JP6528292B2 - ダブルショルダ型ツールジョイントを有する掘削用鋼管 - Google Patents

ダブルショルダ型ツールジョイントを有する掘削用鋼管 Download PDF

Info

Publication number
JP6528292B2
JP6528292B2 JP2017546930A JP2017546930A JP6528292B2 JP 6528292 B2 JP6528292 B2 JP 6528292B2 JP 2017546930 A JP2017546930 A JP 2017546930A JP 2017546930 A JP2017546930 A JP 2017546930A JP 6528292 B2 JP6528292 B2 JP 6528292B2
Authority
JP
Japan
Prior art keywords
steel pipe
tool joint
type tool
screw portion
double shoulder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017546930A
Other languages
English (en)
Other versions
JP2018509573A (ja
Inventor
弘持 佐倉
弘持 佐倉
福井 俊彦
俊彦 福井
知之 成川
知之 成川
朝哉 井上
朝哉 井上
剛 宮崎
剛 宮崎
正憲 許
正憲 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Agency for Marine Earth Science and Technology
NKKTubes KK
Original Assignee
Japan Agency for Marine Earth Science and Technology
NKKTubes KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Agency for Marine Earth Science and Technology, NKKTubes KK filed Critical Japan Agency for Marine Earth Science and Technology
Publication of JP2018509573A publication Critical patent/JP2018509573A/ja
Application granted granted Critical
Publication of JP6528292B2 publication Critical patent/JP6528292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/04Couplings; joints between rod or the like and bit or between rod and rod or the like
    • E21B17/042Threaded

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Earth Drilling (AREA)

