JP6530652B2 - Light emitting and receiving device - Google Patents

Light emitting and receiving device Download PDF

Info

Publication number
JP6530652B2
JP6530652B2 JP2015132755A JP2015132755A JP6530652B2 JP 6530652 B2 JP6530652 B2 JP 6530652B2 JP 2015132755 A JP2015132755 A JP 2015132755A JP 2015132755 A JP2015132755 A JP 2015132755A JP 6530652 B2 JP6530652 B2 JP 6530652B2
Authority
JP
Japan
Prior art keywords
light
light emitting
unit
reflecting
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015132755A
Other languages
Japanese (ja)
Other versions
JP2017015567A (en
Inventor
エジソン ゴメス カマルゴ
エジソン ゴメス カマルゴ
彩人 射庭
彩人 射庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2015132755A priority Critical patent/JP6530652B2/en
Publication of JP2017015567A publication Critical patent/JP2017015567A/en
Application granted granted Critical
Publication of JP6530652B2 publication Critical patent/JP6530652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、受発光装置に関し、より詳細には、小型で、かつ、高精度な受発光装置に関する。   The present invention relates to a light emitting and receiving device, and more particularly to a compact and highly accurate light emitting and receiving device.

従来から大気中の測定対象ガスの濃度測定を行うガス濃度測定装置として、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する非分散赤外吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。
例えば、特許文献1に記載の気体成分検出装置では、発光部から出射された赤外線を含む光が、測定対象のガスが導入されるセルを通過し、その後、受光部に入光し、受光部の出力信号に応じて測定対象のガスの有無や濃度を検出している。
Conventionally, as a gas concentration measuring device for measuring the concentration of a gas to be measured in the atmosphere, the gas concentration is measured by detecting the amount of absorption utilizing the fact that the wavelength of infrared rays absorbed differs depending on the type of gas. Non-dispersive infrared gas concentration measuring devices are known.
For example, in the gas component detection device described in Patent Document 1, light including infrared rays emitted from the light emitting unit passes through the cell into which the gas to be measured is introduced, and then enters the light receiving unit and enters the light receiving unit. The presence or absence and concentration of the gas to be measured are detected according to the output signal of

国際公開第2012/140485号International Publication No. 2012/140485

しかしながら、より高精度にガス濃度を検知することが必要な場合、測定対象ガスによる吸収を大きくするために、セルを大型化し、光路を長くする必要がある。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、小型で、かつ、高精度な受発光装置を提供することにある。
However, when it is necessary to detect the gas concentration more accurately, it is necessary to make the cell larger and to make the light path longer in order to increase the absorption by the gas to be measured.
The present invention has been made in view of such problems, and an object of the present invention is to provide a compact and highly accurate light emitting and receiving device.

上記課題を解決するために、本発明の第1の態様に係る受発光装置は、被検出ガスによって吸収される光を出力する発光部と、受光部と、焦点位置から入射した光を集光する第1集光部と、前記第1集光部で集光された光を反射させる第1反射部と、前記第1反射部で反射した光を反射する第2反射部と、前記第2反射部で反射した光を反射する第3反射部と、前記第3反射部で反射した光を焦点位置に集光する第2集光部と、前記受光部の出力が入力される信号処理部と、前記被検出ガスが導入される空間に設けられ、前記発光部、前記受光部及び前記信号処理部を一体封止する封止部と、を備える受発光装置であって、前記発光部、前記受光部、前記第1集光部、前記第2集光部及び前記第2反射部は、平面視で、前記受発光装置の一方の側に配置され、前記第1反射部及び前記第3反射部は、平面視で、前記空間を挟んだ前記受発光装置の他方の側に配置され、前記発光部は前記第1集光部の焦点位置に設置され、前記受光部は前記第2集光部の焦点位置に設置され、前記第2反射部は、前記受発光装置の他方の側に前記第2反射部の反射面を向けて配置され、前記第1反射部及び前記第3反射部は、前記受発光装置の一方の側に前記第1反射部の反射面及び前記第3反射部の反射面を向けてそれぞれ配置され、前記第1集光部で集光された光が、前記第1反射部、前記第2反射部及び前記第3反射部によって前記受発光装置の一方の側と他方の側との間で複数回反射されて、前記空間において前記被検出ガスによって吸収されて減衰し、前記受光部が受光した減衰後の光信号に基づく前記被検出ガスの濃度測定に用いられる受発光装置である。
In order to solve the above problems, a light emitting and receiving device according to a first aspect of the present invention condenses light incident from a light emitting portion, a light receiving portion, and a focal position that outputs light absorbed by a gas to be detected A first light collecting portion, a first reflecting portion that reflects the light collected by the first light collecting portion, a second reflecting portion that reflects the light reflected by the first reflecting portion, and the second light collecting portion A third reflecting unit that reflects the light reflected by the reflecting unit, a second focusing unit that focuses the light reflected by the third reflecting unit at a focal position, and a signal processing unit that receives the output of the light receiving unit And a sealing unit provided in a space into which the gas to be detected is introduced and integrally sealing the light emitting unit, the light receiving unit, and the signal processing unit , the light emitting unit; The light receiving unit, the first light collecting unit, the second light collecting unit, and the second reflecting unit are one of the light emitting and receiving devices in plan view. Arranged on the side, the first reflecting portion and the third reflecting unit is a planar view, the arranged on the other side of the light receiving and emitting device across the space, the light emitting part of the first condensing section The light receiving unit is disposed at a focal position, the light receiving unit is disposed at a focal position of the second light collecting unit, and the second reflecting unit faces the reflecting surface of the second reflecting unit toward the other side of the light emitting and receiving device. The first reflecting portion and the third reflecting portion are disposed on one side of the light emitting and receiving device with the reflecting surface of the first reflecting portion and the reflecting surface of the third reflecting portion facing each other, The light collected by the first light collecting portion is reflected a plurality of times between the one side and the other side of the light emitting and receiving device by the first reflecting portion, the second reflecting portion, and the third reflecting portion. are, are absorbed to attenuate by the gas to be detected in the space, Mitsunobu after attenuation the light receiving unit has received To based the a light receiving and emitting device that is used in the concentration measurement of a gas to be detected.

本発明によれば、小型で、かつ、高精度な受発光装置を実現することができる。   According to the present invention, it is possible to realize a compact and highly accurate light emitting and receiving device.

