JP6527253B2 - 光通信端末装置 - Google Patents

光通信端末装置 Download PDF

Info

Publication number
JP6527253B2
JP6527253B2 JP2018003647A JP2018003647A JP6527253B2 JP 6527253 B2 JP6527253 B2 JP 6527253B2 JP 2018003647 A JP2018003647 A JP 2018003647A JP 2018003647 A JP2018003647 A JP 2018003647A JP 6527253 B2 JP6527253 B2 JP 6527253B2
Authority
JP
Japan
Prior art keywords
light
optical communication
wavelength
optical
communication terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003647A
Other languages
English (en)
Other versions
JP2018078644A (ja
Inventor
イブラヒム エルクメン,バリス
イブラヒム エルクメン,バリス
キム,ナム−ヒョン
アレン キース,エドワード
アレン キース,エドワード
ブルックス,カイル
Original Assignee
エックス デベロップメント エルエルシー
エックス デベロップメント エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エックス デベロップメント エルエルシー, エックス デベロップメント エルエルシー filed Critical エックス デベロップメント エルエルシー
Publication of JP2018078644A publication Critical patent/JP2018078644A/ja
Application granted granted Critical
Publication of JP6527253B2 publication Critical patent/JP6527253B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1129Arrangements for outdoor wireless networking of information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

[0001] 本明細書に特に示されていない限り、この項に記載されている材料は、本願の特許請求の範囲に関して従来技術ではなく、またこの項に含めることによって従来技術であるとは認められない。
[0002] パーソナルコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、セルラー電話、および無数のタイプのインターネット対応デバイスなどの計算デバイスが、現代生活の多くの局面でますます普及している。そのため、インターネット、セルラーデータネットワーク、およびその他のこのようなネットワークを介するデータ接続性に対する要望が増大している。しかし、データ接続性がまだ得られない、または得られたとしても信頼性が低い、かつ/または費用がかかる地域が世界には多くある。
[0003] 自由空間光通信リンクは、変調レーザ光を送出および受光するそれぞれの通信端末装置間に形成することができる。たとえば、第1の端末装置が、出力データによって変調されたレーザ光を生成し、このレーザ光を第2の端末装置に向けて送出することができ、第2の端末装置では、そのレーザ光が検出され復調されてデータが復元される。同様に、第2の端末装置が、データによって変調されたレーザ光を生成し、レーザ光を第1の端末装置に向けて送出することができ、第1の端末装置では、そのレーザ光が検出され復調される。
[0004] 単一の端末装置を使用してデータを同時に送受信できる全二重通信をサポートするために、機器構成により、第1の波長を使用してデータを送出し、第2の波長を使用してデータを受信することができる。その場合、通信端末装置は、端末装置の主開口部からの光経路中にダイクロイックビームスプリッタを含むことができる。ダイクロイックビームスプリッタは、波長の一方が通過しもう一方が反射することを可能にし、それによって、単一の主開口部を共用しながら、2つの異なる波長で送出/受光された光を分離することができる。たとえば、第1の端末装置は、波長1で送出し、波長2で受光するように構成することができる。ダイクロイックビームスプリッタは波長1を通過させ、波長2を反射することができる。波長1で発光するように構成されたレーザ光源は、ダイクロイックビームスプリッタを通過する光を主開口部に向けて発光するように位置することができる。波長2で検出するように構成された光検出器は、主開口部を経由して受光された後にダイクロイックビームスプリッタによって反射される光を受光するように位置することができる。同様に、第2の通信端末装置は、波長2で送出し波長1で受光するように構成することができる。適切なレーザ光源および光検出器をダイクロイックビームスプリッタに対して、第2の端末装置の単一の主開口部との間で光を方向づけるように配置することができる。そのようにして、第1と第2の通信端末装置は、変調レーザビームを2つの異なる波長で送出および受光することによって、どちらの方向にも同時にデータを伝えることができる。
[0005] 空間的に分離された端末装置間の位置合わせを確実にするために、各端末装置は一般に、1つまたは複数の調節可能ビームステアリングミラーを組み込み、このビームステアリングミラーは、それぞれの送出開口部/受光開口部との間のレーザ光を各端末装置内の様々なレーザ光源および光検出器の方へ向ける。したがって、ビームステアリングミラーの向きを調節することにより、様々なレーザ光源および光検出器を主開口部と結合する光経路内の様々な焦点の位置を調節することができる。フィードバック系もまた、入って来る(たとえば別の端末装置からの)レーザ光の到着角を検出し、決定された角度をフィードバックとして使用して送出レーザ光を(たとえば別の端末装置に)向けるために、使用することができる。主開口部と、様々なレーザ光源および/または光検出器との間の光経路は、様々なフィルタ、ミラー、レンズ、開口部、およびその他の光伝送構成要素を必要に応じて付加的に含むことができる。