Description

本発明は、ダブルショルダ型ツールジョイントを有する掘削用鋼管に関し、特に、疲労特性向上のための応力緩和機能を備え、地中掘削用に使用されるドリルパイプ、ヘビーウェイトドリルパイプ、ランディングストリング等の掘削用鋼管に好適に適用される、ダブルショルダ型ツールジョイントを有する掘削用鋼管に関する。
ドリルパイプの疲労に関しては幾つか制約や規定があるが、API(米国石油協会、American Petroleum Institute)規格のspec7GやDS−1が一つのガイドラインとして使われている。例えば、疲労に関する負荷曲げ応力と可能回転数である許容繰り返し数との関係がAPIspec.7Gに記載されている。さらに、APIspec.7Gは、井戸の傾斜角度を33m達する毎の偏狭角度で表し、6度以下なら回転可能だがそれ以上の場合はビット先端部のみを回転して掘削するという掘削条件を提示している。
しかし、いずれの場合も、疲労が問題となるのは肉厚の薄いドリルパイプ管体で、両管端のツールジョイント部ではなかった。従って、高深度・傾斜掘りが進む中でのツールジョイント部への高負荷化への対応は、管体の静的なねじり耐力や引張耐力を考慮して使用されていれば、API規格のツールジョイント(ねじ継ぎ手)、特にダブルショルダ型ツールジョイントにおいては大きな問題はなかった。しかし、ドリルカラーで代表される管体の肉厚がツールジョイントより肉厚の厚いものでは、ツールジョイント部が強度上ネックとなる。すなわち、ドリルパイプで最も脆弱な部分となる。このような場合は、雄ねじ部(外ねじ部)の首元平行部にグルーブ加工を施すことが推奨されている(API spec. 7G)。
従来技術では、このAPIspec.7Gに適用されているような、ピンネック部の応力緩和溝(Stress Relief Groove、以下「SRG」とする)加工やねじ山の形状を大幅に変更するもの、ねじ部の全長に亘ってねじ底の半径を大きくするものが一般的であった。
また、ねじ継ぎ手の疲労強度向上に関しては、以下の技術も開示されている。特許文献1は、APIねじ継ぎ手のボックス内面側に円筒形のリング状の部品(環状部)を配することにより、ある程度のメークアップ(締付け)トルクを受け持つことができる、高トルク・高疲労強度の継ぎ手を開示している。特許文献2は、使用中にショルダ部の十分な接触を保持するために弾性変形能の高いリングをショルダ面に配する技術を開示している。特許文献3、特許文献4、特許文献5は、ねじ山の高さを徐々に変化させることにより、ショルダからの反力をより多くのねじ山に分散させる技術を開示している。さらに、反力の分散方法として、特許文献6は、ねじ山に切れ目を入れることによりねじ山の剛性を低下させる方法を開示し、特許文献7は、逆にねじ谷底に切れ込みを入れる方法を開示している。
特開平06−281060号公報 特開平07−260054号公報 特開平02−35208号公報 特開平01−48988号公報 特開平04−157283号公報 特開2005−221038号公報 実開平04−66483号公報
従来技術では、ツールジョイントの雄ねじ部の首元平行部のSRG加工やねじ部の加工などが、各々単独で提案されていた。このような個別対応では、的確な応力集中緩和を目的とする設計が難しく、不要な加工による加工時間の延長及び加工費の増大、あるいは不要な加工による構造物の強度要素減少に起因する強度低下を招いていた。特に、ねじ部の形状の変更は、ツールジョイントの性能に由来する危険断面積を犠牲にすることになるため推奨できない。
上記以外の対策としては、全体の設計変更や材料自体の強度向上などが考えられる。前者の場合は、製品の汎用性が無くなるため検査器具を別途準備する必要があり、コスト増となる。また、複雑な品質管理が必要となるため販売推進を損ねる。後者の場合は、パイプとの接合に使用される摩擦圧接における強度バランスを考慮すれば、ツールジョイントの材料の強度を更に上げることは推奨できない。例えば、機械試験値に問題が生じる(高硬度及び低靭性は脆性をもたらす)と考えられる。従って、限られた強度見直しと限られた形状変更などの多くの制約を考慮しながら、API規格の掘削用鋼管の本来の性能を落とすことなく疲労強度のみの向上を図る必要がある。その際には、最もネックとなる箇所の危険断面積を減らすことなく掘削用鋼管の設計を行うことが重要である。
特許文献1に記載された技術によれば、円筒形のリング状部品を配することにより、APIねじ継ぎ手においてはトルクの向上及び疲労強度の向上を期待することができる。しかし、元々内面側にショルダを持つダブルショルダ型ツールジョイントにおいては上記の効果は期待できない。特許文献2に記載された弾性リングでは、ツールジョイントの材料と異種の材料を使用する必要があるため、異種金属接触腐食を発生させる可能性がある。特許文献3、4、5に記載された技術において、ねじ山の高さを変更するだけではショルダの反力を十分に分散することは難しく、結果的にねじ山側面の受圧面積を下げることとなり、疲労強度の向上を望むことはできない。特許文献6、7に記載された技術によれば、ねじ部の形状が非常に複雑となり、機械加工が非常に難しくなるとともに、加工時間の増加やコスト増を招くことになる。
従って、本発明の目的は、所定形状のねじ部形状を大幅に変更することなく、応力集中緩和が可能で、疲労特性に優れたダブルショルダ型ツールジョイントを有する掘削用鋼管を提供することにある。
[1]本発明の一の特徴によれば、上記目的を達成するために、所定形状の雄ねじ部を有するピン部と、
前記雄ねじ部と螺合する雌ねじ部を有するボックス部と、を有し、
前記雄ねじ部の径大側の近位端の3以下の連続ねじ山及び/又は前記雌ねじ部の径小側の近位端の3以下の連続ねじ山のそれぞれのスタビングフランク面はR加工部を有することを特徴とするダブルショルダ型ツールジョイントを有する掘削用鋼管を提供する。
[2][1]に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記ピン部は、前記ピン部の首元部に2つ以上のRからなる他のR加工部を有してもよい。
[3][1]又は[2]に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記R加工部のR加工底の最小断面積は、前記雄ねじ部又は前記雌ねじ部のねじ底の危険断面積と同じであってもよい。
