JP6527681B2 - パワーコンディショナ、その電力制御方法、及び電力制御システム - Google Patents

パワーコンディショナ、その電力制御方法、及び電力制御システム Download PDF

Info

Publication number
JP6527681B2
JP6527681B2 JP2014208221A JP2014208221A JP6527681B2 JP 6527681 B2 JP6527681 B2 JP 6527681B2 JP 2014208221 A JP2014208221 A JP 2014208221A JP 2014208221 A JP2014208221 A JP 2014208221A JP 6527681 B2 JP6527681 B2 JP 6527681B2
Authority
JP
Japan
Prior art keywords
power
transmission line
voltage
generated
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014208221A
Other languages
English (en)
Other versions
JP2016082601A (ja
Inventor
阿部 和也
和也 阿部
知己 山下
知己 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2014208221A priority Critical patent/JP6527681B2/ja
Priority to PCT/JP2015/073834 priority patent/WO2016056315A1/ja
Publication of JP2016082601A publication Critical patent/JP2016082601A/ja
Application granted granted Critical
Publication of JP6527681B2 publication Critical patent/JP6527681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Description

本発明は、パワーコンディショナ、その電力制御方法、及び電力制御システムに関する。
近年、太陽光発電システムなどの自然エネルギーを利用した発電システムが一般家庭用の住宅、或いは産業用施設などに導入されつつある。これらの発電システムでは、発電電力が電子機器などの電源として利用される。また、現在では、自然エネルギーを利用した発電システムをより普及させるべく、発電電力を売電して電力会社に買取させる電力買取制度が制定されている。そのため、発電電力が商用電力系統に逆潮流されることもある。
一方、太陽光電力システムには、太陽光発電した電力を蓄電する蓄電池が設置されていることがある。この蓄電池は、たとえば、太陽光発電できない夜間に停電した場合の予備電源、或いは、負荷電力系統の消費電力が一時的に突出して大きくなる場合の補助電源などとして用いられる。
ところで、発電システムの発電電力が増加すると、発電システム及び商用電力系統間の伝送線路の電圧が上昇することがある。この電圧の上昇を抑制するため、たとえば定格100Vに対して、所定の期間(30分)での電圧の平均値が法定の数値範囲(たとえば101±6V)を越えないようにすることが義務付けられている。従って、発電システムのパワーコンディショナは、たとえば特許文献1のように、電圧の上限値を管理・調整する機能を備えている。
特許文献1では、太陽電池及び蓄電池と交流電源との間に接続されて太陽電池側から交流電源側に出力される電力を制御するインバータを備える発電装置が開示されている。この発電装置では、交流電源の電圧が上限電圧を越える場合、太陽電池の発電電力の少なくとも一部が蓄電池に蓄電される。また、交流電源の電圧が下限電圧よりも低い場合、蓄電池の放電電力が交流電源側に出力される。
ここで、発電システムの普及に伴い、蓄電装置を備える発電システムに新たな発電装置を増設する場合が増えてきている。この場合、新たな発電装置は、既設のパワーコンディショナ及び商用電力系統間の伝送線路に発電電力を出力する。
特許第4566658号公報
しかしながら、上述の発電システムでは、発電システム及び商用電力系統間の伝送線路の電圧値が法定の上限値を越える場合、新たな発電装置の発電電力の伝送線路への出力は絞られ低下する。そのため、新たな発電装置の発電電力は有効に利用されない。また、新たな発電装置の発電電力は、伝送線路への出力が0にされると、全く利用できなくなる。
このような問題に対して、特許文献1は、既設のパワーコンディショナ及び商用電力系統間に新たな発電装置が接続される発電システムを想定していない。すなわち、特許文献1は、上述のような問題を何ら考慮していない。
本発明は、このような状況を鑑みてなされたものであり、商用電力系統との間の伝送線路の電圧値が上昇する場合に、発電装置から伝送線路に出力される発電電力を有効に利用することができるパワーコンディショナ、その電力制御方法、及び電力制御システムを提供することを目的とする。
上記目的を達成するために、本発明の一の態様によるパワーコンディショナは、第1発電装置及び蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続されるパワーコンディショナであって、電圧検出手段により検出される伝送線路の電圧の値が予め定められた値よりも大きい場合、第1発電装置で発電される第1発電電力と、第2発電装置で発電される第2発電電力を電力変換して伝送線路に出力する他のパワーコンディショナの出力電力とを蓄電装置に蓄電可能とする蓄電制御を行う制御部を備える構成(第1の構成)とされる。
上記第1の構成において、予め定められた値は、他のパワーコンディショナにて伝送線路の電圧の値と比較されて該電圧の値の方が大きい場合に前記他のパワーコンディショナにより前記第2発電電力の電力変換量が低減される閾値未満に設定される構成(第2の構成)としてもよい。
或いは、上記第1の構成において、他のパワーコンディショナと通信する通信部をさらに備え、伝送線路の電圧の値が予め定められた値よりも大きい場合、通信部は、他のパワーコンディションナにて第2発電電力の電力変換量を低減するか否かの判断に用いられる変換制御情報を他のパワーコンディショナに送信する構成(第3の構成)としてもよい。
また、上記目的を達成するために、本発明の一の態様による電力制御方法は、第1発電装置及び蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続されるパワーコンディショナの電力制御方法であって、電圧検出手段により検出される伝送線路の電圧の値が予め定められた値よりも大きい場合、第1発電装置で発電される第1発電電力と、第2発電装置で発電される第2発電電力を電力変換して伝送線路に出力する他のパワーコンディショナの出力電力とを蓄電装置に蓄電可能とする蓄電制御を行うステップを備える構成(第4の構成)とされる。
