JP6528977B2 - 造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法 - Google Patents

造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法 Download PDF

Info

Publication number
JP6528977B2
JP6528977B2 JP2016555934A JP2016555934A JP6528977B2 JP 6528977 B2 JP6528977 B2 JP 6528977B2 JP 2016555934 A JP2016555934 A JP 2016555934A JP 2016555934 A JP2016555934 A JP 2016555934A JP 6528977 B2 JP6528977 B2 JP 6528977B2
Authority
JP
Japan
Prior art keywords
treatment
slope
maximum signal
signal difference
washout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016555934A
Other languages
English (en)
Other versions
JP2017504445A (ja
Inventor
ペトリッロ,アントネッラ
フスコ,ロベルタ
Original Assignee
イスティトゥート ナツィオナーレ ツモリ − フォンダツィオーネ ジー. パスカーレ
イスティトゥート ナツィオナーレ ツモリ − フォンダツィオーネ ジー. パスカーレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イスティトゥート ナツィオナーレ ツモリ − フォンダツィオーネ ジー. パスカーレ, イスティトゥート ナツィオナーレ ツモリ − フォンダツィオーネ ジー. パスカーレ filed Critical イスティトゥート ナツィオナーレ ツモリ − フォンダツィオーネ ジー. パスカーレ
Publication of JP2017504445A publication Critical patent/JP2017504445A/ja
Application granted granted Critical
Publication of JP6528977B2 publication Critical patent/JP6528977B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30028Colon; Small intestine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Image Processing (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、新補助放射線化学療法の後、局所的に進行した直腸ガン患者に造影剤を動的に投与した磁気共鳴画像(DCE−MRI)により提供されたデータを分析する方法に関する。DCE−MRIは、造影剤の投与の前、その間及び後の腫瘍の量を取得し、専門の放射線医により分割される関心領域の濃度レベルの経時の平均値として得られる時間強度曲線(TIC)のその後の評価で構成されるものである。
スクリーニングプログラムの導入及び拡張のための労力にもかかわらず、直腸ガンは疾患が局所的に進んだ段階で診断されるので、たいてい致死性のものである。新補助放射線化学療法(CRT)後の腫瘍の減少は、疾患の再発及び生存率が関係する重要な予後因子と考えられてきた。それでもやはり、放射線化学療法に対する好ましい反応は必ずしも腫瘍量の減少と関係するものではなく、たいてい線維症と腫瘍の残りを識別するのが難しいという理由を含むものである。従って、形態的な磁気共鳴画像は、新補助CRTに完全に反応する人、部分的に反応する人及び反応しない人を区別するのに決定的なものではない。このため、現在では、時間強度曲線の品質タイプのアプローチと関連してDCE−MRIが使用される傾向にある。実際には、この種のアプローチでは、オペレータは視覚的にDCE−MRIによって提供される画像から得られるTICのパターンを評価する。この方法がCRT後の腫瘍の残りの検出において潜在的に成功しているにもかかわらず、これはDCE−MRIによって提供されるデータを「読む」人の個々の能力及び準備に依存するゆえに、もともと主観的なものである。
本発明の主な目的は、完全にCRTに反応する人、部分的に反応する人及び反応しない人を効率よく識別することができるように局所的に進行した直腸ガン患者に実行されるDCE−MRIによって提供されたデータの分析の方法を提供することである。本発明の別の目的は、使用するのに単純で、合理的、容易かつ有効であり手頃な解決法の範囲内で上記の従来技術の欠点を克服することができる、新補助CRTを受けている局所的に進行した直腸ガンに苦しむ患者に実行されるDCE−MRIによって提供されたデータの分析の方法を提供することである。
上記の目的は、新補助放射線化学療法の後、局所的に進行した直腸ガン患者に造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する請求項1に記載の本発明の方法によって達成される。
本発明の他の特徴及び効果は、添付の図面において制限的なものではなく例として示される分析方法の好適であるが排他的ではない実施態様の記載から明らかになる。
図1は、本発明の方法の有効性を支持する実験データを示すグラフであり、図では、反応する患者が円で、反応しない患者が三角形で表されている。
本発明の方法は、局所的に進行した直腸ガン患者に行われるDCE−MRIによって提供されたデータの分析を実行するために考案されたものである。詳細には、本発明は、アルゴリズムで形式化されて、コンピュータプログラムで実施可能な算出方法で構成される。提案された方法により、オペレータは、新補助CRTに完全に反応する患者、部分的に反応する患者、及び反応しない患者を識別するためにDCE−MRIデータの半定量分析を実行することができる。明らかに、オペレータの評価及び彼/彼女の予測は、本発明の主題を表すものではない。
