JP6532498B2 - Developer supply container - Google Patents

Developer supply container Download PDF

Info

Publication number
JP6532498B2
JP6532498B2 JP2017085123A JP2017085123A JP6532498B2 JP 6532498 B2 JP6532498 B2 JP 6532498B2 JP 2017085123 A JP2017085123 A JP 2017085123A JP 2017085123 A JP2017085123 A JP 2017085123A JP 6532498 B2 JP6532498 B2 JP 6532498B2
Authority
JP
Japan
Prior art keywords
developer
supply container
rotational
unit
developer supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017085123A
Other languages
Japanese (ja)
Other versions
JP2017126093A (en
Inventor
崇 江野口
崇 江野口
学 神羽
学 神羽
礼知 沖野
礼知 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017085123A priority Critical patent/JP6532498B2/en
Publication of JP2017126093A publication Critical patent/JP2017126093A/en
Application granted granted Critical
Publication of JP6532498B2 publication Critical patent/JP6532498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電子写真方式や静電記録方式を用いた画像形成装置、及びこれに用いられる現像剤補給容器に関し、特に、複写機、プリンタ、FAX等の画像形成装置、及びこれに用いられる現像剤補給容器に関する。   The present invention relates to an image forming apparatus using an electrophotographic method or an electrostatic recording method, and a developer supply container used therefor, and in particular, an image forming apparatus such as a copying machine, a printer, or a fax, and a developing used therein Relating to the agent supply container.

従来、複写機等の電子写真式の画像形成装置には微粉末の現像剤が使用されている。このような画像形成装置では、画像形成に伴い消費されてしまう現像剤を、現像剤補給容器から補給する構成となっている。   Conventionally, fine powder developers have been used in electrophotographic image forming apparatuses such as copying machines. In such an image forming apparatus, the developer which is consumed along with the image formation is replenished from the developer replenishing container.

尚、現像剤補給については様々な方式が提案、実用されており、現像剤受入れ装置から駆動を与え、現像剤補給容器を回転させることで現像剤を補給する方式が多く採用されている。   In addition, various methods have been proposed and put into practical use for developer replenishment, and a system in which a developer is supplied by driving from a developer receiving device and rotating a developer replenishment container is often employed.

さらに、現像剤補給容器内の現像剤残量を知る手段の1つとして、現像剤補給容器の位相(回転数)を検知する方法がある。   Furthermore, there is a method of detecting the phase (the number of rotations) of the developer supply container as one of means for knowing the remaining amount of developer in the developer supply container.

こうした従来の現像剤補給容器の位相(回転数)を検知する方法としては、例えば、特許文献1のものがある。   As a method of detecting the phase (rotational speed) of such a conventional developer supply container, for example, there is the method of Patent Document 1.

特許文献1に記載の装置では、略円筒状の現像剤補給容器の外周に設けられた駆動受け部に画像形成装置本体から駆動力を与えることで現像剤補給容器が回転し、画像形成装置本体側に設けたエンコーダにより、回転数を検知する構成となっている。   In the apparatus described in Patent Document 1, the developer supply container is rotated by applying a driving force from the image forming apparatus main body to the drive receiving portion provided on the outer periphery of the substantially cylindrical developer supply container, and the image forming apparatus main body is rotated. The encoder provided on the side detects the number of rotations.

さらに特許文献1に記載の装置では、現像剤補給容器の回転時の摩擦を低減させるために現像剤受入れ装置側にコロが設けられている。このコロが略円筒状の現像剤補給容器と当接しながら回転することにより、現像剤補給容器は滑らかに回転することができる。従って、現像剤補給が適切に行われ、その間の現像剤補給容器の回転数を検知できる。   Furthermore, in the device described in Patent Document 1, a roller is provided on the developer receiving device side in order to reduce friction when the developer supply container rotates. The developer supply container can be smoothly rotated by rotating while the roller abuts on the substantially cylindrical developer supply container. Therefore, developer replenishment is appropriately performed, and the number of revolutions of the developer replenishment container can be detected.

特開2005−148238号公報JP, 2005-148238, A

しかしながら、特許文献1に記載の装置では、略円筒状の現像剤補給容器の駆動受け部とコロが現像剤補給容器のスラスト方向に離れた位置にあり、さらに、現像剤補給容器のコロと当接する箇所には現像剤搬送用の螺旋溝が形成されている。そのため、現像剤補給時における現像剤補給容器の回転振れが発生する恐れがある。そして、現像剤補給容器の回転数の検知に限らず現像座補給容器の停止位置の検知をするような場合において、このような現像剤補給容器の挙動は小さくなる方が好ましい。   However, in the apparatus described in Patent Document 1, the drive receiving portion of the substantially cylindrical developer supply container and the roller are at positions separated in the thrust direction of the developer supply container, and the roller of the developer supply container A spiral groove for transporting the developer is formed at the contact portion. As a result, there is a risk that rotational shake of the developer supply container may occur at the time of developer supply. Then, in the case where the stop position of the developer supply container is detected as well as the rotation speed of the developer supply container, it is preferable that the behavior of such a developer supply container be smaller.

そこで、本発明の目的は、現像剤補給時における現像剤補給容器の回転振れを低減させ、現像剤補給容器の位相(回転)検知への影響を小さくする現像剤補給容器を提供することである。   Therefore, an object of the present invention is to provide a developer supply container which reduces the rotational runout of the developer supply container at the time of developer supply and reduces the influence on the phase (rotation) detection of the developer supply container. .

上記目的を達成するため、本発明は、駆動力を付与する付与部と、回転を検知する検知部と、を有する現像剤受入れ装置に挿入可能な現像剤補給容器おいて、現像剤を収容する回転可能な収容部と、前記収容部に収容された現像剤を現像剤補給容器から排出する排出口を有する現像剤排出部と、前記収容部に設けられ、前記収容部の現像剤を前記排出口に向かって搬送する現像剤搬送部と、前記付与部から駆動力を受ける回転可能なギア部と、前記ギア部が前記付与部から受けた駆動力により前記収容部と一体で回転する回転部材と、前記回転部材に設けられ、前記検知部が前記回転部材の回転を検知するための被検知部と、を有し、前記収容部は前記現像剤排出部に対して相対回転可能であって、現像剤補給容器の挿入方向において、前記回転部材は前記現像剤排出部よりも上流側にあり、前記被検知部は前記ギア部よりも下流側に配置され、前記被検知部の最大外径は前記ギア部の外径よりも小さいことを特徴とする。 In order to achieve the above object, the present invention accommodates a developer in a developer supply container that can be inserted into a developer receiving device having an application unit that applies a driving force and a detection unit that detects rotation. a rotatable housing portion, and the developer discharge part having a discharge port for discharging the developer accommodated in the accommodation portion from the developer supply container, is provided in the housing portion, the exhaust developer of the housing part A developer conveyance unit for conveying toward the outlet, a rotatable gear unit that receives a driving force from the application unit, and a rotating member that is integrally rotated with the storage unit by the driving force that the gear unit receives from the application unit And the detection unit provided on the rotation member, the detection unit detecting a rotation of the rotation member, and the storage unit is rotatable relative to the developer discharge unit. , in the insertion direction of the developer supply container, wherein Rolling member is in the upstream side of the developer discharging section, the detected portion is disposed downstream of the gear unit, said maximum outer diameter of the detection portion is smaller than the outer diameter of the gear portion It is characterized by

本発明によれば、駆動受け部と被検知部とが近い構成の場合に、駆動受け部で受ける駆動力の被検知部への影響を小さくすることができる。   According to the present invention, when the drive receiving portion and the detected portion are close to each other, the influence of the driving force received by the drive receiving portion on the detected portion can be reduced.

画像形成装置本体(複写機)の概略断面図である。FIG. 2 is a schematic cross-sectional view of an image forming apparatus main body (copying machine). 上記画像形成装置本体の斜視図である。FIG. 2 is a perspective view of the image forming apparatus main body. 上記画像形成装置本体の現像剤補給容器交換用カバーを開いて現像剤補給容器を画像形成装置本体に装着する様子を示す斜視図である。FIG. 6 is a perspective view showing how the developer supply container is attached to the image forming apparatus main body by opening the developer supply container replacement cover of the image forming apparatus main body. 実施例1の現像剤受入れ装置の部分斜視図である。FIG. 2 is a partial perspective view of the developer receiving device of Example 1; 実施例1における現像剤受入れ装置に現像剤補給容器を挿入した様子を示す部分斜視図である。FIG. 6 is a partial perspective view showing a developer supply container inserted into the developer receiving device in Embodiment 1. 実施例1の現像剤補給容器の断面斜視図である。FIG. 2 is a cross-sectional perspective view of the developer supply container of Example 1; 実施例1の容器本体の斜視図である。FIG. 2 is a perspective view of a container body of Example 1; 実施例1のフランジ部の斜視図である。FIG. 5 is a perspective view of the flange portion of the first embodiment. 実施例1のフランジ部の(a)正面図、(b)E−E断面図、(c)右側面図、(d)F−F面図である。(A) Front view of flange part of Example 1, (b) EE sectional drawing, (c) Right side view, (d) It is a FF view. 実施例1のシャッタの(a)正面図、(b)斜視図である。It is the (a) front view of the shutter of Example 1, and a perspective view (b). 実施例1のポンプ部の正面図である。FIG. 2 is a front view of a pump unit of Example 1; 実施例1の往復部材の斜視図である。FIG. 2 is a perspective view of a reciprocating member of Example 1; 実施例1のカバーの斜視図である。FIG. 2 is a perspective view of a cover of Example 1; (a)〜(c)は実施例1における現像剤補給容器を現像剤受入れ装置に挿入する様子を段階的に示した、部分断面図である。(d)現像剤補給容器を現像剤受入れ装置に挿入途中の様子を示した図である。(A)-(c) is the fragmentary sectional view which showed in a step a mode that the developer replenishment container in Example 1 was inserted in a developer receiving apparatus. (D) It is the figure which showed the mode in the middle of insertion of the developer replenishment container in the developer receiving apparatus. 実施例1および実施例2の制御装置の機能構成を示すブロック図である。FIG. 6 is a block diagram showing a functional configuration of control devices of Example 1 and Example 2; 実施例1および実施例2の補給動作の流れを説明するフローチャートである。FIG. 7 is a flow chart for explaining the flow of the replenishment operation of the first embodiment and the second embodiment. FIG. 比較例1の現像剤補給容器の部分拡大図である。FIG. 6 is a partial enlarged view of a developer supply container of Comparative Example 1; 変形例1の現像剤補給容器の部分拡大図である。FIG. 10 is a partially enlarged view of the developer supply container of Modification 1; 変形例2の現像剤補給容器の部分拡大図である。FIG. 16 is a partial enlarged view of a developer supply container of Modification 2; 変形例3の現像剤補給容器の部分拡大図である。FIG. 16 is a partial enlarged view of the developer supply container of Modification 3; 変形例4の現像剤補給容器の部分拡大図である。FIG. 18 is a partial enlarged view of the developer supply container of Modification 4; 変形例5の現像剤補給容器の部分拡大図である。FIG. 21 is a partial enlarged view of a developer supply container of Modification 5; 実施例1の現像剤補給容器の部分拡大図である。FIG. 2 is a partially enlarged view of the developer supply container of Example 1; 実施例1のカバーを除いた現像剤補給容器の部分拡大図である。FIG. 6 is a partially enlarged view of the developer supply container except the cover of Example 1; 実施例2の現像剤補給容器の断面斜視図である。FIG. 7 is a cross-sectional perspective view of the developer supply container of Example 2; 実施例2における現像剤補給容器を現像剤受入れ装置に挿入している様子を示す断面斜視図である。FIG. 14 is a cross-sectional perspective view showing a state in which the developer supply container in Embodiment 2 is inserted into the developer receiving device. 実施例2の現像剤補給容器を現像剤受入れ装置に挿入して、封止部材を開放する様子を段階的に示す部分断面図である。FIG. 18 is a partial cross-sectional view showing the manner in which the developer supply container of Embodiment 2 is inserted into a developer receiving device and the sealing member is opened. 実施例2の封止部材の斜視図である。7 is a perspective view of a sealing member of Example 2. FIG. 実施例2の封止部材の(a)正面図、(b)左側面図、(c)右側面図、(d)上面図、(e)C−C断面図である。(A) Front view of the sealing member of Example 2, (b) Left side view, (c) Right side view, (d) Top view, (e) CC sectional drawing. 実施例2の現像剤補給容器の部分斜視図である。FIG. 14 is a partial perspective view of the developer supply container of Example 2; 実施例2の現像剤補給容器の部分拡大図である。FIG. 7 is a partially enlarged view of the developer supply container of Example 2; 他の実施例の現像剤補給容器の斜視図である。It is a perspective view of the developer supply container of other examples.

以下、図面を参照して、本発明の好適な実施の形態を例示的に詳しく説明する。ただし、以下の実施形態に記載されている構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものである。従って、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the component parts described in the following embodiments should be appropriately changed according to the configuration of the apparatus to which the present invention is applied and various conditions. Accordingly, the scope of the present invention is not intended to be limited only to those unless otherwise specified.

〔実施例1〕
まず、画像形成装置の基本構成について説明し、続いて、この画像形成装置に搭載される現像剤補給システム、つまり、現像剤受入れ装置(現像剤補給装置)と現像剤補給容器の構成について順に説明する。
Example 1
First, the basic configuration of the image forming apparatus will be described, and then, the developer replenishing system mounted on the image forming apparatus, that is, the configurations of the developer receiving apparatus (developer replenishing apparatus) and the developer replenishing container will be sequentially described. Do.

(画像形成装置)
現像剤補給容器(所謂、トナーカートリッジ)が着脱可能(取り外し可能)に装着される現像剤受入れ装置が搭載された画像形成装置の一例として、電子写真方式を採用した複写機(電子写真画像形成装置)の構成について図1を用いて説明する。
(Image forming device)
A copying machine (electrophotographic image forming apparatus employing an electrophotographic method as an example of an image forming apparatus equipped with a developer receiving device in which a developer supply container (so-called toner cartridge) is detachably (removably) mounted Will be described with reference to FIG.

図1において、100は複写機本体(以下、「画像形成装置本体」もしくは「装置本体」という)である。また、101は原稿であり、原稿台ガラス102の上に置かれる。そして、原稿の画像情報に応じた光像を光学部103の複数のミラーMとレンズLnにより、電子写真感光体104(以下、「感光体ドラム」という)上に結像させることにより静電潜像を形成する。この静電潜像は現像器201bにより現像剤としてのトナーを用いて可視化される。   In FIG. 1, reference numeral 100 denotes a copying machine main body (hereinafter referred to as “image forming apparatus main body” or “device main body”). An original 101 is placed on an original table glass 102. Then, an electrostatic latent image is formed by forming an optical image corresponding to the image information of the original on the electrophotographic photosensitive member 104 (hereinafter referred to as “photosensitive drum”) by the plurality of mirrors M and the lens Ln of the optical unit 103. Form an image. The electrostatic latent image is visualized by the developing device 201 b using toner as a developer.

105〜108は記録媒体(以下、「シート」ともいう)Sを収容するカセットである。これらカセット105〜108に積載されたシートSのうち、図2に示す複写機の操作部100aから操作者(ユーザ)が入力した情報もしくは原稿101のシートサイズを基に最適なカセットが選択される。ここで記録媒体としては用紙に限定されずに、例えばOHPシート等適宜使用、選択できる。   Reference numerals 105 to 108 denote cassettes for storing recording media (hereinafter also referred to as "sheets") S. Among the sheets S stacked in the cassettes 105 to 108, the optimum cassette is selected based on the information input by the operator (user) from the operation unit 100a of the copying machine shown in FIG. 2 or the sheet size of the original 101. . Here, the recording medium is not limited to a sheet, and can be appropriately used or selected, for example, an OHP sheet.

そして、給送分離装置105A〜108Aにより搬送された1枚のシートSを、搬送部109を経由してレジストローラ110まで搬送し、感光体ドラム104の回転と、光学部103のスキャンのタイミングを同期させて搬送する。   Then, one sheet S conveyed by the feeding and separating apparatus 105A to 108A is conveyed to the registration roller 110 via the conveying unit 109, and the timing of the rotation of the photosensitive drum 104 and the scanning of the optical unit 103 is Synchronize and transport.

111、112は転写帯電器、分離帯電器である。ここで、転写帯電器111によって、感光体ドラム104上に形成された現像剤による像をシートSに転写する。そして、分離帯電器112によって、現像剤像(トナー像)の転写されたシートSを感光体ドラム104から分離する。   111 and 112 are a transfer charger and a separation charger. Here, the image formed by the developer formed on the photosensitive drum 104 is transferred onto the sheet S by the transfer charger 111. Then, the sheet S on which the developer image (toner image) has been transferred is separated from the photosensitive drum 104 by the separation charger 112.

この後、搬送部113により搬送されたシートSは、定着部114において熱と圧によりシート上の現像剤像を定着させた後、片面コピーの場合には、排出反転部115を通過し、排出ローラ116により排出トレイ117へ排出される。   Thereafter, the sheet S transported by the transport unit 113 fixes the developer image on the sheet by heat and pressure in the fixing unit 114, and then passes through the discharge reversing unit 115 in the case of single-sided copying, and is discharged. The sheet is discharged to the discharge tray 117 by the roller 116.

また、両面コピーの場合には、シートSは排出反転部115を通り、一度排出ローラ116により一部が装置外へ排出される。そして、この後、シートSの終端がフラッパ118を通過し、排出ローラ116にまだ挟持されているタイミングでフラッパ118を制御すると共に排出ローラ116を逆回転させることにより、再度装置内へ搬送される。さらに、この後、再給送搬送部119,120を経由してレジストローラ110まで搬送された後、片面コピーの場合と同様の経路をたどって排出トレイ117へ排出される。   In the case of double-sided copying, the sheet S passes through the discharge reversing unit 115, and a part of the sheet S is discharged to the outside of the apparatus by the discharge roller 116 once. Then, after this, the end of the sheet S passes through the flapper 118, and is controlled by the flapper 118 at the timing when the sheet S is still nipped by the discharge roller 116 and is reversely rotated by the discharge roller 116. . Further, after this, the sheet is conveyed to the registration roller 110 via the re-feed conveyance units 119 and 120, and is discharged to the discharge tray 117 along the same path as in the case of single-sided copying.

また、多重コピーの場合には、シートSは排出反転部115を通り、一度排出ローラ116により一部が装置外へ排出される。そして、この後、シートSの終端がフラッパ118を通過し、排出ローラ116にまだ挟持されているタイミングでフラッパ118を制御すると共に排出ローラ116を逆回転させることにより、再度装置本体100内へ搬送される。更にこの後、再給送搬送部119,120を経由してレジストローラ110まで搬送された後、片面コピーの場合と同様の経路をたどって排出トレイ117へ排出される。   Further, in the case of multiple copying, the sheet S passes through the discharge reversing unit 115, and a part of the sheet S is discharged to the outside of the apparatus by the discharge roller 116 once. Then, after that, the trailing end of the sheet S passes the flapper 118, and the flapper 118 is controlled at the timing when it is still pinched by the discharge roller 116, and the discharge roller 116 is reversely rotated. Be done. Thereafter, the sheet is conveyed to the registration roller 110 via the refeeding / conveying units 119 and 120, and is discharged to the discharge tray 117 along the same path as in the case of single-sided copying.

上記構成の装置本体100において、感光体ドラム104の回りには現像手段としての現像装置201、クリーニング手段としてのクリーナ装置202、帯電手段としての一次帯電器203等の画像形成プロセス機器(プロセス手段)が配置されている。現像装置201は、原稿101の画像情報に基づいて一様に帯電された感光体ドラム104上を光学部103により露光して形成された静電潜像を、現像剤(トナー)を用いて現像するものである。そして、この現像装置201へ現像剤としてのトナーを補給するための現像剤補給容器1が使用者によって装置本体100に着脱可能に装着されている。なお、現像剤補給容器1からトナーのみを画像形成装置側へ補給する場合や、トナー及びキャリアを補給する場合であっても本発明を適用できる。本実施形態では前者の例についての説明である。   Image forming process equipment (process means) such as a developing device 201 as a developing means, a cleaner device 202 as a cleaning means, and a primary charger 203 as a charging means in the apparatus main body 100 of the above configuration. Is arranged. The developing device 201 develops, using a developer (toner), an electrostatic latent image formed by the optical unit 103 exposing the photosensitive drum 104 uniformly charged on the basis of the image information of the document 101. It is A developer supply container 1 for supplying a toner as a developer to the developing device 201 is detachably mounted on the apparatus main body 100 by the user. The present invention can be applied to the case where only the toner is supplied from the developer supply container 1 to the image forming apparatus side or the case where the toner and the carrier are supplied. This embodiment is an explanation of the former example.