また、上記目的を達成するために、本発明の一の態様による電力制御システムは、第1発電電力を出力する第1発電装置と、第2発電電力を出力する第2発電装置と、蓄電装置と、第1発電装置及び蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続される第1パワーコンディショナと、第2発電装置及び伝送線路と接続され、第2発電電力を電力変換した出力電力を伝送線路に出力する第2パワーコンディショナと、伝送線路の電圧を検出する電圧検出手段と、を備え、第1パワーコンディショナは、電圧検出手段により検出される伝送線路の電圧の値が予め定められた値よりも大きい場合、第1発電電力及び出力電力を蓄電装置に蓄電可能とする蓄電制御を行う構成(第5の構成)とされる。
本発明によれば、商用電力系統との間の伝送線路の電圧値が上昇する場合に、発電装置から伝送線路に出力される発電電力を有効に利用することができる。
第1実施形態に係る太陽光発電システムの構成例を示すブロック図である。 第1実施形態での第1パワーコンディショナの電力制御方法の一例を説明するためのフローチャートである。 第1実施形態での第2パワーコンディショナの電力制御方法の一例を説明するためのフローチャートである。 第2実施形態に係る太陽光発電システムの構成例を示すブロック図である。 第2実施形態での第1パワーコンディショの電力制御方法の一例を説明するためのフローチャートである。 第2実施形態での第2パワーコンディショナの電力制御方法の一例を説明するためのフローチャートである。 第3実施形態に係る風力発電システムの構成例を示すブロック図である。
以下に、図面を参照して、本発明の実施形態を説明する。
<第1実施形態>
まず、第1実施形態について、太陽光発電システム100を例に挙げて説明する。図1は、第1実施形態での太陽光発電システム100の構成例を示すブロック図である。太陽光発電システム100は、太陽電池モジュール1及び蓄電池2を有する発電システムであり、太陽光を電力に変換する発電方式で電力供給を行う分散型電源である。太陽光発電システム100は、伝送線路P及び受電点Rを介して商用電力系統Eと接続されている。また、伝送線路Pには、電力負荷Lも接続されている。電力負荷Lは、たとえば家庭内の電化製品、工場の設備装置などであり、太陽光発電システム100において伝送線路Pに供給される電力を消費する。
次に、太陽光発電システム100の構成について説明する。太陽光発電システム100は、図1に示すように、太陽電池モジュール1と、蓄電池2と、第1パワーコンディショナ3と、第2パワーコンディショナ4と、コントローラ5と、を備えている。
太陽電池モジュール1は、複数の太陽電池セルを含む発電装置であり、太陽光を受けて発電し、直流の電力を出力する。本実施形態において、太陽電池モジュール1は、第1太陽電池モジュール1aと、第2太陽電池モジュール1bと、を含んで構成されている。第1太陽電池モジュール1aは第1パワーコンディショナ3に入力される第1発電電力を発電し、第2太陽電池モジュール1bは第2パワーコンディショナ4に入力される第2発電電力を発電する。なお、第1太陽電池モジュール1aは本発明の第1発電装置の一例であり、第2太陽電池モジュール1bは、は本発明の第2発電装置の一例である
蓄電池2は、繰り返し蓄放電可能な二次電池を含む蓄電装置である。なお、蓄電池2は、第1パワーコンディショナ3から供給される直流の電力を用いて蓄電すること、及び、蓄電された電力(すなわち蓄電量wa)に応じた直流の電力を放電することができる。なお、以下では、蓄電池2に供給される電力を蓄電電力と呼び、蓄電池2から出力される直流の電力を放電電力と呼ぶ。この蓄電池2には、たとえば、リチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、及び鉛電池などを用いることができる。
第1パワーコンディショナ3は、第1太陽電池モジュール1aの発電を制御する第1電力制御装置である。第1パワーコンディショナ3は、第1太陽電池モジュール1a及び蓄電池2と接続されるとともに、伝送線路Pを介して商用電力系統Eと接続されている。
第1パワーコンディショナ3は、通常時には、たとえばMPPT(Maximum Power Point Tracking)制御により、発電電力が最大となるように第1太陽電池モジュール1aの動作電圧(動作点)を制御する。但し、第1パワーコンディショナ3は、第1太陽電池モジュール1aでの第1発電電力の発電を制限する必要がある場合、第1太陽電池モジュール1aの動作電圧を最大出力動作電圧からずれた値に設定して、第1発電電力を調整する。このほか、第1パワーコンディショナ3は、蓄電池2の蓄放電制御装置としても機能し、蓄電池2に蓄電電力を供給したり、蓄電池2から放電電力の供給を受けたりする。
第1パワーコンディショナ3は、DC/DCコンバータ31と、双方向インバータ32と、コンデンサ33と、双方向DC/DCコンバータ34と、通信部35と、メモリ36と、電力量計37と、電圧計38と、IC39と、を有している。また、DC/DCコンバータ31、双方向インバータ32、及び双方向DC/DCコンバータ34は、バスラインBLを介して相互に接続されている。また、第1パワーコンディショナ3には、伝送線路Pと接続される出力端子3aが設けられている。
DC/DCコンバータ31は、第1太陽電池モジュール1aに接続される直流変換部である。DC/DCコンバータ31は、第1太陽電池モジュール1a及びバスラインBL間に設けられ、第1太陽電池モジュール1aの発電電力を所定電圧値の直流の電力に変換してバスラインBLに出力する。また、DC/DCコンバータ31は第1太陽電池モジュール1aに逆電流が流れることを防止している。
双方向インバータ32は、伝送線路P及びバスラインBL間に設けられる双方向電力変換部である。双方向インバータ32の一端はバスラインBLに接続され、他端は伝送線路Pを介して受電点Rに接続されている。なお、以下では、双方向インバータ32が、伝送線路Pから入力される電力をAC/DC変換してバスラインBLに出力することを順変換と呼び、この電力変換方向を順変換方向aと呼ぶ。すなわち、順変換方向aは、伝送線路P側からバスラインBL側に電力変換される電力変換方向である。また、双方向インバータ32が、バスラインBLから入力される電力をDC/AC変換して伝送線路Pに出力することを逆変換と呼び、この電力変換方向を逆変換方向bと呼ぶ。すなわち、逆変換方向bは、バスラインBL側から伝送線路P側に電力変換される電力変換方向である。
双方向インバータ32は、順変換方向aに設定されている場合、伝送線路Pから入力される交流の電力を直流の電力に順変換してバスラインBLに出力する。また、双方向インバータ32は、逆変換方向bに設定されている場合、バスラインBLから入力される直流の電力を受電点R(及び商用電力系統E)に応じた交流周波数の電力に逆変換して、伝送線路Pに出力する。後述するように、これらの動作はIC39により制御される。
