an annular ceramic sintered body in which grooves extending in the radial direction are formed on the upper surface is formed;
In the polarization electrode disposing step, a conductor is disposed in the groove,
It is good also as a manufacturing method of a ring-shaped piezoelectric element characterized by the above.
前記焼結体成形ステップでは、半径方向を横断する切欠が形成された円環状セラミックス焼結体を形成し、
前記分極ステップでは、前記切欠をギャップとすることで、前記円環状セラミックス焼結体を周の一方向にのみ分極させる、
ことを特徴とする円環状圧電素子の製造方法とすることもできる。そして前記切欠に絶縁体からなる補強部材を充填することを特徴とする円環状圧電素子の製造方法としてもよい。
前記電極配置ステップでは、分極用電極を配置する角度位置を3カ所以上とし、
前記分極ステップでは、互いに隣り合う二つの分極電極を順次選択するとともに、当該二つの分極用電極の延長方向がなす劣角側の円周分割領域を円周の所定方向に向かって分極させる、
ことを特徴とする円環状圧電素子の製造方法とすることもできる。
In the sintered body forming step, an annular ceramic sintered body in which a notch extending in a radial direction is formed is formed;
In the polarization step, the annular ceramic sintered body is polarized only in one circumferential direction by making the notch a gap.
The method for manufacturing an annular piezoelectric element can also be used. The annular piezoelectric element may be manufactured by filling the notches with a reinforcing member made of an insulator.
In the electrode disposing step, angular positions at which the polarization electrodes are disposed are three or more,
In the polarization step, two polarization electrodes adjacent to each other are sequentially selected, and the circumferential division region on the inferior angle side formed by the extension directions of the two polarization electrodes is polarized in a predetermined direction of the circumference.
The method for manufacturing an annular piezoelectric element can also be used.
本発明によれば、圧電歪15モードで使用する円環状圧電素子をより簡素な工程を用いてより安価に製造することができる。なお、その他の効果については以下の記載で明らかにする。 According to the present invention, the annular piezoelectric element used in the piezoelectric strain 15 mode can be manufactured more inexpensively using a simpler process. Other effects will be clarified in the following description.
本発明の実施例について、以下に添付図面を参照しつつ説明する。なお以下の説明に用いた図面において、同一または類似の部分に同一の符号を付して重複する説明を省略することがある。ある図面において符号を付した部分について、不要であれば他の図面ではその部分に符号を付さない場合もある。 Embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings used in the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted. With respect to a part denoted by a reference numeral in one drawing, the reference numeral may not be attached to the part in another drawing if unnecessary.
===第1の実施例===
図2は本発明の実施例に係る製造方法によって製造される円環状圧電素子の一例を示す図である。当該圧電素子1は、円環の軸方向を上下方向として、一体的な円環状圧電体11の上下両面に円周分割された駆動用電極30が形成されている。そして円環状圧電体11は円環を周回する方向Pに分極している。そして本発明の実施例に係る円環状圧電素子の製造方法では、圧電材料からなる円環状セラミックス焼結体を円環を周回する方向に分極させる手順に大きな特徴がある。
=== First Example ===
FIG. 2 is a view showing an example of an annular piezoelectric element manufactured by the manufacturing method according to the embodiment of the present invention. In the piezoelectric element 1, driving electrodes 30 circumferentially divided are formed on the upper and lower surfaces of the integral annular piezoelectric body 11 with the axial direction of the annular ring as the vertical direction. The annular piezoelectric body 11 is polarized in the direction P around the annular ring. And, the method of manufacturing the annular piezoelectric element according to the embodiment of the present invention is characterized mainly in the procedure of polarizing the annular ceramic sintered body made of the piezoelectric material in the direction of circling the annular ring.
概略的には、円環状セラミックス焼結体の上下一方の面に上記軸から放射方向に上面を横断する分極用電極を複数に形成し、その複数の分極用電極において、互いに隣接する分極用電極間に一方向の電界を印加することで圧電体を円周の一方向に分極させることとしている。以下では、基本的な分極手順を本発明の第1の実施例として挙げる。 Generally, a plurality of polarization electrodes crossing the upper surface in the radial direction from the above axis are formed in a plurality on the upper and lower surfaces of the annular ceramic sintered body, and in the plurality of polarization electrodes, the polarization electrodes adjacent to each other By applying an electric field in one direction between them, the piezoelectric body is polarized in one direction of the circumference. In the following, a basic polarization procedure is given as a first example of the invention.
図3に第1の実施例の概略を示した。なお第1の実施例を含め、以下に挙げる各実施例では分極用電極20を円環状セラミックス焼結体10の上面12に形成することとする。そして図3に示したように、第1の実施例に係る製造方法では一体的な円環状セラミックス焼結体(以下、円環状焼結体10とも言う)の上面12に二つの分極用電極(21、22)を劣角θ1(あるいは優角θ2)となるように形成し、その二つの分極用電極間(21−22)に電位差Vを与えることで、当該二つの電極間(21−22)の円周分割領域(121、122)に円周に沿った一方向の電界(E1、E2)を印加する。それによって劣角θ1に対応する円周分割領域121と優角θ2に対応する円周分割領域122のそれぞれが円周に沿うように分極する。またその分極方向は互いに反対となる。なお分極用電極(21、22)については銀ペーストなどを印刷によって形成してもよいし、焼結体10の表面に固定せずに帯状の金属板を焼結体10の上面12に一時的に接触させることで形成してもよい。そして焼結体10を分極させてなる圧電体の上下両面に駆動用電極を形成すれば図2に示したような円環状圧電素子1が完成する。円環状圧電素子1を駆動する際には、上下方向で対面する駆動用電極間(30−30)の電圧を分極の方向や分極の強度に応じて制御すればよい。 FIG. 3 shows an outline of the first embodiment. In the following examples including the first example, the polarization electrode 20 is formed on the upper surface 12 of the annular ceramic sintered body 10. As shown in FIG. 3, in the manufacturing method according to the first embodiment, two polarization electrodes (on the upper surface 12 of the integral annular ceramic sintered body (hereinafter also referred to as annular annular sintered body 10) 21 and 22) are formed to have a recess angle θ 1 (or a dominant angle θ 2 ), and a potential difference V is applied between the two electrodes for polarization (21 to 22), An electric field (E 1 , E 2 ) in one direction along the circumference is applied to the circumferential divided area (121, 122) of −22). Whereby each of the circumferential divided area 122 corresponding to the circumference divided regions 121 and reflex angle theta 2 which corresponds to the minor angle theta 1 is polarized along the circumference. The polarization directions are opposite to each other. A silver paste or the like may be formed by printing for the polarization electrodes (21, 22), or a band-like metal plate is temporarily fixed on the upper surface 12 of the sintered body 10 without being fixed on the surface of the sintered body 10. It may be formed by contacting with. Then, when driving electrodes are formed on the upper and lower surfaces of the piezoelectric body formed by polarization of the sintered body 10, the annular piezoelectric element 1 as shown in FIG. 2 is completed. When driving the annular piezoelectric element 1, the voltage between the drive electrodes (30-30) facing each other in the vertical direction may be controlled according to the direction of polarization or the strength of polarization.
