JP6533084B2 - Power split type continuously variable transmission - Google Patents

Power split type continuously variable transmission Download PDF

Info

Publication number
JP6533084B2
JP6533084B2 JP2015072170A JP2015072170A JP6533084B2 JP 6533084 B2 JP6533084 B2 JP 6533084B2 JP 2015072170 A JP2015072170 A JP 2015072170A JP 2015072170 A JP2015072170 A JP 2015072170A JP 6533084 B2 JP6533084 B2 JP 6533084B2
Authority
JP
Japan
Prior art keywords
gear
reverse
continuously variable
variable transmission
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015072170A
Other languages
Japanese (ja)
Other versions
JP2016191436A (en
Inventor
浩二 福元
浩二 福元
弥輝 檀上
弥輝 檀上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2015072170A priority Critical patent/JP6533084B2/en
Publication of JP2016191436A publication Critical patent/JP2016191436A/en
Application granted granted Critical
Publication of JP6533084B2 publication Critical patent/JP6533084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Structure Of Transmissions (AREA)

Description

本発明は、自動車に採用される動力分割式無段変速装置に関し、具体的には、後進時の減速比の改善に関する。 The present invention relates to a power split continuously variable transmission employed in a motor vehicle, and more particularly, to improvement of a reduction gear ratio at reverse.

自動車用動力分割式無段変速装置は、無段変速機構と、一定変速機構と、該両機構から伝達された動力を合成する遊星歯車式合成機構とを備えており、動力が前記無段変速機構のみに伝達される無段変速モードと、前記動力が前記無段変速機構と一定変速機構とに分割して伝達され、前記合成機構で合成されて駆動輪に伝達される動力分割モードに切り替え可能に構成されている(例えば特許文献1参照)。 A power split type continuously variable transmission for an automobile includes a continuously variable transmission mechanism, a constant transmission mechanism, and a planetary gear type synthesis mechanism that synthesizes the power transmitted from both mechanisms, and the power is the continuously variable transmission. Switching to the power split mode in which the power is split and transmitted to the continuously variable transmission mechanism and the constant transmission mechanism and is combined by the combining mechanism and transmitted to the drive wheels It is comprised possible (for example, refer patent document 1).

特開2015−10645号公報JP, 2015-10645, A

ところで前記動力分割式の従来装置では、後進駆動モードを実現するために各種の構成が採用されている。例えば、図4に示す装置では、CVT(無段変速機構)20と、遊星歯車機構120からなる一定変速機構30と、遊星歯車式の合成機構40とを備えており、後進駆動モードでは、一定変速機構30のサンギヤ120aに接続された一定変速駆動ギヤ130を後進ブレーキB2で固定することにより、合成機構40の合成キャリア40cを固定し、CVT20からの正回転によりリングギヤ40dを逆回転させるようにしている(図3に破線で示す直線A参照)。 By the way, in the above-mentioned power split type conventional device, various configurations are adopted to realize the reverse drive mode. For example, the apparatus shown in FIG. 4 includes a CVT (continuously variable transmission mechanism) 20, a constant transmission mechanism 30 including a planetary gear mechanism 120, and a combining mechanism 40 of a planetary gear type, and constant in the reverse drive mode. By fixing the fixed transmission gear 130 connected to the sun gear 120a of the transmission mechanism 30 with the reverse brake B2, the composite carrier 40c of the combining mechanism 40 is fixed, and the ring gear 40d is reversely rotated by forward rotation from the CVT 20. (See the straight line A indicated by a broken line in FIG. 3).

ところが遊星歯車式合成機構40の合成キャリア40cを固定することによりリングギヤ40dを逆転させるように構成した場合、前進時の最ロー変速比γmaxに比較して後進時の最ロー変速比がリングギヤとサンギヤの歯数比分だけさらにローとなり、後進回転数が低下し、後進トルクが過大となる問題がある。 However, when the ring gear 40d is configured to be reversely rotated by fixing the synthetic carrier 40c of the planetary gear type synthesis mechanism 40, the lowest gear ratio at reverse is the ring gear and the sun gear as compared with the lowest gear ratio γmax at forward. The gear ratio is further lowered by the ratio of the number of gear teeth, the reverse rotation speed decreases, and the reverse torque becomes excessive.