コンデンサ33は、バスラインBLに接続され、バスラインBLを流れる電力のバス電圧値の変動を除去又は軽減する。
双方向DC/DCコンバータ34は、バスラインBL及び蓄電池2間に設けられる蓄放電電力変換部である。双方向DC/DCコンバータ34の一端は蓄電池2に接続され、他端はバスラインBLに接続されている。なお、以下では、双方向DC/DCコンバータ34がバスラインBLから入力される電力をDC/DC変換して蓄電池2に出力することを蓄電変換と呼び、この電力変換方向を蓄電方向Aと呼ぶ。すなわち、蓄電方向Aは、バスラインBL側から蓄電池2側に電力変換される電力変換方向である。また、双方向DC/DCコンバータ34が蓄電池2から入力される電力をDC/DC変換してバスラインBLに出力することを放電変換と呼び、この電力変換方向を放電方向Bと呼ぶ。すなわち、放電方向Bは、蓄電池2側からバスラインBL側に電力変換される電力変換方向である。
双方向DC/DCコンバータ34は、蓄電方向Aに設定されている場合、バスラインBLを流れる直流の電力を蓄電池2に適した直流の蓄電電力に変換して蓄電池2に出力する。また、双方向DC/DCコンバータ34は、放電方向Bに設定されている場合、蓄電池2の放電電力を直流の電力に変換して、バスラインBLに出力する。後述するように、これらの動作はコントローラ5により制御される。
通信部35は、コントローラ5と無線通信又は有線通信する通信インターフェースである。通信部35は、たとえば、後述する電力量計37及び電圧計38の出力結果、後述する電圧比較部391の比較結果、制御情報などをコントローラ5に送信する。
メモリ36は、電源を供給しなくても格納された情報を非一時的に保持する不揮発性の記憶媒体である。メモリ36は、第1パワーコンディショナ3の各機能要素(特にIC39)で用いられる制御情報及びプログラムなどを格納している。
電力量計37は、伝送線路P及び受電点Rを介して太陽光発電システム100及び商用電力系統E間を伝送する電力値Wを検出する電力検出部であり、商用電力系統Eに対して買電又は売電される電力を検出する。電力量計37の検出結果はIC39に出力される。なお、電力量計37は、図1のように第1パワーコンディショナ3に内蔵されていてもよいし、第1パワーコンディショナ3に外付けされていてもよい。
この電力量計37は、売電力量計371と買電力量計372とを含んで構成されている。売電力量計371及び買電力量計372はそれぞれ、単方向に伝送される電力を検出する逆転防止機能付きの電力量計測装置である。売電力量計371及び買電力量計372はそれぞれ、特に限定されないが、たとえば誘導形電力量計、無効電力量計、及び電子式電力量計などの電力量計測装置を用いることができる。また、売電力量計371及び買電力量計372は、物理的に分離した装置として設けられていてもよいし、図1のように同じ装置内に設けられていてもよい。
売電力量計371は、受電点Rにおいて太陽光発電システム100から商用電力系統Eに電力が伝送される場合、太陽光発電システム100が商用電力系統Eに売電していることを検出する。以下では、受電点Rにおいて、太陽光発電システム100から商用電力系統Eに電力が伝送される伝送方向を売電方向と呼ぶ。売電力量計371はさらに、太陽光発電システム100から商用電力系統Eに売電される電力値Wを売電量として検出し、該売電量を積算する。そして、売電力量計371はこれらの結果をIC39に出力する。
買電力量計372は、受電点Rにおいて商用電力系統Eから太陽光発電システム100に電力が伝送される場合、太陽光発電システム100が商用電力系統Eから買電していることを検出する。以下では、受電点Rにおいて、商用電力系統Eから太陽光発電システム100に電力が伝送される伝送方向を買電方向と呼ぶ。買電力量計372はさらに、商用電力系統Eから買電される電力値を買電量として検出し、該買電量を積算する。そして、買電力量計372はこれらの結果をIC39に出力する。
なお、電力量計37は、売電力量計371が電力値W>0を検出する場合、或いは、受電点Rを介した電力伝送がなく売電力量計371及び買電力量計372が電力値Wを検出しない場合(電力値W=0)、受電点Rでの電力の伝送方向が売電方向であると判定する。また、買電力量計372が電力値W>0を検出する場合、受電点Rでの電力の伝送方向が買電方向であると判定する。従って、電力量計37は、受電点Rでの太陽光発電システム100及び商用電力系統E間の電力の伝送方向を検出する電力伝送方向検出部としても機能する。
電圧計38は、第1パワーコンディショナ3の出力端子3aにおける電圧を検出する第1の電圧検出手段である。電圧計38の検出結果はIC39に出力される。なお、電圧計38は、図1のように第1パワーコンディショナ3に内蔵されていてもよいし、第1パワーコンディショナ3に外付けされていてもよい。また、電圧計38が検出する電圧は、伝送線路Pを伝送する電力の電圧Vpを示しているため、以下では電圧Vpとして説明する。
IC39は、メモリ36に格納された情報及びプログラムなどを用いて、第1パワーコンディショナ3の各構成要素を制御する制御部である。また、IC39は、電圧計38により検出される伝送線路Pの電圧Vpの値が予め定められた値よりも大きい場合、第1太陽電池モジュール1aで発電される第1発電電力と、第2パワーコンディショナ4の出力電力とが蓄電池2に蓄電可能とする蓄電制御を行う。
IC39は、機能的な構成要素として、電圧比較部391と、変換制御部392と、を有している。
電圧比較部391は、電圧計38が検出した電圧Vpの値を予め定められた値と比較する。予め定められた値は、たとえば、伝送線路Pにおいて維持すべき電圧範囲の上限設定値VHを含む。太陽電システム100が電力負荷Lに供給する電力の定格電圧が100[V]であれば、上限設定値VHはたとえば107[V]に設定される。
変換制御部392は、電力量計37及び電圧計38の検出結果、電圧比較部391の比較結果などに基づいて、双方向インバータ32を制御し、特に、その電力変換方向及び電力変換量を制御する。
次に、第2パワーコンディショナ4について説明する。第2パワーコンディショナ4は、第2太陽電池モジュール1bの発電を制御する第2電力制御装置である。第2パワーコンディショナ4は、第2太陽電池モジュール1b及び伝送線路Pと接続されている。
第2パワーコンディショナ4は、通常時には、たとえばMPPT制御により、発電電力が最大となるように第2太陽電池モジュール1bの動作電圧(動作点)を制御する。但し、第2パワーコンディショナ4は、第2太陽電池モジュール1bでの第2発電電力の発電を制限する必要がある場合、第2太陽電池モジュール1bの動作電圧を最大出力動作電圧からずれた値に設定して、第2発電電力を調整する。また、第2パワーコンディショナ4は、第2太陽電池モジュール1bの第2発電電力を電力変換した出力電力を伝送線路Pに出力する。