<分極状態>
図3に示した第1の実施例に係る製造方法では、円環状焼結体10の軸50に対して半径方向に延長する二つの分極用電極(21、22)によって分極していた。そのため焼結体10は劣角θ1の円周分割領域121と、優角θ2の円周分割領域122の二つの領域に分割され、それぞれの領域(121、122)では分極方向が互いに反対方向となる。また二つの円周分割領域(121、122)に印加される電界強度(E1、E2)は分極用電極間(21−22)の周方向の距離に反比例するため、劣角θ1に対応する円周分割領域121の方が分極の強度が大きくなる。
<Polarized state>
In the manufacturing method according to the first embodiment shown in FIG. 3, polarization is performed by the two polarization electrodes (21, 22) extending in the radial direction with respect to the axis 50 of the annular sintered body 10. The circumference divided area 121 of the sintered body 10 is minor angle theta 1 therefore is divided into two regions of the circumference divided area 122 of the reflex angle theta 2, opposite each region (121, 122) in the polarization direction to each other It becomes a direction. The intensity of the electric field applied to the two circumferential divided regions (121 and 122) (E 1, E 2) is inversely proportional to the distance in the circumferential direction between the polarizing electrodes (21-22), the minor angle theta 1 The corresponding circumferential division area 121 has a higher polarization intensity.
そこで第1の実施例のように、二つの分極用電極(21−22)を用いて円環状焼結体10を分極させる際に劣角θ1の円周分割領域121と優角θ2の円周分割領域122のそれぞれに印加される電界強度をシミュレーションによって求めてみた。図4にそのシミュレーションの概略と結果を示した。図4(A)はシミュレーションに用いた焼結体10のサイズを示す図であり、当該焼結体10は円環の外径φ1=12mm、内径φ2=7mm、厚さ(以下、t1)=0.4mmの外形サイズを有し、二つの分極用電極(21、22)は、幅w1=2.0mmで劣角θ1=120°(優角θ2=240°)となる位置に形成されている。また二つの分極用電極間(21−22)に電位差V=1Vを与えることとしている。そしてこの電位差Vにより劣角θ1の円周分割領域121では円周に沿う所定の方向(ここでは時計回り)の電界E1が印加され、優角θ2の円周分割領域122では反時計回りの方向に電界E2が印加される。 So as in the first embodiment, the two polarizing electrodes (21-22) the circumference divided regions 121 and reflex angle theta 2 of the minor angle theta 1 when to polarize the annular sintered body 10 using The electric field strength applied to each of the circumferential divided regions 122 was determined by simulation. The outline and the result of the simulation are shown in FIG. FIG. 4A is a view showing the size of the sintered body 10 used in the simulation, and the sintered body 10 has an outer diameter φ 1 = 12 mm, an inner diameter φ 2 = 7 mm, and a thickness (hereinafter, t 1 ) has an external size of 0.4 mm, and the two polarization electrodes (21, 22) have a width w 1 = 2.0 mm and an inferior angle θ 1 = 120 ° (superior angle θ 2 = 240 °) It is formed in the following position. In addition, a potential difference V = 1 V is applied between two polarization electrodes (21-22). The electric field E 1 in the predetermined direction along the circumference in the circumferential dividing region 121 of the minor angle theta 1 (here clockwise) is applied by the potential difference V, circumferential divided area 122 in the counterclockwise the reflex angle theta 2 electric field E 2 is applied in the direction of rotation.
図4(B)は上述した条件に基づいて行ったシミュレーションの結果を示す図である。ここでは電位差Vによる分極に際して焼結体10に印加される電界強度を濃淡で表している。劣角θ1および優角θ2のそれぞれに対応する円周分割領域(121、122)では、同心円上に沿って同じ強度の電界(E1、E2)が印加されており、外周(121o、122o)側より内周(121i、122i)側の電界強度が大きくなっている。具体的には劣角θ1の円周分割領域121における電界強度は、外周121oで81.5V/m、内周121iで140.0V/mとなる。一方優角θ2の円周分割領域122における電界強度は、外周122oで40.1V/m、内周122iで66.8V/mとなる。なお上下方向の電界強度は分極用電極(21、22)の直下以外では一様に0A/mであり、上下方向には分極されないことが分かった。以上より第1の実施例に係る方法によって、円環の周方向に分極させることができ、圧電歪15モードで駆動可能な円環状圧電体が得られることが確認できた。 FIG. 4 (B) is a diagram showing the result of the simulation performed based on the above-mentioned conditions. Here, the intensity of the electric field applied to the sintered body 10 at the time of the polarization due to the potential difference V is represented by the shading. In circumferential divided regions (121, 122) corresponding to each of the minor angle theta 1 and reflex angle theta 2, the electric field of the same intensity along a concentric circle (E 1, E 2) are applied, the outer periphery (121 o The electric field strength on the inner circumference (121i, 122i) side is greater than the 122o) side. Electric field intensity in the circumferential divided area 121 of the minor angle theta 1 is specifically is a 140.0V / m at the outer peripheral 121o 81.5V / m, with the inner circumference 121i. On the other hand, the electric field strength in the circumferential divided region 122 with the superposing angle θ 2 is 40.1 V / m at the outer circumference 122 o and 66.8 V / m at the inner circumference 122 i. The electric field strength in the vertical direction was 0 A / m uniformly except immediately below the polarization electrodes (21, 22), and it was found that the electric field was not polarized in the vertical direction. From the above, it has been confirmed that it is possible to obtain an annular piezoelectric material which can be polarized in the circumferential direction of the annular ring and can be driven in the piezoelectric strain 15 mode by the method according to the first embodiment.
===第2の実施例===
図3、図4に示したように、第1の実施例では二つの分極用電極(21、22)によって焼結体10を円周に沿う方向に分極させていた。しかし二つの分極用電極(21、22)によって分極の方向や強度が異なる二つの円周分割領域(121、122)が形成されてしまう。そして焼結体10を分極させた円環状圧電体の上下両面に駆動用電極を形成した圧電素子を駆動する際には、二つの円周分割領域(121、122)が協調して振動するように制御する必要がある。そこで第2の実施例として、円環状焼結体10を全円周に亘って一方向に分極させるための手順を示す。
=== Second Example ===
As shown in FIG. 3 and FIG. 4, in the first embodiment, the sintered body 10 is polarized in the direction along the circumference by two polarization electrodes (21, 22). However, two circumferential division regions (121, 122) having different polarization directions and intensities are formed by the two polarization electrodes (21, 22). And when driving the piezoelectric element which formed the drive electrode in the upper and lower surfaces of the annular piezoelectric material which polarized the sintered compact 10, two circumference division areas (121, 122) vibrate in coordination. Need to control. Therefore, as a second embodiment, a procedure for polarizing the annular sintered body 10 in one direction along the entire circumference is shown.