[0006] 例示的な実施形態は、空中通信ネットワークとしての気球のネットワークに関する。気球は、気球ネットワークの他のメンバーおよび/または地上に設置された無線局に情報を無線で伝えるための電源、データ記憶装置、および1つまたは複数のトランシーバが一緒になったペイロードを支持するエンベロープで形成することができる。気球は、自由空間光リンクを介して互いに通信することができ、また、全二重通信の2つの異なる相補モードで動作するように構成できる、光通信端末装置を含むことができる。一方のモードでは、端末装置は、共通自由空間光経路に沿って、第1の波長を有する光を送出し、第2の波長を有する光を受光する。もう一方のモードでは、端末装置は、第2の波長を有する光を送出し、第1の波長を有する光を受光する。したがって、2つの異なる気球において相補モードで動作しているこのような2つの端末装置は、2つの気球が双方向で同時にデータを伝えることを可能にする。任意の気球間にこのような光リンクを形成して網目状ネットワークを作り出すために、端末装置は、自由空間光経路を端末装置内のモード別の発光器および検出器と位置合わせするようにステアリングミラーの向きを調節することによって、2つのモードを動的に切り換えるように構成することができる。
[0007] たとえば、端末装置は、波長に応じて差別化された経路を作り出す、ダイクロイック要素との間で行き来する光を方向づけるステアリングミラーを含むことができ、また2つの波長用の、空間的に分離された発光器および検出器を含む。第1の相補的発光器/検出器の対が一方のモードで使用され、第2の対がもう一方のモードで使用される。これらの光学構成要素は、ステアリングミラーの向きを調節することで端末装置を、第1または第2の相補対を使用して所与の自由空間光リンクを経由する通信路と位置合わせするように配置される。
[0008] 本開示のいくつかの実施形態は、光通信端末装置を提供する。光通信は、ビームスプリッタ、1つまたは複数の光源、1つまたは複数の検出器、およびステアリングミラーを含むことができる。ビームスプリッタは、第1の波長の光を透過させるように、また第2の波長の光を反射するように構成することができる。1つまたは複数の光源は、第1の放出場所から第1の波長の光を放出するように、また第2の放出場所から第2の波長の光を放出するように構成することができる。1つまたは複数の検出器は、第1の検出場所で第1の波長の光を検出するように、また第2の検出場所で第2の波長の光を検出するように構成することができる。ステアリングミラーおよびビームスプリッタが、ステアリングミラーが第1の向きを有する間、(i)第1の放出場所から放出される第1の波長の光が送出のために遠隔の端末装置の方へ向けられるように、また(ii)遠隔の端末装置から受光される第2の波長の光が第2の検出場所の方へ向けられるように配置することができる。ステアリングミラーおよびダイクロイックビームスプリッタはさらに、ステアリングミラーが第2の向きを有する間、(i)第2の放出場所から放出される第2の波長の光が送出のために遠隔の端末装置の方へ向けられるように、また(ii)遠隔の端末装置から受光される第1の波長の光が第1の検出場所の方へ向けられるように配置することができる。
[0009] 本開示のいくつかの実施形態は、高高度プラットフォームを提供する。高高度プラットフォームは、エンベロープと、エンベロープからつり下げられるように構成されたペイロードと、ペイロードに取り付けられた光通信端末装置とを含むことができる。光通信端末装置は、(i)第1の波長の光を透過させるように、また第2の波長の光を反射するように構成されたビームスプリッタと、(ii)第1の放出場所から第1の波長の光を放出するように、また第2の放出場所から第2の波長の光を放出するように構成された1つまたは複数の光源と、(iii)第1の検出場所で第1の波長の光を検出するように、また第2の検出場所で第2の波長の光を検出するように構成された1つまたは複数の検出器と、(iv)ステアリングミラーとを含むことができる。ステアリングミラーおよびビームスプリッタは、ステアリングミラーが第1の向きを有する間、(i)第1の放出場所から放
出される第1の波長の光が送出のために遠隔の端末装置の方へ向けられるように、また(ii)遠隔の端末装置から受光される第2の波長の光が第2の検出場所の方へ向けられるように配置することができる。ステアリングミラーおよびビームスプリッタはさらに、ステアリングミラーが第2の向きを有する間、(i)第2の放出場所から放出される第2の波長の光が送出のために遠隔の端末装置の方へ向けられるように、また(ii)遠隔の端末装置から受光される第1の波長の光が第1の検出場所の方へ向けられるように配置することができる。
[0010] 本開示のいくつかの実施形態は、一方法を提供する。この方法は、(i)第1の放出場所から放出された第1の波長の光を送出のために遠隔の端末装置に向けるために、また(ii)遠隔の端末装置から受光された第2の波長の入射光を第2の検出場所の方へ向けるために、ステアリングミラーを指向させるステップを含むことができる。この方法は、(i)出力データに基づいて変調された第1の波長の光を第1の放出場所から放出し、また(ii)第2の検出場所で検出された第2の波長の光に基づいて入力データを抽出することによって、第1のモードで全二重通信を行うステップを含むことができる。この方法は、第2のモードで全二重通信を行うことに切り換える決定をするステップを含むことができる。この方法は、決定をすることに応じて、(i)第2の放出場所から放出された第2の波長の光を送出のために所与の方向に向けるために、また(ii)所与の方向から受光された第1の波長の入射光を第1の検出場所の方へ向けるために、ステアリングミラーを指向させるステップを含むことができる。この方法は、(i)出力データに基づいて変調された第2の波長の光を第2の放出場所から放出し、また(ii)第1の検出場所で検出された第1の波長の光に基づいて入力データを抽出することによって、第2のモードで全二重通信を行うステップを含むことができる。