本発明の方法は最初に、彼/彼女がCRTを受ける前に患者に実施されるDCE−MRIによって生成される、造影剤の投与前、投与中、及び投与後といった様々な時点に関する治療前のデジタル画像を入手することを想定するものである。使用する造影剤は、ガドリニウム含有の常磁性の造影剤である。
これらの治療前の画像において、腫瘍の輪郭を定める1つ以上の関心領域が識別される。その輪郭は、グラフィック処理プログラム等を用いてオペレータによって「手動で」辿ることができる。さらに、DCE−MRIによって生成される他の治療後デジタル画像が使用可能であり、この時は、彼/彼女がCRTを受けた後に患者に実施されるものであり、そこで腫瘍の輪郭を定める1つ以上の治療後の関心領域が識別される。
実際には、治療前及び治療後で識別された関心領域は、CRT前の患者の腫瘍量、そしてCRT後の腫瘍の残り及び/又は壊死/線維症を検出する。この時点で、この方法は、識別された治療前及び治療後関心領域の、複数の部分例えば相対的な画像の画素への分割を必要とし、そこで第1の治療前の時間強度曲線及び第2の治療後時間強度曲線の各々が算出される。算出された曲線に関してここで使用される用語「強度」は、対応している組織領域の造影剤の吸収、したがって腫瘍血管新生と相関している各々の識別された部分の色(一般に灰色)の強度レベル、例えば各々の画素の強度レベルを意味するものである。
本発明の主題を形成している方法はしたがって、治療前の関心領域が分割された部分に関連する複数の第1の曲線、及び治療後の関心領域が分割された部分に関連する複数の第2の曲線を取得することで提供される。そのように得られた各々の曲線で、それぞれ最大信号差及びウォッシュアウト部分の傾斜度である2つの特定の形式ディスクリプタが算出され、ウォッシュアウト部分の傾斜度は、特に造影剤の排出段階を表す曲線の部分であり、信号が最も強い位置で始まる部分に対応する。第1の算出曲線の数に対応する最大信号差及びウォッシュアウト部分の傾斜度に関する第1の複数の値、そして、第2の算出曲線の数に対応する最大信号差及びウォッシュアウト部分の傾斜度に関する第2の複数の値はこのように得られる。
そしてその後、第1の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値、そして第2の曲線のために算出された同じ形式ディスクリプタの中間値が決定される。このように、治療前の領域に関する最大信号差及びウォッシュアウト部分の傾斜度の第1の中間値、そして治療後の領域に関する最大信号差及びウォッシュアウト部分の傾斜度の第2の中間値が得られる。
続いて、そのように算出された中間値の間で百分率変化が決定される、すなわち、第1の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値と第2の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値の間でそれぞれ百分率変化が決定される。
そのような百分率変化、すなわち最大信号差の百分率変化及びウォッシュアウト部分の傾斜度の百分率変化は、2つのパラメータの線形分類指標を定めるために線形に結合される。実際には、指標は以下の公式 用いて算出される:
ここで、最大信号差の百分率変化に対応し、
ウォッシュアウト部分の傾斜度の百分率変化に対応し、α及びβは実数である(その優先的な値は以下に記載する)。
本発明が、CRT治療への患者の反応を識別するためにオペレータによって両方とも使うことができる2つのパラメータの組合せである指標を提供する点に留意する必要がある。
詳細には、両方の百分率パラメータは、時間強度曲線の形式ディスクリプタに基づくものであり、それは特に新生物組織の形成又はこの場合はその緩解の極めて信頼性の高い指標物質である考えられる関心領域の血管形成の程度を反映するものである。
線形結合のパラメータとして、出願人は、患者が腫瘍の存在の組織病理学的な制御のためにCRT及び続く直腸間膜切除を受けた臨床研究により、最大信号差の変化及びウォッシュアウト部分の傾斜度の変化を選んだ。検査は、文献において公知でよく試験された手順に従って、取られたサンプルの切除部周辺を評価することによって実行され、結果は腫瘍の退縮(TRG)の程度によって分類された。研究の間、他の形式ディスクリプタの変化も考慮された。
腫瘍の存在の検査の結果を考慮して、異なるディスクリプタの変化における可能な線形結合のROC(受信者動作特性)曲線の算出にも関係する統計分析が実行され、各々の曲線の下にある表面領域又はAUROC(ROC曲線下面積)が算出された。信号差及びウォッシュアウト部分の傾斜度の百分率変化の間の一次結合は、より大きいサイズのAUROCによって特徴付けられ、したがって、反応する患者と反応しない患者間の区別の指標として用いられるのに最も有効であると考えられる。個別に考えるとそれらの各々がもっともらしい区別指標であるが、この場合、反応する患者と反応しない患者とに分類される患者の統計的重複が存在して、潜在的な無病誤診又はその否定につながると言えるゆえに、2つのパラメータの組合せは驚くほど相乗的な結果であることに注意しなければならない。2つのパラメータの一次結合は、他方では最適化された感度、感受性及びしたがって精度を有する。
一般に、α及びβは0.5から1の間に含まれる。このように定められた一次結合は、AUROCを最大化する指標に至り、この場合、標準化形状指数(SIS)と呼ぶことができるので、好ましくは、αは0.778に等しくなるように選ばれ、βは0.6157に等しくなるように選ばれる(図1参照)。
それ以下であると反応しない患者だと考えられる標準化形状指数の第1のカットオフ値は好ましくは、−2%から−4%の間に含まれる。特に、第1のカットオフ値は−3%である。−3%より上のSIS値を有する患者は、治療に反応する患者とみなされる。それ以上であると完全に反応する患者だと考えられる第2のSISカットオフ値は、40%から60%の間である。好ましくは、第2のSISカットオフ値は50%である。いずれにせよ、オペレータの臨床評価は、本発明の主題とは無関係である。
図1は、被験者の反応する患者がどれほど高いSIS値を有しているかを明らかに示すものである。
記載の本発明がどのように提案された目的を達成するかは実際に確認されて、特に、本発明の主題を形成している方法を用いて得られる線形分類指標により、CRTを受けている患者の反応を効率よく評価できるという事実が強調される。