図5に第2の実施例における分極手順を示した。まず図5(A)に示したように、円環状焼結体10に三つ以上の分極用電極(21〜24)を等角度間隔で形成する。この例ではθ=90°の角度ごとに四つの分極用電極(21〜24)を形成している。つぎに図5(B)に示したように、互いに隣接する二つの分極用電極(21、22)を選択し、その電極間(21−22)に電位差Vを与えて、当該二つの分極用電極間(21−22)の円周分割領域(121、122)を分極させる。ここでは劣角θ1=90゜に対応する円周分割領域121に時計回り方向の強電界E1が印加され、優角θ2=270゜に対応する円周分割領域122に反時計回りの方向に弱い電界E2が印加される。ここで、このとき接地電位にした分極用電極21を基準となる第1電極21と称し、以下この第1電極21に対して反時計回りにθ=90°ごとに形成されている分極用電極(22〜24)を順次第2電極22、第3電極23、および第4電極24と称することとする。また円環状焼結体10において、第1電極21と第2電極22との間の劣角θ1=90°に対応する円周分割領域を第1領域1211とし、以後反時計回りに角度90°ごとに区切られた領域を第2〜第4領域(1212〜1214)とする。 FIG. 5 shows the polarization procedure in the second embodiment. First, as shown in FIG. 5A, three or more polarization electrodes (21 to 24) are formed on the annular sintered body 10 at equal angular intervals. In this example, four polarization electrodes (21 to 24) are formed at every angle of θ = 90 °. Next, as shown in FIG. 5 (B), two polarization electrodes (21, 22) adjacent to each other are selected, and a potential difference V is given between the electrodes (21-22) to select the two polarizations. The circumferential divided regions (121, 122) between the electrodes (21-22) are polarized. Here the strong electric field E 1 in the clockwise direction is applied to the circumference divided area 121 corresponding minor angle theta 1 = 90 °, corresponding to the circumference divided area 122 in the counterclockwise reflex angle theta 2 = 270 ° weak electric field E 2 is applied in the direction. Here, the polarization electrode 21 at the ground potential at this time is referred to as a first electrode 21 as a reference, and hereinafter, the polarization electrode formed at every θ = 90 ° counterclockwise with respect to the first electrode 21. (22 to 24) will be referred to as the second electrode 22, the third electrode 23, and the fourth electrode 24 sequentially. Further, in the ring-shaped sintered body 10, a circumferential divided region corresponding to the recess angle θ 1 = 90 ° between the first electrode 21 and the second electrode 22 is taken as a first region 1211, and thereafter an angle 90 counterclockwise. Let the area | region divided every (degree) be the 2nd-4th area | region (1212-1214).
そして第1領域1211とその優角θ2に対応する領域122を分極したら、図5(C)に示したように、第3電極23を高電位にして第2電極22との間に電位差Vを与え、第2領域1212に時計回りの電界E1を印加する。もちろんこの場合も優角θ2に対応する領域122に反時計回りの電界E2(<E1)が印加される。つぎに図5(D)(E)に示したように、同様にして第3領域1213と第4領域1214に時計回りの電界E1を順次印加する。そしてこの時点で第1〜第4領域(1211〜1214)は、各領域(1211〜1214)に印加された時計回りの強い電界E1と、これらの領域(1211〜1214)において優角θ2に対応する領域122に印加された反時計回りの弱い電界E2との差分に相当する時計回りの電界によって分極される。すなわち図5(E)に示したように、第1〜第4領域(1211〜1214)が同じ方向に同じ強度Pで分極される。すなわち全円周に亘って同方向に分極された円環状圧電体11が作製される。 And if polarizing the first region 1211 and the region 122 corresponding to the reflex angle theta 2, as shown in FIG. 5 (C), the potential difference V between the second electrode 22 and the third electrode 23 to a high potential To apply a clockwise electric field E 1 to the second region 1212. Of course, also in this case, a counterclockwise electric field E 2 (<E 1 ) is applied to the area 122 corresponding to the dominant angle θ 2 . Next, as shown in FIG. 5 (D) (E), sequentially applying an electric field E 1 clockwise in the third area 1213 and the fourth region 1214 in the same manner. The first to fourth regions at this time (1211 to 1214) includes a strong electric field E1 of the applied clockwise to the respective regions (1211-1214), the reflex angle theta 2 in these regions (1211-1214) It is polarized by a clockwise electric field corresponding to the difference from the counterclockwise weak electric field E 2 applied to the corresponding region 122. That is, as shown in FIG. 5E, the first to fourth regions (1211 to 1214) are polarized at the same intensity P in the same direction. That is, the annular piezoelectric body 11 polarized in the same direction over the entire circumference is manufactured.
なお図5に示した分極手順では円周に沿って一方向に順番に二つの分極用電極(21〜24)を選択し、劣角θ1に対応する第1〜第4領域(1211〜1214)とその優角θ2に対応する円周分割領域122を順番に分極していたが、例えば第1領域1211に続いて第3領域1213を分極するなど円周に沿って順番に分極させる必要は無い。また各領域(1211〜1214)の分極回数は1回ずつでなくてもよい。いずれにしても各領域(1211〜1214)の分極回数が同じであればよい。もちろん分極用電極の数は四つに限らない。 Note Select two polarizing electrodes (21-24) in sequence in one direction along the circumference in the polarization procedure shown in FIG. 5, first to fourth area corresponding to the minor angle theta 1 (1,211-1,214 ) And the circumferential division area 122 corresponding to the dominant angle θ 2 are sequentially polarized, but it is necessary to sequentially polarize along the circumference, eg, to polarize the third area 1213 following the first area 1211). There is no. Further, the number of polarizations in each region (1211 to 1214) may not be one. In any case, the number of polarizations in each region (1211 to 1214) may be the same. Of course, the number of polarization electrodes is not limited to four.
====第3の実施例===
第1および第2の実施例では、円環状焼結体を放射方向に連続して延長しつつ所定の角度を介して離間する二つの分極用電極間を用いて分極させていた。そのため図4にも示したように、焼結体10の内周側から外周側に向かって(121i→121o、122i→122o)電界強度(E1、E2)が円環の軸50からの距離に反比例して強くなっていく。そのため円環状焼結体の径方向の幅が広い場合、内周側と外周側に印加される電界強度の差が大きくなる。そこで円環状焼結体の外周側と内周側とに印加される電界強度の差を小さくできる分極手順を本発明の第3の実施例として挙げる。
=== Third Example ===
In the first and second embodiments, the toroidal sintered body is polarized by continuously extending in the radial direction and using two polarization electrodes spaced apart at a predetermined angle. Therefore, as shown also in FIG. 4, the electric field strengths (E 1 , E 2 ) from the inner circumferential side of the sintered body 10 to the outer circumferential side (121i → 121o, 122i → 122o) are from the axis 50 of the annular ring. It becomes stronger in inverse proportion to the distance. Therefore, when the width of the annular sintered body in the radial direction is wide, the difference between the electric field strengths applied to the inner peripheral side and the outer peripheral side becomes large. Therefore, a polarization procedure capable of reducing the difference in electric field strength applied to the outer peripheral side and the inner peripheral side of the annular sintered body will be described as a third embodiment of the present invention.