第2パワーコンディショナ4は、図1のように、DC/DCコンバータ41と、インバータ42と、コンデンサ43と、メモリ46と、電圧計48と、IC49と、を有している。このほか、第2パワーコンディショナ4は、第1パワーコンディショナ3及びコントローラ5と無線通信又は有線通信する通信インターフェース(たとえば後述する図4の通信部45)をさらに有していてもよい。また、第2パワーコンディショナ4には、伝送線路Pと接続される出力端子4aが設けられている。
DC/DCコンバータ41は、第2太陽電池モジュール1bに接続される直流変換部であり、発電電力を所定電圧値の直流の電力に変換してインバータ42に出力する。また、DC/DCコンバータ41は第2太陽電池モジュール1bに逆電流が流れることを防止している。
インバータ42は、受電点Rと双方向インバータ32との間の伝送線路Pに接続され、DC/DCコンバータ41から入力される直流の電力を商用電力系統Eに応じた交流周波数の電力に変換して伝送線路Pに出力する。
コンデンサ43は、DC/DCコンバータ41及びインバータ42間のバスラインに接続され、該バスラインを流れる電力のバス電圧値の変動を除去又は軽減する。
メモリ46は、電源を供給しなくても格納された情報を非一時的に保持する不揮発性の記憶媒体である。メモリ46は、第2パワーコンディショナ4の各機能要素(特にIC49)で用いられる制御情報及びプログラムなどを格納している。
電圧計48は、第2パワーコンディショナ4の出力端子4aにおける電圧を検出する第2の電圧検出手段である。電圧計48の検出結果はIC49に出力される。なお、電圧計48は、図1のように第2パワーコンディショナ4に内蔵されていてもよいし、第2パワーコンディショナ4に外付けされていてもよい。また、電圧計48が検出する電圧は、伝送線路Pを伝送する電力の電圧Vpを示しているため、以下では電圧Vpとして説明する。
IC49は、メモリ46に格納された情報及びプログラムなどを用いて、第2パワーコンディショナ4の各構成要素を制御する制御部である。IC49は、機能的な構成要素として、電圧比較部491と、変換制御部492と、を有している。
電圧比較部491は、電圧計48が検出した電圧Vpの値を予め定められた値と比較する。予め定められた閾値は、たとえば上限制御値Vuを含む。上限制御値Vuは、第2パワーコンディショナ4が第2発電電力の電力変換量を低減するか否かを判断するための閾値である。なお、上限制御値Vuは第1パワーコンディショナ3の上限設定値VHをよりも高い値(たとえば110[V])に設定される。こうすれば、第1パワーコンディショナ3と第2パワーコンディショナ4との間で通信を行わなくても、第1パワーコンディショナ3での電力制御(すなわち電圧Vpの上昇抑制制御)が行われた後、第2パワーコンディショナ4での電力制御が行われる。従って、たとえば既存のパワーコンディショナを、その仕様に特別な変更を加えることなく、第2パワーコンディショナ4として用いることができる。
変換制御部492は、電圧計48の検出結果、電圧比較部491の比較結果などに基づいて、インバータ42を制御し、特に、その電力変換量を制御する。
次に、コントローラ5は、蓄電池2及び双方向DC/DCコンバータ34の制御、及びユーザ入力の受け付けなど行う外部制御装置である。コントローラ5は、入力部51と、コントローラ通信部52と、コントローラ用メモリ53と、コントローラIC54と、を有している。
入力部51は、ユーザ入力を受け付け、該ユーザ入力に応じた入力信号をコントローラIC54に出力する。
コントローラ通信部52は、第1パワーコンディショナ3の通信部35と無線通信又は有線通信する通信インターフェースである。コントローラ通信部52は、たとえば、通信部35から電力量計37の判定結果及び電圧比較部391の比較結果などを受信する。
コントローラ用メモリ53は、電源を供給しなくても格納された情報を非一時的に保持する不揮発性の記憶媒体である。コントローラ用メモリ53は、コントローラ5の各機能要素(特にコントローラIC54)で用いられる制御情報及びプログラムなどを格納している。
コントローラIC54は、コントローラ用メモリ53に格納された情報及びプログラムなどを用いて、コントローラ5の各構成要素を制御する制御部である。コントローラIC54は、機能的な構成要素として、蓄電量監視部541と、蓄放電制御部542と、を有している。
蓄電量監視部541は、蓄電池2の蓄電量waを監視する。蓄電量監視部531は、たとえば蓄電量waを監視し、及び蓄電量waが蓄電容量wcに達しているか否かなどを判定する。
蓄放電制御部532は、双方向DC/DCコンバータ34を制御する。特に、蓄放電制御部532は、電力量計37の判定結果、電圧比較部391の比較結果、及び、蓄電量監視部531の監視結果に基づいて、双方向DC/DCコンバータ34の電力変換方向及び電力変換動作などを制御する。
また、蓄電池2の蓄電量waが蓄電容量wcに達することを蓄電量監視部531の監視結果が示す場合に、蓄電池2をさらに蓄電させると過充電になる。この場合、蓄放電制御部532は、蓄電方向Aに電力を変換しないように双方向DC/DCコンバータ34を制御する。たとえば、蓄放電制御部532は、双方向DC/DCコンバータ34の電力変換方向を放電方向Bに設定する。或いは、蓄放電制御部532は、双方向DC/DCコンバータ34での電力変換量を0に設定して、双方向DC/DCコンバータ34での電力変換動作を停止させる。こうすれば、蓄電池2の過充電を防止してその蓄電能力の劣化及び寿命の低下を抑制し、その破損なども防止することができる。
次に、伝送経路Pの電圧Vpの上昇抑制制御を行う電力制御処理について説明する。以下に説明する電力制御処理は、たとえば、太陽電池モジュール1の発電中に受電点Rにおいて売電方向に電力が伝送されると開始される。また、発電が停止、又は、太陽電池モジュール1の発電中に受電点Rにおいて買電方向に電力が伝送されると終了する。
まず、第1パワーコンディショナ3により伝送経路Pの電圧上昇を抑制する電力制御処理を説明する。図2は、第1実施形態での第1パワーコンディショナ3の電力制御方法の一例を説明するためのフローチャートである。
まず、電圧計38により電圧Vpの値が検出されて上限設定値VHよりも大きいか否かが判定される(ステップS101)。電圧Vpの値が上限設定値VHよりも大きいと判定されない場合(ステップS101でNO)、処理はAに進んでステップS101に戻る。
一方、電圧Vpの値が上限設定値VHよりも大きいと判定される場合(ステップS101でYES)、双方向DC/DCコンバータ34の電力変換方向が蓄電方向Aに設定される(ステップS102)。そして、双方向インバータ32の電力変換方向が逆変換方向bに設定されているか否かが判定される(ステップS103)。逆変換方向bに設定されていると判定されない場合(ステップS103でNO)、処理は後述するステップS110に進む。