Claims (9)

  1. 新補助放射線化学療法の後、局所的に進行した直腸ガンに苦しむ患者に、DCE−MRIと呼ばれる造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法であって、以下の段階:
    彼/彼女が放射線化学療法を受ける前に患者に実行される前記DCE−MRIによって得られる治療前のデジタル画像を使用可能にして、腫瘍の輪郭を識別する1つ以上の治療前の関心領域を識別する段階;
    彼/彼女が放射線化学療法を受けた後に患者に実行される前記DCE−MRIによって得られる治療後のデジタル画像を使用可能にして、腫瘍の残りの輪郭を識別する1つ以上の治療後の関心領域を識別する段階;
    前記治療前及び治療後の関心領域を複数の部分に分割する段階;
    前記治療前の関心領域の前記各々の部分の第1の時間強度曲線、及び、前記治療後の関心領域の前記各々の部分の第2の時間強度曲線を算出する段階;
    前記算出された第1及び第2の曲線の各々の最大信号差及びウォッシュアウト部分の傾斜度を算出する段階;
    前記第1及び第2の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値を算出する段階;
    前記第1の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値と前記第2の曲線のために算出された最大信号差及びウォッシュアウト部分の傾斜度の中間値の間の百分率変化を算出する段階;及び、
    相対的な線形分類指標を定めるために前記最大信号差の百分率変化及び前記ウォッシュアウト部分の傾斜度の百分率変化を線形に結合する段階、を含む方法。
  2. 前記指標が下記の数式1で算出され、
    ここで
    ΔMSD