[4][1]から[3]のいずれか1つに記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記所定形状は、API規格に基づくねじ部形状であり、前記R加工は後加工により形成されたものであってもよい。
[5]本発明の他の特徴によれば、
所定形状の雄ねじ部を有するピン部と、
前記雄ねじ部と螺合する雌ねじ部を有するボックス部と、を有し、
前記雄ねじ部及び/又は雌ねじ部のそれぞれの1またはそれ以上の不完全ねじ部は前記雄ねじ部及び/又は雌ねじ部の他方側の1またはそれ以上の完全ねじ山と螺合するように構成され、
前記他方側の1またはそれ以上の完全ねじ山のスタビングフランク面はR加工部を有し
前記他方側の前記1またはそれ以上の完全ねじ山のロードフランク面はR加工部を有しないことを特徴とするダブルショルダ型ツールジョイントを有する掘削用鋼管を提供する。
[6][5]に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記ピン部は、前記ピン部の首元部に2つ以上のRからなる他のR加工部を有してもよい。
[7][5]又は[6]に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記R加工部の底の最小断面積は、前記雄ねじ部又は前記雌ねじ部のねじ底の危険断面積と同じであってもよい。
[8][5]から[7]のいずれか1つに記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記所定形状は、API規格に基づくねじ部形状であり、前記R加工部は後加工により形成されたものであってもよい。
[9][1]から[4]のいずれか1つに記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記雄ねじ部の前記径大側の前記近位端の3以下の連続ねじ山及び前記雌ねじ部の前記径小側の前記近位端の3以下の連続ねじ山のそれぞれのロードフランク面はR加工部を有しない。
[10][1]から[4]及び[9]のいずれか1つに記載のダブルショルダ型ツールジョイントを有する掘削用鋼管において、前記雄ねじ部の前記径大側の前記近位端の3以下の連続ねじ山及び/又は前記雌ねじ部の前記径小側の前記近位端の3以下の連続ねじ山は不完全ねじ山を含む。
本発明によれば、所定形状のねじ部形状を大幅に変更することなく、応力集中緩和が可能で、疲労特性に優れたダブルショルダ型ツールジョイントを有する掘削用鋼管を提供することができる。
図1は、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の全体、及び、その掘削用鋼管を連結した状態を示す図である。 図2Aは、本発明の第1の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部における図1の管軸に沿う部分断面図である。 図2Bは、図2AのA部詳細断面図である。 図3は、図2Aで示す雄ねじ部首元部におけるR加工(SRB加工)の方法を説明するための、掘削用鋼管の雄ねじ部の首元部における図1の管軸に沿う部分断面図である。 図4は、本発明の第1の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の雌ねじ部の根元部における図1の管軸に沿う部分断面図である。 図5Aは、ダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部におけるAPIねじ部形状のままの有限要素解析(FEA:Finite Element Analysis)による応力解析図である。 図5Bは、本発明の第1の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部においてAPIねじ部形状にSRB加工を施した場合のFEAによる応力解析図である。 図6は、本発明の第2の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部における図1の管軸に沿う部分断面図である。 図7は、図6で示す雄ねじ部首元部におけるR加工(SRB加工及びSRG加工)の方法を説明するための、掘削用鋼管の雄ねじ部の首元部における図1の管軸に沿う部分断面図である。 図8Aは、ダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部におけるAPI形状のままのFEAによる応力解析図である。 図8Bは、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の雄ねじ部の首元部においてAPI形状にSRG加工を施した場合のFEAによる応力解析図である。 図9Aは、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管の継ぎ手の疲労試験機を示す図である。 図9Bは、比較材のダブルショルダ型ツールジョイントを有する掘削用鋼管の継ぎ手の破断した試験体を示す図である。
(ツールジョイント、油掘削用鋼管の全体構成)
図1は、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1の全体、及び、その掘削用鋼管を連結した状態を示す図である。このダブルショルダ型ツールジョイントを有する掘削用鋼管1(以下、「掘削用鋼管1」と言う。)は、ドリルパイプ管体4と、端部にそれぞれ形成された雌ねじ部(内ねじ部)20を備えたボックス部2と雄ねじ部(外ねじ部)30を備えたピン部3で構成されている。ボックス部2及びピン部3は、ダブルショルダ型ツールジョイントを構成する。掘削用鋼管1は、図1に示すように、一方の掘削用鋼管1のボックス部2と他方の掘削用鋼管1のピン部3とが、一方の掘削用鋼管1の雌ねじ部20と他方の掘削用鋼管1の雄ねじ部30の螺合により連結される。掘削用鋼管1の連結は、必要数だけ行なわれる。
なお、本明細書において、「SRG加工」とは、応力緩和溝(SRG:Stress Relief Groove)を雄ねじ部径大側の付け根(近位端)とピンショルダ面とのコーナー部分に設けるための加工、特にR加工をいうものとする。また、「SRB加工」とは、応力緩和底(SRB:Stress Relief Bottom)を、ねじ底(ねじ底点はPで示される)を起点にスタビングフランク面にかけて設けるための加工、特にR加工をいうものとする。ここで、R加工(Rounding process)とは、円弧、所定の曲率、これらの組合せにより加工を施すことである。