(a)〜(c)は、本発明に係る受発光装置の実施形態1を説明するための構成図である。(A)-(c) is a block diagram for demonstrating Embodiment 1 of the light emitting / receiving apparatus based on this invention. 本発明に係る受発光装置の実施形態2を説明するための構成図である。It is a block diagram for demonstrating Embodiment 2 of the light emitting / receiving apparatus based on this invention. 本発明に係る受発光装置の実施形態3を説明するための構成図である。It is a block diagram for demonstrating Embodiment 3 of the light emitting / receiving apparatus based on this invention. 本発明に係る受発光装置の実施形態4を説明するための構成図である。It is a block diagram for demonstrating Embodiment 4 of the light receiving / emitting device based on this invention. 図3に示した実施形態3の受発光装置の斜視図である。It is a perspective view of the light emitting and receiving apparatus of Embodiment 3 shown in FIG. 図5のB−B’線断面図である。It is the B-B 'line sectional view of FIG. 図1(a)〜(c)に示した実施形態1の受発光装置の実装状態を示す図である。It is a figure which shows the mounting state of the light emitting / receiving apparatus of Embodiment 1 shown to FIG.1 (a)-(c). (a),(b)は、本発明に係る受発光装置のその他の実施形態を説明するための構成図である。(A), (b) is a block diagram for demonstrating the other embodiment of the light emitting / receiving apparatus based on this invention.

以下、本発明を実施するための形態(以下、本実施形態という)について説明する。なお、以下の実施形態は、特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
<受発光装置>
本実施形態に係る受発光装置は、発光部と、受光部と、焦点位置から入射した光を集光する第1集光部と、第1集光部で集光された光を反射させる反射部と、反射部で反射した光を焦点位置に集光する第2集光部と、を備え、発光部は第1集光部の焦点位置に設置され、受光部は第2集光部の焦点位置に設置される。
Hereinafter, a mode for carrying out the present invention (hereinafter, referred to as the present embodiment) will be described. The following embodiments do not limit the invention according to the claims. Moreover, not all combinations of features described in the embodiments are essential to the solution of the invention.
<Light emitting and receiving device>
The light emitting and receiving device according to the present embodiment includes a light emitting unit, a light receiving unit, a first light collecting unit that collects light incident from a focal position, and a reflection that reflects light collected by the first light collecting unit. And a second light collecting unit for collecting light reflected by the reflecting unit at a focal position, the light emitting unit is disposed at the focal position of the first light collecting unit, and the light receiving unit is the second light collecting unit. It is placed at the focal position.

<発光部>
本実施形態に係る受発光装置において、発光部は第1集光部の焦点位置に設置される。ここで発光部が第1集光部の焦点位置に設置されている状態とは、発光部の一部が後述する第1集光部の焦点を含む状態を意味する。発光部は被検出ガスによって吸収される波長を含む光を出力するものであれば特に制限されない。具体的な例としては、MEMS光源やLEDが挙げられる。その中で、被検出ガス以外の成分の光吸収によるノイズを低減する観点から、被検出ガスの吸収が大きい波長帯の光のみを出力するものであることが好ましい。具体的には、発光波長帯をアクティブ層のバンドギャップでコントロールできるという観点から、LED構造は望ましい場合がある。LEDの光源を用いると、発光層に利用される材料のバンドギャップを被検出ガスの吸収波長にチューニングすることにより、光学フィルタ(例えば、バンドパスフィルタ)を使用せずに、特定のガスの検出が可能となり、光学フィルタ無しのガスセンサが実現できる。光学フィルタ無しのガスセンサが実現できると、受発光装置の構造が簡略化され、より好ましい形態となる。
<Light emitting unit>
In the light emitting and receiving device according to the present embodiment, the light emitting unit is installed at the focal position of the first light collecting unit. Here, the state in which the light emitting unit is installed at the focal position of the first light collecting unit means a state in which a part of the light emitting unit includes the focus of the first light collecting unit described later. The light emitting part is not particularly limited as long as it outputs light including a wavelength absorbed by the gas to be detected. Specific examples include MEMS light sources and LEDs. Among them, from the viewpoint of reducing noise due to light absorption of components other than the gas to be detected, it is preferable to output only light in a wavelength band where absorption of the gas to be detected is large. Specifically, an LED structure may be desirable from the viewpoint that the emission wavelength band can be controlled by the band gap of the active layer. When using a light source of an LED, tuning of the band gap of the material used for the light emitting layer to the absorption wavelength of the gas to be detected enables detection of a specific gas without using an optical filter (for example, a band pass filter) This makes it possible to realize a gas sensor without an optical filter. If a gas sensor without an optical filter can be realized, the structure of the light emitting and receiving device is simplified and the form becomes more preferable.

<受光部>
本実施形態に係る受発光装置において、受光部は第2集光部の焦点位置に設置される。ここで受光部が第2集光部の焦点位置に設置されている状態とは、受光部の一部が後述する第2集光部の焦点を含む状態を意味する。受光部は被検出ガスによって吸収される波長を含む光の帯域に感度を有するものであれば特に制限されない。受光部には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)、ボロメータ(Bolometer)等の熱型センサや、PIN構造を持ったフォトダイオードのような量子型センサ等が好適である。受光部は、測定対象ガスに併せて所望の光学特性を有する光学フィルタをさらに備えていてもよい。例えば、被検出ガスが炭酸ガスの場合、受光部には炭酸ガスによる赤外線吸収が多く生じる波長帯(代表的には4.3μm付近)の赤外線を濾波できるバンドパスフィルタを搭載する形態が例示される。
<Light receiving unit>
In the light emitting and receiving device according to the present embodiment, the light receiving unit is installed at the focal position of the second light collecting unit. Here, the state in which the light receiving unit is installed at the focal position of the second light collecting unit means a state in which a part of the light receiving unit includes the focus of the second light collecting unit described later. The light receiving portion is not particularly limited as long as it has sensitivity to the band of light including the wavelength absorbed by the gas to be detected. For the light receiving portion, a thermal sensor such as a pyroelectric sensor, a thermopile, or a bolometer, a quantum sensor such as a photodiode having a PIN structure, or the like is preferable. The light receiving unit may further include an optical filter having desired optical characteristics along with the gas to be measured. For example, in the case where the gas to be detected is carbon dioxide, the light receiving portion may be provided with a band pass filter capable of filtering out infrared rays in a wavelength range (typically around 4.3 μm) where much infrared absorption by carbon dioxide occurs. Ru.