[0011] 本開示のいくつかの実施形態は、(i)第1の放出場所から放出された第1の波長の光を送出のために遠隔の端末装置に向けるために、また(ii)遠隔の端末装置から受光された第2の波長の入射光を第2の検出場所の方へ向けるために、ステアリングミラーを指向させる手段を提供する。本開示のいくつかの実施形態は、(i)出力データに基づいて変調された第1の波長の光を第1の放出場所から放出し、また(ii)第2の検出場所で検出された第2の波長の光に基づいて入力データを抽出することによって、第1のモードで全二重通信を行う手段を提供する。本開示のいくつかの実施形態は、第2のモードで全二重通信を行うことに切り換える決定をする手段を提供する。本開示のいくつかの実施形態は、決定をすることに応じて、(i)第2の放出場所から放出された第2の波長の光を送出のために所与の方向に向けるために、また(ii)所与の方向から受光された第1の波長の入射光を第1の検出場所の方へ向けるために、ステアリングミラーを指向させる手段を提供する。本開示のいくつかの実施形態は、(i)出力データに基づいて変調された第2の波長の光を第2の放出場所から放出し、また(ii)第1の検出場所で検出された第1の波長の光に基づいて入力データを抽出することによって、第2のモードで全二重通信を行う手段を提供する。
[0012] 上記ならびに他の態様、利点、および代替形態は、添付の図面を適宜参照して以下の詳細な説明を読むことにより、当業者には明らかになろう。
[0013]例示的な気球ネットワークを示す簡略化したブロック図である。 [0014]例示的な気球ネットワーク制御システムを示すブロック図である。 [0015]例示的な高高度気球を示す簡略化したブロック図である。 [0016]自由空間光リンクを介して互いに通信する気球のネットワークの図である。 [0017]光通信端末装置の簡略化したブロック図である。 [0018]全二重通信の第1のモードで動作するように位置合わせされた光通信端末装置の簡略化したブロック図である。 [0019]全二重通信の第2のモードで動作するように位置合わせされた光通信端末装置の簡略化したブロック図である。 [0020]2つの異なるモードで交互に動作するように配置された例示的な光通信端末装置の図である。 [0021]別の例示的な光通信端末装置の図である。 [0022]別の例示的な光通信端末装置の図である。 [0023]光通信端末装置を動作させるための例示的な処理の流れ図である。 [0024]例示的な実施形態によるコンピュータ可読媒体を示す図である。
[0025] 例示的な方法およびシステムが本明細書で説明される。本明細書で説明されるいかなる例示的な実施形態または特徴も、他の実施形態または特徴と比べて好ましい、または有利であるとは必ずしも解釈されるものではない。明細書で説明される例示的な実施形態は、限定するものではない。開示されるシステムおよび方法のいくつかの態様は、本明細書でそのすべてが企図されている多種多様な異なる構成によって配置および結合できることが容易に理解されよう。
1.概要
[0026] 例示的な実施形態は、地上基地との無線通信、および気球の間での無線通信を容易にする通信機器を用いた気球の空中通信ネットワークに関する。気球は、気球ネットワークの他のメンバーおよび/または地上に設置された無線局に情報を無線で伝えるための電源、データ記憶装置、および1つまたは複数のトランシーバが一緒になったペイロードを支持するエンベロープで形成することができる。
[0027] 動力源付き気球のネットワークは、大気圏中に位置し、通信機器を装備することができ、また互いの間で、また地上の端末と、またおそらく衛星と通信するように構成することができる。気球はそれぞれ、互いの間の、地上ユーザ機器との、また地上のデータネットワーク(たとえば、インターネット)との通信ができる空中相互接続ネットワーク内の端末装置として働いて、空中ネットワークを介するこのようなデータネットワークにアクセスできるユーザ機器を実現することができる。
[0028] 気球は、自由空間光リンクを介して互いに通信することができる。各気球は、レーザ送信機および検出器と、1つの気球からもう1つのものの検出器へ放出されたレーザ光を向けることができる、ステアリング可能な開口部および光学縦列とを装備することができる。1つの気球からもう1つのものまでデータを送信するために、1つの気球からのレーザ光は、データを符号化するように変調することができ、この変調光は、大気を通して伝送し、ネットワーク内のもう1つの気球まで導くことができ、次にもう一方の気球はレーザ光を受光し、符号化データを回復することができる。
[0029] ネットワーク内の気球の間で網目状ネットワークを形成するために、ネットワーク内の所与の気球それぞれは、他の複数の気球との間で信号を送受信することができる。加えて、各通信リンクは、双方向通信を可能にすることができる(たとえば、気球1は信号を気球2へ送信することができ、気球2もまた信号を気球1に送信することができる)。入手可能な資源を効率的に利用するために、各通信リンクは、第1の気球が光ビームを第2の気球へ送出し、同時に、区別可能な光ビームを第2の気球から受光することによって(たとえば、1つの波長を一方の方向に通信を伝達するのに使用し、もう1つの波長をもう一方の方向に通信を伝達するのに使用して)、全二重通信をサポートすることができる。このような全二重モードで効果的に通信するために、一方の気球は、データが波長1、λ1で送信され波長2、λ2で受信される「モードA」とし、もう一方の気球は、データが波長λ2で送信されλ1で受信される「モードB」とすることができる。しかし、様々な接続が時間の経過につれて別々の気球間で行われると、所与の気球は、別の気球との全二重通信を容易にするためにモードを切り換える必要があり得る。すなわち、最初モードAにある2つの(またはモードBにある2つの)気球間の全二重通信リンクは、気球の一方がAからB(またはBからA)に切り換えない限り不可能である。
[0030] 本開示は、モードAとモードBの切換えがステアリングミラーの位置合わせを変えることによって実現される光通信端末装置の配置を提供する。例示的な通信端末装置は、第1の波長を有するレーザ光を第1の放出場所から放出するように構成された第1のレーザ光源と、第2の波長を有するレーザ光を第2の放出場所から放出するように構成された第2のレーザ光源と、第1の波長を有し第1の検出場所に入射するレーザ光を検出するように構成された第1の検出器と、第2の波長を有し第2の検出場所に入射するレーザ光を検出するように構成された第2の検出器とを含む。