(本発明の第1の実施の形態)
図2Aは、本発明の第1の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1の雄ねじ部30の首元部33における図1の管軸CLに沿う部分断面図である。また、図2Bは、図2AのA部詳細断面図である。
図2A、図2Bに示す雌ねじ部20、雄ねじ部30は、API規格に規定されたドリルパイプの標準的なねじ継手のねじ形状を有している。本実施の形態では、雄ねじ部30において、首元部33が径大側で(近位端で)ピンノーズ端面32が径小側(遠位端)となるテーパねじ(例えば、API Spec.7)を使用する。
図2Aに示すように、ボックス部2の雌ねじ部20とピン部3の雄ねじ部30とは、螺合して噛合(ねじ嵌合)している。噛合により、ダブルショルダを構成するピン部3のピンショルダ面31とボックス部2のボックス端面22は接触(当接)している。また、後述する図4で示すピン部3のピンノーズ端面32とボックス部2のボックスショルダ面21も接触(当接)している。すなわち、ダブルショルダ型ツールジョイントの外ショルダ(ピンショルダ面31とボックス端面22の当接部)、内ショルダ(ボックスショルダ面21とピンノーズ端面32の当接部)は、雌ねじ部20と雄ねじ部30との噛合により当接し、シール機能を発揮すると共に、掘削用鋼管の回転トルクの伝達を行なう。
ここで、図2A、図2Bに示すように、雌ねじ部20と雄ねじ部30の噛合状態では、雌ねじ部20のねじ山の一方のフランク面(ロードフランク面)40が雄ねじ部30のねじ山の一方のフランク面と当接するが、雌ねじ部20のねじ山の他方のフランク面(スタビングフランク面)41は雄ねじ部30の次のねじ山の片側斜面と当接しない。
ボックス部2の雌ねじ部20とピン部3の雄ねじ部30との噛合により、図2Aに示すように、ピンショルダ面31とボックス端面22が当接する。後述する図4で示すピンノーズ端面32とボックスショルダ面21が当接する。ねじ部(雌ねじ部20と雄ねじ部30)では、ロードフランク面40が、雌ねじ部20のねじ山の一方のフランク面と雄ねじ部30の次のねじ山の一方のフランク面が当接する際の荷重面となっている。
(雄ねじ部のSRB加工部)
ダブルショルダ型ツールジョイントでは、ツールジョイント同士のメークアップ(締め付け)により内ショルダ及び外ショルダに高い面圧が生じ、特に外ショルダではこの面圧により曲げ応力に対する高い疲労特性が発揮される。このショルダ部の面圧の反力を雄ねじ部30の径大側の近位端の3連続ねじ山が受け持ち、3連続ねじ山までのねじ谷部や、雄ねじ首元および不完全ねじの谷部では集中応力が生じ、大きい引張応力が発生する。従ってこの部分が最も疲労破壊しやすい部分となる。そこで、この問題を解決するために、雄ねじ部30の近位端の3以下の連続ねじ山までの谷部のスタビングフランク面41に、元のねじ底半径よりも大きいRとなるようにSRB加工を施す。すなわち、SRB加工を施す近位端のねじ山の数は最大で3であり、1または2でもよい。
雄ねじ部30のSRB加工部37は、ピン部3の雄ねじ部30の径大側の近位端の3以下の連続ねじ山のそれぞれのスタビングフランク面41にR加工を施した部分である。SRB加工部37は、応力緩和のためのR加工部であり、ねじ谷部のスタビングフランク面41側にのみ形成されている。
図2A、図2Bに示すように、雄ねじ部30のSRB加工部37は、雄ねじ部30の首元部(近位端)33の径大側において、不完全ねじ部を含む3以下の連続ねじ山のスタビングフランク面41に、SRB加工を施すことにより形成される。換言すれば、雌ねじ部20の不完全ねじ部と螺合する雄ねじ部30の完全ねじ山のスタビングフランク面41にSRB加工が施してある。上記した2つの表現により規定されたR加工部は実質的に同じであり、いずれの場合においても後述する効果が得られる。
SRB加工部37は、そのR加工底の最小断面積が雄ねじ部30のねじ底の危険断面積と同じ又はそれ以上に設定されている。ここで、危険断面は雄ねじ部30、雌ねじ部20ともに、いずれもねじの噛合部から外れる各々の断面であって、雄ねじ危険断面積は、雄ねじ部30のねじ噛合部の中で径大側最終噛合雄ねじ(最近位噛合雄ねじ)底の断面積、雌ねじ危険断面積は、雌ねじ部20のねじ噛合部の中で径小側最終噛合雌ねじ(最遠位噛合雌ねじ)底の断面積である。ただし、ねじはスパイラルなので安全をみて最終噛合ねじの危険断面積を最終噛合部の危険断面積とする。
図2A、図2Bに示されるダブルショルダ型ツールジョイントを有する掘削用鋼管1においては、雄ねじ部30のねじ底Pが雄ねじ危険断面積を規定する径Dとして用いられる。SRB加工部37は、この径Dを最小の加工径として、スタビングフランク面41の側にR加工される。
図3は、図2Aで示す雄ねじ部30の首元部33におけるR加工(SRB加工)の方法を説明するための、掘削用鋼管1の雄ねじ部30の首元部33における図1の管軸CLに沿う部分断面図である。図3において、掘削用鋼管1は、その管軸CLを中心に旋回され、バイトBT1によりR加工(SRB加工)が施される。バイトBT1は、既に加工されたAPI規格によるねじ底の半径Rよりも大きな半径であるSRB加工部の加工半径(R1)に等しくなるようにノーズ半径がR1に形成された総形バイトである。
図3に示すように、APIねじ部形状に後加工(追加工)として、切削加工を施す。雄ねじ部30の首元部33の径大側において、不完全ねじ部を含む3以下の近位端の連続ねじ山のスタビングフランク面41に対して切削加工する。あるいは、雌ねじ部20の不完全ねじ部と螺合する雄ねじ部30の完全ねじ山のスタビングフランク面41に切削加工する。
バイトBT1の送りは、ねじピッチに等しくされる。また、図3に示す雄ねじ部30のねじ底Pが雄ねじ危険断面積を規定する径Dとすると、この径Dを最小の加工径として切込み量が設定される。
詳細な加工寸法は、後述するFEAの結果等から応力緩和の期待できる範囲で加工時間ロスを最小とする条件で決定した。ねじ底についてはネジ底の表面粗さRa値自体は変更せず、各ショルダの反力を受ける面からの応力集中を下げるスタビングフランク面41のみ、少し大きな1mmから1.3mm程度の曲率半径のR加工でねじ底とスタビングフランク面41を繋いで応力集中を防いでいる。
(雌ねじ部のSRB加工部)
