JPS63220782A - Piezoelectric element - Google Patents

Piezoelectric element

Info

Publication number
JPS63220782A
JPS63220782A JP62054672A JP5467287A JPS63220782A JP S63220782 A JPS63220782 A JP S63220782A JP 62054672 A JP62054672 A JP 62054672A JP 5467287 A JP5467287 A JP 5467287A JP S63220782 A JPS63220782 A JP S63220782A
Authority
JP
Japan
Prior art keywords
polarization
piezoelectric
piezoelectric element
shaped
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62054672A
Other languages
Japanese (ja)
Inventor
Hideo Adachi
日出夫 安達
Tomoki Funakubo
朋樹 舟窪
Hiroshi Fukuda
宏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62054672A priority Critical patent/JPS63220782A/en
Publication of JPS63220782A publication Critical patent/JPS63220782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Abstract

PURPOSE:To improve efficiency by forming boundary sections with groove- shaped notch sections in the thickness direction so that a piezoelectric element body is partitioned for each specific region. CONSTITUTION:A metal such as silver is applied onto the surface and rear of a ring-shaped piezoelectric body 20 manufactured by molding piezoelectric ceramics to a ring shape and cutting and polishing the piezoelectric ceramics in specified size through a means such as baking, and electrodes 21, 22 are shaped, thus constituting a piezoelectric element body. Partition boundary sections with groove-shaped notch sections 31-40 notched up to the depth of approximately half the thickness direction of a piezoelectric element body are formed to the surface of the piezoelectric element body so as to partition the surface of the element body for each specific region (eight regions of (a)-(d) and (e)-(h), holding a quarter lambda section M and a three quarter lambda section N). Accordingly, since the partition boundary sections with the groove-shaped notch sections 31-40 are shaped between the adjacent electrodes 21, 22, each polarization section 41-42 is easily brought to the state of saturated polarization accurately, thus inhibiting the generation of cracking due to polarization strain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波モータに使用される圧電素子に関し、
特に分極部の構成に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a piezoelectric element used in an ultrasonic motor.
In particular, it relates to the configuration of the polarization section.

〔従来の技術〕[Conventional technology]

最近、電磁型モータに代わる新しいモータとして超音波
モータが脚光を浴びている。この超音波モータは原理的
に新しいというだけでなく、従来の電磁型モータに比べ
て次のような利点を有している。
Recently, ultrasonic motors have been attracting attention as a new motor to replace electromagnetic motors. This ultrasonic motor is not only new in principle, but also has the following advantages over conventional electromagnetic motors.

■中心軸を必要としない。■Does not require a central axis.

■薄型、軽量である。■Thin and lightweight.

■磁気的影響の授受がない。■There is no exchange of magnetic influence.

■部品構成が単純で、信頼性が高い。■The component structure is simple and highly reliable.

■ギヤなしで低速、高トルクが得られる。■Low speed and high torque can be obtained without gears.

[相]バックラッシュがなく位置決め精度が高い。[Phase] No backlash and high positioning accuracy.

■起動、停止が速やかである。■Starts up and stops quickly.

■ステータに対してロータが、回転、チャック。■The rotor rotates and chucks against the stator.

浮遊、の三態をとり得る。It can take on three states: floating.

かくして、これらの利点を生かすべく、カメラやその他
の機器に関して種々の応用技術の研究が進められている
Thus, in order to take advantage of these advantages, research is underway on various applied technologies for cameras and other devices.

第5図は「応用物理、第54巻、第6号(1985) 
、P。589〜590」に開示されている従来の代表的
な回転型超音波モータの概略図である。図中1は取付は
ベース、2はフェルト、3は圧電素子、4は弾性金属材
からなる振動板、5はスライダー、6は回転体、7は回
転シャフト、である。なお圧電素子3と振動板4とでス
テータを構成しており、回転体6と回転シャフト7とで
ロータを構成している。この超音波モータの原理は、円
環状圧電索子3と一体化した金属製ドーナツ形振動板4
に逆圧電効果によって板波進行波を励起し、これによっ
て発生する表面質点の後方楕円運動軌跡の頂点に接する
ようにロータを抑圧配置することにより、同ロータを回
転させるというものである。
Figure 5 is from Applied Physics, Volume 54, No. 6 (1985)
,P. 589-590" is a schematic diagram of a typical conventional rotary ultrasonic motor disclosed in Japanese Patent No. 589-590. In the figure, 1 is a mounting base, 2 is felt, 3 is a piezoelectric element, 4 is a diaphragm made of an elastic metal material, 5 is a slider, 6 is a rotating body, and 7 is a rotating shaft. Note that the piezoelectric element 3 and the diaphragm 4 constitute a stator, and the rotating body 6 and the rotating shaft 7 constitute a rotor. The principle of this ultrasonic motor is that a metal donut-shaped diaphragm 4 is integrated with an annular piezoelectric cord 3.
In this method, a traveling plate wave is excited by the inverse piezoelectric effect, and the rotor is rotated by being suppressed and placed so as to contact the apex of the backward elliptical trajectory of the surface mass point generated by this.

第6図は圧電素子3の分極状態を示す図である。FIG. 6 is a diagram showing the polarization state of the piezoelectric element 3.

各分極部は、分極方向が十−+−・・・のように交互に
逆向きになるように、リング状圧電体を分極するか、ま
たは分割した複数の圧電素子を分極方向が互いに逆向き
になる様に配置することによって得られる。この様な分
極配置において、分極方向が互いに逆向きになった隣り
合わせの1組を1波長λに対応させる。そして、180
°異なる位置に各々、3/4λ、1/4λ長の未分極部
(斜線部)を配し、これらを結んだ中心線に対して対称
に分極部をnλ個分づつ配置している。ただし分極の向
きは、円周方向に分極方向が交互に逆向きになる様に連
続的に配置される。
For each polarization section, a ring-shaped piezoelectric body is polarized so that the polarization directions are alternately reversed like 10-+-, or a plurality of divided piezoelectric elements are polarized so that the polarization directions are opposite to each other. It can be obtained by arranging it so that In such a polarization arrangement, one set of adjacent polarization directions opposite to each other corresponds to one wavelength λ. And 180
3/4λ and 1/4λ unpolarized parts (shaded parts) are arranged at different positions, respectively, and nλ polarized parts are arranged symmetrically with respect to the center line connecting these parts. However, the polarization direction is continuously arranged so that the polarization direction is alternately opposite in the circumferential direction.