図6に第3の実施例における分極手順の概略を示した。図6に示したように、ここでは放射方向に延長する分極用電極(21〜24)が90゜の角度間隔ごとに配置し、各分極用電極(21〜24)をさらに所定の半径rとなる位置で分割している。この例では、内周の半径riと外周の半径roとの中間の半径rを有する同心円16上で分割している。それによって一つの分極用電極(21〜24)に外周側の分極用電極(以下、外周側分極用電極21o〜24oとも言う)と内周側の分極用電極(以下、内周側分極用電極21i〜24iとも言う)が形成される。 FIG. 6 shows the outline of the polarization procedure in the third embodiment. As shown in FIG. 6, here, polarization electrodes (21 to 24) extending in the radial direction are disposed at angular intervals of 90 °, and each polarization electrode (21 to 24) is further set to a predetermined radius r It divides at the position where In this example, they are divided on the concentric circle 16 having a radius r between the inner radius r i and the outer radius r o . As a result, one polarization electrode (21 to 24) has an outer polarization electrode (hereinafter also referred to as outer polarization electrode 21o to 24o) and an inner polarization electrode (hereinafter, an inner polarization electrode). 21i to 24i) are formed.
そしてこれらの内周側と外周側の分極用電極(21i〜24i、21o〜21o)を用いて円環状焼結体10を分極させる際には、例えば、図中で示したように互いに隣接する分極用電極(21、22)を用いるのであれば、外周側分極用電極(21o、22o)で区切られた外周側の円周分割領域121oに印加される電界強度Eoと内周側分極用電極(21i、22i)で区切られた内周側の円周分割領域121iに印加される電界強度Eiが同じになるように、外周側と内周側のそれぞれにおいて互いに隣接する二つの分極電極間(21i−22i、21o―22o)の電位差V1とV2を調整する。 When the annular sintered body 10 is polarized using the polarization electrodes (21i to 24i, 21o to 21o) on the inner and outer circumferential sides, they are adjacent to each other as shown in the figure, for example. If the polarization electrodes (21, 22) are used, the electric field strength Eo applied to the circumferential divided region 121o on the outer circumferential side divided by the outer circumferential polarization electrodes (21o, 22o) and the inner circumferential polarization electrode Between two polarized electrodes adjacent to each other on the outer circumferential side and the inner circumferential side so that the electric field strength Ei applied to the inner circumferential circumferential divided region 121 i divided by (21 i, 22 i) becomes the same 21i-22i, to adjust the potential difference V 1 and V 2 of 21o-22o).
===第4の実施例===
上記第1〜第3の実施例では分極用電極を円環状焼結体の表面(ここでは上面)に形成していた。そのため分極用電極の直下では、図4(B)にも示したように上下方向にも電界が印加され、分極用電極の形成領域では上下方向の分極成分が残存する。その結果、圧電歪15モードでの振動効率が低下する可能性がある。そこ円環状焼結体を周方向に一様に分極させる手順を第4の実施例として以下に説明する。図7に第4の実施例における分極手順の概略を示した。図7(A)は円環状焼結体10を上方から見たときの平面図である。ここでは4つの分極用電極20がθ=90゜の角度間隔ごとに形成されている例を示した。図7の(B)と(C)は、ともに図7(A)におけるa−a斜視断面を示している。なお図7の(B)と(C)では分極用電極20の構成が異なっている。
=== Fourth Example ===
In the first to third embodiments, the polarization electrode is formed on the surface (here, the upper surface) of the annular sintered body. Therefore, as shown in FIG. 4B, the electric field is also applied in the vertical direction immediately below the polarization electrode, and the polarization component in the vertical direction remains in the formation region of the polarization electrode. As a result, the vibration efficiency in the piezoelectric strain 15 mode may be reduced. A procedure for uniformly polarizing the annular sintered body in the circumferential direction will be described below as a fourth embodiment. The outline of the polarization procedure in the fourth embodiment is shown in FIG. FIG. 7A is a plan view of the annular sintered body 10 as viewed from above. Here, an example is shown in which four polarization electrodes 20 are formed at angular intervals of θ = 90 °. (B) and (C) of FIG. 7 have shown the aa a perspective cross section in FIG. 7 (A) together. The configuration of the polarization electrode 20 is different between (B) and (C) in FIG. 7.
第4の実施例では、そして図7の(B)と(C)に示したように、焼結体10の上面12おいて分極用電極20が形成される位置に溝13が形成されている。そしてその溝13内に導電体(120a、120b)を埋め込み、その導電体(120a、120b)を分極用電極20としている。なお図7(B)に示した例では、ブロック状の金属などからなる導電体120aを溝13内に嵌め込んで、上端が焼結体10の上面12から突出している。図7(C)に示した例では、溝13内に導電体20bとして銀ペーストを充填している。このように第4の実施例では焼結体10の厚さ方向にも分極用電極20を形成することで分極用電極20の形成領域における上下方向の電界強度を低減させている。 In the fourth embodiment, and as shown in (B) and (C) of FIG. 7, the groove 13 is formed at the position where the polarization electrode 20 is formed on the upper surface 12 of the sintered body 10 . Conductors (120a, 120b) are embedded in the grooves 13, and the conductors (120a, 120b) are used as polarization electrodes 20. In the example shown in FIG. 7B, a conductor 120a made of block metal or the like is fitted in the groove 13, and the upper end protrudes from the upper surface 12 of the sintered body 10. In the example shown in FIG. 7C, a silver paste is filled in the groove 13 as the conductor 20b. As described above, in the fourth embodiment, the polarization electrode 20 is also formed in the thickness direction of the sintered body 10 to reduce the electric field strength in the vertical direction in the formation region of the polarization electrode 20.
===第5の実施例===
上記第1〜第4の実施例では、周囲が連続する円環状焼結体に形成した二つの分極用電極を用いて当該焼結体を分極していた。そのため優角に対応する円周分割領域と劣角に対応する円周分割領域のそれぞれに互いに逆方向の電界が印加されていた。すなわち分極用電極間の電位差を用いて効率よく分極させることが難しかった。そこで第5の実施例としており効率よく分極させるための手順を挙げる。
=== Fifth example ===
In the first to fourth embodiments, the sintered body is polarized by using two polarization electrodes formed in a ring-shaped sintered body whose periphery is continuous. Therefore, an electric field in the opposite direction is applied to each of the circumferential divided area corresponding to the dominant angle and the circumferential divided area corresponding to the minor angle. That is, it was difficult to polarize efficiently using the potential difference between the electrodes for polarization. Therefore, the procedure for efficient polarization will be described as the fifth embodiment.