<第1集光部>
本実施形態に係る受発光装置において、第1集光部は、焦点位置から入射した光を集光する。ここで焦点位置は、第1集光部の形状から一意に定まるものである。第1集光部の焦点に発光部を設置すると、発光部から出射され第1集光部で反射された光は、第1集光部の対称軸方向と平行に揃うこととなる。第1集光部の具体的な形状としては、ある放物線を回転されたときにできる回転放物面を用いることができる。第1集光部は金属材料で形成されてもよいし、あるいは、金属以外の材料で特定の形状を形成した後に、その内面にアルミニウムなどの金属が蒸着又はめっきされることで形成されてもよい。特に、光を反射部分が蒸着やめっきによって形成される場合、金属材料で形成される場合と比較して、高生産性と寸法精度の向上を図ることができる。
また、本実施形態に係る受発光装置において、第1集光部は、放射面形状を有してもよい。これにより焦点位置の制御が容易となり、光路設計の精度を高めることが可能となる。
<First light collector>
In the light emitting and receiving device according to the present embodiment, the first light collecting unit collects the light incident from the focal position. Here, the focal position is uniquely determined from the shape of the first light collector. When the light emitting unit is disposed at the focal point of the first light collecting unit, light emitted from the light emitting unit and reflected by the first light collecting unit is aligned in parallel with the symmetry axis direction of the first light collecting unit. As a specific shape of the first light collecting portion, it is possible to use a rotation paraboloid that can be produced when a certain parabola is rotated. The first light collector may be formed of a metal material, or may be formed by depositing or plating a metal such as aluminum on the inner surface after forming a specific shape of a material other than a metal. Good. In particular, when the light-reflecting portion is formed by vapor deposition or plating, high productivity and dimensional accuracy can be improved as compared with the case where the portion is formed of a metal material.
In the light emitting and receiving device according to the present embodiment, the first light collecting portion may have a radiation surface shape. This makes it easy to control the focal position, and can improve the accuracy of the optical path design.

<反射部>
本実施形態に係る受発光装置において、反射部は、第1集光部で集光された光を反射させる。反射部を構成する材料は特に制限されない。例えば、金属、ガラス、セラミックス、ステンレス等の材料が挙げられるがこの限りではない。検出感度向上の観点から、発光部から出力された光の吸収係数が小さく、反射率が高い材料であることが好ましい。具体的にはアルミニウムからなる金属筐体や、アルミニウム、金、銀含む合金、もしくはこれらの積層体のコーティングが施された樹脂筐体、が好ましい。信頼性・経時変化の観点から金または金を含む合金層でコーティングされた樹脂筐体が好ましい。樹脂筐体の場合、射出成型法で形成することができるため、生産性の観点から好ましい場合はある。
また、本実施形態に係る受発光装置において、第1集光部で集光された光が、反射部で複数回反射されてもよい。これにより光路長の長い受発光装置が実現され、ガス濃度検知の精度をさらに向上させることが可能となる。
<Reflection part>
In the light emitting and receiving device according to the present embodiment, the reflecting unit reflects the light collected by the first light collecting unit. The material which comprises a reflection part is not restrict | limited in particular. For example, materials such as metal, glass, ceramics, stainless steel and the like can be mentioned, but not limited thereto. From the viewpoint of improving detection sensitivity, it is preferable that the material has a small absorption coefficient of light output from the light emitting unit and a high reflectance. Specifically, a metal casing made of aluminum, an aluminum, gold, an alloy containing silver, or a resin casing coated with a laminate of these is preferable. A resin housing coated with gold or an alloy layer containing gold is preferred from the viewpoint of reliability and aging. In the case of a resin case, since it can be formed by injection molding, it may be preferable from the viewpoint of productivity.
Further, in the light emitting and receiving device according to the present embodiment, the light collected by the first light collecting portion may be reflected a plurality of times by the reflecting portion. As a result, a light emitting and receiving device with a long optical path length is realized, and the accuracy of gas concentration detection can be further improved.

<第2集光部>
本実施形態に係る受発光装置において、第2集光部は、反射部で反射した光を焦点位置に集光する。ここで焦点位置は、第2集光部の形状から一意に定まるものである。第2集光部の焦点に受光部を設置すると、第2集光部の対称軸方向と平行に入射した光は、第2集光部の焦点位置に設置された受光部に入射する。第2集光部の具体的な形状としては、ある放物線を回転されたときにできる回転放物面を用いることができる。第2集光部は金属材料で形成されてもよいし、あるいは、金属以外の材料で特定の形状を形成した後に、その内面にアルミニウムや金や銀などの金属若しくはこれらの金属からなる合金が蒸着又はめっきされることで形成されてもよい。特に、光を反射部分が蒸着やめっきによって形成される場合、金属材料で形成される場合と比較して、低コスト化と寸法精度の向上を図ることができる。
また、本実施形態に係る受発光装置において、第2集光部は、放射面形状を有してもよい。これにより焦点位置の制御が容易となり、光路設計の精度を高めることが可能となる。
<Second condenser>
In the light emitting and receiving device according to the present embodiment, the second light collecting unit condenses the light reflected by the reflecting unit at a focal position. Here, the focal position is uniquely determined from the shape of the second light collector. When the light receiving unit is disposed at the focal point of the second light collecting unit, light incident in parallel to the symmetry axis direction of the second light focusing unit is incident on the light receiving unit provided at the focal position of the second light focusing unit. As a specific shape of the second light collecting portion, a paraboloid of revolution produced when a certain parabola is rotated can be used. The second light collecting portion may be formed of a metal material, or after forming a specific shape of a material other than a metal, the inner surface thereof is a metal such as aluminum, gold or silver, or an alloy of these metals. It may be formed by vapor deposition or plating. In particular, when the light-reflecting portion is formed by vapor deposition or plating, cost reduction and improvement in dimensional accuracy can be achieved as compared with the case where the portion is formed of a metal material.
In the light emitting and receiving device according to the present embodiment, the second light collector may have a radiation surface shape. This makes it easy to control the focal position, and can improve the accuracy of the optical path design.