雌ねじ部20のSRB加工部27は、ボックス部2の雌ねじ部20の径小側で近位端の3以下の連続ねじ山のそれぞれのスタビングフランク面41にSRB加工を施すことにより形成される。SRB加工部27は、応力緩和のためのR加工部であり、ねじ谷部のスタビングフランク面41側にのみ形成されている。
図4に示すように、雌ねじ部20のSRB加工部27は、雌ねじ部20の根元部23の径小側において、不完全ねじ部を含む3以下の連続ねじ山のスタビングフランク面41にSRB加工を施すことにより形成される。換言すれば、雄ねじ部30の不完全ねじ部と螺合する雌ねじ部20の完全ねじ山のスタビングフランク面41にSRB加工が施される。
SRB加工部27は、そのR加工底の最小断面積は、雌ねじ部20のねじ底の危険断面積と同じ又はそれ以上に設定されている。
雌ねじ部20のSRB加工部27は、雄ねじ部30のSRB加工部37と同様に、既に加工されたAPI規格によるねじ底の半径Rよりも大きな半径であるSRB加工部27の加工半径R1に等しくなるようにノーズ半径が形成された総形バイトBT1により、スタビングフランク面41の側の雌ねじ部20の谷部にSRB加工を施すことにより形成される。詳細な加工寸法についても、雄ねじ部30のSRB加工部37と同様である。
図5Aは、ダブルショルダ型ツールジョイントを有する掘削用鋼管におけるAPI規格のねじ部形状を備えた雄ねじ部30の首元部33の有限要素解析(FEA、Finite Element Analysis)による応力解析図である。また、図5Bは、本発明の第1の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1において、API規格のねじ部形状を備えた雄ねじ部30の首元部33にSRB加工を施した場合のFEAによる応力解析図である。
図5A、図5Bは、各ねじ部の山部、谷部について、メッシュを細かく設定して、グレースケール表示により示した応力分布である。この分析結果によれば、図5Aに示す元のAPIねじ部形状のままでは、雄ねじ部30の近位端の3つの連続ねじ山のねじ底(谷部)に応力の高い領域があり、応力集中があることがわかる。これに対して、図5Bに示す本発明の第1の実施の形態では、雄ねじ部30の近位端の3つの連続ねじ山のねじ底(谷部)にSRB加工部37を施している。図5Aの応力値及び応力集中領域との比較から、雄ねじ部30の近位端の3つの連続ねじ山のねじ底(谷部)の応力集中は緩和されていることがわかる。
(本発明の第2の実施の形態)
本発明の第2の実施の形態は、第1の実施の形態で示したSRB加工に加えて、ピン部3の雄ねじ部30の首元部33にR加工としてSRG加工を施すものである。
(SRG加工部)
図6は、本発明の第2の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1の雄ねじ部30の首元部33における図1の管軸CLに沿う部分断面図である。SRG加工部35は、ピン部3の雄ねじ部30の首元部33に2つ以上のRからなるR加工を施した部分である。SRG加工部35は、応力緩和のためのR加工部である。
雄ねじ部30の首元部33の不完全ねじを含む部分をSRG加工することにより、不必要なねじ谷が除去される。さらにこのSRG加工部35をできるだけ深くすることにより、隣接する最初のねじ谷部の集中応力を低下させるという相乗的な効果が得られる。しかしながら、必要以上にSRG加工部35の深さを増すことは、継ぎ手の静的な引張強さを低下させるため、最も効果的であるSRG加工部35の底の最小断面積を継ぎ手の強さを決定するねじ底の危険断面積と同じになるようにした。
図6は、2つ以上のRからなるR加工を施す例として、3つのRからなるSRG加工部35を有する場合の図である。SRG加工部35は、SRB加工部37と同様に、そのR加工底の最小断面積は、雄ねじ部30のねじ底の危険断面積となる最終ねじ山底の径Dを割らない範囲で最大となるR2と、R2とピンショルダ面31を滑らかに結ぶR3と、R2と最終ねじ山に繋がる部位とを滑らかに結ぶR4と、で構成される。なお、図6に示すように、上記で示した雄ねじ部30のねじ底の危険断面積となる最終ねじ山底の径Dは、雄ねじ部30のSRB加工部37の危険断面積を規定する径Dと同じである。
図7は、図6で示す雄ねじ部30の首元部33におけるR加工(SRB加工及びSRG加工)の方法を説明するための、掘削用鋼管1の雄ねじ部30の首元部33における図1の管軸CLに沿う部分断面図である。SRB加工は、第1の実施の形態と同様であるので、以下においては、SRG加工について説明する。
図7に示すように、掘削用鋼管1は、その管軸CLを中心に旋回され、バイトBT2によりR加工(SRG加工)が施される。3つのR(R2、R3、R4)の最小のRであるR3のノーズ半径以下に形成された総形バイトBT2を使用する。バイトBT2の送り、切込み量を適宜設定することにより、R加工底の最小断面積が雄ねじ部30のSRG加工部35の危険断面積となる最終ねじ山底の径Dと同じ、又は、それ以上となるようにR加工(SRG加工)する。
図8Aは、ダブルショルダ型ツールジョイントを有する掘削用鋼管のAPI規格のねじ部形状を備えた雄ねじ部30の首元部33のFEAによる応力解析図である。また、図8Bは、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1においてAPI形状にSRG加工を施した場合の雄ねじ部30の首元部33のFEAによる応力解析図である。
図8A、図8Bにおける応力分布と応力数値を比較すると、雄ねじ部30の首元部33側の最終ねじ山のねじ底と雄ねじ部30の近位端の3つの連続ねじ山のねじ底の応力集中が緩和されていることがわかる。
(比較例)
図9Aは、本発明の実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管1の継ぎ手の疲労試験機100を示す図である。また、図9Bは、比較材のダブルショルダ型ツールジョイントを有する掘削用鋼管のツールジョイント部が破断した試験体110を示す図である。
疲労試験では、実管(ダブルショルダ型ツールジョイントを有する掘削用鋼管)を用いた引張−引張疲労試験を、実施例及び比較例の各々2個の試験体(N=2)で実施してその効果を確認した。
試験条件として、比較例として、従来の掘削用鋼管(エヌケーケーシームレス鋼管製 DSTJ−NC31)である2個の試験体を準備した。実施例として、従来の掘削用鋼管(エヌケーケーシームレス鋼管製 DSTJ−NC31)にSRG加工とSRB加工の両方を行った2個の試験体を準備した。
表1はその試験結果である。