図8は第5の実施例における分極手順の概略を示す図である。図8(A)は第5の実施例に用いる円環状焼結体10の外観を示す図であり、図8(B)は図8(A)に示した円環状焼結体10を分極させるときの電界の印加状態を示す図である。そして図8(A)に示したように、円環状焼結体10bは、その一部に切欠部14が形成されており、この切欠が円環状焼結体10に印加される電界を遮断するギャップとして機能する。図8(B)に示したように、円環状焼結体10に形成された二つの分極用電極間(20−20)に電位差Vを与えたとき、切欠部(以下、ギャップ14)を含む円周分割領域122では電界E2が遮断される。それによって一方向にのみ電界E1が印加され、効率的に円環状焼結体10を分極させることができる。 FIG. 8 is a diagram showing an outline of the polarization procedure in the fifth embodiment. FIG. 8A is a view showing the appearance of the annular sintered body 10 used in the fifth embodiment, and FIG. 8B is for polarizing the annular sintered body 10 shown in FIG. 8A. It is a figure which shows the application state of the electric field of the time. And as shown to FIG. 8 (A), the notch part 14 is formed in the cyclic | annular sintered compact 10b, The notch interrupts | blocks the electric field applied to the annular sintered compact 10 Act as a gap. As shown in FIG. 8B, when a potential difference V is applied between two polarization electrodes (20-20) formed in the annular sintered body 10, it includes a notch (hereinafter referred to as a gap 14). field E 2 in the circumferential divided area 122 is cut off. It field E 1 only in one direction is applied by, can be efficiently polarizing the annular sintered body 10.
なお第5の実施例では、円環状焼結体の一部にギャップ14が設けられているため、当該焼結体10が薄い場合などでは強度不足が懸念される。そのような場合にはギャップ14内に樹脂などの絶縁体を充填して補強すればよい。 In the fifth embodiment, since the gap 14 is provided in a part of the annular sintered body, the strength may be insufficient when the sintered body 10 is thin. In such a case, the gap 14 may be filled with an insulator such as resin and reinforced.
===圧電特性===
<サンプル>
上述した第1〜第5の実施例における方法によって製造される円環状圧電素子の特性を評価するために、上記各実施例の分極手順で得た円環状圧電体をサンプルとして作製した。ここで第1〜第5の実施例に対応するサンプルを順にサンプルa〜eとする。また第5の実施例によって得た環状圧電体のギャップに樹脂を充填したサンプルをサンプルfとして作製した。そして各サンプルの圧電特性を調べた。なお各サンプルの作製手順は分極の手順以外は一般的な圧電体の製造手順と同じである。
=== Piezoelectric property ===
<Sample>
In order to evaluate the characteristics of the annular piezoelectric element manufactured by the method in the first to fifth embodiments described above, the annular piezoelectric members obtained in the polarization procedure of each of the above embodiments were manufactured as samples. Here, samples corresponding to the first to fifth embodiments are sequentially referred to as samples a to e. Further, a sample in which a resin was filled in the gap of the annular piezoelectric body obtained according to the fifth embodiment was manufactured as a sample f. And the piezoelectric characteristic of each sample was investigated. The procedure for producing each sample is the same as the procedure for producing a general piezoelectric body except for the procedure for polarization.
<サンプルの作製手順>
図9にサンプルの作製手順を示した。図9に示したように、まず圧電材料をリング状に形成する。具体的にはPLZTなどの圧電材料を粉末状にした原材料をバインダを添加した上で型を用いて円環状の成形体にする。あるいは粉末状の原材料にバインダを添加してスラリー状にしたものを圧膜印刷技術により円環状の成形体にする(s1)。第4および5の実施例に対応するサンプルe、サンプルfについては、この成形工程(s1)において溝やギャップを形成しておく。もちろん円環状焼結体に成形したあとにダイサーなどを用いた機械加工によって溝やギャップを形成してもよい。
<Sample preparation procedure>
FIG. 9 shows the preparation procedure of the sample. As shown in FIG. 9, first, a piezoelectric material is formed in a ring shape. Specifically, after adding a binder, a raw material obtained by pulverizing a piezoelectric material such as PLZT is added to a binder, and a mold is used to form an annular molded body. Alternatively, a slurry is obtained by adding a binder to a powdered raw material and forming it into an annular molded body by pressure film printing technology (s1). For sample e and sample f corresponding to the fourth and fifth embodiments, grooves and gaps are formed in this forming step (s1). It goes without saying that the groove or the gap may be formed by machining using a dicer or the like after being formed into an annular sintered body.
つぎに円環状に成形した圧電材料を300℃〜500℃の温度で1〜5時間程度加熱してバインダ成分が残渣しないよう完全に脱脂する(s2)。そして1000℃〜1300℃の温度で成形体を焼成し、相対密度95%以上の緻密化されたセラミックからなる円環状焼成体を作製する(s3)。ついで上記第1〜第5の実施例のそれぞれの分極手順に応じて位置や形状が異なる分極用電極を円環状焼結体に設ける。なお分極用電極は、溝内に分極用電極を形成する第4の実施例に対応するサンプルd以外のサンプルでは、電極板を円環状焼結体の表面に接触させることで設ける(s4→s5)。サンプルdについては溝内に銀ペーストを充填した後、これを加熱して溝内に焼き付けることで分極用電極を設けた(s4→s10)。最後に分極用電極を用いて円環状焼成体に電界を印加して分極させる(s5→s6、s10→s6)。分極時に二つの分極用電極間に電圧を印加する際には、分極させたい方向に平均して1kV/mの強度の電界が印加されるようにする。そして円環状焼結体の全周にわたって分極させれば円環状圧電体が完成する(s7→s8→終わり)。サンプルdについては、分極後に溶剤を用いたり機械的に研磨したりするなどして銀ペーストからなる分極電極を除去した(s7→s8→s9→終わり)。 Next, the piezoelectric material formed into an annular shape is heated at a temperature of 300 ° C. to 500 ° C. for about 1 to 5 hours to completely degrease the binder component so as not to remain (s 2). Then, the compact is fired at a temperature of 1000 ° C. to 1300 ° C. to produce a toroidal fired body made of a densified ceramic having a relative density of 95% or more (s3). Then, polarization electrodes having different positions and shapes in accordance with the polarization procedures of the first to fifth embodiments are provided in the annular sintered body. The polarization electrode is provided by bringing the electrode plate into contact with the surface of the annular sintered body in samples other than the sample d corresponding to the fourth embodiment in which the polarization electrode is formed in the groove (s4 → s5 ). About the sample d, after filling a silver paste in a groove | channel, this was heated and baked in a groove | channel, and the electrode for polarization was provided (s4-> s10). Finally, an electric field is applied to the ring-shaped sintered body using a polarization electrode to polarize it (s5 → s6, s10 → s6). When applying a voltage between two polarization electrodes at the time of polarization, an electric field with an intensity of 1 kV / m is applied in average in the direction to be polarized. Then, polarization is performed over the entire circumference of the annular sintered body to complete the annular piezoelectric body (s7 → s8 → end). For the sample d, after polarization, the polarized electrode made of silver paste was removed by using a solvent or mechanical polishing or the like (s7 → s8 → s9 → end).