この問題を回避するために、後進時に前記CVT20をハイ側に変速させる方法がある。しかしこのためには、エンジン回転数の低いアイドル状態でCVTのプーリ変速制御と後進ブレーキの制動を同時に実行することとなり、必要なポンプ容量が大きくなり、結果的に損失トルクや車両重量が増大するという問題が生じる。 In order to avoid this problem, there is a method of shifting the CVT 20 to the high side during reverse. However, for this purpose, CVT pulley shift control and reverse brake braking will be simultaneously executed in an idle state with a low engine speed, and the required pump displacement will increase, resulting in an increase in loss torque and vehicle weight. The problem arises.

本発明は、前記従来の状況に鑑みてなされたもので、後進時の最ロー変速比が前進時の最ロー変速比に比べて過剰に低くなるのを抑制できる動力分割式無段変速装置を提供することを課題としている。 The present invention has been made in view of the above-mentioned conventional situation, and it is possible to suppress a power split type continuously variable transmission which can suppress that the lowest gear ratio at the time of reverse traveling becomes excessively lower than the lowest gear ratio at the time of forward traveling. It is an issue to provide.

本発明は、無段変速機構と、一定変速機構と、該両変速機構の出力を合成する遊星歯車式の合成機構と、該合成機構からの動力を駆動輪に伝達する車輪駆動機構とを備え、動力が、前記無段変速機構のみに伝達される無段変速モードと、前記動力が前記無段変速機構と一定変速機構との両方に分割して伝達される動力分割モードとに切り替え可能に構成された動力分割式無段変速装置において、
前記合成機構は、前記無段変速機構の出力軸に固定されたサンギヤと、該サンギヤに噛合するピニンギヤを軸支するキャリアと、該ピニオンギヤに噛合するとともに前記車輪駆動機構に連結されるリングギヤとを有し、前記一定変速機構は、前記動力分割モード時に入力軸に連結される一定変速駆動ギヤと、該一定変速駆動ギヤに一定変速アイドラギヤを介して噛合し、前記キャリアに形成された一定変速従動ギヤとを有し、後進時に前記入力軸に連結される後進駆動ギヤと、該後進駆動ギヤに噛合する後進アイドラギヤと、該後進アイドラギヤに噛合するとともに前記一定変アイドラギヤが固定されたアイドラ軸に固定された後進従動ギヤとを有する後進機構を備えたことを特徴としている。
The present invention comprises a continuously variable transmission mechanism, a constant transmission mechanism, a planetary gear type combining mechanism that combines the outputs of both transmission mechanisms, and a wheel drive mechanism that transmits power from the combining mechanism to the drive wheels. Switchable between a continuously variable transmission mode in which power is transmitted only to the continuously variable transmission mechanism and a power split mode in which the power is divided and transmitted to both the continuously variable transmission mechanism and the constant transmission mechanism In the configured power split type continuously variable transmission,
The synthesis mechanism includes a ring gear, wherein a sun gear fixed to the output shaft of the continuously variable transmission mechanism, a carrier for supporting the pinion Oh Ngiya meshing with said sun gear, is coupled to the wheel drive mechanism while meshed with the pinion has the door, the fixed speed change mechanism includes a fixed speed ratio drive gear which is connected to the input shaft to the power split mode, it meshed through a fixed speed ratio idler gear to the fixed speed ratio drive gear, formed on the carrier and a fixed speed ratio driven gear has a reverse drive gear that is connected to the input shaft upon reverse, a reverse idler gear meshing with the rear advancing drive gear, said predetermined speed change idler gear while meshing with the rear proceeds idler gear is fixed And a reverse driven mechanism having a reverse driven gear fixed to the idler shaft.