注)破断個所はねじ部でなく試験体のチャック部(管体)であった。
表1の結果において、比較例のSRG加工部及びSRB加工部無しの試験体1−1及び1−2はいずれもねじ部で破断した。これに対して、実施例のSRG加工部とSRB加工部の両方を有する試験体2−1及び2−2は、注記したように、ねじ部では破断せず、チャック部(管体)において破断した。この結果から、SRG加工及びSRB加工無しのダブルショルダ型ツールジョイントを有する掘削用鋼管に比較して、本発明の実施の形態に係るSRG加工とSRB加工の両方を行ったダブルショルダ型ツールジョイントを有する掘削用鋼管では、ねじ部において少なくとも倍の寿命であることが確認された。これは、ねじ部における応力集中が緩和されたことにより、疲労耐性が向上したものと考えられる。
(実施の形態の効果)
本発明の実施の形態によれば、以下のような効果を有する。
(1)第1の実施の形態によれば、ピン部3の首元部33の径大側において、不完全ねじ部を含む近位端の3以下の連続ねじ山のそれぞれのスタビングフランク面41にR加工部(SRB加工部37)が設けられている。あるいは、雌ねじ部20の不完全ねじ部と螺合する雄ねじ部30の完全ねじ山のそれぞれのスタビングフランク面41にR加工部(SRB加工部27)が設けられている。この構成により、ねじ底の部分への応力集中が緩和され、疲労耐性が向上する。
(2)不完全ねじ部を含む近位端の3以下の連続ねじ山のスタビングフランク面41にR加工部を設けている。しかし、ロードフランク面40にはR加工部を設けないので、ねじ山に加わる荷重に対する曲げ強度が低下することはなく、継ぎ手(ツールジョイント)の強度を低下させることがない。
(3)第2の実施の形態によれば、ピン部3の雄ねじ部30の首元部33に2つ以上のRからなるR加工部であるSRG加工部35が設けられている。この構成により、ねじ底の部分への応力集中が緩和され、疲労耐性が向上する。
(4)R加工部(SRB加工部37、SRB加工部27、SRG加工部35)は、そのR加工底の最大断面積が、雌ねじ部20又は雄ねじ部30のねじ底の危険断面積と同じ又はそれ以上に設定されている。この構成により、ツールジョイントで最も脆弱な箇所の危険断面積を減らすことなく、応力集中を緩和して疲労耐性を向上させることができる。
(5)R加工部(SRB加工部37、SRB加工部27、SRG加工部35)は、
所定形状、例えば、API規格に基づくねじ部形状に後加工(追加工)として施すことができる。この構成により、従来のAPI規格に基づくダブルショルダ型ツールジョイントを有する掘削用鋼管を利用することができる。
(6)雄ねじ部及び雌ねじ部の基本的なねじ形状はAPIと同じとすることで、従来のAPI製品の検査に用いられる汎用的な検査工具を使用できる。さらに、API製品の従来の検査方法をそのまま適用することでも十分な品質管理が可能となる。
(7)本実施の形態では、掘削用鋼管のダブルショルダ型ツールジョイントのネジ継ぎ手部にR加工を施しているので、繰り返し締め付け・締め戻しが行われる継ぎ手部のピン、ボックス噛合部において、回転掘削中の曲げによる応力の応力集中を的確に緩和することができる。また、上記のねじを持つツールジョイントは、特に厚肉で高い曲げ荷重が加わるヘビーウェイトドリルパイプやランディングストリング等にも有効に作用する。
(8)本発明の上記の構成によれば、ドリルパイプの高強度化あるいは厚肉化に伴うツールジョイントの相対的な強度低下への対応が出来るようになった。これに伴う疲労強度向上により、ヘビーウォールドリルパイプのドリリング使用の可能性が拡がり、より深い井戸の掘削が可能になる。
尚、本発明は、上記した実施の形態に限定されず、本発明の技術思想を逸脱あるいは変更しない範囲内で種々の変形が可能である。例えば、ピンショルダ面31とボックス端面22で構成する外ショルダのみを有するシングルショルダ型ツールジョイント及びそれを有する掘削用鋼管にも適用可能である。
本発明は、疲労特性向上のための応力緩和機能を備え、ダブルショルダ型ツールジョイントを有する掘削用鋼管を提供する。さらに、本実施の形態に係るダブルショルダ型ツールジョイントを有する掘削用鋼管は、種々の掘削、地中掘削用ドリルパイプ、ヘビーウェイトドリルパイプ、ランディングストリング等に好適に適用できるが、特に、石油掘削用鋼管として好適に適用可能である。
1…ダブルショルダ型ツールジョイントを有する掘削用鋼管
2…ボックス部
3…ピン部
4…ドリルパイプ管体
20…雌ねじ部
21…ボックスショルダ面
22…ボックス端面
23…ボックス根元部
27…SRB加工部
30…雄ねじ部
31…ピンショルダ面
32…ピンノーズ端面
33…ピン首元部
35…SRG加工部
37…SRB加工部
40…ロードフランク面
41…スタビングフランク面
100…疲労試験機
110…試験体