逆変換方向bに設定されていると判定される場合(ステップS103でYES)、電圧Vpの値が検出されて上限設定値VHよりも大きいか否かが判定される(ステップS104)。電圧Vpの値が上限設定値VHよりも大きいと判定されない場合(ステップS104でNO)、処理はAに進んでステップS101に戻る。一方、電圧Vpの値が上限設定値VHよりも大きいと判定される場合(ステップS104でYES)、双方向インバータ32の逆変換量が0であるか否かが判定される(ステップS105)。
逆変換量が0であると判定されない場合(ステップS105でNO)、双方向インバータ32はその逆変換量が低減するように制御される(ステップS106)。この際、通常では、第1太陽電池モジュール1aの第1発電電力の一部は蓄電池2に蓄電される。但し、双方向DC/DCコンバータ34の電力変換量が最大値に達している場合には、双方向インバータ32での逆変換量の低減に応じて第1太陽電池モジュール1aの第1発電電力を低減させるべく、第1太陽電池モジュール1aの動作電圧が最大出力動作電圧からずれた値に設定される。そして、処理はステップS104に戻る。
逆変換量が0であると判定される場合(ステップS105でYES)、双方向DC/DCコンバータ34の電力変換量が最大値に達しているか否かが判定される(ステップS107)。双方向DC/DCコンバータ34の電力変換量が最大値に達していると判定される場合(ステップS107でYES)、処理はAに進んでステップS101に戻る。
双方向DC/DCコンバータ34の電力変換量が最大値に達していると判定されない場合(ステップS107でNO)、双方向インバータ32の電力変換方向が順変換方向aに設定される(ステップS108)。そして、電圧Vpの値が検出されて上限設定値VHよりも大きいか否かが判定される(ステップS109)。電圧Vpの値が上限設定値VHよりも大きいと判定されない場合(ステップS109でNO)、処理はAに進んでステップS101に戻る。
一方、電圧Vpの値が上限設定値VHよりも大きいと判定される場合(ステップS109でYES)、双方向インバータ32の順変換量が最大であるか否かが判定される(ステップS110)。ここでは、たとえば、双方向インバータ32が順変換方向aに変換する電力変換量が最大設定値になっているか否かが判定される。順変換量が最大であると判定される場合(ステップS110でYES)、処理はステップS109に戻る。一方、順変換量が最大であると判定されない場合(ステップS110でNO)、双方向インバータ32はその順変換量が増加するように制御される(ステップS112)。そして、処理はステップS109に戻る。
次に、第2パワーコンディショナ4により伝送経路Pの電圧上昇を抑制する電力制御処理を説明する。図3は、第1実施形態での第2パワーコンディショナ4の電力制御方法の一例を説明するためのフローチャートである。
まず、電圧計48により出力端子4aの電圧Vpの値が検出されて上限制御値Vuよりも大きいか否かが判定される(ステップS121)。電圧Vpの値が上限制御値Vuよりも大きいと判定されない場合(ステップS121でNO)、処理はステップS121に戻る。
一方、電圧Vpの値が上限制御値Vuよりも大きいと判定される場合(ステップS121でYES)、インバータ42の電力変換量が0であるか否かが判定される(ステップS122)。電力変換量が0であると判定される場合(ステップS122でYES)、そして、処理はステップS121に戻る。
電力変換量が0であると判定されない場合(ステップS122でNO)、インバータ42はその電力変換量が低減されるように制御される(ステップS123)。なお、この際、インバータ42での電力変換量の低減に応じて第2太陽電池モジュール1bの第2発電電力を低減させるべく、第2太陽電池モジュール1bの動作電圧が最大出力動作電圧からずれた値に設定される。そして、処理はステップS121に戻る。
<第2実施形態>
次に、第2実施形態について説明する。以下では、第1実施形態と異なる構成について説明する。また、第1実施形態と同様の構成部には同じ符号を付し、その説明を省略することがある。
図4は、第2実施形態に係る太陽光発電システム100の構成例を示すブロック図である。第1パワーコンディショナ3において、通信部35は、第2パワーコンディショナ4及びコントローラ5と無線通信又は有線通信する。通信部35は、たとえば変換制御部392から出力される制御情報などを第2パワーコンディショナ4に送信する。また、伝送線路Pの電圧Vpの値が上限設定値VHよりも大きい場合、通信部35は、第2太陽電池モジュール1bにて第2発電電力の電力変換量を低減するか否かの判断に用いられる変換制御情報を第2パワーコンディショナ4に送信する。
また、第1パワーコンディショナ3において、電圧計38は、受電点Rにおける電圧を検出し、その検出結果をIC39に出力する。なお、電圧計38が検出する電圧は、伝送線路Pを伝送する電力の電圧Vpの値を示しているため、以下では電圧Vpの値として説明する。
第2パワーコンディショナ4は、図4に示すように、DC/DCコンバータ41と、インバータ42と、コンデンサ43と、通信部45と、メモリ46と、IC49と、を有している。また、IC49は、機能的な構成要素として、変換制御部492を有している。
通信部45は、第1パワーコンディショナ3及びコントローラ5と無線通信又は有線通信する通信インターフェースである。通信部45は、たとえば変換制御情報などの様々な制御情報を第1パワーコンディショナ3から受信する。
変換制御部492は、第1パワーコンディショナ3から送信される制御情報に基づいてインバータ42を制御し、特に、その電力変換量を変換制御情報に基づいて制御する。
次に、伝送経路Pの電圧Vpの上昇抑制制御を行う電力制御処理について説明する。この電力制御処理は、たとえば、太陽電池モジュール1の発電中に受電点Rにおいて売電方向に電力が伝送されると開始される。また、発電を停止、又は、太陽電池モジュール1の発電中に受電点Rにおいて買電方向に電力が伝送されると終了する。
まず、第1パワーコンディショナ3により伝送経路Pの電圧上昇を抑制する処理を説明する。図5は、第2実施形態での第1パワーコンディショナ3の電力制御方法の一例を説明するためのフローチャートである。なお、図5のステップS101〜S110及びS112は第1実施形態(図2参照)と同様であるため、これらの説明は省略する。
図5のステップS110がNOである場合(すなわち双方向インバータ32の順変換量が最大であると判定されない場合)、第2パワーコンディショナ4に伝送経路Pの電圧Vpの上昇抑制制御を行わせないようにするため、インバータ42の電力変換量を低減しない旨の変換制御情報(たとえば維持指令)が通信部35から第2パワーコンディショナ4に送信される(ステップS211)。そして、双方向インバータ32はその順変換量が増加するように制御され(ステップS112)、処理はステップS109に戻る。