<信号処理部>
本実施形態に係る受発光装置において、受光部の出力が入力される信号処理部をさらに備えてもよい。信号処理部は、ガス濃度算出における演算が可能なものであれば特に制限されず、例えば、アナログIC、ディジタルIC及びCPU(Central Processing Unit)等が好適である。信号処理部には、光源を制御するための機能が含まれていても構わない。また、信号処理部は受光部の出力信号から、被検出ガスの濃度を算出し、ディジタル若しくはアナログの電気信号として出力しても良い。または、被検出ガスが所定の濃度以上(若しくは所定の濃度以下)になった場合、その判定に相当するディジタル信号を出力しても良い。
<Signal processing unit>
The light emitting and receiving device according to the present embodiment may further include a signal processing unit to which the output of the light receiving unit is input. The signal processing unit is not particularly limited as long as it can perform calculation in gas concentration calculation, and for example, an analog IC, a digital IC, a central processing unit (CPU), and the like are preferable. The signal processing unit may include a function for controlling the light source. Further, the signal processing unit may calculate the concentration of the gas to be detected from the output signal of the light receiving unit, and may output it as a digital or analog electric signal. Alternatively, when the gas to be detected has a predetermined concentration or more (or a predetermined concentration or less), a digital signal corresponding to the determination may be output.

<封止部>
本実施形態に係る受発光装置において、発光部、受光部及び信号処理部を一体封止する封止部をさらに備えてもよい。封止部の材料としては、例えば、樹脂モールド材料等を用いることができる。<その他>
本実施形態に係る受発光装置において、発光部が形成される基板上に第2の受光部をさらに形成し、且つ、受光部が形成される基板上に第2の発光部をさらに形成する形態も考えられる。2つの発光部を交互に駆動させることで、発光部の劣化の補正等を定期的に行うことが可能となる。
<Sealing part>
The light emitting and receiving device according to the present embodiment may further include a sealing unit that integrally seals the light emitting unit, the light receiving unit, and the signal processing unit. As a material of the sealing portion, for example, a resin mold material or the like can be used. <Others>
In the light emitting and receiving device according to the present embodiment, the second light receiving unit is further formed on the substrate on which the light emitting unit is formed, and the second light emitting unit is further formed on the substrate on which the light receiving unit is formed. Is also conceivable. By alternately driving the two light emitting units, it is possible to periodically perform, for example, correction of deterioration of the light emitting units.

また、発光部の劣化が著しくない用途では、両方の光源を交互に駆動し、両側のセンサの温度差を抑制することができる。この温度差を低減することで、片方の受光部に基板内部反射の光を受け、もう片方の受光部に被検出ガスの吸収によって減衰された光信号を受光させ、両方の信号の割り算をすることで、発光・受光部の温度特性を相殺することができる。この温度特性改善が可能となるのは、交互に発光・受光が行われるためので、光路の形状は双方向の光路が等しくなるように、対称であることが好ましい場合はある。
本実施形態に係る受発光装置において、発光部は第1集光部の焦点位置に設置される形態について説明したが、他の実施形態として、発光部が第1集光部の焦点に設けられない形態についても考えられる。また同様に、受光部は第2集光部の焦点位置に設置される形態について説明したが、他の実施形態として、受光部が第2集光部の焦点に設けられない形態についても考えられる。
Further, in an application in which the deterioration of the light emitting part is not remarkable, both light sources can be alternately driven to suppress the temperature difference between the sensors on both sides. By reducing this temperature difference, one of the light receiving portions receives the light from the internal reflection of the substrate, and the other light receiving portion receives the light signal attenuated by the absorption of the gas to be detected, and divides both signals. Thus, the temperature characteristics of the light emitting / receiving unit can be offset. The reason why this temperature characteristic can be improved is because light emission and light reception are alternately performed, so it may be preferable that the shape of the optical path be symmetrical so that the optical paths in both directions become equal.
In the light emitting and receiving device according to the present embodiment, the light emitting unit is installed at the focal position of the first light collecting unit. However, as another embodiment, the light emitting unit is provided at the focus of the first light collecting unit. It is possible to think about the form which does not exist. Similarly, although the light receiving unit has been described as being installed at the focal position of the second light collecting unit, another embodiment is also conceivable in which the light receiving unit is not provided at the focus of the second light collecting unit. .

また、本実施形態では、発光部及び受光部が、それぞれ第1集光部及び第2集光部の焦点位置にある形態(結像系)について述べたが、第1集光部及び第2集光部が焦点を有しない通常の反射鏡である場合も考えられる(非結像系)。この場合には、発光部から出射された光は特定の場所に集光されることはないが、光路設計の自由度がより高まり、光路長のより長い受発光装置が実現可能である。
以下、図面を参照して本発明の各実施形態について説明する。
Further, in the present embodiment, the form (imaging system) in which the light emitting unit and the light receiving unit are respectively at the focal positions of the first light collecting unit and the second light collecting unit has been described. It is also conceivable that the focusing part is a normal reflecting mirror having no focus (non-imaging system). In this case, the light emitted from the light emitting unit is not condensed at a specific place, but the degree of freedom in optical path design is further enhanced, and a light emitting and receiving device with a longer optical path length can be realized.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1(a)〜(c)は、本発明に係る受発光装置の実施形態1を説明するための構成図で、図1(a)は上面図、図1(b)は図1(a)のA−A’線断面図、図1(c)は斜視図を示している。符号200は実装部を示し、符号400は光路部(図7)を示している。なお、以下に説明する各図において、同一の構成を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
Embodiment 1
1 (a) to 1 (c) are block diagrams for explaining the first embodiment of the light emitting and receiving device according to the present invention, FIG. 1 (a) is a top view, and FIG. 1 (b) is FIG. FIG. 1 (c) shows a perspective view taken along the line AA 'of FIG. Reference numeral 200 denotes a mounting unit, and reference numeral 400 denotes an optical path (FIG. 7). In the drawings described below, parts having the same configuration are given the same reference numerals, and repeated descriptions thereof will be omitted.