<評価用素子について>
上述した手順によって作製した各サンプルの圧電特性を測定するために、サンプルの一部を試料片として切り出し、その切り出した矩形平板状の試料片の表裏に特性評価用の電極を形成した。図10に各サンプルの外形や試料片についての概略を示した。具体的には、図10(A)〜(F)のそれぞれに、サンプルa〜fの外形やサンプル片の形状や切り出位置、および分極時の分極用電極の位置や形状を示した。各サンプルの外形は図10(C)に示したサンプルcが外径φ1=50mm、内径φ2=20mm であり、図10(A)(B)(D)〜(F)に示した他のサンプルa、b、d〜fは外径φ1=50mm、内径φ2=40mmである。厚さt1は全てのサンプルで0.2mmである(図10(D)参照)。分極用電極20の幅w1は各サンプル共通でw1=2mmである。
<About the evaluation element>
In order to measure the piezoelectric characteristics of each sample prepared by the above-described procedure, a part of the sample was cut out as a sample piece, and electrodes for characteristic evaluation were formed on the front and back of the rectangular plate-shaped sample piece cut out. FIG. 10 shows the outline of each sample and the outline of the sample piece. Specifically, FIGS. 10A to 10F respectively show the outer shape of the samples a to f, the shape and the cut-out position of the sample piece, and the position and the shape of the polarization electrode at the time of polarization. As for the external shape of each sample, the sample c shown in FIG. 10C has an outer diameter of φ1 = 50 mm and an inner diameter of φ2 = 20 mm, and the other samples shown in FIGS. 10 (A), (B), (D) to (F) a, b and d to f have an outer diameter φ1 = 50 mm and an inner diameter φ2 = 40 mm. The thickness t 1 is 0.2mm in all samples (see FIG. 10 (D)). The width w1 of the polarization electrode 20 is w 1 = 2 mm common to all samples.
また図10(C)に示したサンプルcについては、内周から外周までの円環の幅w3を二等分する半径φ3=35mmの同心円16によって内周側分極用電極20iと外周側分極用電極20oに分割され、内周側分極用電極20iと外周側分極用電極20oとの間には幅w4=0.5mmの間隙が介在している。図10(D)に示したサンプルdは表面に溝が形成されており、このサンプルdは図10(B)に示したサンプルbの分極用電極20が配置される位置に深さd=2mmの溝13が形成されて、その溝13内に分極用電極20として厚さt2=1mmの銀ペースト120bが充填されている。 In the sample c shown in FIG. 10C, the inner polarization electrode 20i and the outer peripheral polarization are formed by concentric circles 16 of radius φ 3 = 35 mm which bisects the width w 3 of the annular ring from the inner periphery to the outer periphery. It is divided into electrodes 20o, and a gap of width w 4 = 0.5 mm is interposed between the inner polarization electrode 20i and the outer polarization electrode 20o. The sample d shown in FIG. 10D has a groove formed on the surface, and this sample d has a depth d = 2 mm at the position where the polarization electrode 20 of the sample b shown in FIG. 10B is disposed. The groove 13 is formed, and the silver paste 120 b of thickness t 2 = 1 mm is filled in the groove 13 as the polarization electrode 20.
分極用電極20の配置については、図10(A)に示したサンプルaでは120゜の角度間隔を隔てて二つの分極用電極20を設けているが、図10(B)〜(D)に示したサンプルb〜dでは90゜の角度ごとに4カ所に分極用電極20を設けている。図10の(E)と(F)のそれぞれに示したサンプルeとサンプルfでは、ギャップ14の両側に他と同様の幅w1=2mmの分極用電極20gが形成されているとともに、ギャップ14の形成位置から90゜の角度ごとに3カ所に分極用電極20が設けられている。 As for the arrangement of the polarization electrodes 20, in the sample a shown in FIG. 10A, two polarization electrodes 20 are provided at an angular interval of 120 °, but in FIG. 10B to 10D. In the illustrated samples b to d, four polarization electrodes 20 are provided at every 90 ° angle. In samples e and f shown in (E) and (F) of FIG. 10, polarization electrodes 20 g having a width w 1 = 2 mm similar to the other are formed on both sides of the gap 14. Polarization electrodes 20 are provided at three positions at every 90.degree. From the formation position of.
そして図10の(A)、(B)、(C)、(E)および(F)に示したように、各サンプルについて所定の位置から長さL=10mm、幅w2=2.5mmの試験片200を分極後の円環状焼結体10の厚さt1=0.2mmにわたって切り出した。図10(D)に示したサンプルdは図10(B)に示したサンプルbと同じ位置から試験片200を切り出した。そして各サンプルの特性を評価するために切り出した試験片200の上面と下面に塗布した銀ペーストを焼き付けてなる電極を形成して圧電素子(以下、評価用素子とも言う)を作製した。図11に評価用素子220の概略を示した。サンプルa〜fから切り出した矩形平板状の試験片200の上下両面に電極210を形成している。そして評価用素子220における分極方向Pは矩形の平面形状における長辺方向に分極している。また各サンプルとの特性を比較するための基準となる試料として試験片200と同じ大きさの焼結体を分極させてなる圧電素子(以下、比較用素子とも言う)も用意した。図12に比較用素子の作製手順の概略を示した。試験片と同じ矩形平面形状を有する焼結体310の短辺側の端面に分極用電極320を形成し、この電極間(320−320)間に与えた電位差Vによって焼結体310の長辺方向に電界Eを印加して分極させる。そして分極用電極320を除去し、評価用素子と同様に分極後の焼結体310の上下両面に電極を形成して比較用素子を完成させた。 And as shown in (A), (B), (C), (E) and (F) of FIG. 10, length L = 10 mm and width w 2 = 2.5 mm from a predetermined position for each sample The test piece 200 was cut out over the thickness t 1 = 0.2 mm of the annular sintered body 10 after polarization. The sample d shown in FIG. 10D was cut out from the same position as the sample b shown in FIG. 10B. And the electrode which baked the silver paste apply | coated to the upper surface and lower surface of the test piece 200 cut out in order to evaluate the characteristic of each sample was formed, and the piezoelectric element (it is also called the element for evaluation hereafter) was produced. The outline of the evaluation element 220 is shown in FIG. Electrodes 210 are formed on the upper and lower surfaces of the rectangular flat test piece 200 cut out from the samples a to f. The polarization direction P in the evaluation element 220 is polarized in the long side direction of the rectangular planar shape. In addition, as a sample serving as a reference for comparing the characteristics with each sample, a piezoelectric element (hereinafter, also referred to as a comparison element) formed by polarization of a sintered body having the same size as the test piece 200 was prepared. FIG. 12 shows an outline of the preparation procedure of the comparative element. The polarization electrode 320 is formed on the end face on the short side of the sintered body 310 having the same rectangular planar shape as the test piece, and the long side of the sintered body 310 is obtained by the potential difference V applied between the electrodes (320-320) An electric field E is applied in the direction to polarize. Then, the polarization electrode 320 was removed, and electrodes were formed on the upper and lower surfaces of the sintered body 310 after polarization in the same manner as the evaluation element to complete a comparison element.