この様な分極配置のうち、3/4λ、1/4λ長の未分
極部を間に挟んだ左半分の振動板に接していない面を一
つの電極でおおい、これを一方の片側共a電極とし、右
半分の振動板に接触していない面を別の電極でおおい、
これを他方の片側共通電極とする。そして、振動板4側
の電極を振動板4と導通させ、すべての圧電素子のアー
ス側電極として共通化している。
In this polarization arrangement, the left half of the surface that is not in contact with the diaphragm, with unpolarized parts of 3/4λ and 1/4λ length sandwiched between them, is covered with one electrode, and one side of this is covered with the a electrode. Then, cover the surface of the right half that is not in contact with the diaphragm with another electrode,
This is used as the other side common electrode. Then, the electrode on the diaphragm 4 side is electrically connected to the diaphragm 4, and is shared as a ground-side electrode for all piezoelectric elements.

以上の様な構成体における電気信号入力端子は、三端子
Vl、V2.Eとなる。この様な分極配置。
The electrical signal input terminals in the above structure include three terminals Vl, V2. It becomes E. This kind of polarization arrangement.

電極配置を有した構成体を駆動する場合には、端子Vl
−E、端子V2−Eとの間に、互いにπ/2の位相差を
有し、λ2円環の内・外径、厚み。
When driving a structure having an electrode arrangement, the terminal Vl
There is a phase difference of π/2 between -E and terminal V2 and -E, and the inner and outer diameters and thickness of the λ2 ring.

圧電セラミクスと振動板の平均的弾性定数、密度。Average elastic constants and densities of piezoelectric ceramics and diaphragms.

等で決定される固有振動数ωを存する電気信号を入力す
ればよい。
What is necessary is to input an electric signal having a natural frequency ω determined by, etc.

第7図はステータの一部を切欠して示す側面図である。FIG. 7 is a partially cutaway side view of the stator.

今、振動板4と二つの圧電素子3の電極との間に前記交
流電圧を印加すると、振動板4には屈曲振動波が励起さ
れるが、第7図に示すように中心間距離がaである隣合
った分極部の一方には次式で示される屈曲振動波が発生
する。
Now, when the AC voltage is applied between the diaphragm 4 and the electrodes of the two piezoelectric elements 3, a bending vibration wave is excited in the diaphragm 4, but as shown in FIG. A bending vibration wave expressed by the following equation is generated in one of the adjacent polarized parts.

yl −As in (ωt−2yrp/λ)+As 
in (ωt+2πp/λ)・ (1)また、他方の分
極部には(1)式とは位相差角がψだけずれた次式で示
される屈曲振動波が発生する。
yl −As in (ωt−2yrp/λ)+As
in (ωt+2πp/λ)· (1) Furthermore, in the other polarized portion, a bending vibration wave expressed by the following equation whose phase difference angle is shifted by ψ from the equation (1) is generated.

y2冒Bs1n (ωt−2π/λ (p+a)+ψ) +Bs1n (ωt+2π/λ(p+a)十ψ)・・・(2)ここで 一2π a/λ +ψ−ψ1 。y2 attack Bs1n (ωt-2π/λ (p+a)+ψ) +Bs1n (ωt+2π/λ(p+a)+ψ)...(2) Here -2π a/λ +ψ−ψ1 .

+2π a/λ+ψ廟ψ2 とおくと、(2)式は y2−Bsln (ωt−2πp/λ+ψ1) +Bs1n (ωt+2πp/λ+ψ2)・・・(3)となる。上記
二つの分極部で励起される屈曲振動波は、(1)式と(
3)式との和すなわちy″y1+y2 なる合成屈曲振動波であると考えられる。この合成屈曲
振動波のうち進行波だけが存在するための条件は、 ψ1−mπ  (m−0,±2.±4・・・)。
+2π a/λ+ψ廟ψ2, equation (2) becomes y2−Bsln (ωt−2πp/λ+ψ1) +Bs1n (ωt+2πp/λ+ψ2) (3). The bending vibration waves excited in the above two polarized parts are expressed by equation (1) and (
3), that is, y″y1+y2.The condition for only the traveling wave to exist among this composite bending vibration wave is ψ1−mπ(m−0,±2. ±4...).

ψ2−nπ  (n−±1.±3.±5・・・)である
ψ2-nπ (n-±1.±3.±5...).

ψ1−−2πa/λ+ψ−mπ2 ψ2−+2πa/λ+ψ−nπ であるから、 a−λ(n−m)/4(n≠m)・・・(4)。ψ1−−2πa/λ+ψ−mπ2 ψ2−+2πa/λ+ψ−nπ Because it is, a-λ(n-m)/4(n≠m)...(4).

ψ−π(n+m)/2       ・・・(5)とな
る。(4)式および(5)式の条件が成立すると、合成
屈曲振動波は y−As in (ωt−2πp/λ)+As in 
(ωt+2yrp/λ)+Bs1n 1ωt−2πp/λ+mπ) +Bs1n (ωt+2πp/λ+nπ) = (A十B) s i n (ωt−2πp/λ)+
 (A−B)s in (ωt+2πp/λ)・・・(
6) となる。したがって進行波だけが存在するためには A−B                      
    ・・・ (7)であることがもう一つの条件と
なる。
ψ−π(n+m)/2 (5). When the conditions of equations (4) and (5) are satisfied, the composite bending vibration wave is y-As in (ωt-2πp/λ)+As in
(ωt+2yrp/λ)+Bs1n 1ωt-2πp/λ+mπ) +Bs1n (ωt+2πp/λ+nπ) = (A0B) s i n (ωt-2πp/λ)+
(A-B) s in (ωt+2πp/λ)...(
6) It becomes. Therefore, in order for only traveling waves to exist, A-B
... (7) is another condition.

上記した進行波だけが存在するための各条件のうち、(
4)、(5)式については圧電索子3の電極形状と電圧
印加手段を整えることによりほぼ実現できる。しかしく
7)式の条件を完全に満たすのはかなり困難である。す
なわち、圧電索子3に第6図に示すような分極部が生じ
るように分極処理を施しても、分極状態には不均一さが
生じる。
Among the conditions for the existence of only traveling waves mentioned above, (
Equations 4) and (5) can almost be realized by adjusting the electrode shape of the piezoelectric cable 3 and the voltage application means. However, it is quite difficult to completely satisfy the condition of formula 7). That is, even if the piezoelectric cord 3 is subjected to polarization treatment so that a polarized portion as shown in FIG. 6 is generated, non-uniformity occurs in the polarized state.