[0031] ステアリングミラーは、主開口部およびダイクロイックビームスプリッタとの間でレーザ光を方向づける。ダイクロイックビームスプリッタは、第1の波長を有するレーザ光を実質的に透過させ、第2の波長を有するレーザ光を実質的に反射し、それによって、2つの異なる波長を有する光の光経路を分ける。ステアリングミラーは、光端末装置がモードAで動作するように構成される第1のおおよその向きから、光端末装置がモードBで動作するように構成される第2のおおよその向きへ調節することができる。具体的には、第1のおおよその向きでは、第1の波長を有し第1の放出場所から放出されたレーザ光は主開口部に向けられ、第2の波長を有し主開口部を経由して受光されたレーザ光は、第2の検出場所へ向けられる。また第2のおおよその向きでは、第2の波長を有し第2の放出場所から放出されたレーザ光は主開口部に向けられ、第1の波長を有し主開口部を経由して受光されたレーザ光は、第1の検出場所へ向けられる。
[0032] 方位フィードバックセンサを使用してステアリングミラーの向きを推定することができ、次に、この推定された向きに基づいて調節をすることができる。方位フィードバックセンサは、ステアリングミラーによって反射された一部の光を(主開口部から)感光要素のアレイに向けて逸らすビームスプリッタを含むことができ、この感光要素を使用して、アレイを照明する光の強度を測定することができる。コントローラを使用して、アレイを照明する光の重心位置を特定し、この重心位置が動作モードに応じて第1または第2の向きに対応する目標場所に向かって動くように、ステアリングミラーを調節することができる。第1および第2のおおよその向き、ならびに感光アレイ上の対応する目標場所は、たとえば、較正ルーチン中に一部を決定することができる。ステアリングミラーを使用して、主開口部から受光した光とレーザ光源から送出された光の両方を方向づけることができるので、端末装置から送出されるレーザ光は、受光した光の出所(たとえば、別の端末装置の主開口部)の方へ向かうように位置合わせすることができる。
[0033] 別の例では、位置合わせレーザ光は、通信を伝達するために使用される波長とは異なる、第3の波長を有するレーザ光とすることができる。その場合、位置合わせレーザ光は、データ伝達レーザ波長は透過させながら位置合わせレーザ光を反射するダイクロイックビームスプリッタを使用して、感光アレイの方へ向かわせることができる。さらに、このようなダイクロイックビームスプリッタは、2つのデータ伝達レーザ波長を反射し位置合わせレーザ波長を透過させることができる。
[0034] モードA(送出λ1、受信λ2)で動作させるために、端末装置は、λ1の変調レーザ光を放出するレーザ光源と、λ2のレーザ光を検出する光検出器とを作動させ、ステアリングミラーを第1の向きにすることができる。モードB(送出λ2、受信λ1)で動作させるために、端末装置は、λ2の変調レーザ光を放出するレーザ光源と、λ1のレーザ光を検出する光検出器とを作動させ、ステアリングミラーを第2の向きにすることができる。モード間の切り替えは、ステアリングミラーの向きを調節し、適切なレーザおよび検出器を作動/作動停止させることによって行うことができる。
[0035] これら特定の方法およびシステムのそれぞれが本明細書で企図されており、いくつかの例示的な実施形態が以下で説明される。
2.例示的なシステム
[0036] 図1は、例示的な実施形態による気球ネットワーク100を示す簡略化したブロック図である。図示のように、気球ネットワーク100は、自由空間光リンク104を介して(たとえば、データが符号化されている光放射を送出および受光することによって)互いに通信するように構成されている気球102A〜102Fを含む。さらに、「光」と呼ばれているが、光リンク104による通信を、赤外線放射、紫外線放射などの可視スペクトル外の放射を含む波長範囲の放射を用いて、実行することができる。気球102A〜102Fは、無線周波数(RF)リンク114を介して(たとえば、データが符号化された無線周波数放射を送受信することによって)互いに通信するように付加的または代替的に構成することができる。気球102A〜102Fは共同で、パケットデータ通信の網目状ネットワークとして機能することができる。さらに、少なくともいくつかの気球は(たとえば、102Aおよび102B)は、それぞれのRFリンク108を介する地上局106とのRF通信用に構成することもできる。さらに、気球102Fなどのいくつかの気球は、光リンク110を介して、適切に装備された地上局112と通信するように構成することもできる。
[0037] 例示的な実施形態では、気球102A〜102Fは成層圏内に配置されている高高度気球である。中程度の緯度では、成層圏は、地表の上方の約10キロメートル(km)〜50kmの間の高度を含む。極では、成層圏は約8kmの高度から始まる。例示的な実施形態では、高高度気球は一般に、成層圏内の風速が比較的低い(たとえば、毎時8〜32キロメートル(kph)の間)高度範囲で動作するように構成することができる。
[0038] より詳細には、高高度気球ネットワークにおいて、気球102A〜102Fは一般に、18km〜25kmの間の高度で動作するように構成することができる(他の高度でも可能であるが)。この高度範囲は、いくつかの理由で有利であり得る。具体的には、成層圏のこの高度領域には一般に、風速が比較的低く(たとえば、毎時8〜32kphの間)、乱気流が比較的小さい比較的望ましい大気状態がある。さらに、18km〜25kmの高度の間の風は緯度および季節によって変わり得るが、その変化は妥当な精度でモデル化することができ、それによって、このような変化を予測および補償することが可能になる。加えて、18kmを超える高度は一般に、民間航空交通に指定されている最大高度を超える。
[0039] データを別の気球まで伝送するために、所与の気球102A〜102Fは、光リンク104を介して光信号を伝送するように構成することができる。例示的な実施形態では、所与の気球102A〜102Fは、1つまたは複数の高出力発光ダイオード(LED)を使用して光信号を送出することができる。あるいは、気球102A〜102Fの一部または全部は、光リンク104を介した自由空間光通信のためのレーザシステムを含むことができる。他のタイプの自由空間光通信も可能である。さらに、光リンク104を介して別の気球からの光信号を受信するために、所与の気球102A〜102Fは、アバランシェフォトダイオードなどの1つまたは複数の光検出器を含むこともできる。
[0040] 別の態様では、気球102A〜102Fは、それぞれのRFリンク108を介して地上局106および112と通信するための、様々な異なるRFエアインターフェースプロトコルの1つまたはそれ以上を利用することができる。たとえば、気球102A〜102Fの一部または全部は、IEEE802.11(IEEE802.11改訂版のいずれも含む)に記載されたプロトコル、GSM、CDMA、UMTS、EV−DO、WiMAXおよび/またはLTEなどの様々なセルラープロトコル、および/または気球−地上RF通信用に開発された1つまたは複数の適正プロトコルを、他にもある可能なものの中で使用して、地上局106および112と通信するように構成することができる。
[0041] 別の態様では、RFリンク108が気球−地上間通信用の所望のリンク容量を提供しないシナリオがあり得る。たとえば、容量の増大が、地上ゲートウェイからの迂回中継リンクを提供するのに望ましく、また他のシナリオでも望ましい場合がある。それに応じて、例示的な実施形態はまた、気球ネットワーク100を地上ネットワーク要素と接続するための大容量空対地リンクを提供できる、1つまたは複数のダウンリンク気球を含むこともできる。
[0042] たとえば、気球ネットワーク100において、気球102Fがダウンリンク気球として構成される。例示的なネットワーク内の他の気球のように、ダウンリンク気球102Fは、光リンク104を介した他の気球との光通信用に動作可能とすることができる。しかし、ダウンリンク気球102Fはまた、光リンク110を介した地上局112との自由空間光通信用に構成することもできる。したがって、光リンク110は、気球ネットワーク100と地上局112の間の大容量リンク(RFリンク108と比較して)として、働くことができる。
[0043] いくつかの実施態様では、ダウンリンク気球102Fはさらに、地上局106とのRF通信用に動作可能にできることに留意されたい。別の場合には、ダウンリンク気球102Fは、気球−地上間通信用の光リンクだけを使用することができる。さらに、図1に示された配置はただ1つのダウンリンク気球102Fを含むが、例示的な気球ネットワークはまた、複数のダウンリンク気球を含むこともできる。一方で、気球ネットワークはまた、ダウンリンク気球を全く用いずに実施することもできる。
[0044] 別の実施態様では、ダウンリンク気球は、気球−地上間通信用の特化高帯域幅RF通信システムを、自由空間光通信システムの代わりに、またはそれに加えて装備することができる。高帯域幅RF通信システムは、光リンク104のうちの1つと実質的に同じ容量を有するRFリンクを提供できる、超広帯域システムの形をとることができる。他の形もまた実現可能である。
[0045] 地上局106および/または112などの地上局は、様々な形をとることができる。一般に地上局は、トランシーバ、送信機、および/または受信機などの構成要素を、気球ネットワーク100内の気球に位置する対応トランシーバとのRFリンクまたは光リンクを介した無線通信のために、含むことができる。さらに、地上局は、様々なエアインターフェースプロトコルを使用して、RFリンク108経由で気球102A〜102Fと通信することができる。そのため、地上局106および112は、様々なデバイスが気球ネットワーク100と接続できるようにするためのアクセスポイントとして構成することができる。地上局106および112は、本開示から逸脱することなく、他の構成を有することができ、かつ/または別の目的に役立つことができる。
[0046] 別の態様では、気球102A〜102Fの一部または全部を付加的または代替的に、宇宙衛星との通信リンクを確立するように構成することもできる。いくつかの実施形態では、気球は光リンクを介して衛星と通信することができる。しかし、他のタイプの衛星通信も実現可能である。
[0047] さらに、地上局106および112などのいくつかの地上局は、気球ネットワーク100と1つまたは複数の他のネットワークとの間のゲートウェイとして構成することもできる。すなわち、このような地上局106および112は、気球ネットワークと、インターネット、セルラーサービスプロバイダのネットワーク、および/または情報を伝えるための他のタイプのネットワークとの間のインターフェースとして働くことができる。この構成、ならびに地上局106および112の他の構成に対する変形形態もまた実現可能である。
2a)網目状ネットワーク機能[0048] 言及したように、気球102A〜102Fは共同で網目状ネットワークとして機能することができる。より詳細には、気球102A〜102Fが自由空間光リンクを使用して互いに通信できるので、気球は共同で自由空間光網目状ネットワークとして機能することができる。
[0049] 網目状ネットワーク構成では、各気球102A〜102Fは、そこに向けられたデータを受信し、他の気球にデータを配信するように動作可能な、網目状ネットワークのノードとして機能することができる。そのためデータは、送信元気球と送付先気球の間の適切な一連の光リンクを決定することによって、送信元気球から送付先気球へ配信することができる。これらの光リンクは一括して、送信元気球と送付先気球の間を接続する「光路」と呼ぶことができる。さらに、光リンクのそれぞれは、光路上の「ホップ」と呼ばれることがある。特定の光路に沿った各中間気球(すなわち、ホップ)は中継局としての役割を果たして、受信光信号を介して入って来る通信情報をまず検出し、次にその通信情報を、特定の光路上の次の気球で受信されるべき対応する光信号を放出することによって、再送することができる。付加的または代替的に、特定の中間気球は、入射光信号を反射して次の気球の方へ伝搬することなどによって、入射信号を次の気球の方へ単に向けるだけのこともできる。
[0050] 網目状ネットワークとして動作するために、気球102A〜102Fは、様々なルーティング技法および自己回復アルゴリズムを使用することができる。いくつかの実施形態では、気球ネットワーク100は、適応ルーティングまたは動的ルーティングを使用することができ、この場合、送信元気球と送付先気球の間の光路が、接続が必要なときに決定され、セットアップされ、後に解放される。さらに、適応ルーティングが使用される場合には、光路は、気球ネットワーク100の現在の状態、過去の状態、および/または予測状態に応じて動的に決定することができる。
[0051] 加えて、ネットワークトポロジは、気球102A〜102Fが互いに、および/または地上に対して、動くにつれて変わり得る。したがって、例示的な気球ネットワーク100は、ネットワークのトポロジが変わるにつれて、網目プロトコルを適用してネットワークの状態を更新することができる。たとえば、気球102A〜102Fの移動性に対処するために、気球ネットワーク100は、モバイルアドホックネットワーク(MANET)
に使用されている様々な技法を使用することができ、かつ/または適合させることができる。他の例もまた実現可能である。
[0052] いくつかの実施形態では、気球ネットワーク100は、透過的な網目状ネットワークとして構成することができる。より詳細には、透過的な網目状ネットワーク構成において、気球は、光信号のルーティングに要する電気構成要素を全く用いずに、完全に光学的な物理的切換え用の構成要素を含むことができる。すなわち、光学切換えを用いた透過的構成では、信号が、完全に光学的な多ホップ光路を通って進むことができる。
[0053] 別の実施態様では、気球ネットワーク100は、不透明な自由空間光網目状ネットワークを実施することができる。不透明な構成では、一部または全部の気球102A〜102Fは、光−電気−光(OEO)切換えを実施することができる。たとえば、一部または全部の気球が、光信号のOEO変換用の光クロスコネクト(OXC)を含むことができる。他の不透明構成もまた実現可能である。加えて、透明セクションも不透明セクションもあるルーティング経路を含むネットワーク構成が実現可能である。
[0054] 別の態様では、気球ネットワーク100内の気球で波長分割多重(WDM)を実施することができ、これを使用してリンク容量を増大させることができる。WDMが透明な切換えを用いて実施される場合、所与の光路上のすべての光リンクに同じ波長を割り当てることが必要になり得る。したがって、特定の光路内の各ホップが同じ波長を使用することを要求され得るので、透明な気球ネットワーク内の光路は「波長連続性制約」を受けていると言われる。
[0055] 一方で、不透明な構成では、このような波長連続性制約を回避することができる。具体的には、不透明な気球ネットワーク内の気球は、波長変換に使用可能なOEO切換えシステムを所与の光路に沿って含むことができる。そのため、気球は、ある特定の光路に沿って、1つまたは複数のホップにおいて光信号の波長を変換することができる。
[0056] さらに、いくつかの例示的な網目状ネットワークでは、光リンクもRFリンクも利用することができる。たとえば、網目状ネットワーク中の通信経路は、光リンク上の1つまたは複数のホップ、およびRFリンク上の1つまたは複数のホップを伴う。RFリンクは、たとえば、ネットワーク内の相対的に近接している気球間で使用することができる。
2b)気球ネットワーク内の気球の制御
[0057] いくつかの実施形態では、網目状ネットワーキングおよび/または制御機能は集中化することができる。たとえば、図2は、例示的な実施形態による気球ネットワーク制御システムを示すブロック図である。具体的には、図2は、集中制御システム200と、いくつかの地域制御システム202A〜202Bとを含む分布制御システムを示す。このような制御システムは、気球ネットワーク204の特定の機能性を統合するように構成することができ、またそういうものとして、気球206A〜206Iの特定の機能を制御および/または統合するように構成することができる。
[0058] 図示の実施形態では、集中制御システム200は、いくつかの地域制御システム202A〜202Cを介して気球206A〜206Iと通信するように構成することができる。これらの地域制御システム202A〜202Cは、これらがカバーするそれぞれの地理的領域内の気球から通信情報および/または集合データを受信するように、またその通信情報および/またはデータを集中制御システム200に中継するように構成することができる。さらに、地域制御システム202A〜202Cは、通信情報を集中制御システム200から地域制御システムのそれぞれの地理的領域内の気球へ配信するように構成することもできる。たとえば、図2に示されるように、地域制御システム202Aは、気球206A〜206Cと集中制御システム200の間で通信情報および/またはデータを中継することができ、地域制御システム202Bは、気球206D〜206Fと集中制御システム200の間で通信情報および/またはデータを中継することができ、地域制御システム202Cは、気球206G〜206Iと集中制御システム200の間で通信情報および/またはデータを中継することができる。
[0059] 集中制御システム200と気球206A〜206Iの間の通信を容易にするために、特定の気球は、地域制御システム202A〜202Cと通信するように動作可能なダウンリンク気球として構成することができる。それに応じて、各地域制御システム202A〜202Cは、それがカバーするそれぞれの地理的領域内のダウンリンク気球と通信するように構成することができる。たとえば、図示の実施形態では、気球206A、206F、および206Iがダウンリンク気球として構成される。そのため、地域制御システム202A〜202Cはそれぞれ、光リンク208、210、および212をそれぞれ介して気球206A、206F、および206Iと通信することができる。
[0060] 図示の構成では、気球206A〜206Iのうちの一部だけがダウンリンク気球として構成される。ダウンリンク気球として構成されている気球206A、206F、および206Iは、通信情報を集中制御システム200から気球ネットワーク内の、気球206B〜206E、206G、および206Hなどの他の気球に中継することができる。しかし、いくつかの実施態様では、すべての気球がダウンリンク気球として機能できる可能性があることを理解されたい。さらに、図2はダウンリンク気球として構成された複数の気球を示すが、気球ネットワークが1つのダウンリンク気球しか含まない可能性もまたある。さらに、気球ネットワークは付加的または代替的に、衛星ネットワークとの接続を介して集中制御システムおよび/またはデータ輸送ネットワークと通信する衛星リンク気球を含むこともでき、この衛星ネットワークは、たとえば、気球ネットワークの上を周回する通信ネットワークの衛星との、自由空間光リンク経由の通信を伴うことができる。
[0061] 地域制御システム202A〜202Cは、ダウンリンク気球と通信するように構成されている特定のタイプの地上局(たとえば、図1の地上局112など)であり得る。すなわち、図2には示されていないが、制御システムを他のタイプの地上局(たとえば、アクセスポイント、ゲートウェイなど)と合同して実施することができる。
[0062] 図2に示されたような集中化制御配置では、集中制御システム200は(ならびに場合によって地域制御システム202A〜202Cもまた)、気球ネットワーク204の特定の網目状ネットワークキング機能を統合することができる。たとえば、気球206A〜206Iは、気球ネットワーク204の状態を決定するために集中制御システム200が利用できる、特定の状態情報を集中制御システム200へ送信することができる。所与の気球からの状態情報には、位置データ、光リンク情報(たとえば、その気球が光リンクを一緒に確立した他の気球の識別情報、リンクの帯域幅、波長使用状況、および/またはリンクの可用性など)、気球によって集められた風データ、および/または他の種類の情報が含まれ得る。それに応じて、集中制御システム200は、ネットワーク204の全体的状態を決定するために、気球206A〜206Iの一部または全部からの状態情報をまとめることができる。
[0063] ネットワーク204の全体的状態に一部は基づいて、制御システム200は次に、たとえば接続のための光路を決定することなどの、特定の網目状ネットワーキング機能を統合および/または助長するために使用することができる。集中制御システム200は、気球206A〜206Iの一部または全部からの集合状態情報に基づいて、現在のトポロジ(または気球の空間分布)を決定することができる。このトポロジは、気球ネットワーク内で使用可能な現在の光リンク、および/または、このようなリンクにおける波長可用性を示すことができる。トポロジは次に、気球ネットワーク204による通信のための適切な光路(また場合によってはバックアップ光路)を必要に応じて選択するのに個々の気球が使用可能になるように、気球の一部または全部へ送信することができる。
[0064] 別の態様では、集中制御システム200はまた(ならびに場合によっては地域制御システム202A〜202Cもまた)、気球ネットワーク204の特定の測位機能を統合して気球の所望の空間分布を得ることができる。たとえば、集中制御システム200は、気球206A〜206Iから受信される状態情報をエネルギー関数に入力することができ、このエネルギー関数は、ネットワークの現在のトポロジを所望のトポロジと効果的に比較し、気球が所望のトポロジに向かって移動できるように、各気球の動き(もしあれば)の方向を示すベクトルを与える。さらに、集中制御システム200は、高度風データを使用して、所望のトポロジに向かう動きを実現するように開始できるそれぞれの高度調節を決定することもできる。集中制御システム200は、他の局保持機能も同様に、提供および/またはサポートすることができる。
[0065] 図2は、集中制御を実現する分布配置を示し、地域制御システム202A〜202Cが集中制御システム200と気球ネットワーク204の間の通信を統合している。このような配置は、広い地理的領域をカバーする気球ネットワークの集中制御を実現するのに有効であり得る。いくつかの実施態様では、分布配置は、地球上のどこもカバーする全地球気球ネットワークさえサポートすることができる。もちろん、分布制御配置は他のシナリオでも同様に有効であり得る。
[0066] さらに、他の制御システム配置もまた可能であることを理解されたい。たとえば、いくつかの実施態様は、追加階層(たとえば、地域制御システムの中のサブ地域システムなど)がある集中制御システムを伴うことができる。あるいは、制御機能は、1つまたは複数のダウンリンク気球と直接通信する単一の集中制御システムによって実現することもできる。
[0067] いくつかの実施態様では、気球ネットワークの制御および統合は、実施態様に応じて、地上制御システムと気球ネットワークが様々な程度で分担することができる。実際、いくつかの実施態様では、地上制御システムがなくてもよい。このような実施形態では、すべてのネットワーク制御機能および統合機能は、気球ネットワーク自体だけで実施することができる(たとえば、ネットワーク204内の1つまたは複数の気球のペイロードに位置する処理システムによって)。たとえば、特定の気球は、集中制御システム200および/または地域制御システム202A〜202Cと同じか、または類似の機能が得られるように構成することができる。他の例もまた実現可能である。
[0068] さらに、気球ネットワークの制御および/または統合は分散化することもできる。たとえば、各気球は、状態情報を一部または全部の近傍の気球に中継し、またそこから状態情報を受信することができる。さらに、各気球は、それが近傍の気球から受信する状態情報を、一部または全部の近傍の気球に中継することもできる。すべての気球がそうすると、各気球は、ネットワークの状態を個別に決定することができる。あるいは、特定の気球が指定されて、ネットワークの所与の部分の状態情報を集めることができる。この場合、これらの気球は互いに連係して、ネットワークの全体的状態を決定することができる。
[0069] さらに、いくつかの態様では、気球ネットワークの制御は、それがネットワークの全体的状態に依存しないように、部分的または全体的に局所化することができる。たとえば、個々の気球は、近傍の気球だけを考慮する気球測位機能を実施することができる。具体的には、各気球は、それ自体の状態および近傍の気球の状態に基づいて、動き方(および/または動くかどうか)を決定することができる。気球は、最適化ルーチン(たとえば、エネルギー関数)を使用して、それぞれの絶対的および/または相対的目標位置を決定することができる。この場合、それぞれの気球は、たとえば、近傍の気球に対して、ネットワークの所望のトポロジを必ずしも全体として考慮しなくても、それぞれの目標位置に向かって動くことができる。しかし、各気球がこのような位置決定ルーチンを実施すると、気球ネットワークは、全体としては所望の空間分布(トポロジ)を維持し、かつ/またはそれに近づくことができる。
2c)例示的な気球構成
[0070] 様々なタイプの気球システムを例示的な気球ネットワークに組み込むことができる。上記のように、例示的な実施形態では、18km〜25kmの間の高度範囲で動作する高高度気球を利用することができる。図3は、例示的な実施形態による高高度気球300を示す。図示のように、気球300は、エンベロープ302、スカート304、およびブロック図として示されているペイロード306を含む。