請求項1の発明によれば、後進時には、前記合成機構において、前記無段変速機構の出力軸に固定されたサンギヤが該無段変速機構の最ロー変速比に応じて正回転する。一方、後進機構では後進駆動ギヤの正回転により後進アイドラギヤを介して後進従動ギヤが正回転し、これにより一定変速アイドラギヤがキャリアを逆回転させる。その結果、該キャリアに軸支されたピニンギヤを介してリングギヤが逆回転して後輪駆動機構を介して車輪を逆回転させ、車両は後進する。   According to the first aspect of the invention, during reverse, in the combining mechanism, the sun gear fixed to the output shaft of the continuously variable transmission mechanism rotates forward according to the lowest speed ratio of the continuously variable transmission mechanism. On the other hand, in the reverse drive mechanism, the reverse driven gear rotates forward through the reverse idler gear by the forward rotation of the reverse drive gear, whereby the constant-speed idler gear reversely rotates the carrier. As a result, the ring gear is reversely rotated via the pinin gear pivotally supported by the carrier, the wheels are reversely rotated via the rear wheel drive mechanism, and the vehicle reverses.

このように、後進時には、合成機構において、サンギヤの正回転に対してキャリアが逆回転するので、キャリアが固定されている場合に比較して出力回転数(リングギヤ回転数)が高くなる。その結果、後進時の最ロー変速比はキャリアが固定されている場合に比較して高くなり、後進回転数が増加し、後進トルクが過大となるのを防止できる。 As described above, at the time of reverse travel, in the combining mechanism, the carrier is reversely rotated with respect to the forward rotation of the sun gear, so the output rotation number (ring gear rotation number) becomes higher than when the carrier is fixed. As a result, the lowest gear ratio at reverse is higher than when the carrier is fixed, and the reverse rotation speed is increased to prevent the reverse torque from becoming excessive.

本発明の実施例1に係る動力分割式無段変速装置のスケルトン構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a skeleton block diagram of the power split-type continuously variable transmission which concerns on Example 1 of this invention. 前記無段変速装置の各モード及び後進時の各ブレーキ,クラッチの作動状態を示す図である。It is a figure which shows each mode of the said continuously variable transmission, and each brake and the working state of a clutch at the time of reverse gear. 前記無段変速装置の後進時における合成機構のサンギヤ,キャリア及びリングギヤの回転速度を示す共線図である。It is an alignment chart which shows the rotational speed of the sun gear of the synthetic | combination mechanism at the time of reverse movement of the said stepless transmission, carrier, and a ring gear. 従来の動力分割式無段変速装置のスケルトン構成図である。It is a skeleton block diagram of the conventional power split type continuously variable transmission.

以下、本発明の実施形態を添付図面に沿って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

図1〜図3は本発明の実施例1に係る動力分割式無段変速装置を説明するための図である。 1 to 3 are views for explaining a power split-type continuously variable transmission according to a first embodiment of the present invention.

図において、1は自動車用動力分割式無段変速装置である。該無段変速装置1は、エンジン回転を無段階比率で変速して出力するCVT(無段変速機構)2と、エンジン回転を一定比率で変速して出力する一定変速機構3と、前記CVT2及び一定変速機構3からの出力を合成して出力する遊星歯車式の合成機構4と、エンジン回転を逆転させて前記一定変速機構3を介して前記合成機構4に伝達する後進機構5と、さらに前記合成機構4からの出力を駆動輪に伝達する車輪駆動機構6とを備えている。 In the figure, reference numeral 1 denotes a power split type continuously variable transmission for an automobile. The continuously variable transmission 1 comprises a CVT (continuously variable transmission mechanism) 2 that shifts and outputs engine rotation at a stepless ratio, a constant transmission mechanism 3 that shifts and outputs engine rotation at a constant ratio, the CVT 2 and A planetary gear type combining mechanism 4 which combines and outputs the output from the constant speed change mechanism 3, a reverse movement mechanism 5 which reversely rotates the engine and transmits it to the combining mechanism 4 via the constant speed change mechanism 3; And a wheel drive mechanism 6 for transmitting the output from the combining mechanism 4 to the drive wheels.