    前記最大信号差の百分率変化に対応し、
    ΔWOSは
    前記ウォッシュアウト部分の傾斜度の百分率変化に対応し、αが0.5から1の間の数であり、βが0.5から1の間の数であることを特徴とする、請求項1に記載の方法。
  3. αが0.778であることを特徴とする、請求項2に記載の方法。
  4. βが0.6157であることを特徴とする、請求項2又は請求項3に記載の方法。
  5. 前記指標の第1のカットオフ値が−2%から−4%の間であることを特徴とする、請求項1から請求項4のいずれか一項に記載の方法。
  6. 前記第1のカットオフ値が −3%であることを特徴とする、請求項5に記載の方法。
  7. 前記指標の第2のカットオフ値が40%から60%の間であることを特徴とする、請求項1から請求項6のいずれか一項に記載の方法。
  8. 前記第2のカットオフ値が50%であることを特徴とする、請求項7に記載の方法。
  9. 前記治療前及び治療後の関心領域の部分がそれら自体の各々の画素に対応することを特徴とする、請求項1から請求項8のいずれか一項に記載の方法。
JP2016555934A 2013-11-29 2014-11-28 造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法 Active JP6528977B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000326A ITMO20130326A1 (it) 2013-11-29 2013-11-29 Metodo di analisi
ITMO2013A000326 2013-11-29
PCT/IB2014/002592 WO2015079311A1 (en) 2013-11-29 2014-11-28 Method for analyzing data provided by magnetic resonance imaging with dynamic administration of contrast medium

Publications (2)

Publication Number Publication Date
JP2017504445A JP2017504445A (ja) 2017-02-09
JP6528977B2 true JP6528977B2 (ja) 2019-06-12

Family

ID=50033652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016555934A Active JP6528977B2 (ja) 2013-11-29 2014-11-28 造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法

Country Status (6)

Country Link
US (1) US10373310B2 (ja)
EP (1) EP3074950B1 (ja)
JP (1) JP6528977B2 (ja)
IT (1) ITMO20130326A1 (ja)
NO (1) NO3074950T3 (ja)
WO (1) WO2015079311A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130326A1 (it) 2013-11-29 2015-05-30 Istituto Naz Tumori Fondazi One G Pascale Metodo di analisi

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553327B2 (en) * 1998-09-16 2003-04-22 Yeda Research & Development Co., Ltd. Apparatus for monitoring a system with time in space and method therefor
AU2505201A (en) * 1999-10-29 2001-06-06 C.N.R. Consiglio Nazionale Delle Ricerche Automatic analysis of anatomical images time sequence
US7024024B1 (en) * 2000-11-14 2006-04-04 Axle International System for contrast echo analysis
US6496560B1 (en) * 2001-11-21 2002-12-17 Koninklijke Philips Electronics, N.V. Motion correction for perfusion measurements
JP2006198225A (ja) * 2005-01-21 2006-08-03 Hitachi Medical Corp 磁気共鳴イメージング装置
US8014576B2 (en) * 2005-11-23 2011-09-06 The Medipattern Corporation Method and system of computer-aided quantitative and qualitative analysis of medical images
US10130342B2 (en) * 2007-12-28 2018-11-20 Bracco Suisse Sa Initialization of fitting parameters for perfusion assessment based on bolus administration
US8406860B2 (en) * 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
WO2010082944A2 (en) * 2008-02-29 2010-07-22 The Regents Of The University Of Michigan Systems and methods for imaging changes in tissue
US8194963B2 (en) * 2008-03-10 2012-06-05 Siemens Medical Solutions Usa, Inc. Efficient estimator of pharmacokinetic parameters in breast MRI
CA2732276A1 (en) * 2008-07-29 2010-02-04 Board Of Trustees Of Michigan State University System and method for differentiating benign from malignant contrast-enhanced lesions
EP2189112A1 (en) * 2008-11-24 2010-05-26 Bracco Research S.A. Real-time perfusion imaging and quantification
JP5642398B2 (ja) * 2009-04-24 2014-12-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 血流動態解析装置、磁気共鳴イメージング装置、およびプログラム
WO2011146475A1 (en) * 2010-05-17 2011-11-24 Children's Hospital Los Angeles Method and system for quantitative renal assessment
NO20101638A1 (no) * 2010-11-22 2012-05-23 Sunnmore Mr Klinikk As Fremgangsmate ved ex vivo distingvering mellom maligne og benigne tumorer ved anvendelse av kontrastmiddelbasert MR-skanning
US20140163403A1 (en) * 2012-12-12 2014-06-12 The Texas A&M University System Automated determination of arterial input function areas in perfusion analysis
ITMO20130326A1 (it) 2013-11-29 2015-05-30 Istituto Naz Tumori Fondazi One G Pascale Metodo di analisi