本実施形態1の受発光装置100は、図1に示すように、被検出ガスによって吸収される波長を含む光を出力し、第1集光部3の焦点位置に設置された発光部1と、発光部1から入射した光を集光する第1集光部3と、第1集光部3で集光された光を反射させる反射部4と、反射部4で反射した光を焦点位置に集光する第2集光部5と、第2集光部5の焦点位置に設置された受光部2と、を備えている。   As shown in FIG. 1, the light emitting and receiving device 100 according to the first embodiment outputs light including a wavelength absorbed by the gas to be detected, and the light emitting unit 1 installed at the focal position of the first light collecting unit 3. A first light collecting unit 3 for collecting light incident from the light emitting unit 1, a reflecting unit 4 for reflecting the light collected by the first light collecting unit 3, and a focal position for the light reflected by the reflecting unit 4 And a light receiving unit 2 disposed at a focal position of the second light collecting unit 5.

本実施形態1に係る受発光装置100によれば、発光部1から出射された光の一部は第1集光部3によってある特定の方向に集光されることになる。この集光された光は反射部4によって反射され、ある特定の方向から第2集光部5に入射する。第2集光部5は、特定の方向から入射した光を、その焦点位置である受光部2の位置へと集光させる。これによって、発光部1から出射された光の多くは反射回数を稼ぎつつ、受光部に入射されるため、高いS/N比の信号が得られ、これにより小型で、かつ、高精度な受発光装置100を実現することができる。   According to the light emitting and receiving device 100 according to the first embodiment, a part of the light emitted from the light emitting unit 1 is collected by the first light collecting unit 3 in a specific direction. The collected light is reflected by the reflecting portion 4 and is incident on the second light collecting portion 5 from a specific direction. The second condensing unit 5 condenses the light incident from the specific direction to the position of the light receiving unit 2 which is the focal position. As a result, most of the light emitted from the light emitting unit 1 is incident on the light receiving unit while earning the number of reflections, so that a signal with a high S / N ratio can be obtained. The light emitting device 100 can be realized.

図7は、図1(a)〜(c)に示した実施形態1の受発光装置の実装状態を示す図である。なお、符号300はプリント基板を示している。つまり、この受発光装置100は、図7に示すように、接着剤102と半田101を用いて簡易にプリント基板300等の実装基板上に実装可能である。
実装方法としては、下記の二通りの方法が有り得る。
(1)まず実装部200をプリント基板300上に、半田によって固定し、最後に、光路部400を接着材102で固定する。
FIG. 7 is a view showing a mounting state of the light emitting and receiving device of the embodiment 1 shown in FIGS. 1 (a) to 1 (c). In addition, the code | symbol 300 has shown the printed circuit board. That is, as shown in FIG. 7, the light emitting and receiving device 100 can be easily mounted on a mounting substrate such as the printed substrate 300 using the adhesive 102 and the solder 101.
As the mounting method, there are the following two methods.
(1) First, the mounting portion 200 is fixed on the printed circuit board 300 by solder, and finally, the optical path portion 400 is fixed by the adhesive 102.

(2)一体化した実装部200と光路部400を半田と接着剤によってプリント基板に実装する。
実装部とプリント基板300との電気接続は露出されたリードフレーム11の一部と半田102によって行われる。方法(i)では、光路部400が樹脂製の場合、実装部200の半田リフローの際に、十分な耐熱性はない可能性はあるため、好ましい場合はある。方法(ii)では、光路部400は耐熱性の材質である必要はある。具体的な材質はセラミック、ポリフェニレンスルファイド(PPS)樹脂などが挙げられる。
(2) The integrated mounting portion 200 and the optical path portion 400 are mounted on a printed circuit board by solder and an adhesive.
Electrical connection between the mounting portion and the printed circuit board 300 is made by the exposed part of the lead frame 11 and the solder 102. In the method (i), when the optical path portion 400 is made of resin, there is a possibility that sufficient heat resistance may not be obtained at the time of solder reflow of the mounting portion 200, which may be preferable. In the method (ii), the light path 400 needs to be a heat-resistant material. Specific materials include ceramic and polyphenylene sulfide (PPS) resin.

[実施形態2]
図2は、本発明に係る受発光装置の実施形態2を説明するための構成図である。図2に示すように、本実施形態2の受発光装置100は、第1集光部3で集光された光を複数回反射される反射部4a,4bを備えている。
本実施形態2に係る受発光装置100によれば、発光部1から出射された光の一部は第1集光部3によってある特定の方向に集光されることになる。この集光された光は反射部4a,4bによって複数回反射された後に、ある特定の方向から第2集光部5に入射する。第2集光部5は特定の方向から入射した光を、その焦点位置である受光部2の位置へと集光させる。これによって、発光部1から出射された光の多くは反射回数を稼ぎつつ、受光部2に入射されるため、高いS/N比の信号が得られ、これにより小型で、かつ、高精度な受発光装置を実現することができる。
[実施形態3]
図3は、本発明に係る受発光装置の実施形態3を説明するための構成図である。図3に示すように、本実施形態3の受発光装置100は、受光部2の出力が入力される信号処理部6と、発光部1、受光部2及び信号処理部6を一体封止する封止部7をさらに備えている。また、このときの発光部1、受光部2、信号処理部6及び封止部7を示したものが、後述する図6である。
Second Embodiment
FIG. 2 is a configuration diagram for explaining a second embodiment of the light emitting and receiving device according to the present invention. As shown in FIG. 2, the light emitting and receiving device 100 according to the second embodiment includes reflecting portions 4 a and 4 b that reflect light collected by the first light collecting portion 3 a plurality of times.
According to the light emitting and receiving device 100 according to the second embodiment, a part of the light emitted from the light emitting unit 1 is collected by the first light collecting unit 3 in a specific direction. The collected light is reflected a plurality of times by the reflecting portions 4a and 4b, and then enters the second light collecting portion 5 from a specific direction. The second light collector 5 condenses the light incident from the specific direction to the position of the light receiver 2 which is the focal position. As a result, most of the light emitted from the light emitting unit 1 is incident on the light receiving unit 2 while earning the number of reflections, so that a signal with a high S / N ratio can be obtained, thereby making it compact and highly accurate. A light emitting and receiving device can be realized.
Third Embodiment
FIG. 3 is a configuration diagram for explaining a third embodiment of the light emitting and receiving device according to the present invention. As shown in FIG. 3, the light emitting / receiving device 100 of Embodiment 3 integrally seals the signal processing unit 6 to which the output of the light receiving unit 2 is input, the light emitting unit 1, the light receiving unit 2, and the signal processing unit 6. The sealing portion 7 is further provided. Further, FIG. 6 described later shows the light emitting unit 1, the light receiving unit 2, the signal processing unit 6, and the sealing unit 7 at this time.