この理由は、圧電索子3の全面積が大きいため、セラミ
クス焼成むら等により分極前の材質が不均一であること
、分極が交互分極であり分極処理を二度行なうことから
、(十)方向と(−)方向の分極状態に差が出ること、
等である。
The reason for this is that since the total area of the piezoelectric cord 3 is large, the material before polarization is uneven due to uneven firing of ceramics, etc., and the polarization is alternate polarization and the polarization process is performed twice. There is a difference in the polarization state in the and (-) direction,
etc.

一方、第7図に示すように、圧電索子3は振動板4に対
して接着剤8により接着されるが、上記接着を全領域に
亙って均一に行なうことは容易ではない。しかも圧電素
子3および振動板4には元々寸法上のバラツキがある。
On the other hand, as shown in FIG. 7, the piezoelectric cord 3 is bonded to the diaphragm 4 using an adhesive 8, but it is not easy to uniformly bond the piezoelectric cable 3 over the entire area. Moreover, the piezoelectric element 3 and the diaphragm 4 originally have dimensional variations.

このようなことから、(7)式の条件を完全に満たすこ
とは極めて困難である。
For this reason, it is extremely difficult to completely satisfy the condition of equation (7).

したがって屈曲振動波にはバラツキがあり、ロータに対
して大きな振動波が生じている箇所は接触するが、振幅
の小さい振動波が生じている箇所は接触しないことにな
る。その結果、各振動波の周波数成分に差が生じ、内部
摩擦が増大し、超音波モータの効率を低下させていた。
Therefore, there is variation in the flexural vibration waves, and the parts where large vibration waves are generated come into contact with the rotor, but the parts where vibration waves with small amplitude are generated do not come into contact with the rotor. As a result, a difference occurs in the frequency components of each vibration wave, increasing internal friction and reducing the efficiency of the ultrasonic motor.

上記欠点を解決する手段として、従来次の三つの手段が
考えられていた。
Conventionally, the following three methods have been considered as means for solving the above drawbacks.

(1)圧電索子3の一側面に設けられている電極を、各
分極部に対応する分m電極とし、各分離電極部の下に位
置している各分極部の分極状態を、交互に逆方向の分極
状態とし、この分極状態および電気容量のバラツキを小
さくする。
(1) The electrodes provided on one side of the piezoelectric cable 3 are m electrodes corresponding to each polarized portion, and the polarization state of each polarized portion located under each separated electrode portion is alternately changed. The polarization state is set in the opposite direction, and variations in this polarization state and capacitance are reduced.

(2)全分極部の分極方向を同一方向にし、印加電界を
隣接する分極同士では逆向きとする。
(2) The polarization directions of all polarized parts are set in the same direction, and the applied electric fields are set in opposite directions for adjacent polarized parts.

(3)個別に分極した複数の圧電片を、分極方向が隣り
同士では逆向きになるように配列する。
(3) A plurality of individually polarized piezoelectric pieces are arranged so that adjacent polarization directions are opposite to each other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、上記第1〜第3の各手段による改善効果
を確認すべく、圧電素子およびリード線の取付は方法以
外は、全く同一の寸法、構造のものを作成し、実験を行
なってみた。その結果、第1〜第3の手段によれば、そ
れぞれある程度の改善効果は認められたが、同時にそれ
ぞれ以下説明するような問題があることが分った。
In order to confirm the improvement effects achieved by each of the first to third means described above, the present inventors conducted an experiment by creating a piezoelectric element with the same dimensions and structure except for the mounting method of the piezoelectric element and lead wire. I tried it. As a result, it was found that each of the first to third means had a certain degree of improvement effect, but at the same time, each of them had problems as described below.

第8図および第9図(a)(b)は第1の手段について
の実験例を示す図である。PZT (ジルコン・チタン
酸鉛)圧電セラミクスをリング状に成形し、規定の寸法
に切削および研磨してリング状圧電体10とし、これに
規定の振動波数が得られるような分離電極11を片面に
設け、裏面にはアース側共通電極12を設けた。そして
第9図(a)のように、隣同士の分離電極11a。
FIG. 8 and FIGS. 9(a) and 9(b) are diagrams showing an experimental example regarding the first means. PZT (zircon lead titanate) piezoelectric ceramics is formed into a ring shape, cut and polished to a specified size to obtain a ring-shaped piezoelectric body 10, and a separation electrode 11 that can obtain a specified vibration frequency is attached to one side of the ring-shaped piezoelectric body 10. A ground side common electrode 12 was provided on the back surface. As shown in FIG. 9(a), adjacent separated electrodes 11a.

11b下の分極状態が互いに逆向きになるように分極処
理を施し、第9図(b)に示すように電圧を印加して駆
動実験を行なった。
Polarization was performed so that the polarization states under 11b were opposite to each other, and a driving experiment was conducted by applying a voltage as shown in FIG. 9(b).

上記第1の手段では、分#[極11の隣り同士の境界部
に大きな分極歪みが発生する。このため、飽和分極状態
にしようとすると、境界部にクラックが生じる場合があ
り、歩留りが低下する。また未飽和分極状態にすると、
電気−機械変換係数におよび品質係数Qmがいずれも悪
化する上、これらの定数や分極部間の容量のバラツキが
大きくなり、前記A−Bの条件を満たしにくくなる。
In the first means, a large polarization distortion occurs at the boundary between adjacent poles 11. For this reason, if an attempt is made to achieve a saturated polarization state, cracks may occur at the boundary, resulting in a decrease in yield. Also, when it is in an unsaturated polarized state,
The electro-mechanical conversion coefficient and the quality factor Qm are both deteriorated, and variations in these constants and capacitance between polarized parts become large, making it difficult to satisfy the above-mentioned condition A-B.

第10図および第11図(a)(b)は、第2の手段に
ついての実験例を示す図である。第1の手段と同様にリ
ング状圧電体10および分離電極11およびアース側共
通電極12を設けた。そして第11図(a)のように分
離電極11a。
FIG. 10 and FIGS. 11(a) and 11(b) are diagrams showing experimental examples regarding the second means. Similarly to the first means, a ring-shaped piezoelectric body 10, a separation electrode 11, and a ground side common electrode 12 were provided. Then, as shown in FIG. 11(a), a separation electrode 11a is formed.