<特性評価>
上述したように作製した各サンプルa〜fに対応する評価用素子と比較用素子の圧電特性を調べた。以下の表1に各サンプルの圧電特性を示した。
<Characteristics evaluation>
The piezoelectric characteristics of the evaluation element and the comparison element corresponding to each of the samples a to f fabricated as described above were examined. The piezoelectric characteristics of each sample are shown in Table 1 below.
そして表1に示したように、評価用素子a〜fのk15はいずれも比較用素子の80%以上の値を有し、充分に実用的な特性を有している。しかもQmについては全ての評価用素子で比較用素子を上回っている。またεr 11についてはほぼ同等の特性が得られた。以上により本発明の実施例に係る方法では圧電歪15モードで駆動する実用的な円環状圧電素子をより安価に製造することが可能となる。 Then, as shown in Table 1, k 15 of the evaluation device a~f Both have more than 80% of the value of the comparison element, and has a sufficiently practical characteristics. Moreover, Qm is higher than the comparison element in all the evaluation elements. Also, substantially the same characteristics were obtained for ε r 11 . As described above, according to the method of the embodiment of the present invention, it is possible to manufacture the practical annular piezoelectric element driven in the piezoelectric strain 15 mode more inexpensively.
1,100 円環状圧電素子、10 円環状セラミックス焼結体、11 円環状圧電体、13 溝 14 ギャップ、15 補強材、
20,21〜24,20g,120,320 分極用電極、30,130 駆動用電極、
20i,21i〜24i 内周側分極用電極、
20o,21o〜24o 外周側分極用電極、110 扇状焼結体、
111 扇状圧電体、121,122,1211〜1214 円周分割領域、
200 試験片、220 評価用素子
1,100 annular piezoelectric elements, 10 annular ceramic sintered bodies, 11 annular piezoelectric bodies, 13 grooves 14 gaps, 15 reinforcing materials,
20, 21 to 24, 20 g, 120, 320 Electrodes for polarization, 30, 130 Driving electrodes,
20i, 21i to 24i inner peripheral polarization electrode,
20o, 21o to 24o Outer peripheral side polarization electrode, 110 fan-shaped sintered body,
111 fan-shaped piezoelectric body, 121, 122, 1211 to 1214 circumferential division region,
200 test pieces, 220 evaluation elements
Claims (5)
円環の軸方向を上下方向として、
圧電材料からなる一体的な円環状セラミックス焼結体を成形する焼結体成形ステップと、
前記円環状セラミックス焼結体の上面に半径方向に延長する分極用電極を複数箇所に配置する電極配置ステップと、
前記複数箇所に配置された分極用電極のうち、互いに隣り合う二つの電極の一方を接地電極として当該二つの電極間に電位差を与えることで、前記円環状セラミックス焼結体において当該二つの分極用電極によって区分される円周分割領域を円周方向に向かって分極させる分極ステップと、
を含み、
前記電極配置ステップでは、前記円環状セラミックス焼結体の半径方向に延長する前記分極用電極を、所定の半径となる位置にて分割して、内周側から外周側に向かって複数の分極用電極片を形成し、
前記分極ステップでは、同じ半径となる領域に形成されて互いに周方向で隣接する二つの前記分極用電極片を選択するともに、選択した二つの前記分極用電極片が属する分極用電極の延長方向がなす劣角側の円周分割領域に同じ強度の電界が印加されるように電位差を与える、
ことを特徴とする円環状圧電素子の製造方法。 An electrode is formed on the front and back of an annular piezoelectric body, and when an electric field is applied between the electrodes, it is a manufacturing method of an annular piezoelectric element that vibrates in a piezoelectric strain 15 mode,
With the axial direction of the ring being the vertical direction,
A sintered body forming step of forming an integral annular ceramic sintered body made of a piezoelectric material;
An electrode arranging step of arranging polarization electrodes extending in a radial direction on the upper surface of the annular ceramic sintered body at a plurality of places;
Of the polarization electrodes arranged at the plurality of locations, one of the two adjacent electrodes is used as a ground electrode to apply a potential difference between the two electrodes, whereby the two annular electrodes are used for polarization in the annular ceramic sintered body . A polarization step of circumferentially polarizing a circumferential division region divided by the electrodes;
Including
In the electrode disposing step, the polarization electrode extending in the radial direction of the annular ceramic sintered body is divided at a position to be a predetermined radius, and a plurality of polarization electrodes are formed from the inner peripheral side toward the outer peripheral side . Form an electrode piece ,
In the polarization step, both the selection of two of the polarizing electrode pieces adjacent formed in a region having the same radius in the circumferential direction from each other, the extending direction of the polarizing electrodes two of said polarizing electrode pieces selected belongs Provide a potential difference so that an electric field of the same strength is applied to the circumferential division area on the side of the lesser angle,
A manufacturing method of an annular piezoelectric element characterized by things.
円環の軸方向を上下方向として、
圧電材料からなる一体的な円環状セラミックス焼結体を成形する焼結体成形ステップと、
前記円環状セラミックス焼結体の上面に半径方向に延長する分極用電極を複数箇所に配置する電極配置ステップと、
前記複数箇所に配置された分極用電極のうち、互いに隣り合う二つの電極の一方を接地電極として当該二つの電極間に電位差を与えることで、前記円環状セラミックス焼結体において当該二つの分極用電極によって区分される円周分割領域を円周方向に向かって分極させる分極ステップと、
を含み、
前記焼結体成形ステップでは、上面に半径方向に延長する溝が形成された円環状セラミックス焼結体を成形し、
前記電極配置ステップでは、前記溝内に導電体を配置する、
ことを特徴とする円環状圧電素子の製造方法。 An electrode is formed on the front and back of an annular piezoelectric body, and when an electric field is applied between the electrodes, it is a manufacturing method of an annular piezoelectric element that vibrates in a piezoelectric strain 15 mode,
With the axial direction of the ring being the vertical direction,
A sintered body forming step of forming an integral annular ceramic sintered body made of a piezoelectric material;
An electrode arranging step of arranging polarization electrodes extending in a radial direction on the upper surface of the annular ceramic sintered body at a plurality of places;
Of the polarization electrodes arranged at the plurality of locations, one of the two adjacent electrodes is used as a ground electrode to apply a potential difference between the two electrodes, whereby the two annular electrodes are used for polarization in the annular ceramic sintered body . A polarization step of circumferentially polarizing a circumferential division region divided by the electrodes;
Including
In the sintered body forming step, an annular ceramic sintered body in which grooves extending in the radial direction are formed on the upper surface is formed;
In the electrode disposing step , a conductor is disposed in the groove,
A manufacturing method of an annular piezoelectric element characterized by things.