なお、上述した実施形態1及び2において、反射部4は、発光部1及び受光部2の反対側にのみに配置されているのに対して、本実施形態3の受発光装置100における反射部41は、受発光装置100内の四隅に配置して複数回の反射を行うようにしたものである。
本実施形態3に係る受発光装置100によれば、発光部1、受光部2及び信号処理部6が一体に封止されていることで、同じ光路長の場合にも装置のさらなる小型化が可能となる。ここでは、発光部1、受光部2及び信号処理部6が小型な封止部で実現できるため、生産性の観点から好ましい場合はある。また一体に封止されていることで、その他の空間を光路の設計に自由に利用することが可能となり、光路設計の自由度が高まる。
In the first and second embodiments described above, the reflective portion 4 is disposed only on the opposite side of the light emitting portion 1 and the light receiving portion 2, while the reflective portion in the light emitting and receiving device 100 of the third exemplary embodiment 41 is arranged at four corners in the light emitting and receiving device 100 to perform multiple reflections.
According to the light emitting and receiving device 100 according to the third embodiment, the light emitting unit 1, the light receiving unit 2 and the signal processing unit 6 are integrally sealed, so that the device can be further miniaturized even in the case of the same optical path length. It becomes possible. Here, since the light emitting unit 1, the light receiving unit 2 and the signal processing unit 6 can be realized by a small sealing unit, there are cases where it is preferable from the viewpoint of productivity. In addition, by being integrally sealed, it is possible to freely use other spaces for the design of the optical path, and the degree of freedom of the optical path design is increased.

図5は、図3に示した実施形態3の受発光装置の斜視図である。ここでは、発光部1の出射面側及び受光部2の受光面側に波長選択性のある光学フィルタ8a,8bを搭載している。また、光学フィルタ8a,8bを保持するフィルタ保持部9を備えている。
図6は、図5のB−B’線断面図である。符号11はリードフレーム、12は信号処理部6とリードフレーム11とを接続するワイヤーを示している。
FIG. 5 is a perspective view of the light emitting and receiving device according to the third embodiment shown in FIG. Here, the optical filters 8 a and 8 b having wavelength selectivity are mounted on the light emitting surface side of the light emitting unit 1 and the light receiving surface side of the light receiving unit 2. Moreover, the filter holding part 9 which hold | maintains optical filter 8a, 8b is provided.
FIG. 6 is a cross-sectional view taken along the line BB 'of FIG. Reference numeral 11 denotes a lead frame, and 12 denotes a wire connecting the signal processing unit 6 and the lead frame 11.

[実施形態4]
図4は、本発明に係る受発光装置の実施形態4を説明するための構成図である。図4に示すように、本実施形態4の受発光装置100は、図3に示す受発光装置において、発光部1と受光部2をより近接して封止している。
本実施形態4に係る受発光装置100によれば、光路長をさらに長くしつつ、発光部1と受光部2の温度差を小さくすることが可能となり、温度補正等の信号処理を容易に行うことが可能となる。また第1集光部と第2集光部は発光部1と受光部2は収まるだけの横幅にし、焦点距離がなるべく原点に近くなるように設計できるため、小型化の観点から好ましい場合はある。
本実施形態4の受発光装置100の反射部41は、上述した図3における反射部41と同様に、受発光装置100内の四隅に配置して複数回の反射を行うようにしたものである。
Fourth Embodiment
FIG. 4 is a configuration diagram for explaining a fourth embodiment of the light emitting and receiving device according to the present invention. As shown in FIG. 4, in the light emitting and receiving device 100 of the fourth embodiment, the light emitting unit 1 and the light receiving unit 2 are more closely sealed in the light emitting and receiving device shown in FIG. 3.
According to the light emitting and receiving device 100 according to the fourth embodiment, it is possible to reduce the temperature difference between the light emitting unit 1 and the light receiving unit 2 while further lengthening the optical path length, and easily perform signal processing such as temperature correction. It becomes possible. In addition, since the first light collecting part and the second light collecting part can be designed to have a width enough to accommodate the light emitting part 1 and the light receiving part 2 and the focal distance can be as close to the origin as possible, .
Similar to the reflection unit 41 in FIG. 3 described above, the reflection unit 41 of the light emission and reception device 100 of the fourth embodiment is disposed at four corners in the light emission and reception device 100 to perform reflection a plurality of times. .

[その他の実施形態]
図8(a),(b)は、本発明に係る受発光装置のその他の実施形態を説明するための構成図で、図8(a)は上面図、図8(b)は図8(a)のC−C’線断面図である。
その他の実施形態として、図8(a),(b)に示す受発光装置も考えられる。この受発光装置100は、非結像系の光学設計となっており、発光部1から出射された光は、複数回反射させる反射部42を介しているが、特定の場所に集光されることはないので、光路設計の自由度がより高まり、光路長のより長い受発光装置が実現可能である。
ここまでの説明は、被検出ガス導入・導出用の開口部は示さなかったが、光の発光・受光の効率を低下する場所でなければ、制限はされない。また、被検出ガスと一緒に粉じんなどの導入を防ぐため、開口部にフィルタなどを設けても良い。
Other Embodiments
8 (a) and 8 (b) are configuration diagrams for describing another embodiment of the light emitting and receiving device according to the present invention, FIG. 8 (a) is a top view, and FIG. It is a CC 'line sectional view of a).
As another embodiment, the light emitting and receiving device shown in FIGS. 8A and 8B can be considered. The light emitting and receiving device 100 has an optical design of a non-imaging system, and the light emitted from the light emitting unit 1 is collected at a specific place although it is reflected via the reflecting unit 42 that reflects the light multiple times. Since the degree of freedom in designing an optical path is further increased, it is possible to realize a light emitting and receiving device having a longer optical path length.
Although the description so far does not show the openings for introducing and extracting the detected gas, there is no limitation unless it is a place where the efficiency of light emission and light reception is reduced. In addition, in order to prevent the introduction of dust and the like with the gas to be detected, a filter or the like may be provided at the opening.

また図示しないが、本発明に係る受発光装置のその他の実施形態として、受発光装置100の上部及び下部に蓋を設けても良い。蓋の材質は特に限定されない。蓋を設けることで、受発光装置100の光路内への粉じんの入り込みが抑制でき、光の集光率を高めることができるため、好ましい場合はある。これらの蓋は製造時に、受発光装置100と一体化形成しても良い。この場合、生産性の観点から好ましい場合はある。
本発明は、以上に記載した実施形態に限定されるものではない。当業者の知識に基づいて実施形態に設計の変更等を加えてもよく、また、第1〜第4実施形態とその他の実施形態を任意に組み合わせてもよく、そのような変更が加えられた態様も本発明の範囲に含まれる。
Although not shown, as another embodiment of the light emitting and receiving device according to the present invention, lids may be provided on the upper and lower portions of the light emitting and receiving device 100. The material of the lid is not particularly limited. By providing the lid, dust can be prevented from entering the light path of the light emitting and receiving device 100, and the light collection ratio can be increased, which may be preferable in some cases. These lids may be formed integrally with the light emitting and receiving device 100 at the time of manufacture. In this case, it may be preferable from the viewpoint of productivity.
The present invention is not limited to the embodiments described above. Modifications of the design may be added to the embodiment based on the knowledge of those skilled in the art, and the first to fourth embodiments and other embodiments may be arbitrarily combined, and such modifications are added. Embodiments are also included within the scope of the present invention.

1 発光部
2 受光部
3 第1集光部
4,4a,4b,41,42 反射部
5 第2集光部
6 信号処理部
7 封止部
8a,8b 光学フィルタ
9 フィルタ保持部
11 リードフレーム
12 ワイヤー
100 受発光装置
101 半田
102 接着剤
200 実装部
300 プリント基板
400 光路部
Reference Signs List 1 light emitting unit 2 light receiving unit 3 first light collecting unit 4, 4a, 4b, 41, 42 reflecting unit 5 second light collecting unit 6 signal processing unit 7 sealing unit 8a, 8b optical filter 9 filter holding unit 11 lead frame 12 Wire 100 Light emitting and receiving device 101 Solder 102 Adhesive 200 Mounting portion 300 Printed circuit board 400 Optical path portion

Claims (4)

被検出ガスによって吸収される光を出力する発光部と、
受光部と、
焦点位置から入射した光を集光する第1集光部と、
前記第1集光部で集光された光を反射させる第1反射部と、
前記第1反射部で反射した光を反射する第2反射部と、
前記第2反射部で反射した光を反射する第3反射部と、
前記第3反射部で反射した光を焦点位置に集光する第2集光部と、
前記受光部の出力が入力される信号処理部と、
前記被検出ガスが導入される空間に設けられ、前記発光部、前記受光部及び前記信号処理部を一体封止する封止部と、
を備える受発光装置であって、
前記発光部、前記受光部、前記第1集光部、前記第2集光部及び前記第2反射部は、平面視で、前記受発光装置の一方の側に配置され、
前記第1反射部及び前記第3反射部は、平面視で、前記空間を挟んだ前記受発光装置の他方の側に配置され、
前記発光部は前記第1集光部の焦点位置に設置され、前記受光部は前記第2集光部の焦点位置に設置され、
前記第2反射部は、前記受発光装置の他方の側に前記第2反射部の反射面を向けて配置され、
前記第1反射部及び前記第3反射部は、前記受発光装置の一方の側に前記第1反射部の反射面及び前記第3反射部の反射面を向けてそれぞれ配置され、
前記第1集光部で集光された光が、前記第1反射部、前記第2反射部及び前記第3反射部によって前記受発光装置の一方の側と他方の側との間で複数回反射されて、前記空間において前記被検出ガスによって吸収されて減衰し、前記受光部が受光した減衰後の光信号に基づく前記被検出ガスの濃度測定に用いられる受発光装置。
A light emitting unit that outputs light absorbed by the gas to be detected ;
A light receiving unit,
A first condensing unit that condenses light incident from a focal position;
A first reflecting portion that reflects the light collected by the first light collecting portion;
A second reflecting portion that reflects the light reflected by the first reflecting portion;
A third reflecting portion that reflects the light reflected by the second reflecting portion;
A second light collecting portion for collecting the light reflected by the third reflecting portion at a focal position;
A signal processing unit to which the output of the light receiving unit is input;
A sealing portion provided in a space into which the gas to be detected is introduced and integrally sealing the light emitting portion, the light receiving portion, and the signal processing portion;
A light emitting and receiving device comprising
The light emitting unit, the light receiving unit, the first light collecting unit, the second light collecting unit, and the second reflecting unit are disposed on one side of the light emitting and receiving device in plan view.
The first reflecting portion and the third reflecting portion are disposed on the other side of the light emitting and receiving device across the space in plan view,
The light emitting unit is disposed at a focal position of the first light collecting unit, and the light receiving unit is disposed at a focal position of the second light collecting unit.
The second reflection part is disposed on the other side of the light emitting and receiving device with the reflection surface of the second reflection part facing the other side.
The first reflection portion and the third reflection portion are disposed on one side of the light emitting and receiving device with the reflection surface of the first reflection portion and the reflection surface of the third reflection portion facing each other,
The light collected by the first light collector is a plurality of times between the one side and the other side of the light emitting and receiving device by the first reflector, the second reflector, and the third reflector. is reflected, the in the space attenuated is absorbed by the detected gas, the light receiving unit that is used in the concentration measurement of the detected gas based on the optical signal after attenuation of light received the light receiving and emitting device.
前記第2反射部は、前記発光部と前記受光部との間に配置され、かつ前記第2反射部の反射面が前記発光部と前記受光部とが並ぶ方向と平行となるように配置されており、
前記第1反射部は、前記発光部から、前記発光部と前記受光部とが並ぶ方向と垂直な方向に離れた位置に配置され、かつ前記第1反射部の反射面が前記第2反射部に向かって配置されており、
前記第3反射部は、前記受光部から、前記発光部と前記受光部とが並ぶ方向と垂直な方向に離れた位置に配置され、かつ前記第3反射部の反射面が前記第2反射部に向かって配置されている請求項1に記載の受発光装置。
The second reflecting portion is disposed between the light emitting portion and the light receiving portion, and the reflecting surface of the second reflecting portion is disposed parallel to a direction in which the light emitting portion and the light receiving portion are arranged. Yes,
The first reflecting portion is disposed at a position separated from the light emitting portion in a direction perpendicular to the direction in which the light emitting portion and the light receiving portion are arranged, and the reflecting surface of the first reflecting portion is the second reflecting portion. Are placed towards
The third reflecting portion is disposed at a position separated from the light receiving portion in a direction perpendicular to the direction in which the light emitting portion and the light receiving portion are arranged, and the reflecting surface of the third reflecting portion is the second reflecting portion The light emitting and receiving device according to claim 1, wherein
前記第1集光部及び前記第2集光部は、放射面形状を有する請求項1又は2に記載の受発光装置。   The light emitting and receiving device according to claim 1, wherein the first light collecting unit and the second light collecting unit have a radiation surface shape. 前記第1集光部、前記第2反射部及び前記第2集光部が同一材料で一体形成され、
前記第1反射部及び前記第3反射部が同一材料で一体形成される請求項1からのいずれか一項に記載の受発光装置。
The first light collecting portion, the second reflecting portion, and the second light collecting portion are integrally formed of the same material,
The light emitting and receiving device according to any one of claims 1 to 3 , wherein the first reflecting portion and the third reflecting portion are integrally formed of the same material.
JP2015132755A 2015-07-01 2015-07-01 Light emitting and receiving device Active JP6530652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132755A JP6530652B2 (en) 2015-07-01 2015-07-01 Light emitting and receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132755A JP6530652B2 (en) 2015-07-01 2015-07-01 Light emitting and receiving device