また、現像装置201は、収容手段としての現像剤ホッパ部201aと現像器201bとを有している。現像剤ホッパ部201aは、現像剤補給容器1から補給された現像剤を撹拌するための撹拌部材201cを有している。そして、この撹拌部材201cにより撹拌された現像剤は、マグネットローラ201dにより現像器201bに送られる。現像器201bは、現像ローラ201fと、搬送部材201eを有している。そして、マグネットローラ201dにより現像剤ホッパ部201aから送られた現像剤は、搬送部材201eにより現像ローラ201fに送られて、この現像ローラ201fにより感光体ドラム104に供給される。なお、クリーナ装置202は、感光体ドラム104に残留している現像剤を除去するためのものである。また、一次帯電器203は、感光体ドラム104上に所望の静電像を形成するために感光体ドラム104の表面を一様に帯電するためのものである。   Further, the developing device 201 includes a developer hopper portion 201a as a storage unit and a developing device 201b. The developer hopper portion 201 a has a stirring member 201 c for stirring the developer supplied from the developer supply container 1. Then, the developer stirred by the stirring member 201c is sent to the developing device 201b by the magnet roller 201d. The developing device 201 b includes a developing roller 201 f and a conveyance member 201 e. Then, the developer sent from the developer hopper unit 201a by the magnet roller 201d is sent to the developing roller 201f by the conveying member 201e, and is supplied to the photosensitive drum 104 by the developing roller 201f. The cleaner device 202 is for removing the developer remaining on the photosensitive drum 104. Further, the primary charger 203 is for charging the surface of the photosensitive drum 104 uniformly in order to form a desired electrostatic image on the photosensitive drum 104.

図2に示す外装カバーの一部である現像剤補給容器交換用前カバー15(以下、「交換用前カバー」という)を図3に示すように使用者が開けると、装着手段の一部である容器受け台50が、駆動系(不図示)によって所定の位置まで引き出される。そして、この容器受け台50上に現像剤補給容器1を載置する。使用者が現像剤補給容器1を装置本体100から取り出す際には、容器受け台50を引き出し、容器受け台50に載っている現像剤補給容器1を取り出す。ここで、交換用前カバー15は現像剤補給容器1を着脱(交換)するための専用カバーであって、現像剤補給容器1を着脱するためだけに開閉される。尚、装置本体100のメンテナンスは、前面カバー100cを開閉することによって行われる。尚、容器受け台50を介することなく、現像剤補給容器1を装置本体100に直接装着し、又、装置本体100から取り外してもよい。   When the user opens the developer supply container replacement front cover 15 (hereinafter referred to as "replacement front cover"), which is a part of the exterior cover shown in FIG. 2, as shown in FIG. A container holder 50 is pulled out to a predetermined position by a drive system (not shown). Then, the developer supply container 1 is placed on the container holder 50. When the user takes out the developer supply container 1 from the apparatus main body 100, the container holder 50 is pulled out, and the developer supply container 1 placed on the container holder 50 is taken out. Here, the replacement front cover 15 is a dedicated cover for attaching and detaching (replacement) the developer supply container 1, and is opened and closed only for attaching and detaching the developer supply container 1. The maintenance of the apparatus body 100 is performed by opening and closing the front cover 100c. The developer supply container 1 may be directly attached to the apparatus main body 100 or may be removed from the apparatus main body 100 without the container holder 50.

(現像剤受入れ装置)
現像剤受入れ装置(現像剤補給装置)の構成について図4を用いて説明する。図4は実施例1における現像剤受入れ装置200の部分斜視図である。
(Developer receiving device)
The configuration of the developer receiving device (developer supply device) will be described with reference to FIG. FIG. 4 is a partial perspective view of the developer receiving device 200 in the first embodiment.

図4に示すように、現像剤受入れ装置200は、主に後述する現像剤補給容器1の回転振れ規制部1A4と当接するボトル受けローラ23、現像剤補給容器1の駆動受け部1A5に回転駆動力を伝達する駆動ギア25(何れも支持部は省略)が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1の位相検知部(被検知部)1A6と当接することにより現像剤補給容器1の位相(回転)を検知する位相検知フラグ62、位相検知フラグ62を検知する位相検知センサ61が設けられている。尚、位相検知フラグ62は弾性部材(不図示)により鉛直下方向に付勢されており、回転軸Q(図17)を中心に回転可能となっている。   As shown in FIG. 4, the developer receiving device 200 is driven to rotate by a bottle receiving roller 23 mainly in contact with a rotational runout restricting portion 1A4 of the developer supply container 1 described later and a drive receiving portion 1A5 of the developer supply container 1. A drive gear 25 (a support part is omitted in any case) for transmitting a force is provided. Further, in the developer receiving apparatus 200, a phase detection flag 62 for detecting the phase (rotation) of the developer supply container 1 by coming into contact with the phase detection portion (detected portion) 1A6 of the developer supply container 1; A phase detection sensor 61 that detects 62 is provided. The phase detection flag 62 is biased vertically downward by an elastic member (not shown), and can rotate about the rotation axis Q (FIG. 17).

また現像剤受入れ装置200には、現像剤補給容器1から排出され現像剤を一時的に貯留する現像剤ホッパ部201a、現像剤ホッパ部201aへ連通する現像剤ホッパ連通部200h、現像剤ホッパ部201a内の現像剤を現像装置201(図1参照)へ搬送するスクリュー部材27が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1が有するカバー53(図13(a))の現像剤受入れ装置突き当て部53cと当接するカバー突き当て部200g、現像剤補給容器1を現像剤受入れ装置200に挿入する際、カバー53のガイド溝53aと当接することにより矢印T方向の変位を規制する挿入ガイド200e、シャッタ52(図10(a))のストッパ部52b(52c)と係合するシャッタストッパ部200a(200b)が設けられている。   In the developer receiving apparatus 200, a developer hopper portion 201a for temporarily storing the developer discharged from the developer supply container 1, a developer hopper communication portion 200h communicating with the developer hopper portion 201a, and a developer hopper portion A screw member 27 is provided for conveying the developer in the cartridge 201a to the developing device 201 (see FIG. 1). Further, in the developer receiving device 200, a cover abutment portion 200g which contacts the developer receiving device abutting portion 53c of the cover 53 (FIG. 13A) of the developer supply container 1 and developing the developer supply container 1 When inserted into the agent receiving apparatus 200, the insertion guide 200e which regulates the displacement in the direction of the arrow T by coming into contact with the guide groove 53a of the cover 53 and the stopper portion 52b (52c) of the shutter 52 (FIG. 10A). The shutter stopper part 200a (200b) to which it matches is provided.

(現像剤補給容器)
現像剤補給容器1について図6を用いて説明する。図6は現像剤補給容器1の断面斜視図である。
(Developer supply container)
The developer supply container 1 will be described with reference to FIG. FIG. 6 is a cross-sectional perspective view of the developer supply container 1.

図6に示すように、現像剤補給容器1は、主に容器本体1A、フランジ部41、シャッタ52、ポンプ部54、往復部材51、カバー53から構成される。そして現像剤補給容器1は後述する現像剤補給手段により、現像剤補給容器1内の現像剤を現像剤ホッパ部201a(図5参照)へ補給する。以下に、現像剤補給容器1を構成する各要素について、詳細に説明する。   As shown in FIG. 6, the developer supply container 1 mainly includes a container main body 1A, a flange portion 41, a shutter 52, a pump portion 54, a reciprocating member 51, and a cover 53. Then, the developer replenishing container 1 replenishes the developer in the developer replenishing container 1 to the developer hopper portion 201a (see FIG. 5) by developer replenishing means described later. Hereinafter, each component of the developer supply container 1 will be described in detail.

(容器本体)
容器本体1Aについて、図7を用いて説明する。図7は容器本体1Aの斜視図である。
(Container body)
The container main body 1A will be described with reference to FIG. FIG. 7 is a perspective view of the container body 1A.

容器本体1Aは、内部に現像剤を収容する現像剤収容部1A2と、容器本体1Aが軸Pに対してR方向に回転することによって現像剤収容部1A2内の現像剤を矢印A方向(図6)ヘ搬送する螺旋状の突起(現像剤搬送部)1A1から構成される。   The container body 1A includes a developer accommodating portion 1A2 for accommodating the developer therein, and the developer in the developer accommodating portion 1A2 is rotated in the direction of arrow A by rotating the container body 1A in the R direction with respect to the axis P 6) Consisting of a helical protrusion (developer transport portion) 1A1 to be transported to the side.

容器本体1Aは、現像剤受入れ装置200の駆動ギア25より回転駆動力を受ける駆動受け部1A5と、前記駆動受け部1A5に入力する回転駆動力により回転する前記収容部1A2の位相を検知するための位相検知部1A6を有している。さらに容器本体1Aは、前記収容部1A2が回転する際、前記位相検知部1A6と前記駆動受け部1A5の回転振れを抑制するための回転振れ規制部1A4を有している。さらに本実施例1の容器本体1Aは、後述する実施例2の容器に対し、カム溝1A3が設けられている点が異なる。本実施例1では、回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6が、容器本体1Aと一体的に形成されている。図6(b)に項の構成を示す。本実施例では、プラスチック等からなる一つの樹脂材料(本実施例では駆動受け部品)に位相検知部1A6と駆動受け部1A5の回転振れを抑制するための回転振れ規制部1A4が設けられている。そして、駆動受け部品の端部に設けられている駆動伝達部1A7が現像剤収容部1A2と接続する。駆動伝達部1A7と現像剤収容部1A2とが一体で回転することで、駆動受け部1A5が受けた駆動力を現像剤収容部1A2に伝達する。その結果、トナーを搬送する搬送部が回転可能となっている。   The container main body 1A detects a phase of the drive receiving portion 1A5 receiving the rotational driving force from the driving gear 25 of the developer receiving device 200, and the storage portion 1A2 rotated by the rotational driving force input to the drive receiving portion 1A5. Phase detection unit 1A6 of FIG. Furthermore, the container body 1A has a rotational runout control unit 1A4 for suppressing rotational runout of the phase detection unit 1A6 and the drive receiving unit 1A5 when the storage unit 1A2 rotates. Furthermore, the container main body 1A of the first embodiment is different from the container of the second embodiment described later in that a cam groove 1A3 is provided. In the first embodiment, the rotational shake regulation unit 1A4, the drive receiving unit 1A5, and the phase detection unit 1A6 are integrally formed with the container body 1A. The configuration of the item is shown in FIG. In the present embodiment, a rotation shake restricting portion 1A4 for suppressing the rotation shake of the phase detection portion 1A6 and the drive receiving portion 1A5 is provided in one resin material (a drive receiving component in the present embodiment) made of plastic or the like. . Then, the drive transmission portion 1A7 provided at the end of the drive receiving part is connected to the developer storage portion 1A2. The drive transmitting portion 1A7 and the developer accommodating portion 1A2 integrally rotate to transmit the driving force received by the drive receiving portion 1A5 to the developer accommodating portion 1A2. As a result, the transport unit that transports the toner is rotatable.

尚、本実施例1では、回転振れ規制部1A4と駆動受け部1A5と位相検知部1A6が容器本体1Aとが一体的に一つの部品に形成されている構成(図6(b))を例示したが、これに限定されるものではない。例えば、カム溝1A3と回転振れ規制部1A4と駆動受け部1A5と位相検知部1A6とが一体に形成され、容器本体1Aに一体的に取り付ける構成等であってもよい。   In the first embodiment, a configuration (FIG. 6B) is exemplified in which the rotational shake regulation unit 1A4, the drive receiving unit 1A5, and the phase detection unit 1A6 are integrally formed with the container body 1A. However, it is not limited to this. For example, the cam groove 1A3, the rotational runout restricting portion 1A4, the drive receiving portion 1A5, and the phase detecting portion 1A6 may be integrally formed and integrally attached to the container main body 1A.

また、前記収容部1A2は、容器本体1Aだけではなく、容器本体1Aと後述するフランジ部41(図8参照)とポンプ部54(図11参照)の内部スペースを合わせたものとなる。   Further, not only the container body 1A but also the container space 1A, and the internal space of the flange portion 41 (see FIG. 8) described later and the pump portion 54 (see FIG. 11) are combined.

また、本実施例1では、回転振れ規制部1A4に対して位相検知部1A6の形状を凹形状としたが、回転振れ規制部1A4に対して位相検知部1A6の形状を凸形状にしてもかまわない。   In the first embodiment, the phase detection unit 1A6 has a concave shape with respect to the rotational shake restriction unit 1A4, but the phase detection unit 1A6 may have a convex shape with respect to the rotational shake restriction unit 1A4. Absent.

実施例1では、現像剤補給容器1がR方向に回転して現像剤を補給する際(図6)、駆動受け部1A5と位相検知部1A6の双方のラジアル方向のガタ防止効果の向上を目的として、回転振れ規制部1A4の真円度を0.05とした。回転振れ規制部1A4は真円に近いほど、より高いラジアル方向のガタ防止効果が期待できるが、必要以上の幾何公差を設けるとコストアップにつながるため、真円度を0.05とした。このように回転振れ規制部は円筒部の形状となっている。   In the first embodiment, when the developer supply container 1 rotates in the R direction to supply the developer (FIG. 6), the purpose is to improve the effect of preventing the radial direction of both the drive receiving portion 1A5 and the phase detection portion 1A6. The roundness of the rotation control unit 1A4 is set to 0.05. As the rotational runout restricting portion 1A4 is closer to a true circle, higher radial rattle prevention effect can be expected, but providing a geometric tolerance more than necessary leads to an increase in cost, so the roundness is set to 0.05. Thus, the rotational runout regulating portion has a cylindrical shape.

このような構成とすることで、現像剤補給時に現像剤補給容器1が図6の矢印R方向に回転する際、真円に近い形状の回転振れ規制部1A4とボトル受けローラ(回転部材)23が当接することで位相検知部1A6と駆動受け部1A5の双方の回転振れを抑制できる。このように、回転振れ規制部は回転部材と当接する当接面としての機能を有する。その結果、駆動伝達と位相検知の双方の精度向上が期待できる。さらに、現像剤補給容器1の回転による振動も低減できるため、画質の向上が期待できる。   With such a configuration, when developer supply container 1 is rotated in the direction of arrow R in FIG. 6 at the time of developer supply, rotation runout regulating portion 1A4 having a shape close to a perfect circle and a bottle receiving roller (rotating member) 23 As a result, the rotational shake of both the phase detection unit 1A6 and the drive receiving unit 1A5 can be suppressed. Thus, the rotational runout restricting portion has a function as an abutting surface that abuts on the rotating member. As a result, it is expected to improve the accuracy of both drive transmission and phase detection. Further, since the vibration due to the rotation of the developer supply container 1 can also be reduced, improvement in image quality can be expected.

また、駆動受け部品は駆動受け部1A5及び位相検知部1A6を回転振れ規制部1A4に隣接して配置した構成である。このような構成とすることで、駆動受け部1A5と位相検知部1Aとを離れた位置に配置した構成に比べて、位相検知部1A6と駆動受け部1A5の双方の回転振れをより抑制できる。その結果、駆動伝達と位相検知の双方の精度向上や、画質の向上がより期待できる。   Further, the drive receiving component is configured such that the drive receiving portion 1A5 and the phase detection portion 1A6 are disposed adjacent to the rotational shake restricting portion 1A4. With such a configuration, rotational runout of both phase detection unit 1A6 and drive reception unit 1A5 can be further suppressed, as compared to a configuration in which drive reception unit 1A5 and phase detection unit 1A are disposed at a distance. As a result, it is possible to further expect improvement in accuracy of both drive transmission and phase detection and improvement in image quality.

(バッフル部材)
バッフル部材40について図6を用いて説明する。図6は実施例1における現像剤補給容器1の部分断面斜視図である。
(Baffle member)
The baffle member 40 will be described with reference to FIG. FIG. 6 is a partial cross-sectional perspective view of the developer supply container 1 according to the first embodiment.

実施例1のバッフル部材40は、最終的に現像剤を搬送する箇所が後述する実施例2とは異なる。具体的には、最終的に現像剤はバッフル部材40の回転に伴って、傾斜突起40aを滑り落ちるように貯留部41f(図9(b))へ搬送される点が実施例2とは異なる。   The baffle member 40 according to the first embodiment is different from the baffle member 40 according to the second embodiment in which the developer is finally transported. Specifically, the second embodiment is different from the second embodiment in that the developer is finally transported to the storage portion 41f (FIG. 9B) so as to slide down the inclined projection 40a as the baffle member 40 rotates.

(フランジユニット部)
続いて、フランジユニット部60について図6を用いて説明する。図6は現像剤補給容器1の断面斜視図である。
(Flange unit section)
Subsequently, the flange unit portion 60 will be described with reference to FIG. FIG. 6 is a cross-sectional perspective view of the developer supply container 1.

図6に示すように、フランジユニット部60は、フランジ部41、往復部材51、ポンプ部54、カバー53、シャッタ52より構成される。   As shown in FIG. 6, the flange unit portion 60 includes a flange portion 41, a reciprocating member 51, a pump portion 54, a cover 53, and a shutter 52.

フランジユニット部60は容器本体1Aと相対回転可能に取り付けられ、現像剤補給容器1が現像剤受入れ装置200に装着されると、図5に示すように、現像剤受入れ装置200に対してフランジユニット部60は軸P回りの回転が規制された状態で保持される。フランジ部41の一端にはポンプ部54がネジ接合され、他端には容器本体1Aがシール部材(不図示)を介して接合される。また、往復部材51はポンプ部54をスラスト方向に挟み込むようにして配置され、往復部材51に設けられた係合突起51b(図12(a))が容器本体1Aのカム溝1A3(図7)に嵌め込まれる。さらに、フランジ部41のシャッタ挿入部41c(図8(a))にはシャッタ52(図10)が組み込まれる。また、ユーザーが現像剤補給容器1に触れて予期せぬケガが発生するのを防止する目的と、往復部材51やポンプ部54の保護を目的として、カバー53(図13)が設けられている。   The flange unit portion 60 is rotatably mounted relative to the container body 1A, and when the developer supply container 1 is attached to the developer receiving device 200, as shown in FIG. 5, the flange unit relative to the developer receiving device 200 The portion 60 is held in a state in which the rotation about the axis P is restricted. The pump portion 54 is screwed to one end of the flange portion 41, and the container body 1A is joined to the other end via a seal member (not shown). Further, the reciprocating member 51 is disposed so as to sandwich the pump portion 54 in the thrust direction, and the engaging projection 51b (FIG. 12A) provided on the reciprocating member 51 is a cam groove 1A3 (FIG. 7) of the container main body 1A. Fit in. Further, the shutter 52 (FIG. 10) is incorporated in the shutter insertion portion 41c (FIG. 8A) of the flange portion 41. Also, a cover 53 (FIG. 13) is provided for the purpose of preventing the user from touching the developer supply container 1 and causing an unexpected injury, and for the purpose of protecting the reciprocating member 51 and the pump portion 54. .

(フランジ部)
次に、フランジ部41について図8、図9を用いて説明する。図8(a)と図8(b)はフランジ部41の斜視図を示している。図9(a)はフランジ部41の正面図、図9(b)はE−E断面図、図9(c)は右側面図、図9(d)はF−F断面図を示している。
(Flange part)
Next, the flange portion 41 will be described using FIGS. 8 and 9. 8A and 8B show perspective views of the flange portion 41. FIG. 9 (a) is a front view of the flange portion 41, FIG. 9 (b) is an E-E sectional view, FIG. 9 (c) is a right side view, and FIG. 9 (d) is an F-F sectional view. .

フランジ部41は、ポンプ部54(図11)がネジ接合されるポンプ接合部41dと、容器本体1Aが接合される容器本体接合部41eと、容器本体1Aとバッフル部材40(図6)から搬送された現像剤を貯め込む貯留部41f(図9(b))を備えている。さらにフランジ部41は、現像剤補給容器1の交換時にシャッタ52を矢印B方向(図14)へ押すシャッタ押出しリブ41k(図9(d))と、シャッタ挿入部41cを備えている。   The flange portion 41 is transported from the pump joint portion 41d to which the pump portion 54 (FIG. 11) is screwed, the container body joint portion 41e to which the container body 1A is joined, the container body 1A and the baffle member 40 (FIG. 6) The storage unit 41 f (FIG. 9 (b)) is provided to store the developer. The flange portion 41 further includes a shutter push-out rib 41k (FIG. 9D) for pushing the shutter 52 in the direction of arrow B (FIG. 14) when the developer supply container 1 is replaced, and a shutter insertion portion 41c.

また図8(b)に示すように、フランジ部41は、前述した貯留部41f内の現像剤を排出する円形のシール穴41jを形成した開口シール41gを備えている。ここで、開口シール41gは両面テープでフランジ部41の下面に貼り付けられ、後述するシャッタ52とフランジ部41に圧縮された状態で挟持されている。   Further, as shown in FIG. 8B, the flange portion 41 includes an opening seal 41g in which a circular seal hole 41j for discharging the developer in the storage portion 41f described above is formed. Here, the opening seal 41g is attached to the lower surface of the flange portion 41 with a double-sided tape, and is held in a compressed state by the shutter 52 and the flange portion 41 described later.

またフランジ部41は、現像剤補給容器1を現像剤受入れ装置200に装着又は現像剤受入れ装置200から取り出す操作に伴い、後述するシャッタ52が有する支持部52d(図10(a))の弾性変形を規制する規制リブ41i(図9(d)を備えている。尚、規制リブ41iは、シャッタ挿入部41c(図9(d))の挿入面より鉛直上方向に突出し、現像剤補給容器1の装着方向に沿って形成されている。さらにフランジ部41には、物流による破損や、ユーザーによる誤操作からシャッタ52を保護する保護部41h(図8(b))が設けられている。   Further, the flange portion 41 elastically deforms a support portion 52d (FIG. 10A) included in the shutter 52 described later in connection with an operation of attaching the developer supply container 1 to the developer receiving device 200 or removing it from the developer receiving device 200. The control rib 41i (FIG. 9D) is provided to project vertically upward from the insertion surface of the shutter insertion portion 41c (FIG. 9D), and the developer supply container 1 is provided. The flange portion 41 is further provided with a protection portion 41h (FIG. 8B) for protecting the shutter 52 from physical damage or erroneous operation by the user.

(シャッタ)
次に図10を用いてシャッタ52について説明する。図10(a)はシャッタ52の正面図、10(b)は斜視図である。
(Shutter)
Next, the shutter 52 will be described with reference to FIG. FIG. 10 (a) is a front view of the shutter 52, and 10 (b) is a perspective view.

シャッタ52は、現像剤補給容器1(図6)に対して相対移動可能に設けられ、現像剤補給容器1の着脱動作に伴い、シャッタ52に設けられた排出口1aが開閉される。なお、現像剤補給容器1の着脱動作と排出口1aの開閉の詳しい方法は後述する。シャッタ52には、現像剤補給容器1が現像剤受入れ装置200に装着されていないときに、フランジ部41のシール穴41j(図8(b))からの現像剤の漏れを防ぐ現像剤封止部52aと、現像剤封止部52aの背面側にフランジ部41のシャッタ挿入部41c(図9(d))上を摺動する摺動面52iが設けられている。シャッタ52は、現像剤補給容器1がシャッタ52に対して相対移動することが可能となるように、現像剤補給容器1の着脱動作に伴い、現像剤受入れ装置200のシャッタストッパ部200a,200b(図4)に保持されるストッパ部52b,52cを有している。   The shutter 52 is provided so as to be movable relative to the developer supply container 1 (FIG. 6), and with the mounting and demounting operation of the developer supply container 1, the discharge port 1 a provided in the shutter 52 is opened and closed. A detailed method of attaching / detaching operation of the developer supply container 1 and opening / closing of the discharge port 1a will be described later. In the shutter 52, the developer is sealed so as to prevent the developer from leaking from the seal hole 41j (FIG. 8B) of the flange portion 41 when the developer supply container 1 is not attached to the developer receiving device 200. A sliding surface 52i that slides on the shutter insertion portion 41c (FIG. 9D) of the flange portion 41 is provided on the back side of the portion 52a and the developer sealing portion 52a. The shutter 52 is a shutter stopper portion 200 a, 200 b of the developer receiving device 200 along with the mounting and demounting operation of the developer supply container 1 so that the developer supply container 1 can move relative to the shutter 52. It has stopper parts 52b and 52c held by Drawing 4).

また、シャッタ52は、前記ストッパ部52b,52cが変位可能となるように支持する支持部52dを有しており、現像剤封止部52aより延設されて弾性変形可能に設けられている。   The shutter 52 has a support 52d for supporting the stoppers 52b and 52c so as to be displaceable. The shutter 52 is extended from the developer sealing portion 52a and is elastically deformable.

さらに、現像剤補給容器1が現像剤受入れ装置200に非装着時に、シャッタ52が現像剤補給容器1に対して相対移動するのを防止する目的として、現像剤封止部52aにはロック突起52eが設けられている。   Furthermore, for the purpose of preventing the shutter 52 from moving relative to the developer supply container 1 when the developer supply container 1 is not attached to the developer receiving apparatus 200, the lock protrusion 52e is formed on the developer sealing portion 52a. Is provided.

ここで、現像剤補給容器1を現像剤受入れ装置200へ着脱する際のシャッタ52の開閉に伴って現像剤が不用に排出されてしまい、その周辺が現像剤で汚れてしまうのを可及的に防止する目的で、排出口1aの直径は極力小さくすることが望ましく、実施例1では約Φ2mmに設定されている。また、実施例1では現像剤補給容器1の下面側に、すなわちフランジ部41(図8(b))の下面側にシール穴41jと排出口1aを設けたが、基本的には現像剤補給容器1の現像剤受入れ装置200への挿入方向の上流側(図6矢印B方向)端面もしくは下流側(図6矢印A方向)端面位以外の側面に設けられていれば、実施例1で示す接続構成を適用することができる。   Here, the developer is unnecessarily discharged with the opening and closing of the shutter 52 when the developer supply container 1 is attached to and detached from the developer receiving apparatus 200, and the periphery thereof may be contaminated with the developer. In order to prevent this, it is desirable to make the diameter of the discharge port 1 a as small as possible, and in the first embodiment, it is set to about 2 mm. In the first embodiment, the seal hole 41j and the discharge port 1a are provided on the lower surface side of the developer supply container 1, that is, on the lower surface side of the flange portion 41 (FIG. 8B). If it is provided on the side surface other than the upstream end (direction of arrow B in FIG. 6) or the downstream end (direction of arrow A in FIG. 6) of the insertion direction of the container 1 into the developer receiving device 200, shown in the first embodiment. Connection configurations can be applied.

(ポンプ部)
次に図11を用いてポンプ部54について説明する。図11はポンプ部54の正面図である。
(Pump section)
Next, the pump unit 54 will be described with reference to FIG. FIG. 11 is a front view of the pump unit 54. FIG.

ポンプ部54は駆動ギア25(図5)より駆動受け部1A5(図7)が受けた回転駆動力により現像剤収容部1A2(図7)の内圧を周期的に変化させるように動作するポンプ部である。   The pump unit 54 operates so as to periodically change the internal pressure of the developer accommodating unit 1A2 (FIG. 7) by the rotational driving force received by the drive receiving unit 1A5 (FIG. 7) from the drive gear 25 (FIG. 5) It is.

ポンプ部54の開口端側には、フランジ部41(図8(a))と接合可能なように接合部54bが設けられている。実施例1では、接合部54bとしてネジが形成された構成を例示している。さらに、ポンプ部54の他端側には、後述する往復部材51と同期して変位するために往復部材51と係合する往復部材係合部54cを備えている。   A joint portion 54 b is provided on the opening end side of the pump portion 54 so as to be jointable with the flange portion 41 (FIG. 8A). In the first embodiment, a configuration in which a screw is formed as the joint portion 54b is illustrated. Further, on the other end side of the pump portion 54, a reciprocation member engaging portion 54c engaged with the reciprocation member 51 for displacing in synchronization with the reciprocation member 51 described later is provided.

実施例1では上述したように小さな排出口1a(図10(a))から現像剤を安定的に排出させるために、現像剤補給容器1にポンプ部54を設けている(図6)。ポンプ部54はその容積が可変である容積可変型ポンプとなっている。このポンプ部54の伸縮動作により現像剤補給容器1内の圧力を変化させ、その圧力を利用して現像剤の排出を行っている。   In the first embodiment, as described above, in order to stably discharge the developer from the small discharge port 1a (FIG. 10A), the pump portion 54 is provided in the developer supply container 1 (FIG. 6). The pump unit 54 is a variable displacement pump whose volume is variable. The pressure in the developer supply container 1 is changed by the expansion and contraction operation of the pump unit 54, and the developer is discharged using the pressure.

ポンプ部54は、「山折り」部と「谷折り」部が周期的に形成された蛇腹状の伸縮部54aが設けられている。その折り目を基点として、伸縮部54aは折り畳まれたり、伸びたりすることができる。   The pump portion 54 is provided with a bellows-like stretchable portion 54 a in which a “mountain fold” portion and a “valley fold” portion are periodically formed. The stretchable portion 54a can be folded or stretched based on the fold.

また、実施例1ではポンプ部54の材料としてはポリプロピレン樹脂(以下、PPと略す)を採用したが、これに限定されるものではない。ポンプ部54の材料に関しては、伸縮機能を発揮し容積変化によって現像剤収容部1A2(図7)の内圧を変化させることができる前提の材料であれば何でもよい。例えば、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)、ポリスチレン、ポリエステル、ポリエチレン等を薄肉で形成したものでも構わない。また、ゴムやその他の伸縮性材料などを使用することも可能である。さらに、ポンプ部54の役割は現像剤収容部1A2(図7)の内圧を変化させることであるため、ポンプの代わりにピストンを使用することも可能である。   Moreover, although polypropylene resin (it abbreviates to PP hereafter) was adopted as a material of pump part 54 in Example 1, it is not limited to this. With regard to the material of the pump portion 54, any material may be used as long as it can expand and contract and change the internal pressure of the developer storage portion 1A2 (FIG. 7) by volume change. For example, thin films of ABS (acrylonitrile-butadiene-styrene copolymer), polystyrene, polyester, polyethylene or the like may be used. It is also possible to use rubber or other stretchable material. Furthermore, since the role of the pump unit 54 is to change the internal pressure of the developer storage unit 1A2 (FIG. 7), it is also possible to use a piston instead of the pump.

(往復部材)
次に、図12を用いて往復部材51について説明する。図12(a)、図12(b)は往復部材51の斜視図を示している。
(Reciprocating member)
Next, the reciprocating member 51 will be described with reference to FIG. 12 (a) and 12 (b) show perspective views of the reciprocating member 51. FIG.

往復部材51は前述したポンプ部54の容積を変化させるために、ポンプ部54に設けられた往復部材係合部54c(図11)に係合するポンプ部係合部51aを備えている。さらに往復部材51は組み立てられた際に、前述したカム溝1A3(図7)に嵌め込まれる係合突起51bを備えている。係合突起51bはポンプ部係合部51a近傍より延在するアーム51cの先端部に設けられている。また、往復部材51は、後述するカバー53の往復部材保持部53b(図13(b))によって矢印A、B方向(図6)にのみスライド可能に保持される。したがって、駆動受け部1A5(図7)が駆動ギア25(図5)から回転駆動力を受け、容器本体1Aが回転すると、カム溝1A3も容器本体1Aに同期して回転し、カム溝1A3(図7)に嵌め込まれた係合突起51bのカム作用とカバー53の往復部材保持部53b(図14(b))の作用により、往復部材51は矢印A、B方向へ往復運動する(図6)。その往復運動に同期して、ポンプ部54が伸縮運動をする。すなわち、往復部材51は、カム溝1A3とともに、駆動受け部1A5に入力する回転駆動力をポンプ部54を動作させる力へ変換する。   The reciprocating member 51 is provided with a pump portion engaging portion 51a engaged with a reciprocating member engaging portion 54c (FIG. 11) provided in the pump portion 54 in order to change the volume of the pump portion 54 described above. Furthermore, the reciprocating member 51 is provided with an engagement protrusion 51b which is fitted into the above-mentioned cam groove 1A3 (FIG. 7) when assembled. The engagement protrusion 51b is provided at the tip of the arm 51c extending from the vicinity of the pump portion engagement portion 51a. Further, the reciprocation member 51 is held slidably only in the directions of arrows A and B (FIG. 6) by a reciprocation member holding portion 53b (FIG. 13B) of a cover 53 described later. Therefore, when the drive receiving portion 1A5 (FIG. 7) receives rotational driving force from the drive gear 25 (FIG. 5) and the container body 1A rotates, the cam groove 1A3 also rotates in synchronization with the container body 1A. The reciprocation member 51 reciprocates in the directions of arrows A and B (FIG. 6) by the cam action of the engagement projection 51b fitted in FIG. 7) and the action of the reciprocation member holding portion 53b (FIG. 14b) of the cover 53. ). In synchronization with the reciprocation, the pump portion 54 stretches and contracts. That is, the reciprocating member 51, together with the cam groove 1A3, converts the rotational drive force input to the drive receiving portion 1A5 into a force for operating the pump portion 54.

(カバー)
次に図13を用いてカバー53について説明する。図13(a)、図13(b)はカバー53の斜視図を示している。
(cover)
Next, the cover 53 will be described with reference to FIG. 13 (a) and 13 (b) show perspective views of the cover 53. FIG.

上述したように、カバー53は、ユーザーが現像剤補給容器1に触れて予期せぬケガが発生するのを防止する目的と、往復部材51やポンプ部54の保護を目的として、図6のように設けられている。詳しくは、カバー53は、フランジ部41、ポンプ部54、往復部材51の全体を覆うようにフランジ部41と一体的に設けられている。   As described above, as shown in FIG. 6, the cover 53 is for the purpose of preventing the user from touching the developer supply container 1 and causing an unexpected injury, and for the purpose of protecting the reciprocating member 51 and the pump portion 54. Provided in Specifically, the cover 53 is provided integrally with the flange portion 41 so as to cover the whole of the flange portion 41, the pump portion 54, and the reciprocating member 51.

また、カバー53には、現像剤受入れ装置200が備える挿入ガイド200e(図4)と係合することで、現像剤補給容器1を現像剤受入れ装置200に挿入するのをサポートするガイド溝53aが設けられている。さらに、カバー53には、軸P(図6)に対して往復部材51の回転変位を規制するための往復部材保持部53bが設けられている。   Further, the cover 53 has a guide groove 53a for supporting insertion of the developer supply container 1 into the developer receiving device 200 by engaging with the insertion guide 200e (FIG. 4) included in the developer receiving device 200. It is provided. Further, the cover 53 is provided with a reciprocating member holding portion 53b for restricting the rotational displacement of the reciprocating member 51 with respect to the axis P (FIG. 6).

そして、カバー53には、現像剤補給容器1を現像剤受入れ装置200に挿入する際、現像剤受入れ装置200のカバー突き当て部200g(図5)と当接することで現像剤補給容器1の装着を完了させるための現像剤受入れ装置突き当て部53cが設けられている。現像剤補給容器1を現像剤受入れ装置200に挿脱着する詳しい方法は後述する。   When the developer supply container 1 is inserted into the developer receiving device 200, the cover 53 abuts on the cover abutting portion 200g (FIG. 5) of the developer receiving device 200 so that the developer supply container 1 is mounted. And a developer receiving device abutting portion 53c for completing the process. The detailed method of inserting and removing the developer supply container 1 into and from the developer receiving apparatus 200 will be described later.

(現像剤排出原理)
次に、現像剤排出原理について、図6を用いて説明する。軸Pを中心とした、現像剤補給容器1の回転(矢印R方向)によって容器本体1Aに形成された螺旋状の突起1A1が現像剤を容器本体1Aの上流側から下流側(矢印A方向)へ搬送する。そして、螺旋状の突起1A1によって搬送された現像剤はやがてバッフル部材40に達する。次に現像剤補給容器1と一体的に回転するバッフル部材40で掻き揚げられた現像剤がバッフル部材40の表面上を滑り落ち、傾斜突起40aによってフランジ部41の貯留部41fへ搬送される。この動作を繰り返すことによって、現像剤補給容器1内部の現像剤は順次、撹拌・搬送されてフランジ部41の貯留部41f(図9(b))へ貯留される。
(Developer discharge principle)
Next, the developer discharging principle will be described with reference to FIG. A helical protrusion 1A1 formed on the container body 1A by rotation (direction of arrow R) of the developer supply container 1 around the axis P moves developer from the upstream side to the downstream side (direction of arrow A) of the container body 1A. Transport to Then, the developer conveyed by the helical protrusion 1A1 reaches the baffle member 40 soon. Next, the developer scraped up by the baffle member 40 which rotates integrally with the developer supply container 1 slides down on the surface of the baffle member 40 and is transported to the storage portion 41f of the flange portion 41 by the inclined projection 40a. By repeating this operation, the developer in the developer supply container 1 is sequentially stirred and transported, and is stored in the storage portion 41 f of the flange portion 41 (FIG. 9B).

そして、上述したように、往復部材51の往復運動と同期して、ポンプ部54は伸縮運動をする。詳しく説明すると、ポンプ部54を縮める際には、現像剤補給容器1内が加圧状態となり、その圧力に押し出される形で貯留部41f(図9(b))に貯留された現像剤が排出口1a(図10(a))から排出される。またポンプ部54を伸ばす際には、現像剤補給容器1内が減圧状態になり、外部から排出口1a(図10(a))を介してエアが取り込まれる。この取り込まれたエアにより排出口1a(図10(a))や貯留部41f(図9(b))付近の現像剤が解れ、次の排出がスムーズに行われるようになっている。以上のようにポンプ部54が伸縮運動を繰り返し行うことで現像剤の排出が行われる。   Then, as described above, in synchronization with the reciprocation of the reciprocating member 51, the pump portion 54 performs the telescopic movement. More specifically, when the pump portion 54 is contracted, the inside of the developer supply container 1 is pressurized, and the developer stored in the storage portion 41f (FIG. 9B) is discharged by being pushed out by the pressure. It is discharged from the outlet 1a (FIG. 10 (a)). When the pump portion 54 is extended, the inside of the developer supply container 1 is decompressed, and air is taken in from the outside through the discharge port 1a (FIG. 10A). The developer taken in the vicinity of the discharge port 1a (FIG. 10A) and the storage section 41f (FIG. 9B) is loosened by the taken-in air, and the next discharge is smoothly performed. As described above, the developer is discharged by the pump unit 54 repeatedly performing the extension and contraction motion.

(現像剤補給容器の挿入動作)
次に実施例1における現像剤補給容器の挿入動作(装着動作)について図14(a)〜(d)を用いて説明する。
(Insertion operation of developer supply container)
Next, the insertion operation (mounting operation) of the developer supply container in Embodiment 1 will be described using FIGS. 14 (a) to 14 (d).

図14(a)には、現像剤補給容器1を現像剤受入れ装置200に挿入させる途中の状態が示されている。   FIG. 14A shows a state in which the developer supply container 1 is being inserted into the developer receiving device 200.

図14(b)には、現像剤補給容器1の挿入が更に進み、シャッタ52の先端部に設けたストッパ部52b(図10(a))と現像剤受入れ装置200に設けられたシャッタストッパ部200a(図4)に係止された状態が示されている。   In FIG. 14B, the insertion of the developer supply container 1 further proceeds, and the stopper 52b (FIG. 10A) provided at the tip of the shutter 52 and the shutter stopper provided in the developer receiving device 200 A locked state is shown at 200a (FIG. 4).

図14(c)は、現像剤補給容器1の現像剤受入れ装置突き当て部53c(図13(a))をカバー突き当て部200g(図4)まで突き当てることによって現像剤補給容器1の装着が完了した状態を示している。   FIG. 14C shows the mounting of the developer supply container 1 by abutting the developer receiving device abutting portion 53c (FIG. 13A) of the developer supply container 1 to the cover abutting portion 200g (FIG. 4). Indicates a completed state.

図14(d)は図14(b)の部分G−G断面図である。   FIG. 14D is a sectional view taken along line G-G in FIG.

まず、現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ装着し始めると、フランジユニット部60は現像剤受入れ装置200に対して軸P(図5)に対して回転が不可となるように保持される。この時点では、シール穴41j(図8(b))はシャッタ52の現像剤封止部52a(図10(b))によって封止された状態にある。   First, when the developer supply container 1 starts to be mounted on the developer receiving device 200 in the direction of arrow A, the flange unit portion 60 can not rotate with respect to the axis P (FIG. 5) with respect to the developer receiving device 200. To be held. At this time, the seal hole 41j (FIG. 8B) is sealed by the developer sealing portion 52a (FIG. 10B) of the shutter 52.

そのまま現像剤補給容器1を矢印A方向に挿入すると、シャッタ52はシャッタストッパ部200a(図4)とストッパ部52b(図10(a))との係止により、シャッタ52はこれ以上矢印A方向に変位不可となり、その状態で現像剤補給容器1のみが矢印A方向へ動くため、シャッタ52は現像剤補給容器1に対して相対的に矢印B方向にスライドしていく(図14(b)、図14(d))。   When the developer supply container 1 is inserted as it is in the direction of arrow A, the shutter 52 is locked between the shutter stopper portion 200a (FIG. 4) and the stopper portion 52b (FIG. 10 (a)). Since only the developer supply container 1 moves in the direction of arrow A in that state, the shutter 52 slides relative to the developer supply container 1 in the direction of arrow B (FIG. 14 (b)). , FIG.14 (d).

さらに現像剤補給容器1を矢印A方向にスライドさせ、現像剤補給容器1の現像剤受入れ装置突き当て部53cをカバー突き当て部200gまで突き当てることによって、現像剤補給容器1の装着が完了する(図14(c))。このとき、フランジ部41に設けているシール穴41j(図8(b))がシャッタ52に設けられている排出口1a(図10(a))と重なることで連通し、現像剤補給が可能となる。   Furthermore, the developer supply container 1 is slid in the direction of arrow A, and the developer receiving device abutting portion 53c of the developer supply container 1 is abutted against the cover abutting portion 200g, whereby the mounting of the developer supply container 1 is completed. (FIG. 14 (c)). At this time, the seal hole 41j (FIG. 8 (b)) provided in the flange portion 41 communicates with the discharge port 1a (FIG. 10 (a)) provided in the shutter 52 so that developer can be replenished. It becomes.

この状態での駆動モータ(図5)を駆動させると、回転駆動力は、駆動ギア25から駆動受け部1A5へと伝達され、容器本体1Aが回転し、現像剤を搬送、排出する構成になっている。   When the drive motor (FIG. 5) in this state is driven, the rotational drive force is transmitted from the drive gear 25 to the drive receiving portion 1A5, and the container body 1A is rotated to transport and discharge the developer. ing.

また、図5、図14(c)において、現像剤補給容器1は現像剤受入れ装置200に設けられたボトル受けローラ23と回転振れ規制部1A4の当接により回転可能に支持されているため、わずかな駆動トルクでもスムーズに回転することが可能である。尚、ボトル受けローラ23は現像剤受入れ装置200に回転自在に設けてある。上述したように、現像剤補給容器1の内部に収容されている現像剤が排出口1aから順次排出されることで、現像剤は現像剤ホッパ部201a(図14)に一時的に貯留され、さらにスクリュー部材27(図14)により現像器201b(図1)へ搬送され、現像剤補給が行われる。以上が、現像剤補給容器1の挿入動作である。   Further, in FIG. 5 and FIG. 14C, the developer supply container 1 is rotatably supported by the contact of the bottle receiving roller 23 provided in the developer receiving device 200 and the rotational runout regulating portion 1A4. Even small driving torque can rotate smoothly. The bottle receiving roller 23 is rotatably provided in the developer receiving device 200. As described above, the developer contained in the developer supply container 1 is sequentially discharged from the discharge port 1a, whereby the developer is temporarily stored in the developer hopper portion 201a (FIG. 14). Further, the developer is transported to the developing device 201b (FIG. 1) by the screw member 27 (FIG. 14), and the developer is replenished. The above is the insertion operation of the developer supply container 1.

(現像剤補給容器の交換動作)
次に、現像剤補給容器1の交換動作について図14(a)〜(d)を用いて説明する。画像形成のプロセスに伴い、現像剤補給容器1内の現像剤が略全量消費されると、現像剤受入れ装置200に設けられた現像剤補給容器空検知手段(不図示)によって現像剤補給容器1内の現像剤が無くなったことが検知され、その旨が液晶等の表示手段100b(図3)によりユーザーに知らされる。
(Developer supply container replacement operation)
Next, the replacing operation of the developer supply container 1 will be described with reference to FIGS. 14 (a) to 14 (d). When the entire amount of the developer in the developer supply container 1 is consumed along with the process of image formation, the developer supply container 1 is provided by the developer supply container empty detection means (not shown) provided in the developer receiving device 200. It is detected that the developer inside is exhausted, and the user is notified of that by the display means 100b (FIG. 3) such as liquid crystal.

現像剤補給容器1の交換はユーザー自身が行い、その手順は以下の通りである。   The replacement of the developer supply container 1 is performed by the user, and the procedure is as follows.

まず、閉じられた状態の交換用前カバー15を図3の位置まで開く。次にユーザーが図14(c)の状態の現像剤補給容器1を矢印B方向にスライドさせる。このとき、フランジ部41に設けているシール穴41j(図8(b))がシャッタ52に設けられている排出口1a(図10(a))と重なることで連通しており、現像剤補給が可能な状態である。   First, the replacement front cover 15 in the closed state is opened to the position shown in FIG. Next, the user slides the developer supply container 1 in the state of FIG. At this time, the seal hole 41j (FIG. 8 (b)) provided in the flange portion 41 communicates with the discharge port 1a (FIG. 10 (a)) provided in the shutter 52 to communicate with the developer. Is possible.

そのまま現像剤補給容器1を矢印B方向にスライドさせると、やがてフランジ部41のシャッタ押出しリブ41k(図9(d)、図14(d))がシャッタ52のストッパ部52b(図10(a))を矢印B方向(図15)へ押し始める。   When the developer supply container 1 is slid as it is in the direction of the arrow B, the shutter push-out rib 41k (FIG. 9 (d), FIG. 14 (d)) of the flange portion 41 soon becomes the stopper 52b (FIG. 10 (a)). )) In the direction of arrow B (FIG. 15).

さらに現像剤補給容器1を矢印B方向へスライドさせていくと、現像剤受入れ装置200のシャッタストッパ部200b(図4)とシャッタ52のストッパ部52c(図10(a))の係合により支持部52d(図10(a))を基点にシャッタストッパ部52b,52cは矢印H方向(図14(d))に撓み、シャッタ52は矢印B方向へ進む(図14(b)、図14(d))。   When the developer supply container 1 is further slid in the direction of arrow B, the developer is supported by the engagement of the shutter stopper portion 200b (FIG. 4) of the developer receiving device 200 and the stopper portion 52c (FIG. 10A) of the shutter 52. The shutter stoppers 52b and 52c are bent in the direction of arrow H (FIG. 14 (d)) with respect to the portion 52d (FIG. 10 (a)), and the shutter 52 proceeds in the direction of arrow B (FIG. 14 (b), FIG. d)).

さらに現像剤補給容器1を矢印B方向にスライドすると、シャッタの支持部52d(図10)は自らの弾性力によって復帰し、挿入ガイド200eによるシャッタストッパ部52bとストッパ部52cの係止が解除され、フランジ部41に設けているシール穴41j(図8(b))とシャッタ52に設けられている現像剤封止部52a(図10(b))が重なることでシール穴41j(図8(b))が封鎖される(図14(a))。   When the developer supply container 1 is further slid in the direction of arrow B, the support portion 52d (FIG. 10) of the shutter returns due to its own elastic force, and the engagement between the shutter stopper 52b and the stopper 52c by the insertion guide 200e is released. The seal hole 41j (FIG. 8 (b)) provided in the flange portion 41 and the developer sealing portion 52a (FIG. 10 (b)) provided in the shutter 52 overlap with each other, thereby forming the seal hole 41j (FIG. b) is closed (Fig. 14 (a)).

次にユーザーは、空の現像剤補給容器1を図14(a)に示す矢印B方向に引き出し、現像剤受入れ装置200から取り出す。この後、ユーザーは新しい現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入した後(図14(c))、交換用前カバー15(図3)を閉じる。そして、上述したようにシール穴41j(図8(b))とシャッタ52の排出口1a(図10(a))が重なることで連通し、現像剤補給が可能な状態となる。以上が、現像剤補給容器の交換動作である。   Next, the user pulls out the empty developer supply container 1 in the direction of arrow B shown in FIG. Thereafter, the user inserts a new developer supply container 1 into the developer receiving apparatus 200 in the direction of arrow A (FIG. 14 (c)), and then closes the replacement front cover 15 (FIG. 3). Then, as described above, the seal hole 41j (FIG. 8B) and the discharge port 1a of the shutter 52 overlap (FIG. 10A) communicate with each other, and the developer can be replenished. The above is the replacement operation of the developer supply container.

〔現像剤受入れ装置による現像剤補給制御〕
次に、実施形態1の現像剤受入れ装置200による現像剤補給制御について、図15、図16を用いて説明する。図15は制御装置600の機能構成を示すブロック図であり、図16は補給動作の流れを説明するフローチャートである。
[Developer supply control by developer receiving device]
Next, developer replenishment control by the developer receiving device 200 of Embodiment 1 will be described with reference to FIGS. FIG. 15 is a block diagram showing a functional configuration of the control device 600, and FIG. 16 is a flow chart for explaining the flow of the replenishment operation.

実施例1では、軸Pを中心に回転する位相検知部1A6(図23)に位相検知フラグ62を当接させ、位相検知フラグ62が位相検知センサ61を通過することで、現像剤供給容器1の位相(回転数)を検知している。位相検知センサ61の出力に応じて制御装置600が駆動モータ500を作動/非作動の制御を行うことにより、現像剤補給容器1内の現像剤を定量的に現像剤ホッパ部201a内に排出(補給)している。   In the first embodiment, the phase detection flag 62 is brought into contact with the phase detection unit 1A6 (FIG. 23) rotating about the axis P, and the phase detection flag 62 passes through the phase detection sensor 61. Phase (rotational speed) is detected. The control device 600 controls the drive motor 500 to be activated / deactivated according to the output of the phase detection sensor 61, thereby quantitatively discharging the developer in the developer supply container 1 into the developer hopper portion 201a. Supply).

また、実施例1では、現像剤ホッパ部201a内に一時的に貯留される現像剤の量(現像剤面の高さ)を制限している。そこで、現像剤ホッパ部201a内に収容されている現像剤の量を検知する現像剤センサ24k(不図示)を設けている。そして、その現像剤センサ24kの出力に応じて制御装置600が駆動モータ500を作動/非作動の制御を行うことにより、現像剤ホッパ部201a内に一定量以上の現像剤が収容されないように構成している。   Further, in Example 1, the amount of developer (height of developer surface) temporarily stored in the developer hopper portion 201a is limited. Therefore, a developer sensor 24k (not shown) for detecting the amount of developer contained in the developer hopper portion 201a is provided. Then, the control device 600 controls the drive motor 500 to be activated / deactivated according to the output of the developer sensor 24k, so that the developer hopper portion 201a is prevented from containing a predetermined amount or more of the developer. doing.

その制御フローについて説明する。まず図16に示すように、現像剤センサ24kが現像剤ホッパ部201a内の現像剤残量をチェックする(S100)。そして、現像剤センサ24kにより検出された現像剤収容量が所定未満であると判断された場合、つまり現像剤センサ24kにより現像剤が検出されなかった場合、駆動モータ500を駆動し、現像剤の補給を実行する(S101)。   The control flow will be described. First, as shown in FIG. 16, the developer sensor 24k checks the remaining amount of developer in the developer hopper portion 201a (S100). When it is determined that the developer storage amount detected by the developer sensor 24k is less than a predetermined amount, that is, when the developer is not detected by the developer sensor 24k, the drive motor 500 is driven to Supply is performed (S101).

次に、位相検知フラグ62が位相検知センサ61を通過したかをチェックする(S102)。位相検知フラグ62が位相検知センサ61を通過していない場合、現像剤の補給は継続される(S103)。一方、位相検知フラグ62が位相検知センサ61を通過した場合、駆動モータ500の駆動をオフし(S105)、再度現像剤ホッパ部201a内の現像剤残量をチェックする(S100)。このように、現像剤補給容器1の位相(回転)を検知して現像剤の補給動作を作動/非作動することで、定量的に現像剤補給を実行できる。更に、現像剤補給容器1の位相(回転)を検知することで、現像剤補給容器1内の現像剤残量をある程度予測することもできる。   Next, it is checked whether the phase detection flag 62 has passed the phase detection sensor 61 (S102). If the phase detection flag 62 has not passed through the phase detection sensor 61, the replenishment of the developer is continued (S103). On the other hand, when the phase detection flag 62 passes the phase detection sensor 61, the drive of the drive motor 500 is turned off (S105), and the remaining amount of developer in the developer hopper portion 201a is checked again (S100). Thus, developer replenishment can be quantitatively performed by detecting the phase (rotation) of the developer replenishment container 1 and activating / deactivating the developer replenishment operation. Furthermore, by detecting the phase (rotation) of the developer supply container 1, it is possible to predict the developer remaining amount in the developer supply container 1 to a certain extent.

次に、現像剤センサ24kにより検出された現像剤収容量が所定量に達したと判断された場合、つまり、現像剤センサ24kにより現像剤が検出された場合、駆動モータ500の駆動をオフし、現像剤の補給動作を停止する(S106)。この補給動作の停止により、一連の現像剤補給工程が終了する。   Next, when it is determined that the developer storage amount detected by the developer sensor 24k has reached a predetermined amount, that is, when the developer is detected by the developer sensor 24k, the drive of the drive motor 500 is turned off. The developer supply operation is stopped (S106). By stopping the replenishment operation, a series of developer replenishment steps are completed.

このような、現像剤補給工程は、画像形成に伴い現像剤が消費されて現像剤ホッパ部201a内の現像剤収容量が所定未満になると、繰り返し実行される構成となっている。   Such a developer replenishment process is configured to be repeatedly executed when the developer is consumed with image formation and the developer storage amount in the developer hopper portion 201a becomes smaller than a predetermined amount.

〔補給精度、画質、回転駆動負荷の比較〕
次に、図17〜図24を用いて、比較例1、変形例1〜5、実施例1の補給精度、画質、回転駆動負荷の比較について説明する。ここでは、本発明の作用効果を最もよく表す駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置の違いによる補給精度、画質、回転駆動負荷の優劣を比較した。実施例1では、後述する実施例2に比べて、カム溝1A3(図24)が追加されており、カム溝1A3は容器挿入方向最下流側に配置するのが望ましい。なぜならば、カム溝1A3を容器挿入方向最下流側に配置することで、往復部材51を小型化できるからである。図17は比較例1の部分拡大図、図18は変形例1の部分拡大図、図19は変形例2の部分拡大図、図20は変形例3の部分拡大図、図21は変形例4の部分拡大図、図22は変形例5の部分拡大図、図23は実施例1の部分拡大図、図24は実施例1においてカバー53を外した状態の部分拡大図を示している。
[Comparison of supply accuracy, image quality, rotational drive load]
Next, the comparison of the replenishment accuracy, the image quality, and the rotational drive load of Comparative Example 1, Modified Examples 1 to 5, and Example 1 will be described using FIGS. Here, the superiority or inferiority of the replenishment accuracy, the image quality, and the rotational driving load due to the difference in the arrangement of the drive receiving portion 1A5, the rotational shake regulating portion 1A4 and the phase detecting portion 1A6 which best show the function and effect of the present invention are compared. In the first embodiment, a cam groove 1A3 (FIG. 24) is added as compared with a second embodiment described later, and the cam groove 1A3 is preferably disposed on the most downstream side in the container insertion direction. This is because the reciprocating member 51 can be miniaturized by arranging the cam groove 1A3 on the most downstream side in the container insertion direction. 17 is a partial enlarged view of Comparative Example 1, FIG. 18 is a partial enlarged view of Modification 1, FIG. 19 is a partial enlarged view of Modification 2, FIG. 20 is a partial enlarged view of Modification 3, FIG. 22 is a partial enlarged view of the fifth modification, FIG. 23 is a partial enlarged view of the first embodiment, and FIG. 24 is a partial enlarged view of the first embodiment with the cover 53 removed.

表1は各構成の違いによる、現像剤補給時における現像剤補給容器1の「補給精度」、「画質」、「回転駆動負荷」を検証した結果を示す。   Table 1 shows the results of verification of “resupply accuracy”, “image quality”, and “rotational driving load” of the developer supply container 1 at the time of developer replenishment due to the difference in each configuration.

Figure 0006532498
Figure 0006532498

なお、表1中の数値と記号の意味は、以下の通りである。   The meanings of the numerical values and symbols in Table 1 are as follows.

補給精度20%は、目標値±20%の補給精度である。位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を規制することで、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40とカム溝1A3の位相決めが正確に行われることで、貯留部41fに貯まる現像剤の量やポンプ部54の伸縮量も安定するため、補給精度の向上ができる。   Supply accuracy 20% is the supply accuracy of the target value ± 20%. The detection accuracy of the phase detection flag 62 and the phase detection sensor 61 is improved by arranging the phase detection unit and the rotational shake restriction unit adjacent to each other and restricting the vibration caused by the rotational shake of the phase detection unit. As a result, when the toner is discharged, the phase of the baffle member 40 and the cam groove 1A3 is accurately determined, and the amount of developer accumulated in the storage portion 41f and the amount of expansion and contraction of the pump portion 54 are also stabilized. it can.

補給精度30%は、目標値±30%の補給精度である。補給精度20%の場合同様、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、補給精度の向上ができる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、補給精度20%と比較すると、振動規制効果が低く、補給精度が劣ってしまう。   The supply accuracy of 30% is the supply accuracy of the target value ± 30%. Similarly to the case of the replenishment accuracy of 20%, the rotation deflection regulating unit can regulate the vibration caused by the rotation deflection of the phase detection unit, and the replenishment accuracy can be improved. However, since the phase detection unit and the rotational runout regulation unit are not arranged adjacent to each other, the vibration regulation effect is low and the replenishment accuracy is inferior as compared to the replenishment accuracy of 20%.

補給精度40%は、目標値±40%の補給精度である。回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって、補給精度30%と比較すると補給精度が劣ってしまう。   Supply accuracy 40% is the target value ± 40% supply accuracy. Since the rotational runout restricting portion is not provided, the vibration due to the rotational runout of the phase detection portion causes the replenishment accuracy to be inferior as compared to the replenishment accuracy of 30%.

画質◎は、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を規制することができ、回転駆動伝達が向上するため、画質の向上ができる。   In the image quality ◎, the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other, and it is possible to restrict the vibration due to the rotational shake of the drive receiving portion.

画質○は、◎の場合同様、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、駆動伝達が向上するため、画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、◎と比較すると振動規制効果が低く、画質が劣ってしまう。   Similarly to the case of ◎, the image quality ◎ can restrict the vibration due to the rotation sway of the drive receiving portion by the rotation sway restricting portion, and the drive transmission is improved, so improvement of the image quality can be expected. However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low compared to ◎, and the image quality is degraded.

画質△は、回転振れ規制部を設けていないため、駆動受け部の回転振れ起因による振動によって、○と比較すると画質が劣ってしまう。   The image quality Δ is inferior to the image quality as compared with O due to the vibration caused by the rotational shake of the drive receiving portion, since the rotational shake restriction portion is not provided.

容器本体1Aに設けられる位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5は、現像剤補給容器1を現像剤受入れ装置200へ挿入する際、現像剤受入れ装置200に設けられる位相検知フラグ62、ボトル受けローラ23、駆動ギア25と当接または噛み合う構成である(図23)。したがって、現像剤補給容器1を現像剤受入れ装置200へ挿入する際のユーザーの操作性を考慮すると、「位相検知部」、「回転振れ規制部」、「駆動受け部」の周方向外形は容器挿入方向下流側から徐々に大きくなる配置構成が望ましい。よって、「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成で駆動受け部の周方向外形が制限されるため、現像剤補給容器1が回転する際の駆動負荷に影響する。以下に「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成の違いによる駆動負荷への影響と表1の記号の意味を説明する。   The phase detection unit 1A6, the rotational shake regulation unit 1A4, and the drive receiving unit 1A5 provided in the container body 1A are phase detection flags provided in the developer receiving device 200 when the developer supply container 1 is inserted into the developer receiving device 200. 62, the bottle receiving roller 23 and the drive gear 25 are in contact or meshed (FIG. 23). Therefore, considering the operability of the user when inserting the developer supply container 1 into the developer receiving device 200, the circumferential external shape of the "phase detection unit", the "rotational runout restriction unit" and the "drive receiving unit" is a container An arrangement configuration in which the size gradually increases from the downstream side in the insertion direction is desirable. Accordingly, the circumferential configuration of the drive receiving portion is limited by the arrangement configuration of the “phase detection portion”, “rotational runout restricting portion”, and “drive receiving portion”, so that the driving load when the developer supply container 1 rotates. Affect. The influence on the drive load due to the difference in the arrangement configuration of the “phase detection unit”, the “rotational shake regulation unit”, and the “drive receiving unit” will be described below and the meaning of the symbols in Table 1 will be described.

回転駆動負荷◎は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   The rotational drive load ◎ is the outer diameter of the drive receiving portion by disposing the drive receiving portion on the most upstream side in the container insertion direction among the “phase detection portion”, “rotational runout restricting portion”, and “drive receiving portion”. Can be made the largest, so the rotational drive load can be made the smallest.

回転駆動負荷○は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができるが、◎と比べると回転駆動負荷が大きくなる。   The rotational drive load ○ is a drive reception unit of the “phase detection unit”, the “rotational shake regulation unit”, and the “drive reception unit”, which is disposed second from the upstream side in the container insertion direction. Since the outer diameter can be increased to the second, the rotational drive load of the drive receiving portion can be reduced, but the rotational drive load becomes larger compared to ◎.

回転駆動負荷△は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、○と比較すると回転駆動負荷が大きくなってしまう。   The rotational drive load Δ is the drive reception unit of the “phase detection unit”, the “rotational runout regulation unit”, and the “drive reception unit”, which is disposed third from the upstream side in the container insertion direction. Since the outer diameter is the smallest, the rotational drive load will be large compared to ○.

(比較例1)
図17を用いて比較例1について説明する。比較例1は容器本体1Aに設けられる駆動受け部1A5、位相検知部1A6と(回転振れ規制部1A4はなし)、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)から位相検知部1A6、駆動受け部1A5の順に並ぶ配置である。
(Comparative example 1)
Comparative Example 1 will be described with reference to FIG. In Comparative Example 1, the arrangement of the drive receiving portion 1A5, the phase detection portion 1A6 and the rotation detection restricting portion 1A4 provided in the container body 1A, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 The configuration is different from that of the first embodiment, and the other configuration is the same as that of the first embodiment. Specifically, the phase detection unit 1A6 and the drive receiving unit 1A5 are arranged in order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって補給精度が悪くなり、おおよそ目標値±40%の補給精度となる。   In this arrangement, since the rotational runout regulating unit is not provided, the replenishment accuracy deteriorates due to the vibration caused by the rotational runout of the phase detection unit, and the replenishment accuracy becomes approximately the target value ± 40%.

画質に関しては、回転振れ規制部を設けていないため、回転振れ規制部を設けた場合と比較すると、駆動受け部の回転振れ起因による振動によって画質が劣ってしまう。   As for the image quality, since the rotational runout regulating unit is not provided, the image quality is degraded due to the vibration caused by the rotational runout of the drive receiving portion as compared with the case where the rotational runout regulating unit is provided.

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, the outer diameter of the drive receiving portion can be made as large as possible by arranging the drive receiving portion on the most upstream side in the container insertion direction, so the rotational driving load can be minimized.

(変形例1)
図18を用いて実施例1の変形例1について説明する。変形例1は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、駆動受け部1A5、位相検知部1A6、回転振れ規制部1A4の順に並ぶ配置である。
(Modification 1)
A first modification of the first embodiment will be described with reference to FIG. In the first modification, the arrangement of the drive receiving portion 1A5, the rotational runout restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 provided in the container body 1A is an embodiment. The other configuration is the same as that of the first embodiment. Specifically, the cam groove 1A3, the drive receiving portion 1A5, the phase detection portion 1A6, and the rotational runout regulating portion 1A4 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared with Comparative Example 1 in which the rotational fluctuation restriction unit 1A4 is not provided. The supply accuracy can also be improved, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。   With regard to the image quality, the drive transmission is improved by restricting the vibration due to the rotational shake of the drive receiving portion by the rotational shake restricting portion, and the image quality can be expected to be improved more than Comparative Example 1 where the rotational shake restricting portion 1A4 is not provided. . However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low and the image quality is inferior as compared with the case where the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other. It will

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。   Regarding the rotational drive load, the drive receiving portion is the third from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, the “rotational runout portion (contact portion)”, and the “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion becomes the smallest, so compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction or compared to the case of being disposed second, Becomes large.

(変形例2)
図19を用いて実施例1の変形例2について説明する。変形例2は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、位相検知部1A6、駆動受け部1A5、回転振れ規制部1A4の順に並ぶ配置である。
(Modification 2)
A second modification of the first embodiment will be described with reference to FIG. In the second modification, the arrangement of the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detection portion 1A6, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 provided in the container main body 1A The other configuration is the same as that of the first embodiment. Specifically, the cam groove 1A3, the phase detection unit 1A6, the drive receiving unit 1A5, and the rotational shake regulation unit 1A4 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。   With this arrangement, it is possible to regulate the vibration due to the rotational shake of the phase detection unit by the rotational shake regulating unit, and it is possible to expect improvement in the replenishment accuracy more than Comparative Example 1 in which the rotational shake regulating unit 1A4 is not provided. However, since the phase detection unit and the rotational shake restriction unit are not arranged adjacent to each other, the vibration restriction effect is low compared to the case where the phase detection unit and the rotational shake restriction unit are arranged adjacent to each other. 30% supply accuracy.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The image quality can be improved more than that of Comparative Example 1 not.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。   With regard to the rotational drive load, the drive receiving portion is second from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, “rotational runout portion (contact portion)”, and “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion can be increased to the second, so that the rotational driving load of the drive receiving portion can be reduced. However, compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction, the rotational drive load is increased.

(変形例3)
図20を用いて実施例1の変形例4について説明する。変形例4はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6の順に並ぶ配置である。
(Modification 3)
A fourth modification of the first embodiment will be described with reference to FIG. In the fourth modification, the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detection portion 1A6 provided on the flange portion 41, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 are arranged as an embodiment. The other configuration is the same as that of the first embodiment. Specifically, the cam groove 1A3, the rotational runout regulating portion 1A4, the drive receiving portion 1A5, and the phase detection portion 1A6 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。   With this arrangement, it is possible to regulate the vibration due to the rotational shake of the phase detection unit by the rotational shake regulating unit, and it is possible to expect improvement in the replenishment accuracy more than Comparative Example 1 in which the rotational shake regulating unit 1A4 is not provided. However, since the phase detection unit and the rotational shake restriction unit are not arranged adjacent to each other, the vibration restriction effect is low compared to the case where the phase detection unit and the rotational shake restriction unit are arranged adjacent to each other. 30% supply accuracy.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The image quality can be improved more than that of Comparative Example 1 not.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。   With regard to the rotational drive load, the drive receiving portion is second from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, “rotational runout portion (contact portion)”, and “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion can be increased to the second, so that the rotational driving load of the drive receiving portion can be reduced. However, compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction, the rotational drive load is increased.

(変形例4)
図21を用いて実施例1の変形例4について説明する。変形例4は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例1とは異なっており、その他の構成は実施例1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、回転振れ規制部1A4、位相検知部1A6、駆動受け部1A5の順に並ぶ構成である。
(Modification 4)
A fourth modification of the first embodiment will be described with reference to FIG. In the fourth modification, the arrangement of the drive receiving portion 1A5, the rotational runout restricting portion 1A4, the phase detecting portion 1A6, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61 and the bottle receiving roller 23 provided in the container body 1A is an embodiment. The other configuration is the same as that of the first embodiment. Specifically, the cam groove 1A3, the rotational runout regulating unit 1A4, the phase detection unit 1A6, and the drive receiving unit 1A5 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared with Comparative Example 1 in which the rotational fluctuation restriction unit 1A4 is not provided. The supply accuracy can also be improved, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。   With regard to the image quality, the vibration due to the rotational shake of the drive receiving portion can be regulated by the rotational shake regulation unit, and improvement in the image quality can be expected compared to Comparative Example 1 in which the rotational shake regulation unit 1A4 is not provided. However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low and the image quality is inferior as compared with the case where the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other. It will

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as possible, and the rotational drive load can be minimized.

(変形例5)
図22を用いて実施例1の変形例5について説明する。変形例5は容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施形態1とは異なっており、その他の構成は実施形態1と同様である。具体的には、現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の順に並ぶ構成である。
(Modification 5)
A fifth modification of the first embodiment will be described with reference to FIG. In the fifth modification, the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detecting portion 1A6, the drive gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 are provided in the container body 1A. The other configuration is the same as that of the first embodiment. Specifically, the cam groove 1A3, the drive receiving portion 1A5, the rotational shake regulating portion 1A4 and the phase detection portion 1A6 are arranged in this order from the downstream side (arrow A direction) of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared with Comparative Example 1 in which the rotational fluctuation restriction unit 1A4 is not provided. Also, it is possible to expect improvement in the supply accuracy, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上ができる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The image quality can be improved more than that of Comparative Example 1 not.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。   Regarding the rotational drive load, the drive receiving portion is the third from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, the “rotational runout portion (contact portion)”, and the “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion becomes the smallest, so compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction or compared to the case of being disposed second, Becomes large.

(実施例1)
図23、図24を用いて実施例1について説明する。実施例1の容器本体1Aに設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置は現像剤補給容器1の挿入方向下流側(矢印A方向)からカム溝1A3、位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の順に並ぶ構成である。
Example 1
The first embodiment will be described with reference to FIGS. 23 and 24. FIG. The arrangement of the drive receiving portion 1A5, the rotational runout regulating portion 1A4, and the phase detecting portion 1A6 provided in the container main body 1A of the first embodiment is the cam groove 1A3 from the downstream side (arrow A direction) of the developer supply container 1 insertion direction The unit 1A6, the rotational runout regulating unit 1A4, and the drive receiver 1A5 are arranged in this order.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared with Comparative Example 1 in which the rotational fluctuation restriction unit 1A4 is not provided. Also, it is possible to expect improvement in the supply accuracy, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The improvement of the image quality can be expected more than the comparative example 1 which does not have.

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as possible, and the rotational drive load can be minimized.

上述の比較結果では、比較例1、変形例1〜5、実施例1の補給精度、画質、回転駆動負荷の優劣を述べているが、本発明においては「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」をどのように配置することも可能である。   In the above comparison results, although the replenishment accuracy, the image quality, and the superiority or inferiority of the rotational drive load of Comparative Example 1, Modified Examples 1 to 5, and Example 1 are described, in the present invention, “drive receiving portion 1A5”, “rotational shake It is also possible to arrange the restricting portion 1A4 "and the" phase detection portion 1A6 "in any way.

しかし、補給精度、画質、回転駆動負荷の3つの評価項目を比較した場合、「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の配置構成により、各評価項目の優劣が決まる。以下に「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の好適な配置構成とその理由を述べる。   However, when the three evaluation items of the replenishment accuracy, the image quality, and the rotational driving load are compared, the arrangement configuration of “drive receiving portion 1A5”, “rotational runout regulating portion 1A4”, and “phase detection portion 1A6” The superiority is decided. The preferable arrangement configuration of “drive receiving portion 1A5”, “rotational shake regulating portion 1A4”, and “phase detection portion 1A6” and the reason thereof will be described below.

回転駆動負荷に関しては、駆動受け部1A5を容器挿入方向最上流側に配置することで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion 1A5 on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as one, so the rotational drive load can be minimized.

補給精度に関しては、位相検知部と回転振れ規制部を隣接して配置することで、位相検知部の回転振れ起因による振動を効率よく規制することができ、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが精確に行われるため、回転振れ規制部1A4を設けていない比較例1よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With regard to the replenishment accuracy, by disposing the phase detection unit and the rotational shake restriction unit adjacent to each other, it is possible to efficiently regulate the vibration caused by the rotational shake of the phase detection unit. Detection accuracy is improved. As a result, since the phasing of the baffle member 40 is accurately performed at the time of toner discharge, the replenishment accuracy can be improved more than Comparative Example 1 in which the rotational runout restricting portion 1A4 is not provided. Become.

画質に関しては、駆動受け部と回転振れ規制部を隣接して配置することで、駆動受け部の回転振れ起因による振動を効率よく規制することができ、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例1よりも画質の向上が期待できる。   With regard to the image quality, by arranging the drive receiving portion and the rotational shake restricting portion adjacent to each other, it is possible to efficiently regulate the vibration due to the rotational shake of the drive receiving portion, and the drive transmission is improved. The improvement of the image quality can be expected as compared with Comparative Example 1 in which is not provided.

以上より、最も好適な構成は容器挿入方向下流側からカム溝1A3、位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5と配置する構成、つまり「実施例1」の構成である。   As described above, the most preferable configuration is the configuration in which the cam groove 1A3, the phase detection unit 1A6, the rotational shake regulation unit 1A4, and the drive receiving unit 1A5 are arranged from the downstream side in the container insertion direction, that is, the configuration of “first embodiment”.

本実施例によれば、現像剤補給時における現像剤補給容器の回転振れを回転振れ規制部で規制することによって、位相検知部と駆動受け部の双方の回転振れを低減できる。その結果、駆動伝達と位相検知の双方の精度向上ができる。さらに、現像剤補給容器の回転による振動も低減できるため、画質の向上ができる。   According to this embodiment, the rotational runout of both the phase detection unit and the drive receiving unit can be reduced by restricting the rotational runout of the developer supply container at the time of developer replenishment by the rotational runout regulating unit. As a result, the accuracy of both drive transmission and phase detection can be improved. Furthermore, since the vibration due to the rotation of the developer supply container can also be reduced, the image quality can be improved.

特に本実施例においては、位相検知部1A6の位相検知結果により、容器本体1A、及び容器本体1A内に配置されるバッフル部材40の回転量や回転停止位置が制御されることから、前記回転振れ規制部1A4を隣接配置することで容器内での現像剤の搬送量及びタイミングの制御が容易且つ正確に行える。   In particular, in the present embodiment, the rotation amount and the rotation stop position of the container body 1A and the baffle member 40 disposed in the container body 1A are controlled by the phase detection result of the phase detection unit 1A6. By arranging the regulating portions 1A4 adjacent to each other, control of the transport amount and timing of the developer in the container can be easily and accurately performed.

更に前述したように本実施の形態では、容器本体1A4の回転により、現像剤の排出に寄与するポンプ部54を作動させる構成を採用している。そのため前記位相検知部1A6による検知が正確に行えることは、現像剤補給容器1からの排出量が正確に制御できることに繋がる。   Furthermore, as described above, in the present embodiment, a configuration is employed in which the pump portion 54 contributing to the discharge of the developer is operated by the rotation of the container main body 1A4. Therefore, accurate detection by the phase detection unit 1A6 leads to accurate control of the discharge amount from the developer supply container 1.

以上から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の配置については、本実施例で示したバッフル部材40やポンプ部54を有する現像剤補給容器においては特に有効である。   As described above, the arrangement of the phase detection unit 1A6, the rotational runout restriction unit 1A4, and the drive receiving unit 1A5 is particularly effective in the developer supply container having the baffle member 40 and the pump unit 54 shown in this embodiment.

〔実施例2〕
次に実施例2について説明する。実施例2では現像剤補給容器1の構成が一部異なっており、それに伴い、現像剤受入れ装置200の構成、及び現像剤補給容器1の現像剤受入れ装置200への着脱動作が一部異なっている。その他の構成に関しては実施例1とほぼ同等である。したがって、本実施例2では上述した実施例1と同様な構成に関しては同符号を用いることで詳細な説明を省略する。
Example 2
A second embodiment will now be described. In the second embodiment, the configuration of the developer supply container 1 is partially different, and accordingly, the configuration of the developer receiving device 200 and the operation of attaching and detaching the developer supply container 1 to and from the developer receiving device 200 are partially different. There is. The other configuration is substantially the same as that of the first embodiment. Therefore, in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed descriptions thereof will be omitted.

以下の説明では、画像形成装置の基本構成についての説明を省略し、画像形成装置に搭載される現像剤補給システム、つまり、現像剤受入れ装置(現像剤補給装置)と現像剤補給容器の構成について順に説明する。   In the following description, the description of the basic configuration of the image forming apparatus is omitted, and the developer replenishing system mounted on the image forming apparatus, that is, the configurations of the developer receiving apparatus (developer replenishing apparatus) and the developer replenishing container It will be described in order.

(現像剤受入れ装置)
まず、現像剤受入れ装置200について図26を用いて説明する。図26は実施例2における現像剤受入れ装置200に現像剤補給容器1(図25)を矢印A方向に挿入する途中の様子を示す断面斜視図である。
(Developer receiving device)
First, the developer receiving device 200 will be described with reference to FIG. FIG. 26 is a cross-sectional perspective view showing a state in the middle of inserting the developer supply container 1 (FIG. 25) in the direction of arrow A into the developer receiving device 200 in the second embodiment.

図26に示すように、現像剤受入れ装置200には、主に後述する現像剤補給容器1の回転振れ規制部(当接部)1A4と当接するボトル受けローラ23、現像剤補給容器1の駆動受け部1A5に回転駆動力を伝達する駆動ギア25が設けられている。また現像剤受入れ装置200には、現像剤補給容器1の位相検知部(被検知部)1A6と当接することにより現像剤補給容器1の位相(回転)を検知する位相検知フラグ62、位相検知フラグ62を検知する位相検知センサ61が設けられている。さらに現像剤受入れ装置200には、現像剤補給容器1から排出され現像剤を一時的に貯留する現像剤ホッパ部201a、現像剤ホッパ部201a内の現像剤を現像装置201(図1)へ搬送するスクリュー部材27が設けられている。さらに現像剤受入れ装置200には、後述する現像剤補給容器1の封止部材2と係合する封止部材係合部20、現像剤ホッパ部201aに連通する隔壁200fが設けられている。この隔壁200fには現像剤補給容器1の一部を回転可能に支持し、かつ現像剤ホッパ部201aを密封する不図示のシール部材が設けられている。尚、位相検知フラグ62は弾性部材(不図示)により鉛直下方向に付勢されており、回転軸Q(図17)を中心に回転可能となっている。   As shown in FIG. 26, in the developer receiving device 200, a bottle receiving roller 23 that contacts a rotational runout regulating portion (abutment portion) 1A4 of the developer replenishing container 1, which will be described later, and a drive of the developer replenishing container 1 A drive gear 25 for transmitting a rotational drive force to the receiving portion 1A5 is provided. In the developer receiving apparatus 200, a phase detection flag 62 for detecting the phase (rotation) of the developer supply container 1 by coming into contact with the phase detection unit (detected unit) 1A6 of the developer supply container 1; A phase detection sensor 61 that detects 62 is provided. Further, the developer receiving unit 200 transports the developer in the developer hopper portion 201a which temporarily discharges the developer discharged from the developer supply container 1 and the developer in the developer hopper portion 201a to the developing device 201 (FIG. 1). A screw member 27 is provided. Further, the developer receiving device 200 is provided with a sealing member engaging portion 20 which engages with a sealing member 2 of the developer supply container 1 described later, and a partition wall 200f communicating with the developer hopper portion 201a. The partition wall 200f is provided with a seal member (not shown) which rotatably supports a part of the developer supply container 1 and seals the developer hopper portion 201a. The phase detection flag 62 is biased vertically downward by an elastic member (not shown), and can rotate about the rotation axis Q (FIG. 17).

(現像剤補給容器)
続いて、実施例2の現像剤補給容器1について図25、図26、図27を用いて説明する。図25は実施例1における現像剤補給容器1の部分斜視図である。図26は現像剤補給容器を現像剤受入れ装置200に対して矢印A方向へ挿入途中の様子を表す部分斜視図である。図27(a)〜(c)は現像剤補給容器1を現像剤受入れ装置200に対して矢印A方向に挿入完了するまでの様子を段階的に表す部分断面図である。
(Developer supply container)
Subsequently, the developer supply container 1 of Example 2 will be described with reference to FIGS. 25, 26, and 27. FIG. FIG. 25 is a partial perspective view of the developer supply container 1 according to the first embodiment. FIG. 26 is a partial perspective view showing a state in which the developer supply container is being inserted into the developer receiving device 200 in the direction of arrow A. As shown in FIG. FIGS. 27 (a) to 27 (c) are partial sectional views showing the state until the developer supply container 1 is completely inserted into the developer receiving device 200 in the direction of arrow A in a stepwise manner.

図25に示すように、現像剤補給容器1は主に容器本体1A、フランジ部41、バッフル部材40、封止部材2から構成される。   As shown in FIG. 25, the developer supply container 1 mainly includes a container main body 1 </ b> A, a flange portion 41, a baffle member 40, and a sealing member 2.

現像剤補給容器1は略円筒形状に形成され、その一端面のほぼ中央に容器本体1Aの円筒部より小径の排出口1aが突設されている。排出口1aには排出口1aを閉じる封止部材2が設けてあり、図27(a)〜(c)に関連した後述する説明にて理解されるように、この封止部材2が現像剤補給容器1に対して相対的にスライド移動(図25矢印Aもしくは矢印B方向)することにより、排出口1aの開閉動作を行う構成になっている。   The developer supply container 1 is formed in a substantially cylindrical shape, and a discharge port 1a having a diameter smaller than that of the cylindrical portion of the container main body 1A is protruded substantially at the center of one end surface. The discharge port 1a is provided with a sealing member 2 for closing the discharge port 1a, and this sealing member 2 is a developer, as will be understood in the following description related to FIGS. 27 (a) to 27 (c). By sliding relative to the supply container 1 (in the direction of arrow A or arrow B in FIG. 25), the opening / closing operation of the discharge port 1a is performed.

現像剤補給容器1の内部構成について図25を用いて説明する。上述のように、現像剤補給容器1は略円筒形状をしており、現像剤受入れ装置200に略水平に配置され、現像剤受入れ装置200から回転駆動力を受けて、軸Pを中心に矢印R方向に回転する構成になっている。   The internal configuration of the developer supply container 1 will be described with reference to FIG. As described above, the developer supply container 1 has a substantially cylindrical shape, is disposed substantially horizontally in the developer receiving device 200, receives a rotational driving force from the developer receiving device 200, and is an arrow around the axis P It is configured to rotate in the R direction.

そして現像剤補給容器1の内部には現像剤を搬送するためのバッフル部材40が配置される。現像剤補給容器1が回転することにより、螺旋状の突起1A1によって現像剤補給容器1の上流側から下流側へ(矢印A方向)搬送されてきた現像剤はやがてバッフル部材40に到達する。傾斜突起40aの一端は、排出口1aに接続するように設けられており、最終的に現像剤はバッフル部材40の回転に伴って、この突起40aを滑り落ちるように排出口1aへ搬送される。   A baffle member 40 for transporting the developer is disposed inside the developer supply container 1. As the developer supply container 1 rotates, the developer conveyed from the upstream side to the downstream side of the developer supply container 1 (the direction of the arrow A) by the helical protrusion 1A1 reaches the baffle member 40 soon. One end of the inclined projection 40a is provided to be connected to the discharge port 1a, and finally, the developer is conveyed to the discharge port 1a so as to slide down the projection 40a as the baffle member 40 rotates.

現像剤補給容器1の内部構成は、現像剤補給容器1が現像剤受入れ装置200から回転駆動力を受けることにより、現像剤を排出する機能を有するものであれば、特にその内部の形状や構成について限定するものではない。つまり、現像剤補給容器1の内部構成については、実施形態1のように一般的によく知られている螺旋状の突起1A1を形成したものや、その他の構成であっても構わない。   The internal configuration of the developer supply container 1 is particularly the internal shape and configuration, as long as the developer supply container 1 receives the rotational driving force from the developer receiving device 200 and discharges the developer. There is no limitation on That is, the internal configuration of the developer supply container 1 may be a generally well-known spiral projection 1A1 as in the first embodiment, or any other configuration.

(容器本体)
容器本体1Aについて、図25を用いて説明する。図25に示すように、容器本体1Aは内部に現像剤を収容する現像剤収容部1A2と、容器本体1Aが軸Pに対してR方向に回転することによって現像剤収容部1A2内の現像剤を矢印A方向ヘ搬送する螺旋状の突起1A1から構成される。
(Container body)
The container main body 1A will be described with reference to FIG. As shown in FIG. 25, the container body 1A contains a developer accommodating portion 1A2 for accommodating the developer therein, and the developer in the developer accommodating portion 1A2 when the container body 1A rotates in the R direction with respect to the axis P. Are conveyed in the direction of arrow A, and are composed of helical projections 1A1.

(フランジ部)
フランジ部41について図25、図26を用いて説明する。図25に示すように、フランジ部41は、容器本体1Aに取り付けられ、フランジ部41と容器本体1Aは回転軸Pを中心にして矢印R方向に一体的に回転する。フランジ部41は、略中空円筒形状に形成され、その一端面のほぼ中央に円筒部が突設されており、この円筒部先端側が現像剤を現像剤ホッパ部201a(図26)へ排出するための排出口1aとなっている。
(Flange part)
The flange portion 41 will be described with reference to FIGS. 25 and 26. As shown in FIG. 25, the flange portion 41 is attached to the container main body 1A, and the flange portion 41 and the container main body 1A integrally rotate around the rotation axis P in the arrow R direction. The flange portion 41 is formed in a substantially hollow cylindrical shape, and a cylindrical portion protrudes from substantially the center of one end surface thereof, and the tip end side of the cylindrical portion discharges the developer to the developer hopper portion 201a (FIG. 26). The outlet 1a of the

図26に示すように、フランジ部41の他端面の外周側の全周に渡って、現像剤受入れ装置200からの回転駆動力を受ける駆動受け部(駆動入力部)1A5、ボトル受けローラ23と当接することにより現像剤補給容器1の回転振れを規制する回転振れ規制部1A4、周面の一部に回転位相を検知する位相検知部1A6が、一体的に形成されている。   As shown in FIG. 26, over the entire circumference of the outer peripheral side of the other end surface of the flange portion 41, a drive receiving portion (drive input portion) 1A5 receiving the rotational driving force from the developer receiving device 200 and a bottle receiving roller 23 A rotational runout regulating portion 1A4 that regulates rotational runout of the developer supply container 1 by coming into contact, and a phase detection portion 1A6 that senses the rotational phase on a part of the circumferential surface are integrally formed.

尚、本実施例2では、駆動受け部1A5と回転振れ規制部1A4と位相検知部1A6がフランジ部41と一体的に形成されている例を示したが、これに限定されるものではない。例えば、駆動受け部1A5と回転振れ規制部1A4と位相検知部1A6を別体として成形し、フランジ部41に一体的に取り付ける構成等であってもよい。   In the second embodiment, the drive receiving portion 1A5, the rotational shake restricting portion 1A4 and the phase detection portion 1A6 are integrally formed with the flange portion 41, but the present invention is not limited to this. For example, the drive receiving portion 1A5, the rotational runout restricting portion 1A4, and the phase detection portion 1A6 may be separately formed and integrally attached to the flange portion 41.

また、現像剤収容部1A2は、容器本体1Aだけではなく、容器本体1Aとフランジ部41の内部スペースを合わせたものとなる。   Further, the developer accommodating portion 1A2 is not only the container body 1A but also the internal space of the container body 1A and the flange portion 41.

また、本実施例2では、回転振れ規制部1A4に対して位相検知部1A6の形状を凹形状としたが、回転振れ規制部1A4に対して位相検知部1A6の形状を凸形状にしてもかまわない。   In the second embodiment, the phase detection unit 1A6 has a concave shape with respect to the rotational shake restricting unit 1A4, but the phase detection unit 1A6 may have a convex shape with respect to the rotational shake restriction unit 1A4. Absent.

実施例2では、現像剤補給容器1がR方向に回転して現像剤を補給する際(図30)、駆動受け部1A5と位相検知部1A6の双方のラジアル方向のガタ防止効果の向上を目的として、回転振れ規制部1A4の真円度を0.05とした。回転振れ規制部1A4は真円に近いほど、より高いラジアル方向のガタ防止効果が期待できるが、必要以上の幾何公差を設けるとコストアップにつながるため、真円度を0.05とした。   In the second embodiment, when the developer supply container 1 rotates in the R direction to supply the developer (FIG. 30), the purpose is to improve the effect of preventing the radial direction of both the drive receiving portion 1A5 and the phase detection portion 1A6. The roundness of the rotation control unit 1A4 is set to 0.05. As the rotational runout restricting portion 1A4 is closer to a true circle, higher radial rattle prevention effect can be expected, but providing a geometric tolerance more than necessary leads to an increase in cost, so the roundness is set to 0.05.

このような構成とすることで、現像剤補給時に現像剤補給容器1が図30の矢印R方向に回転する際、真円に近い形状の回転振れ規制部1A4とボトル受けローラ23が当接することで位相検知部1A6と駆動受け部1A5の双方の回転振れを抑制できる。その結果、駆動伝達と位相検知の双方の精度向上が期待できる。さらに、現像剤補給容器1の回転による振動も低減できるため、画質の向上が期待できる。   With such a configuration, when the developer supply container 1 rotates in the direction of arrow R in FIG. 30 at the time of developer supply, the rotational runout regulating portion 1A4 having a shape close to a perfect circle and the bottle receiving roller 23 abut. Thus, the rotational shake of both the phase detection unit 1A6 and the drive receiving unit 1A5 can be suppressed. As a result, it is expected to improve the accuracy of both drive transmission and phase detection. Further, since the vibration due to the rotation of the developer supply container 1 can also be reduced, improvement in image quality can be expected.

また、駆動受け部1A5及び位相検知部1A6を回転振れ規制部1A4に隣接して配置した構成としている。このような構成とすることで、駆動受け部1A5と位相検知部1A6とを離れた位置に配置した構成に比べて、位相検知部1A6と駆動受け部1A5の双方の回転振れをより抑制できる。その結果、駆動伝達と位相検知の双方の精度向上や、画質の向上がより期待できる。   Further, the drive receiving portion 1A5 and the phase detection portion 1A6 are disposed adjacent to the rotational shake restricting portion 1A4. With such a configuration, rotational runout of both the phase detection unit 1A6 and the drive reception unit 1A5 can be further suppressed as compared with a configuration in which the drive reception unit 1A5 and the phase detection unit 1A6 are disposed at separate positions. As a result, it is possible to further expect improvement in accuracy of both drive transmission and phase detection and improvement in image quality.

(バッフル部材)
バッフル部材40について図25を用いて説明する。図25に示すように、バッフル部材40は容器本体1Aに取り付けられ、バッフル部材40と容器本体1Aは軸Pを中心にして一体的に矢印R方向に回転する。バッフル部材40には表裏両面に傾斜した傾斜突起40aが複数設けられ、傾斜突起40aの一端は排出口1aに達している。
(Baffle member)
The baffle member 40 will be described with reference to FIG. As shown in FIG. 25, the baffle member 40 is attached to the container body 1A, and the baffle member 40 and the container body 1A integrally rotate around the axis P in the arrow R direction. The baffle member 40 is provided with a plurality of inclined projections 40a inclined on both the front and back sides, and one end of the inclined projection 40a reaches the discharge port 1a.

(封止部材)
次に、実施例2における封止部材2の構成について図28〜図30を用いて更に説明する。図28(a)と図28(b)は封止部材2の斜視図である。図29は封止部材2の(a)正面図、(b)左側面図、(c)右側面図、(d)上面図、(e)C−C断面図である。図30は実施例2における現像剤補給容器1が現像剤受入れ装置200の封止部材係合部20と係合し、現像剤を供給している状態の断面斜視図である。
(Sealing member)
Next, the structure of the sealing member 2 in Example 2 is further demonstrated using FIGS. 28-30. 28 (a) and 28 (b) are perspective views of the sealing member 2. FIG. FIG. 29 is (a) front view, (b) left side view, (c) right side view, (d) top view, (e) CC cross-sectional view of the sealing member 2. FIG. 30 is a cross-sectional perspective view of a state in which the developer supply container 1 in the second embodiment is engaged with the sealing member engaging portion 20 of the developer receiving device 200 and supplies the developer.

図28〜図30において、封止部材2は現像剤補給容器1の排出口1aを開封可能に封止する封止部2bを備えている。また、封止部2bは排出口1aの内径よりも適当量大きく設定されたシール部2aを備えている。シール部2aは排出口1aを形成する内壁1bと圧入することにより密着してシールしていることから、適度な弾性を有することが好ましい。   In FIGS. 28 to 30, the sealing member 2 is provided with a sealing portion 2b which seals the discharge port 1a of the developer supply container 1 in an openable manner. Further, the sealing portion 2b is provided with a sealing portion 2a which is set to a suitable amount larger than the inner diameter of the discharge port 1a. Since the seal portion 2a is in close contact with the inner wall 1b forming the discharge port 1a by press-fitting, the seal portion 2a preferably has appropriate elasticity.

(弾性変形部)
次に、弾性変形部2cについて図28〜図30を用いて説明する。封止部材2は複数の弾性変形部2cを備えている。
(Elastic deformation section)
Next, the elastically deformable portion 2c will be described with reference to FIGS. The sealing member 2 is provided with a plurality of elastically deformable portions 2c.

封止部材2の複数の弾性変形部2cには、それぞれ1つの係合突起3が設けられている。この係合突起3が封止部材係合部20によって半径方向内側(図29(e)矢印D方向)へ押圧されることで、弾性変形部2cは容易に弾性変形可能である。更に、係合突起3と対となって解除突起4が設けられており、係合突起3と解除突起4は弾性変形部2cを介して一体となっている。   Each of the plurality of elastically deformable portions 2 c of the sealing member 2 is provided with one engagement protrusion 3. The elastically deformable portion 2c can be easily elastically deformed by pressing the engaging protrusion 3 radially inward (in the direction of the arrow D in FIG. 29E) by the sealing member engaging portion 20. Furthermore, a release protrusion 4 is provided in a pair with the engagement protrusion 3, and the engagement protrusion 3 and the release protrusion 4 are integrated via an elastic deformation portion 2 c.

一方、現像剤受入れ装置200に設けた封止部材係合部20の係止穴20hは封止部材2の係止面3bと係止するように構成されている。   On the other hand, the locking hole 20 h of the sealing member engaging portion 20 provided in the developer receiving device 200 is configured to lock with the locking surface 3 b of the sealing member 2.

(係合突起)
係合突起3は弾性変形部2cの円筒面よりも半径方向外側に向かって突出している。この係合突起3は、現像剤補給容器1と封止部材2とを離間させる(排出口1aを閉状態から開状態にする)際に、封止部材2を現像剤受入れ装置200の被係止部としての係止穴20hにスナップフィット的に係止させるための係止部として作用する係止面3bを有している。また、封止部材2は弾性変形を補助、促進するためのスリット溝2eを備えている。そして、係合突起3及び解除突起4は、半径方向内側(矢印D方向)に押圧された場合には半径方向内側(矢印D方向)に弾性変形し、半径方向内側(矢印D方向)の押圧を解除した場合には、半径方向外側(矢印Dと逆方向)に弾性変形が回復する構成となっている。
(Engaging projection)
The engagement protrusions 3 project radially outward of the cylindrical surface of the elastically deformable portion 2c. The engaging projection 3 separates the developer supply container 200 from the developer supply device 200 when the developer supply container 1 and the sealing member 2 are separated (when the discharge port 1 a is opened from the closed state). It has a locking surface 3b which acts as a locking portion for locking in a snap-fit manner in a locking hole 20h as a locking portion. Further, the sealing member 2 is provided with a slit groove 2e for assisting and promoting elastic deformation. When the engaging projection 3 and the releasing projection 4 are pressed inward in the radial direction (direction of arrow D), they are elastically deformed inward in the radial direction (direction of arrow D) and pressed inward in the radial direction (direction of arrow D). Is released, the elastic deformation is restored radially outward (in the direction opposite to the arrow D).

すなわち、図30に示すように、係合突起3は現像剤補給容器1と封止部材2とを相対的にスライド移動(矢印A方向)させて排出口1aを開閉するために封止部材係合部20と係止される係止機能(抜け止め機能)を、弾性変形部2c、係止面3bで果たしている。   That is, as shown in FIG. 30, the engaging protrusion 3 relatively slides the developer supply container 1 and the sealing member 2 (in the direction of arrow A) to open and close the discharge port 1a. The elastically deformable portion 2c and the locking surface 3b function as a locking function (retaining function) to be locked with the joint portion 20.

また、封止部材2を現像剤受入れ装置200の封止部材係合部20に挿入する際に、スムーズに挿入されるように、係合突起3はテーパ面3cを有している。   In addition, when the sealing member 2 is inserted into the sealing member engaging portion 20 of the developer receiving device 200, the engaging protrusion 3 has a tapered surface 3c so as to be smoothly inserted.

図26に示すように、現像剤補給容器1を現像剤受入れ装置200に対して矢印A方向に挿入していくと、やがて封止部材係合部20と封止部材2の係合が開始され、テーパ面3cと係合突起3は封止部材2の内面から押圧力を受け、弾性変形部2cが半径方向内側に変位する。更に現像剤補給容器1の挿入を進めると、テーパ面3cと係合突起3が封止部材係合部20の内面から受けていた押圧力が解除される。すると、弾性変形部2cは弾性変位した状態から復帰し、封止部材(係止部)2と現像剤受入れ装置(被係止部)200との係止が完了する。   As shown in FIG. 26, when the developer supply container 1 is inserted into the developer receiving device 200 in the direction of the arrow A, the engagement between the sealing member engaging portion 20 and the sealing member 2 is started soon. The tapered surface 3c and the engagement projection 3 receive a pressing force from the inner surface of the sealing member 2, and the elastically deformable portion 2c is displaced radially inward. When the insertion of the developer supply container 1 is further advanced, the pressing force that the tapered surface 3 c and the engagement protrusion 3 have received from the inner surface of the sealing member engaging portion 20 is released. Then, the elastically deformable portion 2 c returns from the elastically displaced state, and the locking between the sealing member (locking portion) 2 and the developer receiving device (locked portion) 200 is completed.

そして、係止が完了した後、封止部材2と現像剤補給容器1とを相対的に離間させるために、封止部材2を矢印A方向へスライド移動させることで、排出口1aが閉状態から開状態とされ、現像剤排出可能状態となる。尚、実施例2では、容器本体1Aに固定されたフランジ部41を現像剤受入れ装置200に係止させてスライド方向の移動を規制した状態において、封止部材2を前進(図30、A方向)、後退(図30、B方向)させることで排出口1aの開封、密封を行っている。もちろん、封止部材2を現像剤受入れ装置200に係止させてスライド方向の移動を規制した状態において、容器本体1Aを前進(図30、A方向)、後退(図30、B方向)させることで排出口1aの開封、密封を行う構成であってもよい。   Then, after locking is completed, the discharge port 1a is closed by sliding the sealing member 2 in the direction of the arrow A in order to separate the sealing member 2 and the developer supply container 1 relative to each other. And the developer can be discharged. In the second embodiment, the sealing member 2 is advanced in the state where the movement in the sliding direction is restricted by locking the flange portion 41 fixed to the container main body 1A to the developer receiving device 200 (FIG. 30, A direction The discharge port 1a is opened and sealed by retracting (FIG. 30, B direction). Of course, in a state where the sealing member 2 is locked to the developer receiving device 200 to restrict the movement in the sliding direction, the container body 1A is advanced (FIG. 30, A direction) and retracted (FIG. 30, B direction). The configuration may be such that the discharge port 1a is opened and sealed.

(解除突起)
次に係合突起3と対を成して設けている解除突起4について図28〜図30を用いて説明する。この解除突起4は、現像剤補給容器1を交換する際に封止部材係合部20に係合した封止部材2の係止状態を解除するための突起であって、この係止を解除して古い現像剤補給容器1を取り出して新しい現像剤補給容器1に交換するためのものである。
(Release projection)
Next, the release projection 4 provided in a pair with the engagement projection 3 will be described with reference to FIGS. The release projection 4 is a projection for releasing the locked state of the sealing member 2 engaged with the sealing member engaging portion 20 when the developer supply container 1 is replaced, and the lock is released. Then, the old developer supply container 1 is taken out and replaced with a new developer supply container 1.

この解除突起4は、現像剤受入れ装置200の解除部材21のスライド動作(図30のB方向)により、解除突起4が押圧されることで弾性変形部2cが半径方向内側に弾性変形し、係合突起3と封止部材係合部20の係止状態を解除する役割を果たしている。   When the release projection 4 is pressed by the slide operation (direction B in FIG. 30) of the release member 21 of the developer receiving device 200, the elastic deformation portion 2c elastically deforms inward in the radial direction. It plays the role of releasing the locked state of the joint projection 3 and the sealing member engaging portion 20.

尚、本例では、係合突起3及び解除突起4を円周方向に4分割した位置にそれぞれペアとなるように設けたが、2箇所あるいは3箇所などその位置や数については任意に設定してもかまわない。   In this example, the engaging projection 3 and the releasing projection 4 are provided in pairs at positions circumferentially divided into four, but the positions and the number thereof may be set arbitrarily, such as two or three. It does not matter.

(フランジ係止部)
次に封止部材2のもう一つの機能である、フランジ部41と係止するフランジ係止部5(図28(b))について説明する。
(Flange locking part)
Next, a flange locking portion 5 (FIG. 28 (b)) for locking with the flange portion 41, which is another function of the sealing member 2, will be described.

フランジ係止部5は半径方向外側に突出した突起部5bを備えている。この突起部5bは、図28(b)のようなスナップフィット構造を有し、上述した排出口を形成する内壁1bの段差面41b(図30)と係止して封止部材2の離間距離を規制するための役割を果たしている。   The flange locking portion 5 is provided with a protruding portion 5b which protrudes outward in the radial direction. The projection 5b has a snap fit structure as shown in FIG. 28 (b), and is engaged with the step surface 41b (FIG. 30) of the inner wall 1b forming the discharge port mentioned above to separate the sealing member 2 Plays a role in regulating the

さらに、このフランジ係止部5はスナップフィット構造であることから、フランジ部41に対してフランジ係止部5を挿入する(図30矢印B方向)際はフランジ係止部5が容易に半径方向内側に撓みながら挿入されるためにスムーズに挿入でき、且つ抜けにくい構成になっている。   Furthermore, since the flange locking portion 5 has a snap-fit structure, the flange locking portion 5 can be easily moved in the radial direction when the flange locking portion 5 is inserted into the flange portion 41 (direction of arrow B in FIG. 30). Since it is inserted while being bent inside, it can be inserted smoothly and is configured to be hard to come off.

ここで重要なのは、このようにフランジ係止部5に設けた突起部5b及びフランジ係止部5の構成がスナップフィット構造を有しているという点である。スナップフィットの利点は僅かな段差面41bでもスラスト方向(図30A方向)に対しては極めて強い係止力を発揮できる点である。したがって、排出口を形成する内壁1bのような比較的肉厚の薄いような箇所においても、その肉厚の範囲内で僅かな段差面41bを形成することにより封止部材2とフランジ部41を係止するために必要な係止力を、スナップフィット構造によって実現できるのである。   The important point here is that the configuration of the projection 5b and the flange locking portion 5 provided in the flange locking portion 5 in this way has a snap fit structure. The advantage of the snap fit is that even a slight step surface 41b can exhibit a very strong locking force in the thrust direction (the direction of FIG. 30A). Therefore, even at a relatively thin portion such as the inner wall 1b forming the discharge port, the sealing member 2 and the flange portion 41 can be formed by forming a slight step surface 41b within the thickness range. The locking force necessary for locking can be realized by the snap fit structure.

以上説明してきたような封止部材2はプラスチック等の樹脂を射出成型して製造するのが好ましいが、他の材料及び製造方法であっても、任意に分割、接合しても構わない。また、排出口1aに圧入嵌合してこれを密封する機能が要求されるため、適度な強度と弾性が必要とされる。   The sealing member 2 as described above is preferably manufactured by injection molding of a resin such as plastic, but it may be divided and joined arbitrarily using other materials and manufacturing methods. In addition, since the function of press-fitting and sealing the discharge port 1a is required, appropriate strength and elasticity are required.

そのような材料としては低密度ポリエチレン、ポリプロピレン、直鎖状ポリアミド、例えば商品名ナイロン、高密度ポリエチレン、ポリエステル、ABS(アクリロニトリルブタジエンスチレン共重合体)、HIPS(耐衝撃性ポリスチレン)等が好ましく利用できる。   As such materials, low density polyethylene, polypropylene, linear polyamide, such as nylon, high density polyethylene, polyester, ABS (acrylonitrile butadiene styrene copolymer), HIPS (high impact polystyrene), etc. can be preferably used. .

また、シール部のみをエラストマーなどの比較的軟らかい材料にし、封止部材2を先に述べたような樹脂材料にして2色成形するということも、もちろん可能である。このような構成にすると、シール部が軟らかいエラストマーなので密着性が高まりより良いシール性が得られることと、封止部材2の開封時の力を低減でき、より好ましい。尚、実施例2においては封止部材2本体をABS樹脂、シール部2aのみをエラストマーとした2色成形した例を示している。   Further, it is of course possible to make only the seal portion be a relatively soft material such as an elastomer, and to make the sealing member 2 a resin material as described above and perform two-color molding. With such a configuration, since the seal portion is a soft elastomer, the adhesion is enhanced and a better sealability can be obtained, and the force at the time of opening the sealing member 2 can be reduced, which is more preferable. In the second embodiment, an example is shown in which the main body of the sealing member 2 is molded in two colors using the ABS resin and only the sealing portion 2a as an elastomer.

(現像剤補給容器の挿入動作)
図26、図27(a)〜図27(c)、図30を用いて実施例2における現像剤補給容器1の挿入動作について説明する。
(Insertion operation of developer supply container)
The insertion operation of the developer supply container 1 according to the second embodiment will be described with reference to FIGS. 26, 27 (a) to 27 (c), and 30.

図26に示すように、現像剤受入れ装置200には、現像剤補給容器1と連結して封止部材2を開閉する封止部材係合部20が具備されている。封止部材係合部20は不図示のベアリング等によって回転可能に支持され、現像剤受入れ装置200内に設けた不図示の駆動機構により、矢印A方向もしくは矢印B方向にスライドする構成になっている。   As shown in FIG. 26, the developer receiving device 200 is provided with a sealing member engaging portion 20 which is connected to the developer supply container 1 to open and close the sealing member 2. The sealing member engaging portion 20 is rotatably supported by a bearing or the like (not shown), and is configured to slide in the arrow A direction or the arrow B direction by a driving mechanism (not shown) provided in the developer receiving device 200. There is.

図27(a)には、現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入している途中の状態が示されている。この時点ではまだ、排出口1a(図30参照)は封止部材2により封止された状態にある。   FIG. 27A shows a state in which the developer supply container 1 is being inserted into the developer receiving device 200 in the direction of the arrow A. FIG. At this time, the outlet 1a (see FIG. 30) is still sealed by the sealing member 2.

図27(b)には、現像剤補給容器1の挿入が更に矢印A方向へ進み、封止部材2に設けた係合突起3(図28(b))が封止部材係合部20に係止(抜け止め)された状態が示されている。係合突起3と封止部材係合部20の係止方法については上述しているため、ここでは省略する。   In FIG. 27B, the insertion of the developer supply container 1 further proceeds in the direction of the arrow A, and the engaging projection 3 (FIG. 28B) provided on the sealing member 2 forms the sealing member engaging portion 20. The locked (retained) state is shown. The locking method of the engaging projection 3 and the sealing member engaging portion 20 has been described above, and therefore, is omitted here.

この時、封止部材2は、係合突起3に設けた係止部としての係止面3b(図28(a))が被係止部としての係止穴20h(図30)にスラスト方向(図30軸P方向)に係止されているため、この係止を解除しない限り、封止部材2は封止部材係合部20に固定された状態にある(多少のガタがあっても良い)。   At this time, in the sealing member 2, the locking surface 3 b (FIG. 28 (a)) as a locking portion provided on the engaging projection 3 is thrust in the thrust direction to the locking hole 20 h (FIG. 30) as a locked portion. The sealing member 2 is fixed to the sealing member engaging portion 20 unless it is released because the locking is performed in the direction of the axis P (FIG. 30). good).

図27(c)は、封止部材2と封止部材係合部20が係合した後、封止部材2がフランジ部41(図30)から相対的に離れて排出口1a(図30)が開き、現像剤補給が可能となった状態が示されている。   In FIG. 27C, after the sealing member 2 and the sealing member engaging portion 20 are engaged, the sealing member 2 is relatively separated from the flange portion 41 (FIG. 30) and the discharge port 1a (FIG. 30) Is open, indicating that the developer can be replenished.

この状態での駆動モータ(図26)を駆動させると、回転駆動力は、駆動ギア25から駆動受け部1A5へと伝達され、現像剤補給容器1が回転し、現像剤を搬送、排出する構成になっている。尚、封止部材2はフランジ部41に対して空回転する構成になっている。   When the drive motor (FIG. 26) in this state is driven, the rotational drive force is transmitted from the drive gear 25 to the drive receiving portion 1A5, the developer supply container 1 is rotated, and the developer is transported and discharged. It has become. The sealing member 2 is configured to rotate idle with respect to the flange portion 41.

また、図27(c)において、現像剤補給容器1は現像剤受入れ装置200に設けられたボトル受けローラ23と回転振れ規制部1A4の当接により回転可能に支持されているため、わずかな駆動トルクでもスムーズに回転することが可能である。尚、ボトル受けローラ23は現像剤受入れ装置200に回転自在に設けてある。上述したように、現像剤補給容器1の内部に収容されている現像剤が排出口1a(図30)から順次排出されることで、現像剤は現像剤ホッパ部201a(図27)に一時的に貯留され、さらにスクリュー部材27(図27)により現像器201b(図1)へ搬送され、現像剤補給が行われる。以上が、現像剤補給容器1の挿入動作である。   Further, in FIG. 27C, since the developer supply container 1 is rotatably supported by the contact between the bottle receiving roller 23 provided in the developer receiving device 200 and the rotational runout restricting portion 1A4, slight driving is performed. Even torque can rotate smoothly. The bottle receiving roller 23 is rotatably provided in the developer receiving device 200. As described above, the developer stored in the developer supply container 1 is sequentially discharged from the discharge port 1a (FIG. 30), so that the developer is temporarily stored in the developer hopper portion 201a (FIG. 27). In addition, the developer is transported to the developing device 201b (FIG. 1) by the screw member 27 (FIG. 27), and the developer is replenished. The above is the insertion operation of the developer supply container 1.

(現像剤補給容器の交換動作)
次に、現像剤補給容器1の交換動作について説明する。画像形成のプロセスに伴い、現像剤補給容器1内の現像剤が略全量消費されると、現像剤受入れ装置200に設けられた現像剤補給容器空検知手段(不図示)によって現像剤補給容器1内の現像剤が無くなったことが検知される。そして、その旨が液晶等の表示手段100b(図3)によりユーザーに知らされる。
(Developer supply container replacement operation)
Next, the operation of replacing the developer supply container 1 will be described. When the entire amount of the developer in the developer supply container 1 is consumed along with the process of image formation, the developer supply container 1 is provided by the developer supply container empty detection means (not shown) provided in the developer receiving device 200. It is detected that the developer inside has been exhausted. And that is notified to the user by the display means 100b (FIG. 3) such as liquid crystal.

現像剤補給容器1の交換はユーザー自身が行い、その手順は以下の通りである。   The replacement of the developer supply container 1 is performed by the user, and the procedure is as follows.

まず、閉じられた状態の交換用前カバー15を図3の位置まで開く。次に、現像剤受入れ装置200の制御によって封止部材係合部20を矢印B方向(図27)にスライドさせ、封止部材係合部20のスライド動作に伴い、図27(c)の状態にある封止部材2は矢印B方向(図27)へスライドする。すると、排出口1aを開放する状態にあった封止部材2が排出口1aに圧入嵌合され、排出口1aが閉止されることで、上記図27(b)に示す状態となる。このとき、封止部材2は封止部材係合部20と係止状態を維持している。   First, the replacement front cover 15 in the closed state is opened to the position shown in FIG. Next, the sealing member engaging portion 20 is slid in the direction of arrow B (FIG. 27) under the control of the developer receiving device 200, and the state of FIG. 27 (c) is accompanied by the sliding operation of the sealing member engaging portion 20. The sealing member 2 located on the side slides in the direction of arrow B (FIG. 27). Then, the sealing member 2 in the state of opening the discharge port 1a is press-fit fitted to the discharge port 1a, and the discharge port 1a is closed, resulting in the state shown in FIG. 27 (b). At this time, the sealing member 2 is maintained in a locked state with the sealing member engaging portion 20.

次に、現像剤受入れ装置200の制御により、解除部材21(図30)が矢印B方向(図27)にスライドする。解除部材21のスライドが進むと、やがて、解除部材21の内面が解除突起4を半径方向内側に押圧し始める。すると、弾性変形部2cが半径方向内側に撓むことにより、封止部材2と封止部材係合部20の係止が解除される。   Next, under the control of the developer receiving apparatus 200, the release member 21 (FIG. 30) slides in the direction of arrow B (FIG. 27). As the slide of the release member 21 progresses, the inner surface of the release member 21 begins to press the release projection 4 radially inward. Then, the elastic deformation portion 2c is bent inward in the radial direction, whereby the locking of the sealing member 2 and the sealing member engaging portion 20 is released.

次にユーザーは、現像剤受入れ装置200との係止が解除された空の現像剤補給容器1を矢印B(図27)方向に引き出し、現像剤受入れ装置200から取り出す。この後、ユーザーは新しい現像剤補給容器1を現像剤受入れ装置200に矢印A方向へ挿入し(図27(b))、交換用前カバー15を閉じる。そして、上述のように現像剤排出口開閉手段により封止部材係合部20に係止された状態の封止部材2が現像剤補給容器1から離間され、排出口1aが開口される(図27(c))。以上が、トナー補給容器の交換手順である。   Next, the user pulls out the empty developer supply container 1 whose locking with the developer receiving device 200 has been released in the direction of arrow B (FIG. 27), and takes it out of the developer receiving device 200. Thereafter, the user inserts a new developer supply container 1 into the developer receiving device 200 in the direction of arrow A (FIG. 27 (b)), and closes the front cover 15 for replacement. Then, the sealing member 2 in the state of being locked to the sealing member engaging portion 20 by the developer discharge port opening / closing means as described above is separated from the developer supply container 1 and the discharge port 1a is opened (see FIG. 27 (c). The above is the replacement procedure of the toner supply container.

〔現像剤受入れ装置による現像剤補給制御〕
実施例2における現像剤受入れ装置200による現像剤補給制御は実施例1と同様であるため、省略する。
[Developer supply control by developer receiving device]
The developer replenishment control by the developer receiving apparatus 200 in the second embodiment is the same as that in the first embodiment, and thus will be omitted.

〔補給精度、画質、回転駆動負荷の比較〕
次に、比較例2、変形例6〜10、実施例2(図31)の補給精度、画質、回転駆動負荷の比較について説明する。ここでは、本発明の作用効果を最もよく表す駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置の違いによる補給精度、画質、回転駆動負荷の優劣を比較した。実施例2では、実施例1のカム溝1A3が省かれている。尚、図31は実施例2の部分拡大図を示している。
[Comparison of supply accuracy, image quality, rotational drive load]
Next, comparison of the replenishment accuracy, the image quality, and the rotational driving load in Comparative Example 2, Modified Examples 6 to 10, and Example 2 (FIG. 31) will be described. Here, the superiority or inferiority of the replenishment accuracy, the image quality, and the rotational driving load due to the difference in the arrangement of the drive receiving portion 1A5, the rotational shake regulating portion 1A4 and the phase detecting portion 1A6 which best show the function and effect of the present invention are compared. In the second embodiment, the cam groove 1A3 of the first embodiment is omitted. FIG. 31 shows a partially enlarged view of the second embodiment.

表2は各構成の違いによる、現像剤補給時における現像剤補給容器1の「補給精度」、「画質」、「回転駆動負荷」を検証した結果を示す。   Table 2 shows the results of verification of “resupply accuracy”, “image quality”, and “rotational driving load” of the developer supply container 1 at the time of developer replenishment due to the difference in each configuration.

Figure 0006532498
Figure 0006532498

なお、表2中の数値と記号の意味は、以下の通りである。   The meanings of the numerical values and symbols in Table 2 are as follows.

補給精度20%は、目標値±20%の補給精度である。位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を規制することで、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが精確に行われるため、補給精度の向上ができる。   Supply accuracy 20% is the supply accuracy of the target value ± 20%. The detection accuracy of the phase detection flag 62 and the phase detection sensor 61 is improved by arranging the phase detection unit and the rotational shake restriction unit adjacent to each other and restricting the vibration caused by the rotational shake of the phase detection unit. As a result, since the phase determination of the baffle member 40 is accurately performed at the time of toner discharge, the replenishment accuracy can be improved.

補給精度30%は、目標値±30%の補給精度である。補給精度20%の場合同様、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、補給精度の向上ができる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、補給精度20%と比較すると、振動規制効果が低く、補給精度が劣ってしまう。   The supply accuracy of 30% is the supply accuracy of the target value ± 30%. Similarly to the case of the replenishment accuracy of 20%, the rotation deflection regulating unit can regulate the vibration caused by the rotation deflection of the phase detection unit, and the replenishment accuracy can be improved. However, since the phase detection unit and the rotational runout regulation unit are not arranged adjacent to each other, the vibration regulation effect is low and the replenishment accuracy is inferior as compared to the replenishment accuracy of 20%.

補給精度40%は、目標値±40%の補給精度である。回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって、補給精度30%と比較すると補給精度が劣ってしまう。   Supply accuracy 40% is the target value ± 40% supply accuracy. Since the rotational runout restricting portion is not provided, the vibration due to the rotational runout of the phase detection portion causes the replenishment accuracy to be inferior as compared to the replenishment accuracy of 30%.

画質◎は、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を規制することができ、駆動伝達が向上するため、画質の向上ができる。   In the image quality ◎, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, so that the vibration due to the rotational shake of the drive receiving portion can be restricted, and the drive transmission is improved, so the image quality can be improved.

画質○は、◎の場合同様、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することができ、回転駆動伝達が向上するため、画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、◎と比較すると振動規制効果が低く、画質が劣ってしまう。   Similarly to the case of ◎, in the case of は, the rotation shake restricting portion can restrict the vibration due to the rotation shake of the drive receiving portion, and the rotation drive transmission is improved, so the improvement of the image quality can be expected. However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low compared to ◎, and the image quality is degraded.

画質△は、回転振れ規制部を設けていないため、駆動受け部の回転振れ起因による振動によって、○と比較すると画質が劣ってしまう。   The image quality Δ is inferior to the image quality as compared with O due to the vibration caused by the rotational shake of the drive receiving portion, since the rotational shake restriction portion is not provided.

フランジ部41に設けられる位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5は、現像剤補給容器1を現像剤受入れ装置200へ挿入する際、現像剤受入れ装置200に設けられる位相検知フラグ62、ボトル受けローラ23、駆動ギア25と当接または噛み合う構成である(図31)。したがって、現像剤補給容器1を現像剤受入れ装置200へ挿入する際のユーザーの操作性を考慮すると、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」の周方向外形は容器挿入方向下流側から徐々に大きくなる配置構成が望ましい。よって、「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成で駆動受け部の周方向外形が制限されるため、現像剤補給容器1が回転する際の駆動負荷に影響する。以下に「位相検知部」、「回転振れ規制部」、「駆動受け部」の配置構成の違いによる駆動負荷への影響と表2の記号の意味を説明する。   The phase detection unit 1A6, the rotational shake regulation unit 1A4, and the drive reception unit 1A5 provided in the flange unit 41 are phase detection flags provided in the developer receiving device 200 when the developer supply container 1 is inserted into the developer receiving device 200. 62, the bottle receiving roller 23, and the drive gear 25 are in contact or meshed (FIG. 31). Therefore, in consideration of the operability of the user when inserting the developer supply container 1 into the developer receiving apparatus 200, "phase detection portion (detected portion)", "rotational shake regulation portion (contact portion)", "phase detection portion" The circumferential configuration of the drive receiving portion is desirably arranged so as to gradually increase from the downstream side in the container insertion direction. Accordingly, the circumferential configuration of the drive receiving portion is limited by the arrangement configuration of the “phase detection portion”, “rotational runout restricting portion”, and “drive receiving portion”, so that the driving load when the developer supply container 1 rotates. Affect. The influence on the drive load due to the difference in the arrangement configuration of the “phase detection unit”, the “rotational shake regulation unit”, and the “drive receiving unit” will be described below and the meaning of the symbols in Table 2 will be described.

回転駆動負荷◎は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   The rotational drive load ◎ is the outer diameter of the drive receiving portion by disposing the drive receiving portion on the most upstream side in the container insertion direction among the “phase detection portion”, “rotational runout restricting portion”, and “drive receiving portion”. Can be made the largest, so the rotational drive load can be made the smallest.

回転駆動負荷○は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができるが、◎と比べると回転駆動負荷が大きくなる。   The rotational drive load ○ is a drive reception unit of the “phase detection unit”, the “rotational shake regulation unit”, and the “drive reception unit”, which is disposed second from the upstream side in the container insertion direction. Since the outer diameter can be increased to the second, the rotational drive load of the drive receiving portion can be reduced, but the rotational drive load becomes larger compared to ◎.

回転駆動負荷△は、「位相検知部」、「回転振れ規制部」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、○と比較すると回転駆動負荷が大きくなってしまう。   The rotational drive load Δ is the drive reception unit of the “phase detection unit”, the “rotational runout regulation unit”, and the “drive reception unit”, which is disposed third from the upstream side in the container insertion direction. Since the outer diameter is the smallest, the rotational drive load will be large compared to ○.

(比較例2)
比較例2について説明する(不図示)。比較例2はフランジ部41に設けられる駆動受け部1A5、位相検知部1A6と(回転振れ規制部1A4はなし)、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側からカム溝1A3、位相検知部1A6、駆動受け部1A5の順に並ぶ配置である。
(Comparative example 2)
Comparative Example 2 will be described (not shown). In Comparative Example 2, the arrangement of the drive receiving portion 1A5, the phase detection portion 1A6 and the rotation detection restricting portion 1A4 provided in the flange portion 41, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 The configuration is different from that of the second embodiment, and the other configuration is the same as that of the second embodiment. Specifically, the cam groove 1A3, the phase detection unit 1A6, and the drive receiving unit 1A5 are arranged in this order from the downstream side of the developer supply container 1 in the insertion direction.

この配置だと、回転振れ規制部を設けていないため、位相検知部の回転振れ起因による振動によって補給精度が悪くなり、おおよそ目標値±40%の補給精度となる。   In this arrangement, since the rotational runout regulating unit is not provided, the replenishment accuracy deteriorates due to the vibration caused by the rotational runout of the phase detection unit, and the replenishment accuracy becomes approximately the target value ± 40%.

画質に関しては、回転振れ規制部を設けていないため、回転振れ規制部を設けた場合と比較すると、駆動受け部の回転振れ起因による振動によって画質が劣ってしまう。   As for the image quality, since the rotational runout regulating unit is not provided, the image quality is degraded due to the vibration caused by the rotational runout of the drive receiving portion as compared with the case where the rotational runout regulating unit is provided.

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, the outer diameter of the drive receiving portion can be made as large as possible by arranging the drive receiving portion on the most upstream side in the container insertion direction, so the rotational driving load can be minimized.

(変形例6)
実施例2の変形例6について説明する(不図示)。変形例6はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から駆動受け部1A5、位相検知部1A6、回転振れ規制部1A4の順に並ぶ配置である。
(Modification 6)
A sixth modification of the second embodiment will be described (not shown). In the sixth modification, the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detection portion 1A6, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 are provided in the flange portion 41. The other configuration is the same as that of the second embodiment. Specifically, the drive receiving portion 1A5, the phase detection portion 1A6, and the rotational shake control portion 1A4 are arranged in this order from the downstream side of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational runout restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotation runout of the phase detection unit, compared to Comparative Example 2 in which the rotational runout restriction unit 1A4 is not provided. Also, it is possible to expect improvement in the supply accuracy, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。   With regard to the image quality, the drive transmission is improved by restricting the vibration due to the rotational shake of the drive receiving part by the rotational shake restricting part, and the image quality can be expected to be improved more than Comparative Example 2 in which the rotational shake restricting part 1A4 is not provided . However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low and the image quality is inferior as compared with the case where the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other. It will

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。   Regarding the rotational drive load, the drive receiving portion is the third from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, the “rotational runout portion (contact portion)”, and the “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion becomes the smallest, so compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction or compared to the case of being disposed second, Becomes large.

(変形例7)
実施例2の変形例7について説明する(不図示)。変形例7はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施形態2とは異なっており、その他の構成は実施形態2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から位相検知部1A6、駆動受け部1A5、回転振れ規制部1A4の順に並ぶ配置である。
(Modification 7)
A seventh modification of the second embodiment will be described (not shown). In the seventh modification, the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detection portion 1A6 provided on the flange portion 41, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 are arranged. The other configuration is the same as that of the second embodiment. Specifically, from the downstream side in the insertion direction of the developer supply container 1, the phase detection unit 1A6, the drive receiving unit 1A5, and the rotational shake restriction unit 1A4 are arranged in this order.

この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。   With this arrangement, it is possible to regulate the vibration due to the rotational shake of the phase detection unit by the rotational shake regulating unit, and it is possible to expect improvement in the replenishment accuracy more than Comparative Example 2 in which the rotational shake regulating unit 1A4 is not provided. However, since the phase detection unit and the rotational shake restriction unit are not arranged adjacent to each other, the vibration restriction effect is low compared to the case where the phase detection unit and the rotational shake restriction unit are arranged adjacent to each other. 30% supply accuracy.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上ができる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The image quality can be improved more than in the second comparative example.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。   With regard to the rotational drive load, the drive receiving portion is second from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, “rotational runout portion (contact portion)”, and “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion can be increased to the second, so that the rotational driving load of the drive receiving portion can be reduced. However, compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction, the rotational drive load is increased.

(変形例8)
実施例2の変形例8について説明する(不図示)。変形例8はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から回転振れ規制部1A4、駆動受け部1A5、位相検知部1A6の順に並ぶ配置である。
(Modification 8)
A modification 8 of the embodiment 2 will be described (not shown). In the eighth embodiment, the drive receiving portion 1A5, the rotational shake restricting portion 1A4, the phase detecting portion 1A6, the drive gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 are provided in the flange portion 41. The other configuration is the same as that of the second embodiment. Specifically, the rotational runout regulating unit 1A4, the drive receiving unit 1A5, and the phase detection unit 1A6 are arranged in this order from the downstream side of the developer supply container 1 in the insertion direction.

この配置だと、回転振れ規制部により位相検知部の回転振れ起因による振動を規制することができ、比較例2よりも補給精度の向上が期待できる。しかし、位相検知部と回転振れ規制部が隣接して配置されていないため、位相検知部と回転振れ規制部が隣接して配置される場合と比較すると、振動規制効果が低く、おおよそ目標値±30%の補給精度となる。   With this arrangement, the vibration due to the rotational shake of the phase detection unit can be restricted by the rotational shake restriction unit, and the improvement of the replenishment accuracy can be expected compared to the second comparative example. However, since the phase detection unit and the rotational shake restriction unit are not arranged adjacent to each other, the vibration restriction effect is low compared to the case where the phase detection unit and the rotational shake restriction unit are arranged adjacent to each other. 30% supply accuracy.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上ができる。   With regard to the image quality, the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion 1A4 is provided. The image quality can be improved more than in the second comparative example.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から2番目に配置されることで、駆動受け部の外径を2番目に大きくすることができるため、駆動受け部の回転駆動負荷を小さくすることができる。しかし、駆動受け部を容器挿入方向上流側から1番目に配置した場合と比べると、回転駆動負荷が大きくなる。   With regard to the rotational drive load, the drive receiving portion is second from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, “rotational runout portion (contact portion)”, and “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion can be increased to the second, so that the rotational driving load of the drive receiving portion can be reduced. However, compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction, the rotational drive load is increased.

(変形例9)
実施例2の変形例9について説明する(不図示)。変形例9はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から回転振れ規制部1A4、位相検知部1A6、駆動受け部1A5の順に並ぶ構成である。
(Modification 9)
A ninth modification of the second embodiment will be described (not shown). In the ninth modification, the drive receiving portion 1A5, the rotational vibration restricting portion 1A4, the phase detection portion 1A6 provided on the flange portion 41, the drive gear 25, the phase detection flag 62, the phase detection sensor 61, and the bottle receiving roller 23 are arranged. The other configuration is the same as that of the second embodiment. Specifically, the rotational runout regulating unit 1A4, the phase detection unit 1A6, and the drive receiving unit 1A5 are arranged in this order from the downstream side of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared to Comparative Example 2 in which the rotational shake restriction unit is not provided. Supply accuracy can be improved, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、回転振れ規制部により駆動受け部の回転振れ起因による振動を規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上が期待できる。しかし、駆動受け部と回転振れ規制部が隣接して配置されていないため、駆動受け部と回転振れ規制部が隣接して配置されている場合と比較すると、振動規制効果が低く、画質が劣ってしまう。   With regard to the image quality, the drive transmission is improved by restricting the vibration due to the rotational shake of the drive receiving part by the rotational shake restricting part, and the image quality can be expected to be improved more than Comparative Example 2 in which the rotational shake restricting part is not provided. However, since the drive receiving portion and the rotational shake restricting portion are not arranged adjacent to each other, the vibration restricting effect is low and the image quality is inferior as compared with the case where the drive receiving portion and the rotational shake restricting portion are arranged adjacent to each other. It will

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as possible, and the rotational drive load can be minimized.

(変形例10)
実施例2の変形例10について説明する(不図示)。変形例10はフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6と、駆動ギア25、位相検知フラグ62、位相検知センサ61、ボトル受けローラ23の配置が実施例2とは異なっており、その他の構成は実施例2と同様である。具体的には、現像剤補給容器1の挿入方向下流側から駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の順に並ぶ構成である。
(Modification 10)
A modification 10 of the second embodiment will be described (not shown). In the modified example 10, the drive receiving portion 1A5, the rotational runout restricting portion 1A4, the phase detecting portion 1A6 provided on the flange portion 41, the driving gear 25, the phase detecting flag 62, the phase detecting sensor 61, and the bottle receiving roller 23 are arranged as an embodiment. The other configuration is the same as that of the second embodiment. Specifically, the drive receiving portion 1A5, the rotational shake regulating portion 1A4, and the phase detection portion 1A6 are arranged in this order from the downstream side of the developer supply container 1 in the insertion direction.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational runout restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotation runout of the phase detection unit, compared to Comparative Example 2 in which the rotational runout restriction unit 1A4 is not provided. The supply accuracy can also be improved, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上ができる。   With regard to image quality, the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion is not provided. The image quality can be improved more than Comparative Example 2.

回転駆動負荷に関しては、「位相検知部(被検知部)」、「回転振れ規制部(当接部)」、「駆動受け部」のうち、駆動受け部が容器挿入方向上流側から3番目に配置されることで、駆動受け部の外径が最も小さくなるため、駆動受け部が容器挿入方向上流側から1番目に配置された場合や2番目に配置された場合と比較すると、回転駆動負荷が大きくなってしまう。   Regarding the rotational drive load, the drive receiving portion is the third from the upstream side in the container insertion direction among the “phase detection portion (detected portion)”, the “rotational runout portion (contact portion)”, and the “drive receiving portion”. By being disposed, the outer diameter of the drive receiving portion becomes the smallest, so compared with the case where the drive receiving portion is disposed first from the upstream side in the container insertion direction or compared to the case of being disposed second, Becomes large.

(実施例2)
図31を用いて実施例2について説明する。実施例2のフランジ部41に設けられる駆動受け部1A5、回転振れ規制部1A4、位相検知部1A6の配置は現像剤補給容器1の挿入方向下流側から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5の順に並ぶ構成である。
(Example 2)
The second embodiment will be described with reference to FIG. The arrangement of the drive receiving portion 1A5, the rotational runout regulating portion 1A4, and the phase detection portion 1A6 provided in the flange portion 41 of the second embodiment is the phase detection portion 1A6, the rotational runout regulating portion 1A4, They are arranged in the order of the drive receiving portion 1A5.

この配置だと、位相検知部と回転振れ規制部が隣接して配置され、位相検知部の回転振れ起因による振動を効率よく規制することで、回転振れ規制部を設けていない比較例2よりも補給精度の向上が期待でき、おおよそ目標値±20%の補給精度となる。   With this arrangement, the phase detection unit and the rotational shake restriction unit are disposed adjacent to each other, and efficiently restricting the vibration due to the rotational shake caused by the phase detection unit, compared to Comparative Example 2 in which the rotational shake restriction unit is not provided. The improvement of the supply accuracy can be expected, and the supply accuracy is approximately the target value ± 20%.

画質に関しては、駆動受け部と回転振れ規制部が隣接して配置され、駆動受け部の回転振れ起因による振動を効率よく規制することで、駆動伝達が向上し、回転振れ規制部を設けていない比較例2よりも画質の向上が期待できる。   With regard to image quality, the drive receiving portion and the rotational shake restricting portion are disposed adjacent to each other, and the drive transmission is improved by efficiently restricting the vibration caused by the rotational shake of the drive receiving portion, and the rotational shake restricting portion is not provided. An improvement in image quality can be expected compared to Comparative Example 2.

回転駆動負荷に関しては、駆動受け部が容器挿入方向最上流側に配置されることで、駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as possible, and the rotational drive load can be minimized.

上述の比較結果より、比較例2、変形例6〜10、実施例2の補給精度、画質、回転駆動負荷の優劣を述べたが、本発明では「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」をどのような配置とすることも可能である。   Although the supply accuracy, the image quality, and the superiority of the rotational drive load of Comparative Example 2, Modified Examples 6 to 10, and Example 2 are described from the above comparison results, in the present invention, "Drive Receiving Portion 1A5", "Rotary runout regulating portion It is possible to arrange 1A4 "and" phase detection unit 1A6 "in any arrangement.

しかし、補給精度、画質、回転駆動負荷の3つの評価項目を比較した場合、「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の配置構成により、各評価項目の優劣が決まる。以下に「駆動受け部1A5」、「回転振れ規制部1A4」、「位相検知部1A6」の好適な配置構成とその理由を述べる。   However, when the three evaluation items of the replenishment accuracy, the image quality, and the rotational driving load are compared, the arrangement configuration of “drive receiving portion 1A5”, “rotational runout regulating portion 1A4”, and “phase detection portion 1A6” The superiority is decided. The preferable arrangement configuration of “drive receiving portion 1A5”, “rotational shake regulating portion 1A4”, and “phase detection portion 1A6” and the reason thereof will be described below.

回転駆動負荷に関しては、駆動受け部1A5を容器挿入方向最上流側に配置することで駆動受け部の外径を1番大きくすることができるため、回転駆動負荷を最も小さくすることができる。   With regard to the rotational drive load, by disposing the drive receiving portion 1A5 on the most upstream side in the container insertion direction, the outer diameter of the drive receiving portion can be made as large as one, so the rotational drive load can be minimized.

補給精度に関しては、位相検知部と回転振れ規制部を隣接して配置することで、位相検知部の回転振れ起因による振動を効率よく規制することができ、位相検知フラグ62と位相検知センサ61の検知精度が向上する。その結果、トナー排出時にバッフル部材40の位相決めが正確に行われるため、回転振れ規制部1A4を設けていない比較例2よりも補給精度の向上ができ、おおよそ目標値±20%の補給精度となる。   With regard to the replenishment accuracy, by disposing the phase detection unit and the rotational shake restriction unit adjacent to each other, it is possible to efficiently regulate the vibration caused by the rotational shake of the phase detection unit. Detection accuracy is improved. As a result, since the phasing of the baffle member 40 is accurately performed at the time of toner discharge, the replenishment accuracy can be improved more than Comparative Example 2 in which the rotational runout regulating portion 1A4 is not provided, and the replenishment accuracy of approximately target value ± 20% Become.

画質に関しては、駆動受け部と回転振れ規制部を隣接して配置することで、駆動受け部の回転振れ起因による振動を効率よく規制することができ、駆動伝達が向上し、回転振れ規制部1A4を設けていない比較例2よりも画質の向上が期待できる。   With regard to the image quality, by arranging the drive receiving portion and the rotational shake restricting portion adjacent to each other, it is possible to efficiently regulate the vibration due to the rotational shake of the drive receiving portion, and the drive transmission is improved. The improvement of the image quality can be expected as compared with Comparative Example 2 in which is not provided.

以上より、最も好適な構成は容器挿入方向下流側から位相検知部1A6、回転振れ規制部1A4、駆動受け部1A5と配置する構成、つまり「実施例2」の構成である。   As described above, the most preferable configuration is the configuration in which the phase detection unit 1A6, the rotational shake regulation unit 1A4, and the drive receiving unit 1A5 are disposed from the downstream side in the container insertion direction, that is, the configuration of “second embodiment”.

本実施例によっても、前述した実施例と同様に、現像剤補給時における現像剤補給容器の回転振れを回転振れ規制部で規制することによって、位相検知部と駆動受け部の双方の回転振れを低減できる。その結果、駆動伝達と位相検知の双方の精度向上ができる。さらに、現像剤補給容器の回転による振動も低減できるため、画質の向上ができる。   Also in this embodiment, as in the above-described embodiment, the rotational runout of the developer supply container during developer replenishment is regulated by the rotational runout regulating unit, so that the rotational runout of both the phase detection unit and the drive receiving unit It can be reduced. As a result, the accuracy of both drive transmission and phase detection can be improved. Furthermore, since the vibration due to the rotation of the developer supply container can also be reduced, the image quality can be improved.

〔他の実施例〕
前述した実施例では、位相検知部1A6が凹部(又は凸部)である構成を例示したが、これに限定されない。例えば、図32に示すように、位相検知部1A6を回転振れ規制部1A4と同じ面上に設けた銀紙などの反射面とする構成でも良い。この構成の場合、位相検知部1A6を検知する装置側の位相検知センサ63を光学センサとする。このように構成しても、前述した実施例と同様の効果が得られる。
Other Embodiments
In the above-described embodiment, the configuration in which the phase detection unit 1A6 is the concave portion (or the convex portion) is exemplified, but the invention is not limited thereto. For example, as shown in FIG. 32, the phase detection unit 1A6 may be configured to be a reflective surface such as silver paper provided on the same surface as the rotational shake restriction unit 1A4. In this configuration, the phase detection sensor 63 on the device side that detects the phase detection unit 1A6 is an optical sensor. Even with this configuration, the same effect as the above-described embodiment can be obtained.

また前述した実施例では、画像形成装置としてプリンタを例示したが、本発明はこれに限定されるものではない。例えば複写機、ファクシミリ装置等の他の画像形成装置や、或いはこれらの機能を組み合わせた複合機等の他の画像形成装置であっても良い。これらの画像形成装置に用いられる現像剤補給容器或いは現像剤補給システムに本発明を適用することにより同様の効果を得ることができる。   In the above-described embodiment, the printer is exemplified as the image forming apparatus, but the present invention is not limited to this. For example, it may be another image forming apparatus such as a copying machine or a facsimile machine, or another image forming apparatus such as a complex machine combining these functions. The same effects can be obtained by applying the present invention to a developer supply container or a developer supply system used in these image forming apparatuses.

Ln …レンズ
M …ミラー
S …シート
1 …現像剤補給容器
1A …容器本体
1A1 …突起
1A2 …現像剤収容部
1A3 …カム溝
1A4 …回転振れ規制部
1A5 …駆動受け部
1A6 …位相検知部
1a …排出口
1b …内壁
2 …封止部材
2a …シール部
2b …封止部
2c …弾性変形部
2e …スリット溝
3 …係合突起
3b …係止面
3c …テーパ面
4 …解除突起
5 …フランジ係止部
5b …突起部
15 …交換用前カバー
20 …封止部材係合部
20h …係止穴
21 …解除部材
23 …ボトル受けローラ
24k …現像剤センサ
25 …駆動ギア
27 …スクリュー部材
40 …バッフル部材
40a …傾斜突起
41 …フランジ部
41b …段差面
41c …シャッタ挿入部
41d …ポンプ接合部
41e …容器本体接合部
41f …貯留部
41g …開口シール
41h …保護部
41i …規制リブ
41j …シール穴
41k …シャッタ押出しリブ
50 …容器受け台
51 …往復部材
51a …ポンプ部係合部
51b …係合突起
51c …アーム
52 …シャッタ
52a …現像剤封止部
52b,52c …ストッパ部
52d …支持部
52e …ロック突起
52i …摺動面
53 …カバー
53a …ガイド溝
53b …往復部材保持部
53c …突き当て部
54 …ポンプ部
54a …伸縮部
54b …接合部
54c …往復部材係合部
60 …フランジユニット部
61,63 …位相検知センサ
62 …位相検知フラグ
100 …画像形成装置本体(装置本体)
100a …操作部
100b …表示手段
100c …前面カバー
101 …原稿
102 …原稿台ガラス
103 …光学部
104 …感光体ドラム
105〜108 …カセット
105A〜108A …給送分離装置
109 …搬送部
110 …レジストローラ
111 …転写帯電器
112 …分離帯電器
113 …搬送部
114 …定着部
115 …排出反転部
116 …排出ローラ
117 …排出トレイ
118 …フラッパ
119,120 …再給送搬送部
200 …現像剤受入れ装置
200a,200b …シャッタストッパ部
200e …挿入ガイド
200f …隔壁
200g …カバー突き当て部
200h …現像剤ホッパ連通部
201 …現像装置
201a …現像剤ホッパ部
201b …現像器
201c …撹拌部材
201d …マグネットローラ
201e …搬送部材
201f …現像ローラ
202 …クリーナ装置
203 …一次帯電器
500 …駆動モータ
600 …制御装置
Ln: lens M: mirror S: sheet 1: developer supply container 1A: container main body 1A1: projection 1A2: developer storage portion 1A3: cam groove 1A4: rotational runout control portion 1A5: drive reception portion 1A6: phase detection portion 1a: Discharge port 1b: Inner wall 2: Sealing member 2a: Sealing portion 2b: Sealing portion 2c: Elastic deformation portion 2e: Slit groove 3: Engagement projection 3b: Locking surface 3c: Taper surface 4: Release projection 5: Flange engagement Stop part 5b ... Protrusion 15 ... Replacement front cover 20 ... Sealing member engagement part 20h ... Locking hole 21 ... Release member 23 ... Bottle receiving roller 24k ... Developer sensor 25 ... Drive gear 27 ... Screw member 40 ... Baffle Member 40a: inclined projection 41: flange portion 41b: step surface 41c: shutter insertion portion 41d: pump joint portion 41e: container body joint portion 41f: reservoir portion 41g: opening Eel 41h ... Protection portion 41i ... Regulating rib 41j ... Seal hole 41k ... Shutter push-out rib 50 ... Container holder 51 ... Reciprocating member 51a ... Pump portion engaging portion 51b ... Engaging projection 51c ... Arm 52 ... Shutter 52a ... Developer Sealing part 52b, 52c ... stopper part 52d ... Support part 52e ... Locking projection 52i ... Sliding surface 53 ... Cover 53a ... Guide groove 53b ... Reciprocating member holding part 53c ... Abutment part 54 ... Pump part 54a ... Stretching part 54b ... Joint portion 54c ... Reciprocating member engagement portion 60 ... Flange unit portion 61, 63 ... Phase detection sensor 62 ... Phase detection flag 100 ... Image forming apparatus main body (apparatus main body)
100a: Operation unit 100b: Display unit 100c: Front cover 101: Document 102: Document table glass 103: Optical unit 104: Photosensitive drums 105 to 108: Cassettes 105A to 108A: Feeding / separating device 109: Conveying unit 110: Registration roller 111: transfer charger 112: separation charger 113: conveyance unit 114: fixing unit 115: discharge reversing unit 116: discharge roller 117: discharge tray 118: flapper 119, 120: re-feed conveyance unit 200: developer receiving device 200a , 200b: shutter stopper portion 200e: insertion guide 200f: partition wall 200g: cover abutment portion 200h: developer hopper communication portion 201: developing device 201a: developer hopper portion 201b: developing device 201c: stirring member 201d: magnet roller 201e: magnet roller 201e: Conveying member 2 1f ... developing roller 202 ... cleaner 203 ... the primary charger 500 ... drive motor 600 ... control device

Claims (2)

駆動力を付与する付与部と、回転を検知する検知部と、を有する現像剤受入れ装置に挿入可能な現像剤補給容器おいて、
現像剤を収容する回転可能な収容部と、前記収容部に収容された現像剤を現像剤補給容器から排出する排出口を有する現像剤排出部と、前記収容部に設けられ、前記収容部の現像剤を前記排出口に向かって搬送する現像剤搬送部と、前記付与部から駆動力を受ける回転可能なギア部と、前記ギア部が前記付与部から受けた駆動力により前記収容部と一体で回転する回転部材と、前記回転部材に設けられ、前記検知部が前記回転部材の回転を検知するための被検知部と、を有し、
前記収容部は前記現像剤排出部に対して相対回転可能であって、現像剤補給容器の挿入方向において、前記回転部材は前記現像剤排出部よりも上流側にあり、前記被検知部は前記ギア部よりも下流側に配置され、前記被検知部の最大外径は前記ギア部の外径よりも小さいことを特徴とする現像剤補給容器。
In a developer supply container which can be inserted into a developer receiving device having an application unit for applying a driving force and a detection unit for detecting rotation,
A rotatable storage portion for storing developer, a developer discharging section having a discharge port for discharging the developer accommodated in the accommodation portion from the developer supply container, is provided in the housing part, the housing part A developer transport unit for transporting the developer toward the discharge port, a rotatable gear unit that receives a driving force from the application unit, and the drive unit that the gear unit receives from the application unit are integrated with the storage unit A rotating member that rotates at the same time, and a detected portion provided on the rotating member, the detection unit detecting a rotation of the rotating member,
The storage portion is rotatable relative to the developer discharge portion , and the rotating member is upstream of the developer discharge portion in the insertion direction of the developer supply container , and the detection portion is the discharge portion. The developer supply container is disposed downstream of the gear portion, and the maximum outer diameter of the detected portion is smaller than the outer diameter of the gear portion.
前記被検知部は、円周の一部を形成する円弧部と、前記円周よりも内側に凹んだ凹部と、を有することを特徴とする請求項1に記載の現像剤補給容器。   The developer supply container according to claim 1, wherein the detection target portion has an arc portion forming a part of a circumference, and a concave portion recessed inward from the circumference.
JP2017085123A 2017-04-24 2017-04-24 Developer supply container Active JP6532498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017085123A JP6532498B2 (en) 2017-04-24 2017-04-24 Developer supply container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017085123A JP6532498B2 (en) 2017-04-24 2017-04-24 Developer supply container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013047971A Division JP6137882B2 (en) 2013-03-11 2013-03-11 Developer supply container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019094554A Division JP2019152877A (en) 2019-05-20 2019-05-20 Developer replenishment container

Publications (2)

Publication Number Publication Date
JP2017126093A JP2017126093A (en) 2017-07-20
JP6532498B2 true JP6532498B2 (en) 2019-06-19

Family

ID=59364346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017085123A Active JP6532498B2 (en) 2017-04-24 2017-04-24 Developer supply container

Country Status (1)

Country Link
JP (1) JP6532498B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113510088B (en) * 2021-06-16 2022-11-22 山东电力设备有限公司 Silicon steel sheet piece automated inspection adsorbed device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3210779B2 (en) * 1993-07-06 2001-09-17 株式会社リコー Toner holding method
JP4383898B2 (en) * 2003-02-28 2009-12-16 株式会社リコー Developer container, developer supply device, and image forming apparatus
JP2005181475A (en) * 2003-12-17 2005-07-07 Murata Mach Ltd Apparatus and method for discriminating toner bottle
JP2009116120A (en) * 2007-11-07 2009-05-28 Ricoh Co Ltd Toner supply device and image forming apparatus
JP2009265369A (en) * 2008-04-25 2009-11-12 Toshiba Corp Image forming apparatus, process cartridge, remaining toner quantity detector, and remaining toner quantity detection means
JP6083954B2 (en) * 2011-06-06 2017-02-22 キヤノン株式会社 Developer supply container and developer supply system

Also Published As

Publication number Publication date
JP2017126093A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6137882B2 (en) Developer supply container
JP6639156B2 (en) Image forming apparatus and developer supply container
AU2018335182A1 (en) Developer Supply Container and Developer Supplying System
WO2014147848A1 (en) Developer supply container and developer supply system
JP6091270B2 (en) Developer supply device
JP6532498B2 (en) Developer supply container
JP4621019B2 (en) Developer supply container
JP6808331B2 (en) Developer replenishment container
JP2019152877A (en) Developer replenishment container
JP2015152769A (en) Developer supply container
JP7289751B2 (en) Developer supply container and developer supply system
EP3677967B1 (en) Developer supply container
JP7230248B2 (en) developer supply container
US10809649B2 (en) Developer supply container
JP2016090935A (en) Developer supply container and image forming apparatus
JP2018128611A (en) Developer supply container
JP2023053307A (en) Developer supply container and developer supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R151 Written notification of patent or utility model registration

Ref document number: 6532498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151