Also Published As

Publication number Publication date
US10373310B2 (en) 2019-08-06
JP2017504445A (ja) 2017-02-09
NO3074950T3 (ja) 2018-08-04
ITMO20130326A1 (it) 2015-05-30
EP3074950A1 (en) 2016-10-05
US20160300344A1 (en) 2016-10-13
EP3074950B1 (en) 2018-03-07
WO2015079311A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Mao et al. Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study
Romei et al. Automated computed tomography analysis in the assessment of idiopathic pulmonary fibrosis severity and progression
JPWO2017150497A1 (ja) 肺野病変の診断支援装置、該装置の制御方法及びプログラム
Ginsburg et al. Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images
JP7264486B2 (ja) 画像解析方法、画像解析装置、画像解析システム、画像解析プログラム、記録媒体
Ohkubo et al. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: a mini review
US8050734B2 (en) Method and system for performing patient specific analysis of disease relevant changes of a disease in an anatomical structure
JP6084976B2 (ja) 組織内の異常物質の存在を検出するシステム及び方法
Lou et al. Fully automated detection of paramagnetic rims in multiple sclerosis lesions on 3T susceptibility-based MR imaging
Tagliafico et al. Fascicular ratio: a new parameter to evaluate peripheral nerve pathology on magnetic resonance imaging: a feasibility study on a 3T MRI system
Jaworek-Korjakowska Automatic detection of melanomas: an application based on the ABCD criteria
Kaaouana et al. Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: a comparison study in a clinical setting
Milara et al. Bone marrow segmentation and radiomics analysis of [18F] FDG PET/CT images for measurable residual disease assessment in multiple myeloma
Ganesan et al. Accurately diagnosing uric acid stones from conventional computerized tomography imaging: development and preliminary assessment of a pixel mapping software
Moog et al. Direction and magnitude of displacement differ between slowly expanding and non-expanding multiple sclerosis lesions as compared to small vessel disease
Lim et al. Automated ct perfusion detection of the acute infarct core in ischemic stroke: a systematic review and meta-analysis
Marias et al. A mammographic image analysis method to detect and measure changes in breast density
JP6528977B2 (ja) 造影剤を動的に投与した磁気共鳴画像により提供されたデータを分析する方法
Cho et al. Quantitative CT Imaging in Chronic Obstructive Pulmonary Disease: Review of Current Status and Future Challenges.
Habibollahi et al. Hyperechoic renal masses: differentiation of angiomyolipomas from renal cell carcinomas using tumor size and ultrasound radiomics
Kruk et al. Identification of noncalcified coronary plaque characteristics using machine learning radiomic analysis of non-contrast high-resolution computed tomography
Feroui et al. New segmentation methodology for exudate detection in color fundus images
Netto et al. Statistical tools for the temporal analysis and classification of lung lesions
Dilger et al. The use of surrounding lung parenchyma for the automated classification of pulmonary nodules
Vacca et al. Atherosclerotic carotid artery disease Radiomics: A systematic review with meta-analysis and radiomic quality score assessment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190501

R150 Certificate of patent or registration of utility model

Ref document number: 6528977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250