前記CVT2は、互いに平行に配設されたプライマリ軸7,セカンダリ軸8に固定されたプライマリプーリ9,セカンダリプーリ10に金属ベルト11を巻回した構造のものであり、前記両プーリ9,10のベルト巻き掛け径を変化させることで入力回転を最ロー変速比(γmax)から最ハイ変速比(γmin)まで変速させるようになっている。なお、前記プライマリ軸7は図示しないトルクコンバータに接続された入力軸17に連結されている。 The CVT 2 has a structure in which a metal belt 11 is wound around a primary shaft 7 and a primary pulley 9 fixed to a secondary shaft 8 and a secondary pulley 10 fixed in parallel to each other. By changing the belt winding diameter, the input rotation is shifted from the lowest speed ratio (γmax) to the highest speed ratio (γmin). The primary shaft 7 is connected to an input shaft 17 connected to a torque converter (not shown).

前記CVT2は、例えば、前記プライマリプーリ9が最小径でセカンダリプーリ10が最大径のとき最ロー変速比γmaxとなり、逆にプライマリプーリ9が最大径でセカンダリプーリ10が最小径のとき最ハイ変速比γminとなる。 The CVT 2 has, for example, the lowest gear ratio γmax when the primary pulley 9 has the smallest diameter and the secondary pulley 10 has the largest diameter, and conversely, the highest gear ratio when the primary pulley 9 has the largest diameter and the secondary pulley 10 has the smallest diameter. It becomes γmin.

また、前記一定変速機構3は、前記入力軸7に配設された一定変速遊星歯車機構12と、該機構12のサンギヤ12aに固定された一定変速駆動ギヤ13と、該駆動ギヤ13に噛合する一定変速アイドラギヤ14と、後述する合成キャリア4cに形成された一定変速従動ギヤ4eとを有する。前記一定変速アイドラギヤ14は変速機ケースに軸支された一定変速アイドラ軸15に固定されている。 The constant transmission mechanism 3 meshes with a constant transmission planetary gear mechanism 12 disposed on the input shaft 7, a constant transmission drive gear 13 fixed to a sun gear 12 a of the mechanism 12, and the drive gear 13. It has a constant-speed idler gear 14 and a constant-speed driven gear 4e formed on a composite carrier 4c described later. The constant-speed idler gear 14 is fixed to a constant-speed idler shaft 15 axially supported by the transmission case.

前記一定変速遊星歯車機構12は、前記入力軸17に軸支されたサンギヤ12aと、該サンギヤ12aに噛合するアイドラギヤ12bを軸支し、前記入力軸17に固定されたキャリア12cと、前記アイドラギヤ12bに噛合するリングギヤ12dと、該リングギヤ12dを制動可能に形成された分割ブレーキB1とを有する。 The constant-speed planetary gear mechanism 12 supports a sun gear 12a axially supported by the input shaft 17, an idler gear 12b meshed with the sun gear 12a, a carrier 12c fixed to the input shaft 17, and the idler gear 12b. And a split brake B1 formed to be capable of braking the ring gear 12d.

ここで前記一定変速機構3の変速比は、前記CVT2の最ハイ変速比γminと同じ値に設定されている。なお、前記一定変速アイドラギヤ14は変速比に関与しない。 Here, the transmission ratio of the constant transmission mechanism 3 is set to the same value as the highest transmission ratio γmin of the CVT 2. The constant-speed idler gear 14 does not contribute to the transmission ratio.

前記合成機構4は、前記セカンダリ軸8に固定された合成サンギヤ4aと、該合成サンギヤ4aに噛合する複数の合成アイドラギヤ4bを軸支し、前記セカンダリ8に軸支された合成キャリア4cと、前記アイドラギヤ4bに噛合する合成リングギヤ4dとを有する。なお前記一定変速従動ギヤ4eは前記合成キャリア4cと共に回転するように形成されている。 The combining mechanism 4 supports a combining sun gear 4a fixed to the secondary shaft 8 and a plurality of combining idler gears 4b meshing with the combining sun gear 4a, and a combining carrier 4c supported by the secondary 8; And a synthetic ring gear 4d engaged with the idler gear 4b. The constant speed driven gear 4e is formed to rotate with the synthetic carrier 4c.

また前記合成リングギヤ4dと前記セカンダリ軸8との間には前進クラッチC2が形成されている。この前進クラッチC2は、オンすることで前記セカンダリ軸8と前記合成リングギヤ4dに接続された出力軸6aとを直結する
前記車輪駆動機構6は、前記出力軸6aに固定された出力ギヤ6bと、該出力ギヤ6bに噛合する出力アイドラギヤ6cと、該出力アイドラギヤ6cが固定された出力アイドラ軸6dに固定され、差動機構16のリングギヤ16aに噛合する差動駆動ギヤ6eとを有する。
Further, a forward clutch C2 is formed between the combined ring gear 4d and the secondary shaft 8. The wheel drive mechanism 6, which directly connects the secondary shaft 8 and the output shaft 6a connected to the combined ring gear 4d when the forward clutch C2 is turned on, includes an output gear 6b fixed to the output shaft 6a. It has an output idler gear 6c meshing with the output gear 6b, and a differential drive gear 6e fixed to the output idler shaft 6d to which the output idler gear 6c is fixed and meshing with the ring gear 16a of the differential mechanism 16.

前記後進機構5は、前記入力軸17に後進クラッチC1を介して連結可能に構成された後進駆動ギヤ5aと、該後進駆動ギヤ5aに噛合する後進アイドラギヤ5bと、該後進アイドラギヤ5bに噛合する後進従動ギヤ5cとを有する。この後進従動ギヤ5cは前記一定変速アイドラ軸15に固定されている。 The reverse drive mechanism 5 includes a reverse drive gear 5a configured to be connectable to the input shaft 17 via a reverse clutch C1, a reverse idler gear 5b meshing with the reverse drive gear 5a, and a reverse gear meshing with the reverse idler gear 5b. And a driven gear 5c. The reverse driven gear 5 c is fixed to the constant speed shift idler shaft 15.

本実施例装置1は、エンジン回転が前記CVT2のみに伝達される無段変速モードと、前記エンジン回転が前記CVT2と前記一定変速機構3との両方に伝達され、前記合成機構4で合成されて駆動輪に伝達される動力分割モードとに切り替え可能に構成されている。 In the first embodiment, the engine rotation is transmitted to both the CVT 2 and the constant transmission mechanism 3, and the engine rotation is transmitted to both the CVT 2 and the constant transmission mechanism 3. It is configured to be switchable to the power split mode transmitted to the drive wheel.

前記無段変速モードでは、後進機構5の後進クラッチC1及び一定変速遊星歯車機構12の分割ブレーキB1はオフ(解放)され、前記合成機構4の前進クラッチC2はオン(係合)される。 In the continuously variable transmission mode, the reverse clutch C1 of the reverse mechanism 5 and the split brake B1 of the constant speed planetary gear mechanism 12 are turned off (released), and the forward clutch C2 of the combining mechanism 4 is turned on (engaged).

するとエンジン回転は、後進クラッチC1,分割ブレーキB1が何れもオフしているため後進機構5,一定変速機構3には伝達されず、CVT2のみに伝達され、該CVT2により所定の変速比で変速され、出力軸8に伝達される。そして該出力軸8の回転が、オンされている前進クラッチC2を介して車輪駆動機構6の出力軸6aに伝達され、ここから差動機構16を介して駆動輪に伝達され、車両は前進する。 Then, since the reverse rotation clutch C1 and the split brake B1 are both off, the engine rotation is not transmitted to the reverse rotation mechanism 5 and the constant speed change mechanism 3 but is transmitted only to the CVT 2 and is shifted by the CVT 2 at a predetermined gear ratio. , And transmitted to the output shaft 8. Then, the rotation of the output shaft 8 is transmitted to the output shaft 6a of the wheel drive mechanism 6 via the forward clutch C2 that is turned on, and transmitted to the drive wheels via the differential mechanism 16 from there to drive the vehicle forward. .

前記CVT2が最ハイ変速比γminとなった時点で、前記動力分割モードに切り替えられる。この場合、後進機構5の後進クラッチC1及び合成機構4の前進クラッチC2はオフ(解放)され、一定変速遊星歯車機構12の分割ブレーキB1はオン(制動)される。 When the CVT 2 reaches the highest gear ratio γmin, the mode is switched to the power split mode. In this case, the reverse clutch C1 of the reverse mechanism 5 and the forward clutch C2 of the combining mechanism 4 are turned off (released), and the split brake B1 of the constant speed planetary gear mechanism 12 is turned on (braking).

この動力分割モードでは、CVT2に伝達された回転は、該CVT2により最ハイ変速比γminで変速され、出力軸8に伝達され、合成サンギヤ4aを回転させる。一方、分割ブレーキB1がリングギヤ12dを固定しているので、一定変速機構3のキャリア12cに伝達された回転によりピニオンギヤ12bを介してサンギヤ12bを正回転させる。 In this power split mode, the rotation transmitted to the CVT 2 is shifted by the CVT 2 at the highest gear ratio γmin, transmitted to the output shaft 8, and causes the synthetic sun gear 4a to rotate. On the other hand, since the split brake B1 fixes the ring gear 12d, the sun gear 12b is rotated forward via the pinion gear 12b by the rotation transmitted to the carrier 12c of the constant speed change mechanism 3.

この回転が、一定変速駆動ギヤ13及び一定変速アイドラギヤ14を介して合成キャリア4cを正回転させる。一定変速機構3の変速比はCVT2の最ハイ変速比γminと同じであるから、合成キャリア4c,合成サンギヤ4a及び合成リングギヤ4dひいては出力軸6aの回転は同一となる。この状態でCVT2の変速比をロー側に変化させると合成リングギヤ4dひいては出力軸6aの回転が上昇する。即ち、本実施例に係る動力分割式無段変速機1では、その変速比幅を拡大できる。 This rotation causes the composite carrier 4c to rotate forward via the constant transmission drive gear 13 and the constant transmission idler gear 14. Since the transmission gear ratio of the constant transmission mechanism 3 is the same as the highest transmission gear ratio γmin of the CVT 2, the rotations of the synthetic carrier 4c, the synthetic sun gear 4a and the synthetic ring gear 4d and hence the output shaft 6a become the same. In this state, when the transmission ratio of the CVT 2 is changed to the low side, the rotation of the combined ring gear 4 d and hence the output shaft 6 a is increased. That is, in the power split type continuously variable transmission 1 according to the present embodiment, the transmission ratio width can be expanded.

そして、後進時には、後進クラッチC1がオンされ、分割ブレーキB1及び前進クラッチC2がオフされる。このときCVT2は最ロー変速比状態にあり、エンジン回転はこのCVT2により最ロー変速比でもって減速されて出力軸8から合成サンギヤ4aに伝達される。また前記エンジン回転は、後進クラッチC1から後進駆動ギヤ5a,後進アイドラギヤ5b,後進従動ギヤ5c,一定変速アイドラギヤ14及び一定変速従動ギヤ4eを介して合成キャリア4cを逆方向に回転させる。これにより合成リングギヤ4dひいては車輪駆動機構6の出力軸6aが逆方向に回転する。   Then, during reverse, the reverse clutch C1 is turned on, and the split brake B1 and the forward clutch C2 are turned off. At this time, the CVT 2 is in the lowest gear ratio state, and the engine rotation is decelerated at the lowest gear ratio by the CVT 2 and transmitted from the output shaft 8 to the synthetic sun gear 4 a. The engine rotation rotates the composite carrier 4c in the reverse direction via the reverse drive clutch C1, the reverse drive gear 5a, the reverse idler gear 5b, the reverse driven gear 5c, the constant speed change idler gear 14 and the constant speed driven gear 4e. As a result, the synthetic ring gear 4d and hence the output shaft 6a of the wheel drive mechanism 6 rotate in the reverse direction.

このように本実施例では、合成キャリア4cを逆転させるようにしたので、キャリアを回転させない場合(図3に破線の直線Aで示す)に比較して合成機構4の変速比が大きくなり、合成リングギヤ4dが増速され(図3に実線の直線Bで示す)、後進トルクが小さくなり、後進動作を穏やかにでき、安全性を向上できる。 As described above, in the present embodiment, since the synthetic carrier 4c is reversely rotated, the transmission gear ratio of the synthetic mechanism 4 becomes larger as compared with the case where the carrier is not rotated (indicated by the dashed straight line A in FIG. 3). The ring gear 4d is accelerated (indicated by a solid line B in FIG. 3), the reverse torque is reduced, the reverse operation can be made gentle, and the safety can be improved.

ここで前記遊星歯車機構のキャリアを固定した状態で前記後進時の変速比が過剰にローになるのを回避するために、後進時にCVTをハイ側に変速させることが考えられる。しかしこのようにするには、シフトレバーを後進に切り替えた際にエンジン回転数の低いアイドル状態でCVTの変速と後進ブレーキの制動とを同時に可能とするようポンプ容量をアップすることが必要となり、損失トルクの増加,車両重量及びコストが増大することが懸念される。本実施例ではこのような問題を回避できる。 Here, it is conceivable to shift the CVT to the high side at the time of reverse travel in order to avoid that the gear ratio at the time of reverse travel becomes excessively low while the carrier of the planetary gear mechanism is fixed. However, in order to do this, it is necessary to increase the pump displacement to simultaneously enable CVT shift and reverse brake braking in an idle state with low engine speed when switching the shift lever to reverse. It is feared that the loss torque increases, the vehicle weight and cost increase. Such a problem can be avoided in the present embodiment.

なお、前記実施例では、無段変速機構がCVTであり、一定変速機構が遊星歯車機構からなるものである場合を説明したが、本発明の無段変速機構,一定変速機構は前記実施例に限定されない。例えば無段変速機構は、トロイダル方式あるいは油圧方式のものであっても勿論構わない。   In the embodiment described above, the case where the continuously variable transmission mechanism is a CVT and the constant transmission mechanism is a planetary gear mechanism has been described. However, the continuously variable transmission mechanism and the constant transmission mechanism of the present invention It is not limited. For example, the continuously variable transmission mechanism may of course be a toroidal system or a hydraulic system.

1 動力分割式無段変速機
2 CVT(無段変速機構)
3 一定変速機構
4 合成機構
4a 合成サンギヤ
4b 合成ピニンギヤ
4c 合成キャリア
4d 合成リングギヤ
4e一定変速従動ギヤ
5 後進機構
5a 後進駆動ギヤ
5b 後進アイドラギヤ
5c 後進従動ギヤ
6 車輪駆動機構
7 プライマリ軸(入力軸)
8 セカンダリ軸(出力軸)
13 一定変速駆動ギヤ
14 一定変速アイドラギヤ
15 アイドラ軸
1 Power split type continuously variable transmission 2 CVT (continuously variable transmission mechanism)
3 constant speed change mechanism 4 synthetic mechanism 4a synthetic sun gear 4b synthetic pinin gear 4c synthetic carrier 4d synthetic ring gear 4e constant speed transmission driven gear 5 reverse mechanism 5a reverse drive gear 5b reverse idler gear 5c reverse driven gear 6 wheel drive mechanism 7 primary shaft (input shaft)
8 Secondary axis (output axis)
13 constant speed drive gear 14 constant speed idler gear 15 idler shaft

Claims (1)