11b下の全ての分極部の分極方向が同一方向となるよ
うに分極処理したのち、第10図のような結線13を施
し、第11図(b)に示すように印/Jll電界が隣り
同士で逆向きとなるように電圧を印加して駆動実験を行
なった。
After polarization treatment is performed so that the polarization directions of all the polarized parts under 11b are in the same direction, the connection 13 as shown in FIG. 10 is applied, and as shown in FIG. A driving experiment was conducted by applying voltage in the opposite direction.

上記第2の手段では、分極状態のバラツキは第1の手段
に比べて少ないが、分極時に面に沿った方向の分極が生
じてしまい、屈曲変位が発生する。
In the second means, the variation in the polarization state is smaller than in the first means, but polarization occurs in the direction along the surface during polarization, resulting in bending displacement.

このため圧電素子の横効果変位を効率よく発生できなく
なる。また端子構造からも分るように、2倍の印加電圧
が必要であり、たとえトランスを用いたとしても、二次
側出力電圧の大きい大型なトランスが必要となる。した
がってコンパクトな機器、例えばカメラ等には搭載でき
ないことになる。
This makes it impossible to efficiently generate lateral displacement of the piezoelectric element. Further, as can be seen from the terminal structure, twice the applied voltage is required, and even if a transformer is used, a large transformer with a high secondary output voltage is required. Therefore, it cannot be installed in a compact device such as a camera.

また上記端子構造から分るように、圧電セラミクスから
なるリング状圧電体10の裏面電極12と電気的に導通
する金属板(振動板)が零電位とならない。このためス
トレーキャパシティの影響や漏れTti流を配慮した構
造にする必要があり、構成が1(雑なものとなる。さら
に裏面電極12と金属板(振動板)とを絶縁しても、こ
の絶縁状態を均一に形成することは加工組立て上極めて
困難である上、交流的には絶縁層を通して電流が流れて
しまう。
Further, as can be seen from the above terminal structure, the metal plate (diaphragm) electrically connected to the back electrode 12 of the ring-shaped piezoelectric body 10 made of piezoelectric ceramics does not have a zero potential. Therefore, it is necessary to create a structure that takes into account the influence of stray capacity and the leakage Tti current, and the configuration becomes complicated.Furthermore, even if the back electrode 12 and the metal plate (diaphragm) are insulated, this Forming a uniform insulation state is extremely difficult in terms of processing and assembly, and in the case of alternating current, current flows through the insulation layer.

第12図は前記第3の手段についての実験例を示す図で
ある。第1の手段と同様の圧電セラミクスからなる複数
の分割圧電片14について個別に分極し、これらを分極
方向が隣り同士では逆向きになるように配列してリング
状金属板15に接着し、第1の手段と同様に電圧印加を
行なって駆動実験を行なつた。
FIG. 12 is a diagram showing an experimental example regarding the third means. A plurality of divided piezoelectric pieces 14 made of piezoelectric ceramics similar to the first means are individually polarized, arranged so that the directions of polarization are opposite to each other, and bonded to a ring-shaped metal plate 15. A driving experiment was conducted by applying voltage in the same manner as in method 1.

上記第3の手段では、各圧電片】、4が個別に分極処理
されるので、各分極部を支障なく飽和分極状態にするこ
とができる。しかし、これらの各圧電片14を分極方向
が隣り同士では逆向きになるように配列して、リング状
金属板15に接着する作業が著しく煩雑であり、しかも
全ての圧電片14を均一な接着状態にすることが極めて
困難である。また位置決めが精度よく行なわれない場合
には勿論であるが、たとえ位置決めが精度よく行なわれ
たとしても、第2の手段等のようなきれいな振動モード
を得ることは無理であることが確認された。さらに各圧
電片14を個々に接着するものであるので、各圧電片1
4のエレメント長を周期とした熱膨張係数差を起因とし
た反りが発生し、第1.第2の手段では現われない新た
な欠点が認められた。
In the third means, since each piezoelectric piece 4 is individually polarized, each polarized portion can be brought into a saturated polarized state without any problem. However, the work of arranging these piezoelectric pieces 14 so that their polarization directions are opposite to each other and bonding them to the ring-shaped metal plate 15 is extremely complicated, and it is difficult to bond all the piezoelectric pieces 14 uniformly. It is extremely difficult to achieve this condition. Furthermore, it is of course true that if the positioning is not performed with high precision, but even if the positioning is performed with high precision, it has been confirmed that it is impossible to obtain a clean vibration mode like the second method etc. . Furthermore, since each piezoelectric piece 14 is individually bonded, each piezoelectric piece 1
Warping occurs due to the difference in thermal expansion coefficient with a period of element length of 1. A new drawback was identified that did not appear in the second method.

前記三つの手段における各欠点は実用上問題となる欠点
であり、これらを解決しない以上実用化は難しい。とこ
ろで前記第1〜第3の手段のうち第1の手段は、分極状
態さえ飽和分極状態が実現でき、かつ分極状態のバラツ
キさえなくなれば、理想的な構造の圧電素子を得ること
が可能な手段であると考えられる。しかも第2.第3の
手段に比べて、その欠点解決の見込みの可能性が比較的
高いと言える。
Each of the drawbacks of the three means described above is a problem in practice, and unless these are resolved, it will be difficult to put the method into practical use. By the way, the first means among the first to third means is a means that can obtain a piezoelectric element with an ideal structure as long as a saturated polarization state can be achieved even in the polarization state and variations in the polarization state can be eliminated. It is thought that. Moreover, the second. Compared to the third method, it can be said that the possibility of resolving the drawbacks is relatively high.

そこで本発明は、第1の手段に改良を加えることにより
、各分極部の分極状態を容易かつ適確に飽和分極状態と
することができ、しかも各分極部の分極状態のバラツキ
が極めて小さく、A−Bの条件を満たし得、高効率な超
音波モータを実現させ得る圧電素子を提供することを目
的とする。
Therefore, the present invention improves the first means so that the polarization state of each polarized portion can be easily and accurately brought to a saturated polarization state, and the variation in the polarized state of each polarized portion is extremely small. It is an object of the present invention to provide a piezoelectric element that can satisfy the conditions A-B and realize a highly efficient ultrasonic motor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記間屈点を解決し目的を達成するために次の
ような手段を講じた。すなわち、圧電セラミクスの表面
および裏面に電極板を設けた圧電素子本体を、特定領域
ごとに仕切るように、上記圧電素子本体の厚み方向の少
なくとも一部(つまり厚み方向の一部であってもよいし
、全部であってもよい)に溝状の切欠部を有する仕切り
境界部を設け、この仕切り境界部により仕切られた前記
各領域に、隣り合った領域同士の分極方向が互いに逆向
きとなる複数の分極部を設置−するようにした。
The present invention takes the following measures to solve the above-mentioned problems and achieve the objectives. That is, at least a part of the piezoelectric element main body in the thickness direction (that is, a part of the piezoelectric element main body in the thickness direction may be However, a partition boundary portion having a groove-shaped notch is provided in the partition boundary portion, and in each of the regions partitioned by the partition boundary portion, the polarization directions of adjacent regions are opposite to each other. Multiple polarization parts can be installed.

なお仕切り境界部とし、では、溝状の切欠部内にエポキ
シ樹脂、ガラス等の絶縁性材料を充填したものであって
もよい。
Note that the partition boundary portion may be a groove-shaped notch filled with an insulating material such as epoxy resin or glass.

〔作用〕[Effect]

このような手段を諧したことにより次のような作用を呈
する。すなわち隣り合わせの電極間に、溝状の切欠部を
有する仕切り境界部が形成されるので、分極時に分極電
界が漏れないものとなる。
By combining such means, the following effects are achieved. In other words, a partition boundary having a groove-shaped notch is formed between adjacent electrodes, so that the polarization electric field does not leak during polarization.

その結果、各分極部を容易かつ適確に飽和分極状態とな
し、え、しかも分極歪みによる割れの発生を抑制するこ
とが可能となる。
As a result, it is possible to easily and accurately bring each polarized portion into a saturated polarization state, and furthermore, it is possible to suppress the occurrence of cracks due to polarization distortion.

〔実施例〕〔Example〕

第1図は本発明の第1実施例の外観を示す斜視図である
。第1図中20は電気−機械変換定数に31と機械的品
質係数Qmの大きなPZT (ジルコン・チタン酸鉛)
圧電セラミクスをリング状に成形し、規定の寸法に切削
および研磨したリング状圧電体である。このリング状圧
電体20の表面および裏面には、銀などの金属を焼付け
あるいは蒸管、スパッタリングなどの手段を用いて被着
することにより、電極21および22が設けられている
。上記リング状圧電体20および電極21゜22は圧電
素子本体を゛構成している。この圧電素子本体の表面に
は、この圧電素子本体を特定領域(本実施例では1/4
λ部Mと3/4λ部Nとを挟んで、a、b、c、dおよ
びe、f、g、hなる8領域)ごとに仕切るように、圧
電素子本体の厚み方向のほぼ1/2程度の深さまで切込
んだ溝状の切欠部31,32〜40を有する仕切り境界
部が設けられている。上記溝状の切欠部31゜32〜4
0は、例えばダイシングソー等の装置を用い、刃厚0.
5■m〜1mlの切刃にて施すものとする。上記仕切り
境界部により仕切られた前記各領域a、b、c、dおよ
びe、f、g、hについて、例えばa−dおよびe −
hの順に正逆交互に分極処理をすることにより、隣り合
った領域同士の分極方向が、矢印で示すように交互に逆
向きとなる8個の分極部41.42〜48が設けられて
いる。この分極処理は、例えば「120℃。
FIG. 1 is a perspective view showing the appearance of a first embodiment of the present invention. 20 in Figure 1 is PZT (zircon lead titanate), which has a large mechanical quality factor Qm with an electromechanical conversion constant of 31.
This is a ring-shaped piezoelectric body made by molding piezoelectric ceramics into a ring shape, cutting and polishing it to specified dimensions. Electrodes 21 and 22 are provided on the front and back surfaces of the ring-shaped piezoelectric body 20 by baking or depositing a metal such as silver using a vapor tube, sputtering, or other means. The ring-shaped piezoelectric body 20 and the electrodes 21 and 22 constitute a piezoelectric element body. The surface of this piezoelectric element body is covered with a specific area (1/4 in this example).
Approximately 1/2 of the thickness direction of the piezoelectric element body is partitioned into 8 areas (a, b, c, d, e, f, g, h) with the λ part M and the 3/4 λ part N in between. A partition boundary portion having groove-like notches 31, 32 to 40 cut to a certain depth is provided. Said groove-shaped notch 31°32~4
0 means, for example, when a device such as a dicing saw is used, and the blade thickness is 0.
It shall be applied with a cutting blade of 5 mm to 1 ml. For each of the areas a, b, c, d, e, f, g, h partitioned by the partition boundary, for example, a-d and e-
Eight polarized portions 41, 42 to 48 are provided in which the polarization directions of adjacent regions are alternately reversed as shown by arrows by performing polarization processing alternately in the order of h. . This polarization treatment is performed at, for example, 120°C.

5KV/鰭、60分間」の条件で、シリコーンオイル中
で行ない、その後「150℃、1時間」だけ枯化処理を
行なうものとする。
The test is carried out in silicone oil under the conditions of 5KV/fin for 60 minutes, and then withering treatment is performed at 150°C for 1 hour.

第2図(a)(b)は上記構成の本実施例の作用効果を
説明するための図で、同図(a)は本実施例の圧電素子
を示す断面図であり、同図(b)は比較のために示した
従来例の断面図である。
FIGS. 2(a) and 2(b) are diagrams for explaining the effects of this embodiment having the above configuration, and FIG. 2(a) is a cross-sectional view showing the piezoelectric element of this embodiment, and FIG. ) is a sectional view of a conventional example shown for comparison.

第2図(a)に示すように、隣り合わせの電極21a、
21b〜間に、溝状の切欠部31,32〜を存する仕切
り境界部を設けたので、分極時に分極電界が漏れないも
のとなる。その結果、各分極部41.42〜を容易かつ
適確に飽和分極状態となしえ、しかも分極歪みによる割
れの発生を抑制することができる。
As shown in FIG. 2(a), adjacent electrodes 21a,
Since the partition boundary portion having the groove-shaped notches 31, 32 is provided between 21b and 21b, the polarization electric field does not leak during polarization. As a result, each of the polarized portions 41, 42 to 41 can be easily and accurately brought into a saturated polarized state, and the occurrence of cracks due to polarization distortion can be suppressed.

なお上記分極状態が、飽和分極状態になっていることを
実験的に確認すべく、a、b・・・各領域と同一形状を
したセラミクス片に同一条件で分極および枯した場合に
ついて、共振および共振法でに31 ’ 、Qm、Cx
の圧電諸定数を比較してみた。その結果、有異差がなか
った。またa、C。
In order to experimentally confirm that the above polarization state is a saturated polarization state, resonance and 31', Qm, Cx by resonance method
I compared the piezoelectric constants of As a result, there was no significant difference. Also a, C.

3/4λ部N、f、hを同時に正方向に分極し、次にす
、d、e、g、1/4λ部Mを同時に逆方向に分極する
という方法でも同様の効果が得られた。さらにa、C,
3/4λ部N、f、hを結合した端子と、b、d、e、
g、1/4λ部Mを結合した端子との間に、前二つの分
極方法の分極電圧の2倍の電圧を印加して分極、枯化し
た場合も同様の結果が得られた。
A similar effect was obtained by simultaneously polarizing the 3/4λ parts N, f, and h in the positive direction, and then polarizing the 3/4λ parts N, f, and h in the opposite direction simultaneously. Furthermore, a, C,
Terminals connecting 3/4λ parts N, f, h, b, d, e,
Similar results were obtained when a voltage twice the polarization voltage of the previous two polarization methods was applied between the terminal to which the 1/4λ portion M was coupled and polarization and depletion were performed.

一方、実施例のような構造であると、切欠部31.32
〜を施した面に金属板を接着するような場合の接着力を
増すことができる。したがって安定で信頼性の高い板波
振動子を提供可能となる。
On the other hand, if the structure is as in the embodiment, the notches 31 and 32
It is possible to increase the adhesive strength when bonding a metal plate to a surface coated with ~. Therefore, it is possible to provide a stable and highly reliable plate wave vibrator.

かくして、このような振動子をステータ要素として超音
波モータを構成した場合、従来に比べて極めて効率の良
い超音波モータが得られる。
Thus, when an ultrasonic motor is constructed using such a vibrator as a stator element, an ultrasonic motor that is extremely efficient compared to conventional ones can be obtained.

また切欠部31,32〜の深さは、圧電セラミクスから
なるリング状圧電体20の厚みH(約0.5mm)の約
半分、すなわち1/2H(約0.25m+s)程度に設
定されているので、前記改善効果が良好に発揮される。
The depth of the notches 31, 32 is set to approximately half the thickness H (approximately 0.5 mm) of the ring-shaped piezoelectric body 20 made of piezoelectric ceramics, that is, approximately 1/2H (approximately 0.25 m+s). Therefore, the above-mentioned improvement effect is well exhibited.

すなわち切欠部31゜32〜の深さが、深すぎると前述
した第3の手段のように接着時の反りが発生してしまい
、浅すぎると前述した第1の手段のように問題点が改善
されないことになる。
That is, if the depth of the notches 31° 32 is too deep, warping will occur during adhesion as in the third method described above, and if it is too shallow, the problem will be improved as in the first method described above. It will not be done.

なお仕切り境界部としては、第2図(a)に破線部で示
すように、溝状の切欠部内にエポキシ樹脂、ガラス等の
絶縁性部材Sを充填するようにしてもよい。このような
絶縁性部材Sを充填した場合においても、前記同様の作
用効果を奏し得る上、たとえ切欠部31,32〜の深さ
が深すぎたとしても、前述したような反りの発生を防止
できる利点がある。
In addition, as the partition boundary part, as shown by the broken line part in FIG. 2(a), the groove-shaped cutout part may be filled with an insulating member S such as epoxy resin or glass. Even when such an insulating member S is filled, the same effects as described above can be achieved, and even if the depth of the notches 31, 32 is too deep, the occurrence of warping as described above can be prevented. There are advantages that can be achieved.

これに対して従来例のものでは、第2図(b)に示すよ
うに一つ置きに配列されている分極部Vを先ず分極し、
次に隣接する分極部W部を逆方向に分極しているため、
電極が存在していないX部では分極状態の漏れが生じる
。しかもこの漏れ分極は隣り同士で逆向きである。この
ため電極が存在しないX部の幅が十分広ければ、隣り合
った分極部分からの漏れ分極はX部の中心近くで零とな
り、中心部で圧電素子厚み方向にシェア応力が発生する
ことはない。しかしながら、現実にはX部の幅はそれほ
ど広くない場合が多い。このため漏れ分極同士による内
部応力が大きく、場合によってはこの内部応力によって
X部で圧電セラミクスの破壊が生じることがある。また
破壊寸前の状態で止どまったとしても、駆動電力が大き
い場合には、その駆動電力による発生歪みが重畳され、
圧電セラミクスの破壊が生じるおそれがある。したがっ
てこのような状態を回避すべく、通常は未飽和分極状態
に止どめているが、未飽和分極状態であると、分極状態
のバラツキが大きくなるのをまぬがれ得ず、また電気信
号を機械的振動に変換する能力が小さくなる。
On the other hand, in the conventional example, as shown in FIG. 2(b), the polarized parts V arranged every other time are first polarized,
Next, since the adjacent polarized portion W portion is polarized in the opposite direction,
In the X portion where no electrode exists, leakage of the polarization state occurs. Moreover, this leakage polarization is in opposite directions between adjacent devices. Therefore, if the width of the X part where no electrode is present is wide enough, the leakage polarization from adjacent polarized parts will be zero near the center of the X part, and no shear stress will occur in the thickness direction of the piezoelectric element at the center. . However, in reality, the width of the X section is often not so wide. Therefore, the internal stress caused by the leakage polarization is large, and in some cases, this internal stress may cause destruction of the piezoelectric ceramic at the X portion. Furthermore, even if the state is stopped on the verge of destruction, if the driving power is large, the distortion caused by the driving power will be superimposed.
There is a risk of destruction of piezoelectric ceramics. Therefore, in order to avoid such a situation, normally the polarization is kept in an unsaturated state, but if the polarization is in an unsaturated state, it is impossible to avoid large variations in the polarization state, and electrical signals cannot be changed mechanically. The ability to convert into physical vibration becomes smaller.

上記X部で大きなシェア応力が発生する理由は、X部も
電極形成部と同じセラミクスで形成されており、弾性定
数がほぼ等しい材質からなっていることから、内部応力
のしみ出しく漏れ)を起こすためであると考えられる。
The reason why a large shear stress occurs in the above X part is that the X part is also made of the same ceramic as the electrode forming part, and is made of a material with almost the same elastic constant. It is thought that this is to wake up the child.

しかるに本実施例では、前述したように切欠部31.3
2〜を設けて上記内部応力のしみ出しが起り得ない構造
としたので、上述した従来例の欠点がない。
However, in this embodiment, as described above, the notch 31.3
2 to 2 are provided to create a structure in which the internal stress cannot seep out, so there is no drawback of the conventional example described above.

第3図(a)(b)は本発明の第2実施例を示す図であ
る。本実施例が前記第1実施例と異なる点は、その製作
の仕方である。すなわち本実施例においては、第1実施
例と同様な特性を有する圧電セラミクス50を、グリー
ンシート状態で焼結時の収縮率を見込んだ寸法に打抜い
た後、チョコレートブレーク状のセラミクス製造時と同
様に、刃型を用いて溝状の切欠部61.62〜を形成し
たのち焼結し、その後、同図(b)に示すように各領域
の表面側には一定の隙間53をもって電極51を、また
裏側には電極52を、それぞれ印刷しかつ焼付けし、分
極部81.82〜を設けたものである。本実施例におい
ても、前記第1実施例と同様な作用効果を奏し得るのは
勿論、製作が容易である利点がある。
FIGS. 3(a) and 3(b) are diagrams showing a second embodiment of the present invention. This embodiment differs from the first embodiment in its manufacturing method. That is, in this example, a piezoelectric ceramic 50 having the same characteristics as in the first example is punched in a green sheet state to a size that takes into account the shrinkage rate during sintering, and then the piezoelectric ceramic 50 is punched out in a size that takes into account the shrinkage rate during sintering. Similarly, groove-shaped notches 61 and 62 are formed using a blade mold and then sintered, and then, as shown in FIG. and electrodes 52 are printed and baked on the back side, respectively, and polarized portions 81, 82-- are provided. This embodiment also has the advantage of being easy to manufacture, as well as having the same effects as the first embodiment.

第4図は本発明の第3実施例を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

本実施例が前記第1実施例と異なる点は、その製作の仕
方および切欠部の構成である。すなわち本実施例におい
ては、内径および外径が最終の内外径寸法に比べて若干
余裕をもった中空ロッド状の圧電セラミクス筒90に、
その長さ方向に分極部数に相当するだけ切込み溝91,
9.2〜を設け、これを絶縁性材料の流し込み治具(不
図示)にセットした後、上記切込み溝91.92〜にエ
ポキシ樹脂や低融点ガラスを流し込み、硬化後、最終的
な厚みより研磨処理分だけ厚くなるように刃101によ
り輪切りにし、しかるのち両面を研磨する。そしてこの
リング状セラミクスの片面の所定部位に、マスクを用い
て真空蒸管等の手段により電極(不図示)を付与し、他
面には全面に電極を付与したあと、隣同士逆方向に分極
処理する。
This embodiment differs from the first embodiment in the manufacturing method and the structure of the notch. That is, in this embodiment, a hollow rod-shaped piezoelectric ceramic cylinder 90 whose inner diameter and outer diameter have a slight margin compared to the final inner and outer diameter dimensions,
Cut grooves 91 corresponding to the number of polarized parts in the length direction,
9.2~ is prepared and set in an insulating material pouring jig (not shown), then epoxy resin or low melting point glass is poured into the cut grooves 91.92~, and after hardening, the final thickness is It is cut into rounds with the blade 101 so that it becomes thicker by the amount of polishing, and then both sides are polished. Then, an electrode (not shown) is applied to a predetermined part on one side of this ring-shaped ceramic using a mask and a means such as a vacuum steam tube, and after applying an electrode to the entire surface of the other side, the adjacent sides are polarized in opposite directions. Process.

本実施例は、切込み溝91.92〜によって得られる切
欠部が、圧電セラミクスの厚み方向の全部に亙る形とな
るため、第1.第2実施例に比べて隣同士の分極部が完
全に分離されたものとなる。
In this embodiment, the cutout portions obtained by the cut grooves 91, 92, and so on extend over the entire thickness of the piezoelectric ceramic. Compared to the second embodiment, adjacent polarized parts are completely separated.

しかも充填される樹脂もガラスも非圧電性なので、その
部分に分極分布が生じることはない。したがって完全飽
和分極状態を実現できる利点がある。
Moreover, since both the resin and the glass that are filled are non-piezoelectric, no polarization distribution occurs in that part. Therefore, there is an advantage that a completely saturated polarization state can be realized.

なお本発明は前記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲で種々変形実施可能である
のは勿論である。
Note that the present invention is not limited to the embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧電セラミクスの表面および裏面に電
極板を設けた圧電素子本体を、特定領域ごとに仕切るよ
うに、に記圧電素子本体の厚み方向の少なくとも一部(
つまり厚み方向の一部であってもよいし、全部であって
もよい)に溝状の切欠部ををする仕切り境界部を設け、
この仕切り境界部により仕切られた前記各領域に、隣り
合った領域同士の分極方向が互いに逆向きとなる複数の
分極部を設けるようにしたので、各分極部の分極状態を
容易かつ適確に飽和分極状態とすることができ、しかも
各分極部の分極状態のバラツキが極めて小さく、A−B
の条件を満たし得、高効率な超音波モータを実現させ得
る圧電素子をtzat−できる。
According to the present invention, at least a portion of the piezoelectric element body in the thickness direction (
In other words, a partition boundary is provided to form a groove-like cutout (this may be a part or all of the thickness),
Each region partitioned by the partition boundary is provided with a plurality of polarized portions in which the polarization directions of adjacent regions are opposite to each other, so that the polarization state of each polarized portion can be easily and accurately determined. It can be made into a saturated polarization state, and the variation in the polarization state of each polarization part is extremely small, and A-B
It is possible to create a piezoelectric element that can satisfy the following conditions and realize a highly efficient ultrasonic motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の外観を示す斜視図、第2
図(a)(b)は同実施例の作用を説明するための断面
図、第3図(a)(b)は本発明の第2実施例の構成を
示す全体斜視図および部分斜視図、第4図は本発明の第
3実施例の構成を示す斜視図である。第5図〜第12図
は従来技術を示す図である。 20・・・PZT (ジルコン・チタン酸鉛)圧電セラ
ミクスからなるリング状圧電体、21.22・・・電極
、M−1/ 4λ部、N−3/ 4λ部、a、b。 c、dおよびe、f、g、h・・・分割された各領域、
31.32〜・・・溝状の切欠部、41.42〜・・・
分極部、S・・・絶縁性部材。 出願人代理人 弁理士 坪井  4 第1図 第2図 第5図 第6図 第7図 第8図 第10図 第9図 第11図
Fig. 1 is a perspective view showing the appearance of the first embodiment of the present invention;
FIGS. 3(a) and 3(b) are sectional views for explaining the operation of the second embodiment, and FIGS. 3(a) and 3(b) are an overall perspective view and a partial perspective view showing the configuration of the second embodiment of the present invention, FIG. 4 is a perspective view showing the configuration of a third embodiment of the present invention. FIG. 5 to FIG. 12 are diagrams showing the prior art. 20... Ring-shaped piezoelectric body made of PZT (zircon lead titanate) piezoelectric ceramics, 21.22... Electrode, M-1/4λ part, N-3/4λ part, a, b. c, d and e, f, g, h... each divided area,
31.32~...Groove-shaped notch, 41.42~...
Polarized part, S...insulating member. Applicant's agent Patent attorney Tsuboi 4 Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 9 Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)圧電セラミクスの表面および裏面に電極板を設け
た圧電素子本体を、特定領域ごとに仕切るように、上記
圧電素子本体の厚み方向の少なくとも一部に溝状の切欠
部を有する仕切り境界部を設け、この仕切り境界部によ
り仕切られた前記各領域に、隣り合った領域同士の分極
方向が互いに逆向きとなる複数の分極部を設けるように
したことを特徴とする圧電素子。
(1) A partition boundary portion having a groove-shaped notch in at least a part of the thickness direction of the piezoelectric element body so as to partition the piezoelectric element body having electrode plates on the front and back surfaces of the piezoelectric ceramic into specific areas. A piezoelectric element, characterized in that each region partitioned by the partition boundary portion is provided with a plurality of polarization portions in which polarization directions of adjacent regions are opposite to each other.
(2)仕切り境界部は、溝状の切欠部内にエポキシ樹脂
、ガラス等の絶縁性材料が充填されたものであることを
特徴とする特許請求の範囲第1項記載の圧電素子。
(2) The piezoelectric element according to claim 1, wherein the partition boundary is a groove-shaped notch filled with an insulating material such as epoxy resin or glass.
JP62054672A 1987-03-10 1987-03-10 Piezoelectric element Pending JPS63220782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054672A JPS63220782A (en) 1987-03-10 1987-03-10 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054672A JPS63220782A (en) 1987-03-10 1987-03-10 Piezoelectric element

Publications (1)

Publication Number Publication Date
JPS63220782A true JPS63220782A (en) 1988-09-14

Family

ID=12977273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054672A Pending JPS63220782A (en) 1987-03-10 1987-03-10 Piezoelectric element

Country Status (1)

Country Link
JP (1) JPS63220782A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236175A (en) * 1991-01-17 1992-08-25 Seiko Epson Corp Ultrasonic motor
US5274294A (en) * 1989-09-06 1993-12-28 Canon Kabushiki Kaisha Vibration wave driven motor
JP2005287247A (en) * 2004-03-30 2005-10-13 Canon Inc Piezoelectric material and its polarization method
JP2008259410A (en) * 2007-03-14 2008-10-23 Nikon Corp Vibration actuator, lens barrel, camera, method of manufacturing vibrator and method of manufacturing vibration actuator
US8286330B2 (en) * 2009-05-08 2012-10-16 Canon Kabushiki Kaisha Method of producing a vibrating body for a vibration wave drive device
JP2019145581A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Piezoelectric element
CN112260576A (en) * 2020-10-30 2021-01-22 西安科技大学 Single crystal splicing method for annular ultrasonic motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274294A (en) * 1989-09-06 1993-12-28 Canon Kabushiki Kaisha Vibration wave driven motor
JPH04236175A (en) * 1991-01-17 1992-08-25 Seiko Epson Corp Ultrasonic motor
JP2005287247A (en) * 2004-03-30 2005-10-13 Canon Inc Piezoelectric material and its polarization method
JP4497980B2 (en) * 2004-03-30 2010-07-07 キヤノン株式会社 Piezoelectric body and polarization method thereof
JP2008259410A (en) * 2007-03-14 2008-10-23 Nikon Corp Vibration actuator, lens barrel, camera, method of manufacturing vibrator and method of manufacturing vibration actuator
US8549728B2 (en) 2007-03-14 2013-10-08 Nikon Corporation Manufacturing method for vibration body and manufacturing method for vibration actuator
KR101522424B1 (en) * 2007-03-14 2015-05-21 가부시키가이샤 니콘 Vibration actuator, lens barrel, camera, manufacturing method of vibrator and manufacturing method of vibration actuator
US8286330B2 (en) * 2009-05-08 2012-10-16 Canon Kabushiki Kaisha Method of producing a vibrating body for a vibration wave drive device
US9154054B2 (en) 2009-05-08 2015-10-06 Canon Kabushiki Kaisha Vibrating body for vibration wave drive device and method of producing vibrating body for vibration wave drive device
JP2019145581A (en) * 2018-02-16 2019-08-29 Tdk株式会社 Piezoelectric element
CN112260576A (en) * 2020-10-30 2021-01-22 西安科技大学 Single crystal splicing method for annular ultrasonic motor

Similar Documents

Publication Publication Date Title
US6046526A (en) Production method of laminated piezoelectric device and polarization method thereof and vibration wave driven motor
JP5665522B2 (en) Vibrating body and vibration type driving device
JPH06224484A (en) Piezoelectric porcelain transformer and driving method therefor
JPH09261978A (en) Laminated element and vibration driver
JPS63220782A (en) Piezoelectric element
EP2940864B1 (en) Piezoelectric component
JP3262049B2 (en) Piezoelectric resonator and electronic component using the same
JPH0997933A (en) Piezoelectric transformer
JPH11112046A (en) Piezoelectric actuator and its manufacture
JP3944796B2 (en) Multilayer actuator and method of manufacturing the piezoelectric element
JP3311034B2 (en) Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device
JP2007264095A (en) Vibration plate and vibration wave driving device
JP2508964B2 (en) Piezoelectric transformer and driving method thereof
JPH04167504A (en) Piezoelectric ceramic transformer and its driving method
JPH0774410A (en) Manufacture of electrostriction laminate
JP3104667B2 (en) Piezoelectric transformer
JP2555985B2 (en) Piezoelectric transformer and its driving method
JP5589395B2 (en) Piezoelectric actuator
JP3510516B2 (en) Piezoelectric transformer
EP0884832A1 (en) Piezomotor with a piezoelectric composite transducer, and method for manufacturing such a transducer
JPH03104290A (en) Laminate coupled piezoelectric element
JPH05260770A (en) Method for manufacturing piezoelectric actuator
JPH0677555A (en) Method for manufacturing laminated piezoelectric element
JP3445552B2 (en) Piezoelectric transformer
JP4831859B2 (en) Piezoelectric transformer