Claims (10)

  1. 所定形状の雄ねじ部を有するピン部と、
    前記雄ねじ部と螺合する雌ねじ部を有するボックス部と、を有し、
    前記雄ねじ部の径大側の近位端の3以下の連続ねじ山及び/又は前記雌ねじ部の径小側の近位端の3以下の連続ねじ山のそれぞれのスタビングフランク面はR加工部を有することを特徴とするダブルショルダ型ツールジョイントを有する掘削用鋼管。
  2. 前記ピン部は、前記ピン部の首元部に2つ以上のRからなる他のR加工部を有する請求項1に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  3. 前記R加工部のR加工底の最小断面積は、前記雄ねじ部又は前記雌ねじ部のねじ底の危険断面積と同じである請求項1又は2に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  4. 前記所定形状は、API規格に基づくねじ部形状であり、前記R加工は後加工により形成されたものである請求項1から3のいずれか1項に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  5. 所定形状の雄ねじ部を有するピン部と、
    前記雄ねじ部と螺合する雌ねじ部を有するボックス部と、を有し、
    前記雄ねじ部及び/又は雌ねじ部のそれぞれの1またはそれ以上の不完全ねじ部は前記雄ねじ部及び/又は雌ねじ部の他方側の1またはそれ以上の完全ねじ山と螺合するように構成され、
    前記他方側の1またはそれ以上の完全ねじ山のスタビングフランク面はR加工部を有し
    前記他方側の前記1またはそれ以上の完全ねじ山のロードフランク面はR加工部を有しないことを特徴とするダブルショルダ型ツールジョイントを有する掘削用鋼管。
  6. 前記ピン部は、前記ピン部の首元部に2つ以上のRからなる他のR加工部を有する請求項5に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  7. 前記R加工部の底の最小断面積は、前記雄ねじ部又は前記雌ねじ部のねじ底の危険断面積と同じである請求項5又は6に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  8. 前記所定形状は、API規格に基づくねじ部形状であり、前記R加工部は後加工により形成されたものである請求項5から7のいずれか1項に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  9. 前記雄ねじ部の前記径大側の前記近位端の3以下の連続ねじ山及び前記雌ねじ部の前記径小側の前記近位端の3以下の連続ねじ山のそれぞれのロードフランク面はR加工部を有しない請求項1から4のいずれか1項に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
  10. 前記雄ねじ部の前記径大側の前記近位端の3以下の連続ねじ山及び/又は前記雌ねじ部の前記径小側の前記近位端の3以下の連続ねじ山は不完全ねじ山を含む請求項1から4及び9のいずれか1項に記載のダブルショルダ型ツールジョイントを有する掘削用鋼管。
JP2017546930A 2015-03-18 2015-03-18 ダブルショルダ型ツールジョイントを有する掘削用鋼管 Active JP6528292B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001527 WO2016147222A1 (en) 2015-03-18 2015-03-18 Drill pipe with double shoulder tool joints