円環の軸方向を上下方向として、
圧電材料からなる一体的な円環状セラミックス焼結体を成形する焼結体成形ステップと、
前記円環状セラミックス焼結体の上面に半径方向に延長する分極用電極を複数箇所に配置する電極配置ステップと、
前記複数箇所に配置された分極用電極のうち、互いに隣り合う二つの電極の一方を接地電極として当該二つの電極間に電位差を与えることで、前記円環状セラミックス焼結体において当該二つの分極用電極によって区分される円周分割領域を円周方向に向かって分極させる分極ステップと、
を含み、
前記焼結体成形ステップでは、半径方向を横断する切欠が形成された円環状セラミックス焼結体を形成し、
前記分極ステップでは、前記切欠をギャップとすることで、前記円環状セラミックス焼結体を周の一方向にのみ分極させる、
ことを特徴とする円環状圧電素子の製造方法。 An electrode is formed on the front and back of an annular piezoelectric body, and when an electric field is applied between the electrodes, it is a manufacturing method of an annular piezoelectric element that vibrates in a piezoelectric strain 15 mode,
With the axial direction of the ring being the vertical direction,
A sintered body forming step of forming an integral annular ceramic sintered body made of a piezoelectric material;
An electrode arranging step of arranging polarization electrodes extending in a radial direction on the upper surface of the annular ceramic sintered body at a plurality of places;
Of the polarization electrodes arranged at the plurality of locations, one of the two adjacent electrodes is used as a ground electrode to apply a potential difference between the two electrodes, whereby the two annular electrodes are used for polarization in the annular ceramic sintered body . A polarization step of circumferentially polarizing a circumferential division region divided by the electrodes;
Including
In the sintered body forming step, an annular ceramic sintered body in which a notch extending in a radial direction is formed is formed;
In the polarization step, the annular ceramic sintered body is polarized only in one circumferential direction by making the notch a gap.
A manufacturing method of an annular piezoelectric element characterized by things.
前記電極配置ステップでは、分極用電極を配置する角度位置を3カ所以上とし、
前記分極ステップでは、互いに隣り合う二つの分極用電極を順次選択するとともに、当該二つの分極用電極の延長方向がなす劣角側の円周分割領域を円周の所定方向に向かって分極させる、
ことを特徴とする円環状圧電素子の製造方法。 In any one of claims 1 to 4,
In the electrode disposing step, angular positions at which the polarization electrodes are disposed are three or more,
In the polarization step, two polarization electrodes adjacent to each other are sequentially selected, and the circumferential division region on the inferior angle side formed by the extension directions of the two polarization electrodes is polarized in a predetermined direction of the circumference.
A manufacturing method of an annular piezoelectric element characterized by things.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015043339A JP6535485B2 (en) | 2015-03-05 | 2015-03-05 | Method of manufacturing annular piezoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015043339A JP6535485B2 (en) | 2015-03-05 | 2015-03-05 | Method of manufacturing annular piezoelectric element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016162998A JP2016162998A (en) | 2016-09-05 |
JP6535485B2 true JP6535485B2 (en) | 2019-06-26 |
Family
ID=56847317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015043339A Active JP6535485B2 (en) | 2015-03-05 | 2015-03-05 | Method of manufacturing annular piezoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6535485B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS503466U (en) * | 1973-05-10 | 1975-01-14 | ||
JPS61224878A (en) * | 1985-03-29 | 1986-10-06 | Canon Inc | Vibration wave motor |
JPH07183590A (en) * | 1993-12-22 | 1995-07-21 | Canon Inc | Method for polarization of torsional piezoelectric element |
JPH07183587A (en) * | 1993-12-22 | 1995-07-21 | Canon Inc | Torsional piezoelectric element, method for polarization thereof and torsional vibration device |
JP3416233B2 (en) * | 1993-12-27 | 2003-06-16 | キヤノン株式会社 | Laminated piezoelectric element, polarization processing method for laminated piezoelectric element, ultrasonic motor, and apparatus equipped with ultrasonic motor |
JPH07198392A (en) * | 1993-12-28 | 1995-08-01 | Canon Inc | Piezoelectric element and polarization treatment method of piezoelectric element as well as vibrating gyro |
JP2002142469A (en) * | 2000-11-01 | 2002-05-17 | Suncall Corp | Piezoelectric actuator and its manufacturing method |
-
2015
- 2015-03-05 JP JP2015043339A patent/JP6535485B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016162998A (en) | 2016-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7336556B2 (en) | Ultrasonic motors, drive control systems, optical devices and vibrators | |
US10374573B2 (en) | Plate wave devices with wave confinement structures and fabrication methods | |
US2875355A (en) | Ultrasonic zone plate focusing transducer | |
TWI624148B (en) | Ultrasonic motor, drive control system, optical apparatus, and vibrator | |
US2943278A (en) | Piezoelectric filter transformer | |
TWI403009B (en) | Ring type piezoeletric device, method for processing the same, and torque sensor assembled with the same | |
US3900748A (en) | Torsional ceramic transducer | |
US3531742A (en) | Flexural mode ceramic resonator | |
JP3244238B2 (en) | Piezoelectric resonator | |
JP6535485B2 (en) | Method of manufacturing annular piezoelectric element | |
CN107834899B (en) | Method for adjusting two-phase modal frequency difference and steering of ultrasonic motor | |
CN103394456A (en) | Piezoceramic transducer chip for ultrasonic transducers | |
JP5786224B2 (en) | Piezoelectric element, piezoelectric actuator having piezoelectric element, and vibration wave motor | |
US3774057A (en) | Resonator for torsional vibration | |
JPH05146171A (en) | Ultrasonic oscillator | |
JP3311034B2 (en) | Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device | |
JPS63220782A (en) | Piezoelectric element | |
CN111463344A (en) | Preparation method of piezoelectric single crystal element | |
JPH0319291A (en) | Piezoelectric composite vibrator | |
JP2020127348A (en) | Stator, motor, and manufacturing method of stator | |
JP2022165945A (en) | Cylindrical piezoelectric element | |
JPS5914910B2 (en) | Piezoelectric ceramic structure and its manufacturing method | |
CN106533255A (en) | Space phase modulation toroidal traveling wave ultrasonic motor with symmetrical ceramic partitions and control method thereof | |
KR100675781B1 (en) | Frequency controllable vibrator and method of manufacturing the same | |
JP2009240149A (en) | Ultrasonic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6535485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |