JP6531544B2 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
JP6531544B2
JP6531544B2 JP2015148145A JP2015148145A JP6531544B2 JP 6531544 B2 JP6531544 B2 JP 6531544B2 JP 2015148145 A JP2015148145 A JP 2015148145A JP 2015148145 A JP2015148145 A JP 2015148145A JP 6531544 B2 JP6531544 B2 JP 6531544B2
Authority
JP
Japan
Prior art keywords
line
ground plane
feeding
radiation element
communication frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015148145A
Other languages
English (en)
Other versions
JP2017028636A (ja
Inventor
洋平 古賀
洋平 古賀
洋行 江川
洋行 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015148145A priority Critical patent/JP6531544B2/ja
Priority to EP16175541.8A priority patent/EP3125364B1/en
Priority to US15/189,436 priority patent/US9812769B2/en
Publication of JP2017028636A publication Critical patent/JP2017028636A/ja
Application granted granted Critical
Publication of JP6531544B2 publication Critical patent/JP6531544B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Description

本発明は、アンテナ装置に関する。
従来より、外部回路に連結する給電ピンおよび前記給電ピンに一端が連結された所定の長さの給電ラインとで成る給電部と、前記給電部と所定の間隔ほど離隔された空間上に形成され、前記給電部の一部に連結され前記給電部から供給される電流を誘起する放射パッチとを備えるマルチバンド内蔵アンテナがある。前記放射パッチに一端が連結され他端は接地された短絡部をさらに備える(例えば、特許文献1参照)。
特開2003−318640号公報
ところで、従来のマルチバンド内蔵アンテナは、給電ラインと放射パッチがマルチバンド内蔵アンテナのほぼ全面に配置されているため、より多くのバンドに対応することは困難である。
例えば、タブレット型コンピュータ、スマートフォン端末機、又は携帯電話端末機等の携帯型の電子機器に用いられるアンテナ装置は、配置スペースが限られている等の理由から、放射素子の配置に制約があり、通信可能なバンド数を増やすのは容易ではない。
そこで、マルチバンド化に適したアンテナ装置を提供することを目的とする。
本発明の実施の形態のアンテナ装置は、端辺を有する第1グランドプレーンと、前記端辺に沿って配設され、第1端と第2端とを備える第1辺と、前記第1辺の前記第1端及び前記第2端からそれぞれ平面視で前記端辺から離間する方向に伸延する第2辺及び第3辺と、前記第2辺及び前記第3辺を繋ぐ第4辺と、前記第4辺側で前記第3辺よりも前記第2辺側の第5辺までの矩形領域が切り欠かれる切り欠き部とを有する、第2グランドプレーンであって、前記第1辺の前記第2端が前記第1グランドプレーンに接続されることにより、平面視で、前記第1グランドプレーンとの間に前記第1端側が開放される開放端を有するスリットを形成する、第2グランドプレーンと、前記第1端の近傍で前記第2グランドプレーンに接続される接地端から前記第2グランドプレーンに対して起立する第1線路と、前記第1線路に接続され、前記第4辺に沿って前記第3辺に向かって前記接地端とは反対の端部まで伸延する第2線路と、前記第2線路の前記端部に設けられる給電点とを有する第1放射素子と、前記第1放射素子の前記端部に接続され、前記第4辺に沿って前記第3辺に向かって伸延する第3線路と、前記第3線路に接続され、前記第3辺に沿って平面視で前記第1グランドプレーンから離間する方向に伸延する第4線路とを有する第2放射素子と、前記第2端から前記第3辺に沿って前記矩形領域内を伸延する第1無給電線路と、前記第1無給電線路に接続され、前記矩形領域内を前記第4辺に沿って前記第2辺に向かって伸延する第2無給電線路とを有する無給電素子とを含み、前記給電点から、前記第1放射素子、前記接地端、前記第2端、及び前記端辺を経た前記スリットの前記開放端までの長さは、第1通信周波数における半波長に設定され、前記第2放射素子の前記第4線路の端部から前記給電点までの長さと、前記第2グランドプレーンで前記給電点に対応するグランド電位点から前記無給電素子の前記第2無給電線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、前記第2放射素子の前記第3線路及び前記第4線路の長さは、前記第2通信周波数よりも高い第3通信周波数における四半波長に設定される。
マルチバンド化に適したアンテナ装置を提供することができる。
実施の形態1のアンテナ装置100を含む電子機器の内部構成を示す図である。 アンテナ装置100のS11パラメータの周波数特性を示す図である。 実施の形態2のアンテナ装置200を含む電子機器の内部構成を示す図である。 アンテナ装置200の各部の寸法を示す図である。 アンテナ装置200の各部の寸法を示す図である。 アンテナ装置200の各部の寸法を示す図である。 アンテナ装置200の各部の寸法を示す図である。 アンテナ装置200のS11パラメータの周波数特性を示す図である。 アンテナ装置200のS11パラメータの周波数特性と、実施の形態1のアンテナ装置100のS11パラメータの周波数特性とを比較して示す図である。 アンテナ装置200のトータル効率の周波数特性を示す図である。 放射素子210、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210、放射素子120、及び無給電素子130の電流経路を説明する図である。 ファントム1を利用したシミュレーションモデルを示す図である。 ファントム1を利用したシミュレーション結果を示す図である。 実施の形態2の第1変形例によるアンテナ装置200Aを示す図である。 実施の形態2のアンテナ装置200と、第1変形例のアンテナ装置200AのS11パラメータを示す図である。 実施の形態2の第2変形例によるアンテナ装置200Bを示す図である。 アンテナ装置200Bの各部の寸法を示す図である。 アンテナ装置200Bの各部の寸法を示す図である。 アンテナ装置200Bの各部の寸法を示す図である。 アンテナ装置200Bの各部の寸法を示す図である。 放射素子210B、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210B、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210B、放射素子120、及び無給電素子130の電流経路を説明する図である。 放射素子210B、放射素子120、及び無給電素子130の電流経路を説明する図である。
以下、本発明のアンテナ装置を適用した実施の形態について説明する。
<実施の形態1>
図1は、実施の形態1のアンテナ装置100を含む電子機器の内部構成を示す図である。
アンテナ装置100は、グランドプレーン20、グランドプレーン30、放射素子110、放射素子120、及び無給電素子130を含む。なお、以下では、直交座標系であるXYZ座標系を用いて説明する。
アンテナ装置100は、一例として、タブレット型コンピュータ又はスマートフォン端末機等の携帯型の電子機器の筐体の内部に含まれる金属板10に取り付けられている。
金属板10は、グランドプレーン20及び30よりも厚い金属板であり、接地電位に保持される。金属板10は、例えば、電子機器のディスプレイパネルの表示面とは反対側に設けられる板金である。この場合、金属板10は、ディスプレイパネルを補強するために設けられている。
金属板10には、電子機器の機能を実現するために必要なCPU(Central Processing Unit)チップ、メモリ、又はその他の電子部品が接続されていてもよい。なお、金属板10は、このようなものに限られず、上述したような電子機器に含まれている金属板であればよい。電子機器は、ディスプレイパネルを含まなくてもよい。
グランドプレーン20は、金属板10のX軸に平行な辺L1に接続される金属層であり、接地電位に保持される。グランドプレーン20は、頂点21、22、23、24を有する矩形状の金属層である。
頂点21と頂点24を結ぶ辺L1と、頂点22と頂点23を結ぶ辺L2とは、ともにX軸に平行である。頂点21と頂点22を結ぶ辺と、頂点24と頂点23を結ぶ辺とは、ともにY軸に平行である。辺L2は、辺L1の対辺であり、グランドプレーン20の端辺である。また、グランドプレーン20は、頂点23からY軸正方向側に突出し、グランドプレーン30の頂点34に接続される接続部23Aを有する。
グランドプレーン20は、第1グランドプレーンの一例であり、アンテナ装置100のグランドプレーンとして機能する。グランドプレーン20は、例えば、携帯型の電子機器の筐体の内側の面に形成されるめっき層である。めっき層は、例えば、銅めっき又はその他の金属製のめっきで作製することができる。
グランドプレーン30は、第2グランドプレーンの一例であり、アンテナ装置100のグランドプレーンとして機能する。グランドプレーン30は、頂点31、32、33、34を有する矩形状の金属層であり、X軸正方向側に無給電素子130が形成されている。無給電素子130は、頂点33を含み、X軸方向及びY軸方向に広がる矩形状の領域の内部に形成されている。
このため、グランドプレーン30は、頂点31、32、35、36を有する矩形状の金属層の頂点36から、頂点34に向かって伸延する線路37を追加したような形状を有する。
グランドプレーン30は、頂点31、32、33、34を有する矩形状の金属層のうちの上述の矩形領域内をパターニングして切り欠いて無給電素子130を形成したものであるため、以下では、説明の便宜上、頂点32と頂点33とを結ぶ辺と、頂点33と頂点34とを結ぶ辺とが存在するものとして説明する。
頂点31と頂点34を結ぶ辺と、頂点32と頂点33を結ぶ辺とは、ともにX軸に平行である。頂点31と頂点32を結ぶ辺と、頂点34と頂点33を結ぶ辺とは、ともにY軸に平行である。頂点31と頂点34を結ぶ辺は、辺L2に平行である。
グランドプレーン30の頂点34は、グランドプレーン20の接続部23Aに接続されている。また、頂点31は、頂点22とは離間している。このため、グランドプレーン30とグランドプレーン20との間には、スリット40が形成される。
このようなグランドプレーン30は、XY平面視で放射素子110及び放射素子120と略重複しており、SAR(Specific Absorption Rate:比吸収率)対策用に設けられている。
従って、アンテナ装置100を電子機器に組み込む場合には、グランドプレーン30が人体側になるようにすればよい。
なお、グランドプレーン30は、例えば、絶縁体製の基板の表面に貼り付けられる金属箔によって実現される。金属箔は、例えば、銅箔又はその他の金属製であればよい。なお、グランドプレーン30とグランドプレーン20とを一体的に一つの金属箔から作製してもよいし、グランドプレーン30をグランドプレーン20と同様にめっき層で作製してもよい。
スリット40は、端部41と端部42とを有し、グランドプレーン20とグランドプレーン30との間で、X軸方向に延在している。端部41は、開放端であり、端部42は接続部23Aによって閉じられている。なお、スリット40の端部41と端部42との間の長さについては後述する。
次に、放射素子110、放射素子120、及び無給電素子130について説明する。放射素子110及び放射素子120は、グランドプレーン30のZ軸正方向側に配設される誘電体、基板、又は筐体の表面に形成されるが、ここでは誘電体、基板、又は筐体の図示を省略する。例えば、アンテナ装置100がタブレット型コンピュータ又はスマートフォン端末機等の携帯型の電子機器に含まれる場合は、放射素子110及び放射素子120は、グランドプレーン30のZ軸正方向側に配設される誘電体、電子機器に含まれる基板、又は、電子機器の筐体の表面に形成される。
放射素子110は、アンテナ装置100の3つの通信周波数のうちの最も低い通信周波数f1の通信を実現するために設けられている。通信周波数f1の設計値は、一例として、0.9GHzである。放射素子110は、接地端111、折り曲げ部112、113、及び端部114を有する。放射素子110の端部114には、給電点115が設けられている。
接地端111は、グランドプレーン30の頂点31に接続されている。接地端111は、接地端の一例である。放射素子110は、接地端111からZ軸正方向に起立して伸延し、折り曲げ部112でY軸正方向に折れ曲がり、折り曲げ部113でX軸正方向側に折れ曲がり、端部114まで伸延している。端部114には放射素子120の端部121が接続されている。放射素子110は、放射素子120と一体的に形成される。
なお、端部114は、放射素子110及び120として一体的に形成される素子のうち、放射素子110として機能する部分のX軸正方向側の端部であり、物理的な構造における端部ではない。
ここで、接地端111と、折り曲げ部112との間の線路は、第1線路の一例である。折り曲げ部113と端部114との間の線路は、第2線路の一例である。
接地端111と折り曲げ部112との間の線路は、XZ平面に平行な薄板状の線路である。折り曲げ部112と折り曲げ部113との間は、接地端111と折り曲げ部112との間の線路をXZ平面に平行な薄板状の線路をXY平面に平行な薄板状の線路に折り曲げている区間である。折り曲げ部113と端部114との間の線路は、XY平面に平行な薄板状の線路である。
なお、折り曲げ部112と折り曲げ部113との間のXY平面に平行な区間が、Y軸正方向にさらに長く設けられていてもよい。
給電点115は、端部114と、放射素子120の端部121との境界に位置する。このため、端部114は、給電点である。給電点115には、図示しないマイクロストリップライン又は同軸ケーブル等を用いて給電が行われる。
また、グランドプレーン30の給電点115のZ軸負方向側における点は、グランド電位点38になる。グランド電位点38は、給電点115の真下に位置し、例えば、給電点115に同軸ケーブルの芯線が接続される場合には、グランド電位点38に同軸ケーブルのシールド線が接続される。グランド電位点38は、基準電位となる点である。
なお、通信周波数f1の通信は、放射素子110が単独で行うのではなく、放射素子110と、スリット40に沿ったグランドプレーン20及び30とが協働して実現される。この点については後述する。
放射素子120は、端部121、折り曲げ部122、123、及び開放端124を有する。放射素子120は、アンテナ装置100が含む3つの通信周波数のうち、最も高い通信周波数f3の通信と、2番目に高い通信周波数f2の通信とを実現するために設けられている。放射素子120は、第2放射素子の一例である。通信周波数f2の設計値は、一例として、1.5GHzである。通信周波数f3の設計値は、一例として、2.2GHzである。放射素子120のグランドプレーン30に対する高さは、放射素子110のグランドプレーン30に対する高さと等しい、
放射素子120は、端部121からY軸正方向に伸延し、折り曲げ部122でX軸負方向に折れ曲がり、折り曲げ部123でY軸負方向に折れ曲がり、開放端124まで伸延している。放射素子120は、このようなコの字型の形状を有する。
端部121は、放射素子110の端部114に接続されている。端部121と端部114との境界には、給電点115が設けられている。すなわち、端部121は給電点である。
放射素子120は、放射素子110と一体的に形成されているため、端部121は、放射素子110及び120として一体的に形成される素子のうち、放射素子120として機能する部分のX軸負方向側の端部であり、物理的な構造における端部ではない。
放射素子120の端部121(給電点115)から折り曲げ部122及び123を経た開放端124までの長さは、通信周波数f3の波長λの1/4に設定されている。このため、放射素子120は、モノポールアンテナとして機能する。
なお、端部121と折り曲げ部122との間の線路は、第3線路の一例である。折り曲げ部122と折り曲げ部123との間の線路は、第4線路の一例である。折り曲げ部123と開放端124との間の線路は、第5線路の一例である。また、折り曲げ部123と開放端124との間の線路は、第4線路が延長された区間の線路として捉えてもよい。
ここで、放射素子120が折り曲げ部123から開放端124の区間を有していなくても、端部121からλ/4の長さが確保できる場合には、放射素子120は折り曲げ部123から開放端124の区間を含まなくてもよい。この場合には、折り曲げ部123が開放端であってよい。
無給電素子130は、グランドプレーン30の頂点33を含む矩形領域内の部分をパターニングして形成されている。矩形領域は、頂点33、34、35、36によって構築される。ここで、無給電とは、給電点を有しないことをいう。
無給電素子130は、端部131、折り曲げ部132、133、及び開放端134を有する。端部131はグランドプレーン30の頂点34と同じ位置にあり、折り曲げ部132はグランドプレーン30の頂点33と同じ位置にある。
無給電素子130は、このようなコの字型の形状を有する。折り曲げ部133と開放端134の間の区間は、端部131と折り曲げ部132との間の区間、及び、折り曲げ部132と133の間の区間よりも、線幅が広くなっている。なお、折り曲げ部133と開放端134の間の区間の線幅を広くしているのは、帯域を拡大するためである。
無給電素子130は、アンテナ装置100が含む3つの通信周波数のうちの2番目に高い通信周波数f2の通信を実現するために設けられている。無給電素子130は、放射素子120と協働して、通信周波数f2の通信を実現する。
無給電素子130は、端部131からY軸正方向に伸延し、折り曲げ部132でX軸負方向に折れ曲がり、折り曲げ部133でY軸負方向に折れ曲がり、開放端134まで伸延している。
給電点115及びグランド電位点38を介しての無給電素子130、線路37、及び放射素子120の長さは、通信周波数f2の波長λの1/2に設定されている。このため、無給電素子130、線路37、及び放射素子120は、ダイポールアンテナとして機能する。無給電素子130、線路37、及び放射素子120によるダイポールアンテナは、長さλ/2の中心に対して、給電点115及びグランド電位点38の位置がオフセットされている。
折り曲げ部133のX軸負方向側の端部133Aの位置は、グランドプレーン30の頂点35の近傍であり、頂点32と頂点33とを結ぶ辺上である。また、開放端134のX軸負方向側の端部134Aの位置は、頂点36の近傍である。
ここで、端部131と折り曲げ部132との間の線路は、第1無給電線路の一例である。折り曲げ部132と折り曲げ部133との間の線路は、第2無給電線路の一例である。折り曲げ部133と開放端134との間の線路は、第3無給電線路の一例である。また、折り曲げ部133と開放端134との間の線路は、第2無給電線路が延長された区間の線路として捉えてもよい。
なお、無給電素子130が折り曲げ部133から開放端134までの区間を有していなくても、無給電素子130、線路37、及び放射素子120が長さλ/2のダイポールアンテナを実現できる場合は、無給電素子130は、折り曲げ部133から開放端134までの区間を含まなくてもよい。この場合には、折り曲げ部133が開放端であってよい。
無給電素子130は、平面視で、放射素子120に沿ったコの字型の形状を有する。これは、無給電素子130を放射素子120に電磁界結合させて、放射素子120を介して給電を受けるようにするためである。
このため、端部131と折り曲げ部132の間の線路は、平面視で、端部121と折り曲げ部122との間の線路に沿って配置されている。折り曲げ部132と133の間の線路は、折り曲げ部122と折り曲げ部123との間の線路に沿って配置されている。また、折り曲げ部133と開放端134の間の線路は、折り曲げ部123と開放端124との間の線路に沿って配置されている。
以上のようなアンテナ装置100において、通信周波数f1の通信を実現するために、給電点115から、接地端111、グランドプレーン30の頂点34、及び接続部23Aを経て、グランドプレーン20の頂点23から辺L2に沿って頂点22に至るまでの長さは、通信周波数f1の波長λの1/2(λ/2)に設定されている。
より具体的には、給電点115と接地端111との間では、折り曲げ部113と112を経る。接地端111と接続部23Aの間では、スリット40の脇のグランドプレーン30の頂点31と頂点34の間を経る。接続部23Aと頂点22の間では、スリット40の脇のグランドプレーン20の頂点23から辺L2に沿って頂点22に至る。このような給電点115と頂点22との間の経路の長さが通信周波数f1の波長λの1/2(λ/2)に設定されている。
電磁界シミュレーションを行ったところ、このような電流経路で、通信周波数f1の共振が生じることが分かった。すなわち、アンテナ装置100では、通信周波数f1の通信は、放射素子110と、スリット40に沿ったグランドプレーン20及び30とが協働して実現される。
従って、実施の形態1のアンテナ装置100では、給電点115から、接地端111、グランドプレーン30、及び接続部23Aを経て、頂点22に至るまでの長さを通信周波数f1の波長λの1/2(λ/2)に設定する。
図2は、アンテナ装置100のS11パラメータの周波数特性を示す図である。S11パラメータの周波数特性は、アンテナ装置100のモデルを用いた電磁界シミュレーションによって得られたものである。電磁界シミュレーションは、給電点115とグランドプレーン30の間に整合回路を設けずに行った。
ここでは、一例として、S11パラメータの値の評価基準を−5dBとし、−5dB以下の帯域がアンテナ装置100の通信可能な領域であるものとして評価を行う。
図2に示すように、約0.85GHz〜約1.05GHz(f1)、約1.55GHz〜約1.7GHz(f2)、約2.0GHz〜約2.2GHz(f3)の3つの帯域で、−5dB以下の値が得られた。なお、図2には、比較用のアンテナ装置として、放射素子120と無給電素子130とを含まないアンテナ装置のS11パラメータの値を示す。
アンテナ装置100は、比較用のアンテナ装置に放射素子120と無給電素子130とを追加した構成にすることにより、3つの通信周波数f1、f2、f3でS11パラメータの値が改善することが分かった。
従って、これらの帯域の通信周波数(共振周波数)f1、f2、f3で通信を行えることが確認できた。
以上より、実施の形態1によれば、サイズを拡大することなく、SAR対策用のグランドプレーン30を含み、3つの通信帯域(3バンド)において通信可能なアンテナ装置100を提供できる。
以上より、実施の形態1によれば、マルチバンド化に適したアンテナ装置100を提供することができる。
なお、以上では、グランドプレーン20と30のX軸方向の長さが等しく、かつ、両端の位置が一致している形態について説明した。しかしながら、このような形態に限られず、グランドプレーン30の方がグランドプレーン20よりもX軸方向の長さが長く、かつ、グランドプレーン30のX軸負方向側の端部がグランドプレーン20のX軸負方向側の端部よりもX軸負方向側に位置していてもよい。また、グランドプレーン30の方がグランドプレーン20よりもX軸方向の長さが長く、かつ、グランドプレーン30のX軸正方向側の端部がグランドプレーン20のX軸正方向側の端部よりもX軸正方向側に位置していてもよい。また、グランドプレーン30の方がグランドプレーン20よりもX軸方向の長さが長く、かつ、グランドプレーン30のX軸方向の両端がグランドプレーン20のX軸方向の両端よりも外側に位置していてもよい。
<実施の形態2>
図3は、実施の形態2のアンテナ装置200を含む電子機器の内部構成を示す図である。
アンテナ装置200は、グランドプレーン20、グランドプレーン30、放射素子210、放射素子120、及び無給電素子130を含む。
実施の形態2のアンテナ装置200は、実施の形態1のアンテナ装置100の放射素子110を放射素子210に置き換えて、4つの通信周波数で通信可能にしたものである。このため、以下では、実施の形態1のアンテナ装置100との相違点を中心に説明し、同様の構成要素には同一符号を付し、その説明を省略する。なお、以下では、実施の形態1と同様に直交座標系であるXYZ座標系を用いて説明する。
放射素子210は、アンテナ装置200の3つの通信周波数のうちの最も低い通信周波数f1の通信を実現するために設けられている。放射素子210は、接地端111、折り曲げ部112、分岐部213、端部114、折り曲げ部216、217、分岐部218を有する。放射素子210は、分岐部213、折り曲げ部216、217、及び分岐部218を接続する線路によって囲まれるスロット219を有する。また、放射素子210には、給電点115が設けられる。
接地端111、折り曲げ部112、端部114、給電点115は、実施の形態1の放射素子110の接地端111、折り曲げ部112、端部114、給電点115と同様である。
放射素子210は、接地端111からZ軸正方向に起立して伸延し、折り曲げ部112でY軸正方向に折れ曲がり、分岐部213でX軸正方向と、Y軸正方向とに分岐している。分岐部213からは、X軸正方向に端部114まで伸延している。端部114には放射素子120の端部121が接続されている。放射素子210は、放射素子120と一体的に形成される。
なお、端部114は、放射素子210及び120として一体的に形成される素子のうち、放射素子210として機能する部分のX軸正方向側の端部であり、物理的な構造における端部ではない。
また、分岐部213からは、Y軸正方向に伸延して折り曲げ部216でX軸正方向に折れ曲がり、X軸正方向に伸延し、折り曲げ部217でY軸負方向に折れ曲がり、分岐部218まで伸延している。端部114からX軸負方向を見ると、放射素子210は、分岐部218でX軸負方向と、Y軸正方向とに分岐している。分岐部218は、端部114の近傍に位置している。
ここで、接地端111と、折り曲げ部112との間の線路は、第1線路の一例である。分岐部213と端部114との間の線路は、第2線路の一例である。第2線路は、分岐部213からX軸正方向に伸延する線路と、分岐部213から折り曲げ部216、217、及び分岐部218を経る線路との2つの線路に分岐しており、第2線路の中央に、X軸方向に伸延するスロット219が形成されている。
接地端111と折り曲げ部112との間の線路は、XZ平面に平行な薄板状の線路である。折り曲げ部112と分岐部213との間の線路は、XY平面に平行な薄板状の線路である。分岐部213と端部114との間の線路は、XY平面に平行な薄板状の線路である。
なお、折り曲げ部112と分岐部213との間のXY平面に平行な区間が、Y軸正方向にさらに長く設けられていてもよい。
給電点115は、端部114と、放射素子120の端部121との境界に位置する。
なお、通信周波数f1の通信は、放射素子210が単独で行うのではなく、放射素子210と、スリット40に沿ったグランドプレーン20及び30とが協働して実現される。この点については後述する。
アンテナ装置200では、通信周波数f1〜f3は、実施の形態1のアンテナ装置100と同様に、以下の経路で実現される。
通信周波数f1の通信を実現するために、給電点115から、接地端111、グランドプレーン30の頂点34、及び接続部23Aを経て、グランドプレーン20の頂点23から辺L2に沿って頂点22に至るまでの長さは、通信周波数f1の波長λの1/2(λ/2)に設定されている。
給電点115及びグランド電位点38を介しての無給電素子130と放射素子120との長さは、通信周波数f2の波長λの1/2に設定されている。このため、無給電素子130、線路37、及び放射素子120は、ダイポールアンテナとして機能する。無給電素子130、線路37、及び放射素子120によるダイポールアンテナは、長さλ/2の中心と、給電点115及びグランド電位点38の位置とがずれている。
放射素子120の端部121(給電点115)から折り曲げ部122及び123を経た開放端124までの長さは、通信周波数f3の波長λの1/4に設定されている。放射素子120は、モノポールアンテナとして機能する。
また、4つ目の通信周波数f4は、放射素子120の開放端124から、放射素子120、放射素子210、接地端111、グランドプレーン30の頂点31を経て、頂点31に至るまでの経路によって実現される。
より具体的には、通信周波数f4の経路は、放射素子120の開放端124から端部121を経て、放射素子210の端部114から分岐部218、折り曲げ部217及び216、分岐部213、折り曲げ部112、及び接地端111を経て、さらにグランドプレーン30の頂点31を経て、頂点34に至る経路である。
この経路の長さは、通信周波数f4の波長λの5/4に設定されている。すなわち、放射素子120の開放端124から、放射素子120、放射素子210、接地端111、グランドプレーン30の頂点31を経て、頂点34に至るまでの区間には、5/4λアンテナが構築されている。5/4λアンテナは、通信周波数f4の5倍高調波で通信可能なアンテナである。
通信周波数f4は、通信周波数f3よりも高い周波数である。通信周波数f4の設計値は、一例として、2.5GHzである。
分岐部218と分岐部213の間では、分岐部218からX軸負方向に分岐部213に直接至る経路ではなく、分岐部218から折り曲げ部217及び216を経て分岐部213に至る経路である。分岐部218から折り曲げ部217及び216を経て分岐部213に至る経路の方が迂回しているため、放射素子210の小型化を図ることができる。
なお、スロット219は、スロットアンテナとしては機能させていない。分岐部213と分岐部218との間にスロット219を設けない場合でも、同様の通信周波数f4が得られることが確認できている。放射素子210は、実施の形態1の放射素子110に比べて通信周波数f4の5倍高調波の電流を増やすことができる。また、スロット219は、X軸方向において、複数設けられていてもよい。換言すれば、スロット219は、X軸方向において、複数個に分断されていてもよい。
図4乃至図7は、アンテナ装置200の各部の寸法を示す図である。ここで示す寸法は、通信周波数f1、f2、f3、f4を、0.9GHz(f1)、1.5GHz(f2)、2.2GHz(f3)、2.5GHz(f4)とした場合の一例としての寸法である。
なお、図4乃至図7では図1に示すXYZ座標と同じXYZ座標を用いて説明する。また、図4乃至図7では、見易さの観点から、すべての符号を示さずに、主な符号のみを示す。
図4に示すように、金属板10は、X軸方向の長さが200mm、Y軸方向の長さが150mmである。また、図4に示すように、金属板10のZ軸方向の長さ(厚さ)は5mmである。金属板10は、図4に示すように、XY平面視で矩形状の板金である。
アンテナ装置200は、金属板10のX軸正方向側で、かつ、Y軸正方向側の角部に設けられている。
図5に示すように、グランドプレーン20及び30のX軸方向の長さは60mmである。また、頂点21と頂点22との間の長さは4.0mm、接続部23Aと頂点24との間の長さは5.0mmである。
また、頂点32と頂点35との間の長さは37.0mm、頂点33と頂点34との間の長さは7.0mm、頂点33と端部133Aとの間の長さは22.0mm、折り曲げ部133と端部134との間のY軸方向の長さは6.0mmである。また、折り曲げ部133と端部134との間の線路のX軸方向の幅は7.5mm、線路37の幅は2.0mmである。
また、無給電素子130の端部131から折り曲げ部132を経て、折り曲げ部133の手前までのL字型の線路の線幅は、1.0mmである。また、頂点35と端部133Aとの間のX軸方向のギャップは、1.0mm、スリット40のY軸方向の幅は1.0mm、スリット40のX軸方向の長さは、59mmである。
また、図6に示すように、折り曲げ部112と分岐部213との間の線路の長さは0.7mm、折り曲げ部112と216との間の線路の長さは9.0mm、折り曲げ部112と216との間の線路の幅は2.5mmである。
また、分岐部213と分岐部218との間の線路の長さは34.5mm、分岐部213と分岐部218との間の線路の幅は2.0mm、折り曲げ部216と217との間の線路の幅は2.0mm、スロット219のY軸方向の幅は4.3mmである。
また、分岐部218と端部114との間の線路の長さは2.5mm、分岐部218と折り曲げ部122との間の線路の長さは25.0mm、折り曲げ部122と123との間の線路の長さは6.0mm、折り曲げ部123と開放端124との間の線路の長さは15.0mmである。
また、図7に示すように、放射素子210とグランドプレーン30とのZ軸方向の間隔は、3.2mmである。
以上のように、X軸方向が60mm、Y軸方向がグランドプレーン30の大きさとして9mmに限られているスペースでは、放射素子120の先端を折り曲げ部123から開放端124に向けて折り曲げることが有効的である。また、無給電素子130の先端を折り曲げ部133から開放端134に向けて折り曲げることが有効的である。
図8は、アンテナ装置200のS11パラメータの周波数特性を示す図である。S11パラメータの周波数特性は、アンテナ装置200のモデルを用いた電磁界シミュレーションによって得られたものである。電磁界シミュレーションは、給電点115とグランドプレーン30の間に整合回路は設けずに行った。
ここでは、一例として、S11パラメータの値の評価基準を−5dBとし、−5dB以下の帯域がアンテナ装置200の通信可能な領域であるものとして評価を行う。
図8に示すように、約0.85GHz〜約1.05GHz(f1)、約1.55GHz〜約1.7GHz(f2)、約2.0GHz〜約2.2GHz(f3)、約2.6GHz〜約2.8GHz(f4)の4つの帯域で、−5dB以下の値が得られた。
図9は、アンテナ装置200のS11パラメータの周波数特性と、実施の形態1のアンテナ装置100のS11パラメータの周波数特性とを比較して示す図である。
図9に示すように、アンテナ装置200では、実施の形態1のアンテナ装置100に比べて、約2.1GHz以上の帯域でS11パラメータの値が低下しており、約2.6GHz〜約2.8GHz(f4)が得られたことが分かる。
図10は、アンテナ装置200のトータル効率(Total Efficiency)の周波数特性を示す図である。トータル効率は、アンテナ装置200が装着された電子機器の特性を表しており、給電点115とアンテナ装置200のインピーダンスとの整合損失を含んでいる。
図10に示すように、共振周波数f1、f2、f3、f4において、ピークが得られており、共振周波数f1、f2、f3、f4で通信を行えることが確認できた。
図11乃至図14は、それぞれ、放射素子210、放射素子120、及び無給電素子130の電流経路を説明する図である。図11乃至図14の(A)、(B)には、図5、図6と同様の放射素子210、放射素子120、無給電素子130、及びグランドプレーン20、30を示す。
ここでは、電磁界シミュレーションによって得られた電流経路について説明する。ここでは、通信周波数f1、f2、f3、f4をそれぞれ、0.9GHz、1.6GHz、2.2GHz、2.5GHzに設定した。
図11に示すように、放射素子210を用いた通信周波数f1(0.9GHz)での通信では、太実線の矢印で示すように、給電点115から、放射素子210を経て、接地端111、グランドプレーン30、及び接続部23Aを経て、頂点22まで電流が流れることが確認できた。
従って、実施の形態のアンテナ装置200では、通信周波数f1用に、給電点115から、放射素子210を経て、接地端111、グランドプレーン30、及び接続部23Aを経て、頂点22に至る電流経路が得られることが確認できた。
給電点115から、放射素子210を経て、接地端111、グランドプレーン30、及び接続部23Aを経て、頂点22に至る経路は、通信周波数f1の波長λの1/2(λ/2)に設定されている。
また、図12に示すように、通信周波数f2(1.6GHz)での通信では、太実線の矢印で示すように、放射素子120の端部121と開放端124の間の線路と、頂点36から線路37を経て無給電素子130の端部134Aに至る線路とで電流経路が得られることが確認できた。
この結果から、放射素子120、線路37、及び無給電素子130は、通信周波数f2(1.6GHz)でダイポールアンテナとして機能することが確認できた。
また、図13に示すように、通信周波数f3(2.2GHz)での通信では、太実線の矢印で示すように、放射素子120の端部121と開放端124の間の線路で電流経路が得られることが確認できた。
この結果から、放射素子120は、通信周波数f3(2.2GHz)でモノポールアンテナとして機能することが分かった。
また、図14に示すように、通信周波数f4(2.5GHz)での通信では、太実線の矢印で示すように、放射素子120の開放端124から、放射素子120、放射素子210の折り曲げ部216及び217、接地端111、グランドプレーン30の頂点31から頂点34までの経路で電流経路が得られることが確認できた。
この結果から、放射素子120の開放端124から、放射素子120、放射素子210の折り曲げ部216及び217、接地端111、グランドプレーン30の頂点31から頂点34までの経路の長さを通信周波数f4の波長λの5/4倍の長さに設定することにより、通信周波数f4の5倍高調波で通信可能なアンテナが得られることが分かった。
図15は、ファントム1を利用したシミュレーションモデルを示す図である。
ここでは、電磁界シミュレーションによって、比較用のアンテナ装置2とアンテナ装置200によって発生されるSARの分布を分析した。なお、他の図と共通のXYZ座標系を用いる。
ファントム1は、生体組織の電気特性(誘電率及び導電率)と等価な電気特性を有する模擬人体である。ここでは、一例として、ファントム1のX軸方向の長さを600mm、Y軸方向の長さを400mm、Z軸方向の長さを200mmに設定した。ファントム1は、直方体状のものである。
比較用のアンテナ装置2は、アンテナ装置200の放射素子120、放射素子210、無給電素子130、及びグランドプレーン30の代わりに、モノポールアンテナ3を含む。すなわち、比較用のアンテナ装置2は、モノポールアンテナ3とグランドプレーン20を含む。
モノポールアンテナ3の長さは、通信周波数f1(0.9GHz)、通信周波数f2(1.5GHz)、通信周波数f3(2.2GHz)、及び通信周波数f4(2.5GHz)の各周波数でのシミュレーションを行うにあたり、1/4波長に設定した。
また、図15に示すように、アンテナ装置2をファントム1からZ軸方向に1mm離して配置した。また、アンテナ装置200についても同様に、ファントム1からZ軸方向に1mm離して配置してシミュレーションを行った。
また、通信周波数f1(0.9GHz)では、ファントム1の比誘電率を55.2、導電率を0.97S/m、密度を100kg/mに設定した。通信周波数f2(1.5GHz)では、ファントム1の比誘電率を54.0、導電率を1.20S/mに設定した。通信周波数f3(2.2GHz)及び通信周波数f4(2.5GHz)では、ファントム1の比誘電率を53.3、導電率を1.52S/mに設定した。
また、給電点115に入力する電力は、すべての通信周波数f1〜f4において、21.5dBm、に設定してSARを測定した。
図16は、ファントム1を利用したシミュレーション結果を示す図である。
図16では、周波数、アンテナ(の種類)、SARの値(10g平均(W/kg))、低減率を示す。アンテナの種類では、アンテナ装置200を低SARと記し、比較用のアンテナ装置2をモノポールと記す。低減率は、比較用のアンテナ装置2に対する、低SARアンテナ(アンテナ装置200)のSARの値(10g平均(W/kg))の割合を表す。
図16の(A)に示すように、0.9GHz(f1)の場合には、低SARアンテナ(アンテナ装置200)のSARの値が0.43、モノポールのアンテナ装置2のSARの値が1.20であり、低減率は64.1%であった。
図16の(B)に示すように、1.5GHz(f2)の場合には、低SARアンテナ(アンテナ装置200)のSARの値が1.63、モノポールのアンテナ装置2のSARの値が2.84であり、低減率は42.6%であった。
図16の(C)に示すように、2.2GHz(f3)の場合には、低SARアンテナ(アンテナ装置200)のSARの値が3.16、モノポールのアンテナ装置2のSARの値が4.41であり、低減率は28.3%であった。
図16の(D)に示すように、2.5GHz(f4)の場合には、低SARアンテナ(アンテナ装置200)のSARの値が4.18、モノポールのアンテナ装置2のSARの値が5.05であり、低減率は17.2%であった。
以上のように、低SARアンテナ(アンテナ装置200)は、各通信周波数f1〜f4のモノポールアンテナに対して、SARの値が大幅に低減されることが確認できた。
図17は、実施の形態2の第1変形例によるアンテナ装置200Aを示す図である。アンテナ装置200Aの放射素子210Aは、接地端111、折り曲げ部112、折り曲げ部213A、及び端部214Aを有する。
放射素子210Aは、図3に示す放射素子210のスロット219を埋めた構成を有する。換言すれば、放射素子210Aは、実施の形態1の放射素子110の折り曲げ部113と端部114との間の線幅を拡げた構成を有する。
図18は、実施の形態2のアンテナ装置200と、第1変形例のアンテナ装置200AのS11パラメータを示す図である。
図18に示すように、アンテナ装置200のS11パラメータと、変形例のアンテナ装置200AのS11パラメータとは、すべての周波数帯域で略同じ値を示した。
このことから、スロット219を設けない場合でも同様の通信周波数f4が得られ、放射素子210Aは、実施の形態1の放射素子110に比べて通信周波数f4の5倍高調波の電流を増やすことができることが分かった。
以上、実施の形態2の第1変形例によれば、4バンドのマルチバンド化に適したアンテナ装置200Aを提供することができる。
図19は、実施の形態2の第2変形例によるアンテナ装置200Bを示す図である。アンテナ装置200Bの放射素子210Bは、接地端111B、折り曲げ部112B、折り曲げ部113、端部114、及び分岐素子215Bを有する。
放射素子210Bは、図1に示す放射素子110に、折り曲げ部113から分岐する分岐素子215Bを追加し、図1に示す放射素子110の接地端111及び折り曲げ部112の位置を接地端111B及び折り曲げ部112Bに変更したものである。
このため、図1に示す放射素子110の接地端111と折り曲げ部112との間の線路の位置は、接地端111Bと折り曲げ部112Bとの間の線路に移動している。
分岐素子215Bの折り曲げ部113から先端までの長さは、通信周波数f4の波長λの1/4に設定されている。分岐素子215Bは、モノポールアンテナとして機能する。
図20乃至図23は、アンテナ装置200Bの各部の寸法を示す図である。
図20乃至図23に示す放射素子210Bでは、接地端111は、グランドプレーン30のX軸負方向側の端部からZ軸正方向に立ち上がっており、折り曲げ部112BでX軸正方向に折り曲げられている。図20乃至図23に示す放射素子210Bでは、図19に示す折り曲げ部113は存在せず、折り曲げ部112Bから端部114に伸延する線路と、分岐素子215Bとに分かれている。図20乃至図23に示すような放射素子210Bでも、図19に示す放射素子210Bと同様に機能する。
図20に示すように、折り曲げ部112Bから分岐素子215BのY軸正方向側の端部までのY軸方向の長さは8.1mm、分岐素子215BのX軸正方向側の長さは17.0mm、折り曲げ部112Bと分岐素子215Bとを接続する線路の幅は2.0mmである。また、折り曲げ部112Bと端部114との間の線路と、分岐素子215BとのY軸方向の間隔は1.0mm、折り曲げ部112Bと端部114との間の線路の幅は3.0mm、折り曲げ部112Bと端部114との間の線路と辺L2との平面視でのY軸方向の間隔は1.5mmである。
また、端部121と折り曲げ部122との間の線路の幅は2.5mm、折り曲げ部122と123との間の線路の長さは7.5mm、折り曲げ部123と開放端124との間の線路の長さは11.5mm、端部121と折り曲げ部122との間の線路と、折り曲げ部123と開放端124との間の線路との間隔は、2.5mmである。
また、図21に示すように、グランドプレーン20及び30の寸法は、折り曲げ部132と折り曲げ部133との間の線路の幅が2.0mmになったこと以外は、図5に示すグランドプレーン20及び30の寸法と同様である。
また、図22に示すように、接地端111Bと折り曲げ部112Bとの間の線路のZ軸方向の長さは3.2mm、Y軸方向の幅は3.0mm、放射素子210Bとグランドプレーン30とのZ軸方向の間隔は、3.2mmである。
また、ここでは、図23に示すように、放射素子210B及び放射素子120と、グランドプレーン30との間に、誘電体50を挿入した。誘電体50の比誘電率は、2.3である。
図24乃至図27は、それぞれ、放射素子210B、放射素子120、及び無給電素子130の電流経路を説明する図である。ここでは、電磁界シミュレーションによって得られた電流経路について説明する。ここでは、通信周波数f1、f2、f3、f4をそれぞれ、0.9GHz、1.6GHz、2.2GHz、2.5GHzに設定した。
図24に示すように、放射素子210Bを用いた通信周波数f1(0.9GHz)での通信では、太実線の矢印で示すように、給電点115から、放射素子210Bを経て、接地端111B、グランドプレーン30、及び接続部23Aを経て、頂点22まで電流が流れることが確認できた。
従って、実施の形態のアンテナ装置200では、通信周波数f1用に、給電点115から、放射素子210Bを経て、接地端111B、グランドプレーン30、及び接続部23Aを経て、頂点22に至る電流経路が得られることが確認できた。
給電点115から、放射素子210Bを経て、接地端111B、グランドプレーン30、及び接続部23Aを経て、頂点22に至る経路は、通信周波数f1の波長λの1/2(λ/2)に設定されている。
また、図25に示すように、通信周波数f2(1.6GHz)での通信では、太実線の矢印で示すように、放射素子120の端部121と開放端124の間の線路と、頂点36から線路37を経て無給電素子130の端部134Aに至る線路とで電流経路が得られることが確認できた。
この結果から、放射素子120、線路37、及び無給電素子130は、通信周波数f2(1.6GHz)でダイポールアンテナとして機能することが確認できた。
また、図26に示すように、通信周波数f3(2.2GHz)での通信では、太実線の矢印で示すように、放射素子120の端部121と開放端124の間の線路で電流経路が得られることが確認できた。
この結果から、放射素子120は、通信周波数f3(2.2GHz)でモノポールアンテナとして機能することが分かった。
また、図27に示すように、通信周波数f4(2.5GHz)での通信では、太実線の矢印で示すように、放射素子120の折り曲げ部113から分岐素子215Bの先端までの経路で電流経路が得られることが確認できた。
この結果から、放射素子120の折り曲げ部113から分岐素子215Bの先端までの経路の長さを通信周波数f4の波長λの1/4に設定することにより、分岐素子215Bが通信周波数f4で通信可能なモノポールアンテナになることが分かった。
以上、実施の形態2の第2変形例によれば、4バンドのマルチバンド化に適したアンテナ装置200Bを提供することができる。
以上、本発明の例示的な実施の形態のアンテナ装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
以上の実施の形態に関し、さらに以下の付記を開示する。
(付記1)
端辺を有する第1グランドプレーンと、
前記端辺に沿って配設され、第1端と第2端とを備える第1辺と、前記第1辺の前記第1端及び前記第2端からそれぞれ平面視で前記端辺から離間する方向に伸延する第2辺及び第3辺と、前記第2辺及び前記第3辺を繋ぐ第4辺と、前記第4辺側で前記第3辺よりも前記第2辺側の第5辺までの矩形領域が切り欠かれる切り欠き部とを有する、第2グランドプレーンであって、前記第1辺の前記第2端が前記第1グランドプレーンに接続されることにより、平面視で、前記第1グランドプレーンとの間に前記第1端側が開放される開放端を有するスリットを形成する、第2グランドプレーンと、
前記第1端の近傍で前記第2グランドプレーンに接続される接地端から前記第2グランドプレーンに対して起立する第1線路と、前記第1線路に接続され、前記第4辺に沿って前記第3辺に向かって前記接地端とは反対の端部まで伸延する第2線路と、前記第2線路の前記端部に設けられる給電点とを有する第1放射素子と、
前記第1放射素子の前記端部に接続され、前記第4辺に沿って前記第3辺に向かって伸延する第3線路と、前記第3線路に接続され、前記第3辺に沿って平面視で前記第1グランドプレーンから離間する方向に伸延する第4線路とを有する第2放射素子と、
前記第2端から前記第3辺に沿って前記矩形領域内を伸延する第1無給電線路と、前記第1無給電線路に接続され、前記矩形領域内を前記第4辺に沿って前記第2辺に向かって伸延する第2無給電線路とを有する無給電素子と
を含み、
前記給電点から、前記第1放射素子、前記接地端、前記第2端、及び前記端辺を経た前記スリットの前記開放端までの長さは、第1通信周波数における半波長に設定され、
前記第2放射素子の前記第4線路の端部から前記給電点までの長さと、前記第2グランドプレーンで前記給電点に対応するグランド電位点から前記無給電素子の前記第2無給電線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
前記第2放射素子の前記第3線路及び前記第4線路の長さは、前記第2通信周波数よりも高い第3通信周波数における四半波長に設定される、アンテナ装置。
(付記2)
前記第1放射素子の前記第2線路の線幅は、前記第1線路の線幅と、前記第2放射素子の前記第3線路及び前記第4線路の線幅とよりも広い、付記1記載のアンテナ装置。
(付記3)
前記第1放射素子の前記第2線路は、前記第2線路の伸延方向に配設される、1又は複数のスロットを有する、付記2記載のアンテナ装置。
(付記4)
前記第1放射素子は、前記第1線路と前記第2線路の接続点から分岐し、前記第2線路に対して平面視で前記第1グランドプレーンとは反対側において、前記第2線路に沿って伸延する、分岐素子をさらに有し、前記分岐素子の前記接続点から先端までの長さは、前記第3通信周波数よりも高い第4通信周波数における四半波長に設定される、付記1又は2記載のアンテナ装置。
(付記5)
前記第2放射素子は、前記第4線路の先端側に、前記第1グランドプレーンから離間する方向から前記第4辺に沿って折れ曲がり、前記第2辺に向かって伸延する延長線路を有し、
前記第2放射素子の前記延長線路の端部から前記給電点までの長さと、前記第2グランドプレーンで前記給電点に対応するグランド電位点から前記無給電素子の前記第2無給電線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
前記第2放射素子の前記第3線路と、前記延長線路を含む前記第4線路の長さは、前記第3通信周波数における四半波長に設定される、付記1乃至4のいずれか一項記載のアンテナ装置。
(付記6)
前記無給電素子は、前記第2無給電線路の先端側に、前記矩形領域内を前記第2辺に向かう方向から前記第5辺に沿って折れ曲がり、前記第1辺に向かって伸延する無給電延長線路を有し、
前記第2放射素子の前記第4線路の端部から前記給電点までの長さと、前記グランド電位点から前記無給電素子の前記無給電延長線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
前記無給電延長線路の線幅は、前記第2無給電線路のうちの前記無給電延長線路よりも手前側の線路の線幅よりも広い、付記1乃至5のいずれか一項記載のアンテナ装置。
(付記7)
前記第2グランドプレーンと、前記第1放射素子の前記第2線路との間に配設される、誘電体をさらに含む、付記1乃至6のいずれか一項記載のアンテナ装置。
(付記8)
前記第1放射素子と前記第2放射素子の前記第2グランドプレーンに対する高さは等しい、付記1乃至7のいずれか一項記載のアンテナ装置。
10 金属板
100 アンテナ装置
20 グランドプレーン
21、22、23、24 頂点
30 グランドプレーン
31、32、33、34 頂点
40 スリット
41、42 端部
110 放射素子
111 接地端
112、113 折り曲げ部
114 端部
115 給電点
120 放射素子
121 端部
122、123 折り曲げ部
124 端部
130 無給電素子
131 端部
132、133 折り曲げ部
134 開放端
200 アンテナ装置
210 放射素子
213 分岐部
216、217 折り曲げ部
218 分岐部
219 スロット
200A アンテナ装置
210A 放射素子
213A 折り曲げ部
214A 端部
200B アンテナ装置
210B 放射素子
215B 分岐素子

Claims (7)

  1. 端辺を有する第1グランドプレーンと、
    前記端辺に沿って配設され、第1端と第2端とを備える第1辺と、前記第1辺の前記第1端及び前記第2端からそれぞれ平面視で前記端辺から離間する方向に伸延する第2辺及び第3辺と、前記第2辺及び前記第3辺を繋ぐ第4辺と、前記第4辺側で前記第3辺よりも前記第2辺側の第5辺までの矩形領域が切り欠かれる切り欠き部とを有する、第2グランドプレーンであって、前記第1辺の前記第2端が前記第1グランドプレーンに接続されることにより、平面視で、前記第1グランドプレーンとの間に前記第1端側が開放される開放端を有するスリットを形成する、第2グランドプレーンと、
    前記第1端の近傍で前記第2グランドプレーンに接続される接地端から前記第2グランドプレーンに対して起立する第1線路と、前記第1線路に接続され、前記第4辺に沿って前記第3辺に向かって前記接地端とは反対の端部まで伸延する第2線路と、前記第2線路の前記端部に設けられる給電点とを有する第1放射素子と、
    前記第1放射素子の前記端部に接続され、前記第4辺に沿って前記第3辺に向かって伸延する第3線路と、前記第3線路に接続され、前記第3辺に沿って平面視で前記第1グランドプレーンから離間する方向に伸延する第4線路とを有する第2放射素子と、
    前記第2端から前記第3辺に沿って前記矩形領域内を伸延する第1無給電線路と、前記第1無給電線路に接続され、前記矩形領域内を前記第4辺に沿って前記第2辺に向かって伸延する第2無給電線路とを有する無給電素子と
    を含み、
    前記給電点から、前記第1放射素子、前記接地端、前記第2端、及び前記端辺を経た前記スリットの前記開放端までの長さは、第1通信周波数における半波長に設定され、
    前記第2放射素子の前記第4線路の端部から前記給電点までの長さと、前記第2グランドプレーンで前記給電点に対応するグランド電位点から前記無給電素子の前記第2無給電線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
    前記第2放射素子の前記第3線路及び前記第4線路の長さは、前記第2通信周波数よりも高い第3通信周波数における四半波長に設定される、アンテナ装置。
  2. 前記第1放射素子の前記第2線路の線幅は、前記第1線路の線幅と、前記第2放射素子の前記第3線路及び前記第4線路の線幅とよりも広い、請求項1記載のアンテナ装置。
  3. 前記第1放射素子の前記第2線路は、前記第2線路の伸延方向に配設される、1又は複数のスロットを有する、請求項2記載のアンテナ装置。
  4. 前記第1放射素子は、前記第1線路と前記第2線路の接続点から分岐し、前記第2線路に対して平面視で前記第1グランドプレーンとは反対側において、前記第2線路に沿って伸延する、分岐素子をさらに有し、前記分岐素子の前記接続点から先端までの長さは、前記第3通信周波数よりも高い第4通信周波数における四半波長に設定される、請求項1又は2記載のアンテナ装置。
  5. 前記第2放射素子は、前記第4線路の先端側に、前記第1グランドプレーンから離間する方向から前記第4辺に沿って折れ曲がり、前記第2辺に向かって伸延する延長線路を有し、
    前記第2放射素子の前記延長線路の端部から前記給電点までの長さと、前記第2グランドプレーンで前記給電点に対応するグランド電位点から前記無給電素子の前記第2無給電線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
    前記第2放射素子の前記第3線路と、前記延長線路を含む前記第4線路の長さは、前記第3通信周波数における四半波長に設定される、請求項1乃至4のいずれか一項記載のアンテナ装置。
  6. 前記無給電素子は、前記第2無給電線路の先端側に、前記矩形領域内を前記第2辺に向かう方向から前記第5辺に沿って折れ曲がり、前記第1辺に向かって伸延する無給電延長線路を有し、
    前記第2放射素子の前記第4線路の端部から前記給電点までの長さと、前記グランド電位点から前記無給電素子の前記無給電延長線路の端部までの長さとの合計の長さは、前記第1通信周波数よりも高い第2通信周波数における半波長に設定され、
    前記無給電延長線路の線幅は、前記第2無給電線路のうちの前記無給電延長線路よりも手前側の線路の線幅よりも広い、請求項1乃至5のいずれか一項記載のアンテナ装置。
  7. 前記第2グランドプレーンと、前記第1放射素子の前記第2線路との間に配設される、誘電体をさらに含む、請求項1乃至6のいずれか一項記載のアンテナ装置。
JP2015148145A 2015-07-27 2015-07-27 アンテナ装置 Active JP6531544B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015148145A JP6531544B2 (ja) 2015-07-27 2015-07-27 アンテナ装置
EP16175541.8A EP3125364B1 (en) 2015-07-27 2016-06-21 Antenna apparatus
US15/189,436 US9812769B2 (en) 2015-07-27 2016-06-22 Antenna apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148145A JP6531544B2 (ja) 2015-07-27 2015-07-27 アンテナ装置

Publications (2)

Publication Number Publication Date
JP2017028636A JP2017028636A (ja) 2017-02-02
JP6531544B2 true JP6531544B2 (ja) 2019-06-19

Family

ID=56148287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148145A Active JP6531544B2 (ja) 2015-07-27 2015-07-27 アンテナ装置

Country Status (3)

Country Link
US (1) US9812769B2 (ja)
EP (1) EP3125364B1 (ja)
JP (1) JP6531544B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733477B2 (ja) * 2016-10-03 2020-07-29 富士通株式会社 アンテナ装置、及び、電子機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483043B1 (ko) 2002-04-11 2005-04-18 삼성전기주식회사 멀티밴드 내장 안테나
FI114836B (fi) * 2002-09-19 2004-12-31 Filtronic Lk Oy Sisäinen antenni
US7595759B2 (en) * 2007-01-04 2009-09-29 Apple Inc. Handheld electronic devices with isolated antennas
TWM321153U (en) * 2007-01-25 2007-10-21 Wistron Neweb Corp Multi-band antenna
CN201498596U (zh) * 2009-07-02 2010-06-02 鸿富锦精密工业(深圳)有限公司 多频天线
TWI488357B (zh) * 2011-09-27 2015-06-11 Acer Inc 通訊電子裝置及其天線結構
TWI581499B (zh) * 2012-03-15 2017-05-01 富智康(香港)有限公司 天線組件
KR102036046B1 (ko) * 2013-05-29 2019-10-24 삼성전자 주식회사 안테나 장치 및 이를 구비하는 전자기기
CN104425898B (zh) * 2013-08-22 2019-05-21 深圳富泰宏精密工业有限公司 天线结构及应用该天线结构的无线通信装置

Also Published As

Publication number Publication date
JP2017028636A (ja) 2017-02-02
US9812769B2 (en) 2017-11-07
US20170033453A1 (en) 2017-02-02
EP3125364A1 (en) 2017-02-01
EP3125364B1 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP5268380B2 (ja) アンテナ装置及び無線装置
JP5998974B2 (ja) アンテナ
JP2009077225A (ja) アンテナ装置、および電子機器
JP2013051644A (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
JP2008124617A (ja) アンテナ
JP6733477B2 (ja) アンテナ装置、及び、電子機器
Kang et al. Simple two‐strip monopole with a parasitic shorted strip for internal eight‐band LTE/WWAN laptop computer antenna
JP6478510B2 (ja) アンテナ
US20180287249A1 (en) Antenna apparatus and electronic device
TWI624997B (zh) 行動裝置
US9130276B2 (en) Antenna device
JP6531544B2 (ja) アンテナ装置
JP5498533B2 (ja) アンテナ装置及び無線装置
JP6865072B2 (ja) アンテナ装置及びアンテナ装置を備えた電子機器
JP2016225846A (ja) アンテナ装置
JP4945672B2 (ja) 電子機器
JP2019197955A (ja) アンテナ装置
JP5112530B2 (ja) 折り返しモノポールアンテナ
TWI580111B (zh) 通訊裝置
TWI594501B (zh) 天線及其電子裝置
CN113555679B (zh) 天线单元和电子设备
JP6710952B2 (ja) アンテナ装置
CN112673522A (zh) 天线和无线通信设备
US9124352B2 (en) Data communication terminal apparatus
JP6197929B2 (ja) アンテナ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150