Publications (2)

Publication Number Publication Date
JP2018509573A JP2018509573A (ja) 2018-04-05
JP6528292B2 true JP6528292B2 (ja) 2019-06-12

Family

ID=56918544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017546930A Active JP6528292B2 (ja) 2015-03-18 2015-03-18 ダブルショルダ型ツールジョイントを有する掘削用鋼管

Country Status (4)

Country Link
EP (1) EP3271631A4 (ja)
JP (1) JP6528292B2 (ja)
CN (1) CN107429861A (ja)
WO (1) WO2016147222A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT520595B1 (de) 2017-11-07 2021-07-15 Engel Austria Gmbh Zug- oder Druckstange oder Verriegelungsmutter für eine Formgebungsmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4549754A (en) * 1983-06-20 1985-10-29 Reed Tubular Products Company Tool joint
US5358285A (en) * 1992-12-03 1994-10-25 Prideco, Inc. Stress relief groove for drill pipe
JP3401859B2 (ja) * 1993-09-29 2003-04-28 住友金属工業株式会社 疲労特性に優れた油井管用ねじ継手
US6485063B1 (en) * 1996-05-15 2002-11-26 Huey P. Olivier Connection
US6030004A (en) * 1997-12-08 2000-02-29 Shaw Industries High torque threaded tool joint for drill pipe and other drill stem components
ITRM20020234A1 (it) * 2002-04-30 2003-10-30 Tenaris Connections Bv Giunzione filettata per tubi.
US7416374B2 (en) * 2003-01-29 2008-08-26 Grant Prideco, L.P. Fast make-up fatigue resistant rotary shouldered connection
FR2863681B1 (fr) * 2003-12-11 2006-02-24 Vallourec Mannesmann Oil & Gas Joint tubulaire a filetages coniques resistant a la fatigue
US20060214421A1 (en) * 2005-03-22 2006-09-28 Intelliserv Fatigue Resistant Rotary Shouldered Connection and Method
US7690697B2 (en) * 2007-05-09 2010-04-06 Gandy Technologies Corp. Thread form for tubular connections
JP5665653B2 (ja) * 2011-05-23 2015-02-04 エヌケーケーシームレス鋼管株式会社 ダブルショルダ型ツールジョイント
US8668232B2 (en) * 2011-12-09 2014-03-11 Tenaris Connections Limited Threaded connection with improved root thread profile
CN203476240U (zh) * 2013-09-12 2014-03-12 无锡华信石油机械有限公司 一种带牙底应力槽螺纹的石油钻杆母接头
CN204152450U (zh) * 2014-08-20 2015-02-11 山西环界石油钻具制造股份有限公司 全开式安全接头

Also Published As

Publication number Publication date
JP2018509573A (ja) 2018-04-05
EP3271631A4 (en) 2018-10-24
EP3271631A1 (en) 2018-01-24
CN107429861A (zh) 2017-12-01
WO2016147222A1 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
US6848724B2 (en) Thread design for uniform distribution of makeup forces
US9885214B2 (en) Threaded tool joint connection
WO2015083382A1 (ja) 鋼管用ねじ継手
WO2019093163A1 (ja) 鋼管用ねじ継手
EP3536893B1 (en) Connection for percussion drilling
CN114026309B (zh) 钢管用螺纹接头
JP6528292B2 (ja) ダブルショルダ型ツールジョイントを有する掘削用鋼管
WO2019111803A1 (ja) 鋼管用ねじ継手
EP3009725B1 (en) Threaded joint for oil country tubular goods
JP7184169B2 (ja) 管用ねじ継手
CA3145225C (en) Threaded connection
KR101536472B1 (ko) 유정용 파이프라인의 연결구조체
US20190072215A1 (en) Rotary shoulder connections for threaded pipe connections
US20190071934A1 (en) Rotary shoulder connections for threaded pipe connections
US20200141522A1 (en) Threaded Connection for Steel Pipe
RU2508491C1 (ru) Резьбовое соединение бурильных труб
OA20943A (en) Threaded coupling for steel pipe
OA21091A (en) Screw-threaded joint

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20170905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6528292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250