一方、ステップS110がYESとなる場合、第2パワーコンディショナ4に伝送経路Pの電圧Vpの上昇抑制制御を行わせるため、インバータ42の電力変換量を低減する旨の変換制御情報(たとえば低減指令)が通信部35から第2パワーコンディショナ4に送信される(ステップS213)。そして、処理はステップS109に戻る。
次に、第2パワーコンディショナ4により伝送経路Pの電圧上昇を抑制する処理を説明する。図6は、第2実施形態での第2パワーコンディショナ4の電力制御方法の一例を説明するためのフローチャートである。
まず、通信部45が受信した変換制御情報がインバータ42の電力変換量を低減する旨の低減指令を示すか否かが判定される(ステップS221)。変換制御情報が低減指令ではない場合(ステップS221でNO)、処理はステップS221に戻る。一方、変換制御情報が低減指令である場合(ステップS221でYES)、以降のステップS122及びS123が行われる。なお、これらの処理は第1実施形態(図3参照)と同様であるため、これらの説明は省略する。
<第3実施形態>
次に、第3実施形態について説明する。第3実施形態では、分散型電源が太陽光以外の再生可能エネルギーを利用した発電(風力、水力、地熱、バイオマス、太陽熱など自然エネルギー発電、廃棄物発電など)を行う。それ以外は、第1実施形態と同様である。以下では、第1実施形態と異なる構成について説明する。また、第1実施形態と同様の構成要素には同じ符号を付し、その説明を省略することがある。
ここでは、再生可能エネルギーを利用した発電システムの一例として、風力発電システム100aを挙げて説明する。風力発電システム100aは、風力を利用した発電方式で電力供給を行う分散型電源である。
図7は、風力発電システム100aの構成例を示すブロック図である。図7に示すように、風力発電システム100aは、蓄電池2、第1パワーコンディショナ3、第2パワーコンディショナ4、及びコントローラ5のほか、風力発電装置10を備えている。また、第1パワーコンディショナ3は、双方向インバータ32、コンデンサ33、双方向DC/DCコンバータ34、通信部35、メモリ36、電力量計37、電圧計38、及びIC39のほかに、AC/DCコンバータ31aを有している。また、第2パワーコンディショナ4は、インバータ42、コンデンサ43、メモリ46、電圧計48、及びIC49のほかに、AC/DCコンバータ41aを有している。
風力発電装置10は、第1発電電力を発電する第1風力発電装置10aと、第2発電電力を発電する第2風力発電装置10bと、を含んで構成されている。第1及び第2風力発電装置10a、10bは、たとえば水平軸プロペラ式の風車と、風車の回転により駆動される発電機(不図示)とを含んで構成される。風車のブレードが風を受けると、風車が回転する。その回転力が発電機に伝達され、交流の電力が発電機から発電電力として出力される。第1風力発電装置10aは第1パワーコンディショナ3に接続され、第2風力発電装置10bは第2パワーコンディショナ4に接続されている。
第1及び第2パワーコンディショナ3、4のAC/DCコンバータ31a、41aはそれぞれ、第1及び第2風力発電装置10a、10bに接続される直流変換部である。AC/DCコンバータ31a、41aはそれぞれ、交流の発電電力を直流の電力に変換し、さらに第1及び第2風力発電装置10a、10bに逆電流が流れることを防止している。
以上、本発明の実施形態について説明した。なお、上述の実施形態は例示であり、その各構成要素及び各処理の組み合わせに色々な変形が可能であり、本発明の範囲にあることは当業者に理解されるところである。
たとえば、上述の第1〜第3実施形態において、IC39、49、及びコントローラIC54の機能的な構成要素のうちの少なくとも一部又は全部は、物理的な構成要素(たとえば電気回路、素子、装置など)で実現されていてもよい。
上述の第1及び第2実施形態の第1太陽電池モジュール1a及び第3実施形態の第1風力発電装置10aは、図1、図4、及び図7のように1つであってもよいし、複数であってもよい。同様に、上述の第1及び第2実施形態の第2太陽電池モジュール1b及び第3実施形態の第2風力発電装置10bは、図1、図4、及び図7のように1つであってもよいし、複数であってもよい。
また、上述の第1〜第3実施形態では、コントローラ5は第1パワーコンディショナ3と個別に設けられているが、本発明の適用範囲はこの例示に限定されない。コントローラ5の構成要素の少なくとも一部は第1パワーコンディショナ3に含まれていてもよい。たとえば、コントローラ5の蓄電監視部541、及び蓄放電制御部542は第1パワーコンディショナ3、又はIC39の機能的な構成要素に含まれていてもよい。
以上に説明した実施形態によるパワーコンディショナ3は、第1発電装置1a、10a及び蓄電装置2と接続されるとともに、伝送線路Pを介して商用電力系統Eと接続されるパワーコンディショナ3であって、電圧検出手段38により検出される伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合、第1発電装置1a、10aで発電される第1発電電力と、第2発電装置1b、10bで発電される第2発電電力を電力変換して伝送線路Pに出力する他のパワーコンディショナ4の出力電力とを蓄電装置2に蓄電可能とする蓄電制御を行う制御部39を備える構成(第1の構成)とされる。
第1の構成によれば、伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合に行われる蓄電制御により、第1発電装置1a、10aで発電される第1発電電力と、伝送線路Pに出力される他のパワーコンディショナ4の出力電力とが蓄電装置2に蓄電可能とされる。よって、商用電力系統Eとパワーコンディショナ3との間の伝送線路Pの電圧Vpの値が上昇する場合に、第1発電装置1a,10aの第1発電電力及び第2発電装置1b,10bの第2発電電力を有効に利用することができる。
上記第1の構成のパワーコンディショナ3において、予め定められた値VHは、他のパワーコンディショナ4にて伝送線路Pの電圧Vpの値と比較されて該電圧Vpの値の方が大きい場合に他のパワーコンディショナ4により第2発電電力の電力変換量が低減される閾値Vu未満に設定される構成(第2の構成)としてもよい。
第2の構成によれば、パワーコンディショナ3と他のパワーコンディショナ4との間で通信を行わなくても、パワーコンディショナ3での電力制御が行われた後、他のパワーコンディショナ4での電力制御が行われる。従って、たとえば既存のパワーコンディショナを、その仕様に特別な変更を加えることなく、他のパワーコンディショナ4として用いることができる。
或いは、上記第1の構成のパワーコンディショナ3は、他のパワーコンディショナ4と通信する通信部35をさらに備え、伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合、通信部35は、他のパワーコンディションナ4にて第2発電電力の電力変換量を低減するか否かの判断に用いられる変換制御情報を他のパワーコンディショナ4に送信する構成(第3の構成)としてもよい。
第3の構成によれば、パワーコンディショナ3から他のパワーコンディショナ4に送信される変換制御情報によって、パワーコンディショナ3で電力制御を行った後に、他のパワーコンディショナ4に電力制御を行わせることができる。
また、以上に説明した実施形態によるパワーコンディショナ3の電力制御方法は、第1発電装置1a、10a及び蓄電装置2と接続されるとともに、伝送線路Pを介して商用電力系統Eと接続されるパワーコンディショナ3の電力制御方法であって、電圧検出手段38により検出される伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合、第1発電装置1a、10aで発電される第1発電電力と、第2発電装置1b、10bで発電される第2発電電力を電力変換して伝送線路Pに出力する他のパワーコンディショナ4の出力電力とを蓄電装置2に蓄電可能とする蓄電制御を行うステップを備える構成(第4の構成)とされる。
第4の構成によれば、伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合に行われる蓄電制御により、第1発電装置1a、10aで発電される第1発電電力と、伝送線路Pに出力される他のパワーコンディショナ4の出力電力とが蓄電装置2に蓄電可能とされる。よって、商用電力系統Eとパワーコンディショナ3との間の伝送線路Pの電圧Vpの値が上昇する場合に、第1発電装置1a,10aの第1発電電力及び第2発電装置1b,10bの第2発電電力を有効に利用することができる。
また、以上に説明した実施形態によれば、電力制御システム100、100aは、第1発電電力を出力する第1発電装置1a、10aと、第2発電電力を出力する第2発電装置1b、10bと、蓄電装置2と、第1発電装置1a、10a及び蓄電装置2と接続されるとともに、伝送線路Pを介して商用電力系統Eと接続される第1パワーコンディショナ3と、第2発電装置1b、10b及び伝送線路Pと接続され、第2発電電力を電力変換した出力電力を伝送線路Pに出力する第2パワーコンディショナ4と、伝送線路Pの電圧Vpを検出する電圧検出手段38と、を備え、第1パワーコンディショナ3は、電圧検出手段38により検出される伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合、第1発電電力及び出力電力を蓄電装置2に蓄電可能とする蓄電制御を行う構成(第5の構成)とされる。
第5の構成によれば、伝送線路Pの電圧Vpの値が予め定められた値VHよりも大きい場合に行われる蓄電制御により、第1発電装置1a、10aで発電される第1発電電力と、伝送線路Pに出力される第2パワーコンディショナ4の出力電力とが蓄電装置2に蓄電可能とされる。よって、商用電力系統Eと第1パワーコンディショナ3との間の伝送線路Pの電圧Vpの値が上昇する場合に、第1発電装置1a,10aの第1発電電力及び第2発電装置1b,10bの第2発電電力を有効に利用することができる。
100 太陽光発電システム
100a 風力発電システム
1 太陽電池モジュール
1a 第1太陽電池モジュール
1b 第2太陽電池モジュール
10 風力発電装置
10a 第1風力発電装置
10b 第1風力発電装置
2 蓄電池
3 第1パワーコンディショナ
4 第2パワーコンディショナ
31、41 DC/DCコンバータ
31a、41a AC/DCコンバータ
32 双方向インバータ
42 インバータ
33、43 コンデンサ
35、45 通信部
36、46 メモリ
34 双方向DC/DCコンバータ
37 電力量計
371 買電力量計
372 売電力量計
39、49 IC
391、491 電力電圧比較部
392、492 変換制御部
BL バスライン
5 コントローラ
51 入力部
52 コントローラ通信部
53 コントローラ用メモリ
54 コントローラIC
541 蓄電量監視部
542 蓄放電制御部
R 受電点
P 伝送線路
E 商用電力系統
L 電力負荷

Claims (7)

  1. 第1太陽電池モジュール及び蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続されるパワーコンディショナであって、
    電圧検出手段により検出される前記伝送線路の電圧の値が予め定められた値よりも大きい場合、前記第1太陽電池モジュールで発電される第1発電電力を前記蓄電装置に蓄電することで前記伝送線路の電圧上昇を抑制する第1の蓄電制御を行い前記第1の蓄電制御の後、前記伝送線路の電圧の値が前記予め定められた値よりも大きい場合、さらに、第2太陽電池モジュールで発電される第2発電電力を電力変換して前記伝送線路に出力する他のパワーコンディショナの出力電力前記蓄電装置に蓄電可能とする第2の蓄電制御を行う制御部を備えるパワーコンディショナ。
  2. 前記第2の蓄電制御において、前記伝送線路の電圧の値が前記予め定められた値よりも大きく且つ前記第1発電電力が電力変換されて前記伝送線路に出力されていない場合に、前記伝送線路の電力が、前記パワーコンディショナに入力されて電力変換される請求項1に記載のパワーコンディショナ。
  3. 前記第1の蓄電制御において、前記伝送線路の電圧の値が前記予め定められた値よりも大きく且つ前記第1発電電力が電力変換されて前記伝送線路に出力されている場合に、前記制御部は、前記第1発電電力の電力変換量を低減させる請求項1又は請求項2に記載のパワーコンディショナ。
  4. 前記予め定められた値は、前記他のパワーコンディショナにて前記伝送線路の電圧の値と比較されて該電圧の値の方が大きい場合に前記他のパワーコンディショナにより前記第2発電電力の電力変換量が低減される閾値未満に設定される請求項1〜請求項3のいずれか1項に記載のパワーコンディショナ。
  5. 前記他のパワーコンディショナと通信する通信部をさらに備え、
    前記伝送線路の前記電圧の値が前記予め定められた値よりも大きい場合、前記通信部は、前記他のパワーコンディションナにて前記第2発電電力の電力変換量を低減するか否かの判断に用いられる変換制御情報を前記他のパワーコンディショナに送信する請求項1〜請求項3のいずれか1項に記載のパワーコンディショナ。
  6. 第1太陽電池モジュール及び蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続されるパワーコンディショナの電力制御方法であって、
    電圧検出手段により検出される前記伝送線路の電圧の値が予め定められた値よりも大きい場合、前記第1太陽電池モジュールで発電される第1発電電力を前記蓄電装置に蓄電することで前記伝送線路の電圧上昇を抑制する第1の蓄電制御を行う第1のステップと、
    前記第1のステップの後、前記伝送線路の電圧の値が前記予め定められた値よりも大きい場合、さらに、第2太陽電池モジュールで発電される第2発電電力を電力変換して前記伝送線路に出力する他のパワーコンディショナの出力電力前記蓄電装置に蓄電可能とする第2の蓄電制御を行う第2のステップと、
    を備えるパワーコンディショナの電力制御方法
  7. 第1発電電力を出力する第1太陽電池モジュールと、
    第2発電電力を出力する第2太陽電池モジュールと、
    蓄電装置と、
    前記第1太陽電池モジュール及び前記蓄電装置と接続されるとともに、伝送線路を介して商用電力系統と接続される第1パワーコンディショナと、
    前記第2太陽電池モジュール及び前記伝送線路と接続され、前記第2発電電力を電力変換した出力電力を前記伝送線路に出力する第2パワーコンディショナと、
    前記伝送線路の電圧を検出する電圧検出手段と、
    を備え、
    前記第1パワーコンディショナは、前記電圧検出手段により検出される前記伝送線路の前記電圧の値が予め定められた値よりも大きい場合、前記第1発電電力を前記蓄電装置に蓄電することで前記伝送線路の電圧上昇を抑制する第1の蓄電制御を行い前記第1の蓄電制御の後に前記伝送線路の電圧の値が前記予め定められた値よりも大きい場合、さらに、前記出力電力を前記蓄電装置に蓄電可能とする第2の蓄電制御を行う電力制御システム。
JP2014208221A 2014-10-09 2014-10-09 パワーコンディショナ、その電力制御方法、及び電力制御システム Active JP6527681B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014208221A JP6527681B2 (ja) 2014-10-09 2014-10-09 パワーコンディショナ、その電力制御方法、及び電力制御システム
PCT/JP2015/073834 WO2016056315A1 (ja) 2014-10-09 2015-08-25 パワーコンディショナ、その電力制御方法、及び電力制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208221A JP6527681B2 (ja) 2014-10-09 2014-10-09 パワーコンディショナ、その電力制御方法、及び電力制御システム

Publications (2)

Publication Number Publication Date
JP2016082601A JP2016082601A (ja) 2016-05-16
JP6527681B2 true JP6527681B2 (ja) 2019-06-05

Family

ID=55652939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208221A Active JP6527681B2 (ja) 2014-10-09 2014-10-09 パワーコンディショナ、その電力制御方法、及び電力制御システム

Country Status (2)

Country Link
JP (1) JP6527681B2 (ja)
WO (1) WO2016056315A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6580950B2 (ja) * 2015-11-09 2019-09-25 シャープ株式会社 電力管理装置
JP7253725B2 (ja) * 2020-01-30 2023-04-07 パナソニックIpマネジメント株式会社 発電システム
CN112483305B (zh) * 2020-11-26 2021-10-08 南方电网电力科技股份有限公司 一种波浪能发电装置电能变换系统和控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180467A (ja) * 2002-11-29 2004-06-24 Hitachi Home & Life Solutions Inc 系統連系形電源システム
JP5773627B2 (ja) * 2010-11-30 2015-09-02 京セラ株式会社 複数の分散電源の出力制御システムおよび複数の分散電源の出力制御方法
JP5960958B2 (ja) * 2011-07-27 2016-08-02 京セラ株式会社 電力管理システム

Also Published As

Publication number Publication date
WO2016056315A1 (ja) 2016-04-14
JP2016082601A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
KR101156535B1 (ko) 전력 저장 장치와 그 동작 방법 및 전력 저장 시스템
EP3148037B1 (en) Energy storage system
US8810066B2 (en) Power storage system and method of controlling the same
KR101097259B1 (ko) 전력 저장을 위한 장치 및 제어 방법
EP2339714A2 (en) Energy storage system and method of controlling the same
EP2337178A2 (en) Energy storage system of apartment building, integrated power management system, and method of controlling the system
JP2011109901A (ja) 電力管理システム及びこれを備える系統連係型電力保存システム
JP2013085459A (ja) 電力貯蔵システムおよびその制御方法
JP2011109901A5 (ja)
JP6449645B2 (ja) 電力制御装置、及び電力制御方法
JP2017038432A (ja) 制御装置、システムおよび制御方法
JP6574651B2 (ja) 電力制御装置
JP6557153B2 (ja) 電力管理装置
JP5956517B2 (ja) エネルギー管理システム
KR20150106694A (ko) 에너지 저장 시스템과 그의 구동방법
JP2017121171A (ja) 蓄電池充放電システム及び系統連系システム
JP2024009124A (ja) 電力制御装置、蓄電池システム、蓄電池の充電電力制御方法及びプログラム
JP6363412B2 (ja) パワーコンディショナ及び電力制御方法
JP6527681B2 (ja) パワーコンディショナ、その電力制御方法、及び電力制御システム
JP5841279B2 (ja) 電力充電供給装置
JP2018098952A (ja) 蓄電システム及び太陽光発電システム
JP6580950B2 (ja) 電力管理装置
JP5373528B2 (ja) 配電装置
KR20150085227A (ko) 에너지 저장 시스템 및 그의 제어 방법
JP2014075902A (ja) 交流発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150