Publications (2)

Publication Number Publication Date
JP2017015567A JP2017015567A (en) 2017-01-19
JP6530652B2 true JP6530652B2 (en) 2019-06-12

Family

ID=57827856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132755A Active JP6530652B2 (en) 2015-07-01 2015-07-01 Light emitting and receiving device

Country Status (1)

Country Link
JP (1) JP6530652B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023107328A1 (en) 2022-03-25 2023-09-28 Asahi Kasei Microdevices Corporation GAS SENSOR SYSTEM
DE102023107333A1 (en) 2022-03-25 2023-09-28 Asahi Kasei Microdevices Corporation GAS SENSOR SYSTEM

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810625B2 (en) * 2017-02-07 2021-01-06 新コスモス電機株式会社 Optical gas sensor and gas detector
JP7123599B2 (en) * 2018-03-29 2022-08-23 旭化成エレクトロニクス株式会社 Light receiving and emitting device and optical density measuring device
US10656080B2 (en) 2018-07-06 2020-05-19 Asahi Kasei Microdevices Corporation Gas detection apparatus
US11137282B2 (en) 2019-09-30 2021-10-05 Asahi Kasei Microdevices Corporation Optical concentration measurement device comprising a light receiving unit with a rectangular light receiving surface
US11644417B2 (en) 2020-03-11 2023-05-09 Asahi Kasei Microdevices Corporation Gas detection apparatus
US11662305B2 (en) 2020-03-31 2023-05-30 Asahi Kasei Microdevices Corporation Gas detection apparatus
US11808609B2 (en) 2020-08-04 2023-11-07 Asahi Kasei Microdevices Corporation Gas cell housing molding mold, method for manufacturing gas cell housing, gas cell housing for gas sensor, and gas sensor including same
US11747273B2 (en) 2020-09-28 2023-09-05 Asahi Kasei Microdevices Corporation Gas sensor
CN114486790B (en) 2020-10-28 2023-10-20 旭化成微电子株式会社 Gas detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184556A (en) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd Optical gas detector
WO2001048456A1 (en) * 1999-12-29 2001-07-05 Environmental Systems Products, Inc. System and method for remote analysis of small engine vehicle emissions
JP2001235418A (en) * 2000-02-24 2001-08-31 Anritsu Corp Instrument for measuring concentration of gas
JP2004061482A (en) * 2002-07-30 2004-02-26 Sousei Denshi:Kk Reflection type photosensor
JP4547385B2 (en) * 2003-12-12 2010-09-22 イーエルティー インコーポレイテッド Gas sensor
JP2005337875A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Gas sensor
JP5323903B2 (en) * 2011-08-31 2013-10-23 シャープ株式会社 Sensor circuit and electronic equipment
WO2014136414A1 (en) * 2013-03-04 2014-09-12 パナソニック株式会社 Device
JP6257407B2 (en) * 2014-03-25 2018-01-10 大阪瓦斯株式会社 Infrared gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023107328A1 (en) 2022-03-25 2023-09-28 Asahi Kasei Microdevices Corporation GAS SENSOR SYSTEM
DE102023107333A1 (en) 2022-03-25 2023-09-28 Asahi Kasei Microdevices Corporation GAS SENSOR SYSTEM

Also Published As

Publication number Publication date
JP2017015567A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP6530652B2 (en) Light emitting and receiving device
JP6347051B2 (en) device
JP5906407B2 (en) Gas component detector
EP1987346B1 (en) Dome gas sensor
JP2008051764A (en) Range finding sensor, and electronic device having sensor mounted
JPH10239235A (en) Infrared ray gas analyzer
US11604093B2 (en) Spectrometer device and method for producing a spectrometer device
JP2012220352A (en) Gas component detector
JP5662225B2 (en) Infrared sensor
KR101108497B1 (en) NDIR Gas Sensor
JP2012215396A (en) Infrared gas sensor
JP2006275632A (en) Spectroscopic gas sensor
KR101720944B1 (en) Infrared Multi-gas measurement system in order to enhance the sensitivity of gas sensor
JP7123599B2 (en) Light receiving and emitting device and optical density measuring device
JP2018119856A (en) Imaging member and imaging device
JP2014142319A (en) Infrared application device
CN114486790B (en) Gas detection device
JP2013120156A (en) Gas component detector
KR101760031B1 (en) Optical gas sensor with the improvement of sensitivity and reliability
JP2013120154A (en) Gas component detector
US20240035958A1 (en) Gas detection apparatus
JP2024016805A (en) gas detection device
US11474031B2 (en) Gas detection apparatus
US11821836B2 (en) Fully compensated optical gas sensing system and apparatus
WO2016121338A1 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6530652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150