無段変速機構と、一定変速機構と、該両変速機構の出力を合成する遊星歯車式の合成機構と、該合成機構からの動力を駆動輪に伝達する車輪駆動機構とを備え、
動力が、前記無段変速機構のみに伝達される無段変速モードと、前記動力が前記無段変速機構と一定変速機構との両方に分割して伝達される動力分割モードとに切り替え可能に構成された動力分割式無段変速装置において、
前記合成機構は、前記無段変速機構の出力軸に固定されたサンギヤと、該サンギヤに噛合するピニンギヤを軸支するキャリアと、該ピニオンギヤに噛合するとともに前記車輪駆動機構に連結されるリングギヤとを有し、
前記一定変速機構は、前記動力分割モード時に入力軸に連結される一定変速駆動ギヤと、該一定変速駆動ギヤに一定変速アイドラギヤを介して噛合し、前記キャリアに形成された一定変速従動ギヤとを有し、
後進時に前記入力軸に連結される後進駆動ギヤと、該後進駆動ギヤに噛合する後進アイドラギヤと、該後進アイドラギヤに噛合するとともに前記一定変アイドラギヤが固定されたアイドラ軸に固定された後進従動ギヤとを有する後進機構を
備えたことを特徴とする動力分割式無段変速装置。
A continuously variable transmission mechanism, a constant transmission mechanism, a planetary gear type combining mechanism that combines outputs of the both transmission mechanisms, and a wheel drive mechanism that transmits power from the combining mechanism to drive wheels,
It is configured to be switchable between a continuously variable transmission mode in which power is transmitted only to the continuously variable transmission mechanism and a power split mode in which the power is divided and transmitted to both the continuously variable transmission mechanism and a constant transmission mechanism. Power split type continuously variable transmission,
The synthesis mechanism includes a ring gear, wherein a sun gear fixed to the output shaft of the continuously variable transmission mechanism, a carrier for supporting the pinion Oh Ngiya meshing with said sun gear, is coupled to the wheel drive mechanism while meshed with the pinion Have and
The certain speed change mechanism includes a fixed speed ratio drive gear which is connected to the input shaft to the power split mode, the fixed speed ratio engaged through a fixed speed ratio idler gear to the drive gear, the fixed speed ratio driven gear formed on the carrier Have and
A reverse drive gear that is connected to the input shaft upon reverse, a reverse idler gear meshing with the rear advancing drive gear, the reverse driven gear is the fixed speed change idler gear while meshing with the rear proceeds idler gear fixed to the idler shaft fixed What is claimed is: 1. A power split type continuously variable transmission, comprising: a reverse gear mechanism having:
JP2015072170A 2015-03-31 2015-03-31 Power split type continuously variable transmission Active JP6533084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072170A JP6533084B2 (en) 2015-03-31 2015-03-31 Power split type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072170A JP6533084B2 (en) 2015-03-31 2015-03-31 Power split type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2016191436A JP2016191436A (en) 2016-11-10
JP6533084B2 true JP6533084B2 (en) 2019-06-19

Family

ID=57245689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072170A Active JP6533084B2 (en) 2015-03-31 2015-03-31 Power split type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6533084B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552376B2 (en) * 2002-11-29 2010-09-29 株式会社エクォス・リサーチ Infinite transmission
DE112007000850A5 (en) * 2006-04-19 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Continuously variable power transmission and method for controlling a stepless power split transmission

Also Published As

Publication number Publication date
JP2016191436A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP5832002B2 (en) Continuously variable transmission
WO2013175582A1 (en) Vehicle power transmission device
JP6014968B2 (en) Continuously variable transmission
JP2011122684A (en) Continuously variable transmission
JP2006046468A (en) Continuously variable transmission
JP2008196670A (en) Forward/reverse shifting mechanism using brake band
WO2012035834A1 (en) Continuously variable transmission
JP6533084B2 (en) Power split type continuously variable transmission
WO2013077035A1 (en) Continuously variable transmission
JP4685603B2 (en) Gearbox for work vehicle
JP6332985B2 (en) Power split type continuously variable transmission
JP6365246B2 (en) Automatic transmission
WO2014147779A1 (en) Automatic transmission control device
JP6379218B2 (en) Continuously variable transmission
JP6316608B2 (en) Torque split type vehicle transmission
JP6123733B2 (en) Vehicle transmission
JP2006207605A (en) Vehicle loaded with final deceleration ratio switching mechanism
JPH0989055A (en) Gear type continuously variable transmission, gear type continuously variable transmission for automobile and gear type continuously variable transmission for general industrial machine
JP3172997U (en) Transmission
JP2022084046A (en) Power transmission device for hybrid vehicle
JP6296923B2 (en) Power split type continuously variable transmission
JP5702270B2 (en) transmission
JP2018040444A (en) Automatic transmission device for vehicle
JP3167161U (en) Continuously variable transmission
JP4685612B2 (en) Gearbox for work vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6533084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250