[0071] エンベロープ302およびスカート304は、現在よく知られているであろう、またはなお開発されるであろう様々な形をとることができる。たとえば、エンベロープ302および/またはスカート304は、金属化マイラまたはBoPetを含む金属材料および/またはポリマー材料で作ることができる。付加的または代替的に、エンベロープ302および/またはスカート304の一部または全部は、高柔軟性ラテックス材料、またはクロロプレンなどのゴム材料から構築することもできる。他の材料もまた可能である。エンベロープ302は、気球300が地球の大気圏内の所望の高度に達することを可能にするのに適したガスで充填することができる。すなわち、エンベロープ302は、主に窒素分子および酸素分子からなる大気混合物と比較して相対的に低密度のガスで充填して、気球300が地球の大気中で浮力を持ち、所望の高度に達することを可能にすることができる。適切な特性を持つ、ヘリウムおよび/または水素などの様々な異なるガス材料を使用することができる。ガス材料(混合物を含む)の他の例もまた実現可能である。
[0072] 気球300のペイロード306は、プロセッサ313、およびメモリ314などのオンボードデータ記憶装置があるコンピュータシステム312を含むことができる。メモリ314は、非一時的コンピュータ可読媒体の形をとるか、またはこれを含むことができる。非一時的コンピュータ可読媒体には、本明細書に記載の気球の機能を果たすためにプロセッサ313によってアクセスおよび実行することができる、命令を格納することができる。すなわち、プロセッサ313は、目盛314に格納された命令、および/または他の構成要素と一緒に、気球300のコントローラとして機能することができる。
[0073] 気球300のペイロード306はまた、いくつかの他の機能を提供するために、様々な他のタイプの機器およびシステムを含むこともできる。たとえば、ペイロード306は光通信システム316を含むことができ、このシステムは、超高輝度LEDシステムおよび/またはレーザシステムによって光信号を送出し、光通信受信機(たとえば、フォトダイオード受信機システム)によって光信号を受信することができる。さらに、ペイロード306は、アンテナシステムを介してRF通信情報を送出および/または受信できるRF通信システム318を含むことができる。
[0074] ペイロード306はまた、気球300の様々な構成要素に電力を供給する電源326を含むこともできる。電源326は、充電可能電池または他のエネルギー保存デバイスを含むこともできる。気球300は、太陽発電システム327を含むことができる。太陽発電システム327は、太陽電池パネルを含むことができ、電源326を充電する、かつ/または電源326から分配される電力を発生するために使用することができる。別の実施態様では、電源326は、電力を発生および/または供給する他の手段を付加的または代替的に表し得る。
[0075] ペイロード306は、測位システム324を付加的に含むことができる。測位システム324は、たとえば、全地球測位システム(GPS)、慣性航法システム、および/または星追跡システムを含むことができる。測位システム324は付加的または代替的に、様々な動きセンサ(たとえば、加速度計、磁力計、ジャイロスコープ、および/またはコンパス)を含むことができる。測位システム324は付加的または代替的に、1つまたは複数のビデオカメラおよび/またはスチルカメラ、および/または気球300の地理空間位置を表す環境データを取り込むための様々なセンサを含むことができ、この情報をコンピュータシステム312で使用して気球300の位置を決定することができる。
[0076] ペイロード306の中の構成要素およびシステムの一部または全部は、ラジオゾンデまたは他の探査機で実施することができ、これは、他にもある情報の中で、圧力、高度、地理的位置(緯度および経度)、温度、相対湿度、および/または風速および/または風向きなどの環境パラメータを測定するように動作可能であり得る。
[0077] 上記のように、気球300は、他の気球との自由空間光通信用の超高輝度LEDシステムを含むことができる。そのため、光通信システム316は、出力データを表す光信号をLEDおよび/またはレーザからの光を変調することによって生成するように構成することができる。この場合、光信号は、データを光信号から抽出できる(別の気球の)受容端末装置に向けて、高い指向性の平行ビームとして自由空間中で伝送することができる。同様に、光通信システム316はまた、入ってくるビームの光信号を別の端末装置から受信することができる。そうして光通信システム316は、受信光信号の変調を検出し、入力データを抽出することができる。光通信システム316は、機械システムと共に、かつ/またはハードウェア、ファームウェア、および/またはソフトウェアと共に実施することができる。一般に、光通信システムを実施する手法は、具体的な適用例に応じて変わり得る。光通信システム316、および他の関連構成要素については、以下でさらに詳細に説明される。
[0078] さらに別の態様では、気球300は、高度制御をするように構成することができる。たとえば、気球300は、気球300中のガスの体積および/または密度を調節することによって気球300の高度を変えるように構成される、可変浮力システムを含むことができる。可変浮力システムは、様々な形をとることができ、また一般に、エンベロープ302中のガスの体積および/または密度を変えることができる任意のシステムとすることができる。
[0079] 例示的な実施形態では、可変浮力システムは、エンベロープ302の内部に設置されるブラダー310を含むことができる。ブラダー310は、液体および/または気体を保持するように構成された弾性チャンバとすることができる。あるいは、ブラダー310は、エンベロープ302の内部になくてもよい。たとえば、ブラダー310は、ブラダー310の外側の圧力を超えて加圧される液化材料および/またはガス状材料を保持する剛性の容器とすることができる。したがって、気球300の浮力は、ブラダー310中のガスの密度および/または体積を変えることによって調節することができる。ブラダー310中の密度を変えるために、気球300は、ブラダー310中のガスを加熱および/または冷却するシステムおよび/または機構を有して構成することができる。さらに、体積を変えるために、気球300は、ガスをブラダー310に追加する、および/またはガスをブラダー310から抜くためのポンプまたは他の機能を含むことができる。ブラダー310の体積を変えるために、付加的または代替的に、気球300は、ガスがブラダー310から逃げられるように制御可能な放出弁、または他の機能を含むことができる。複数のブラダー310を本開示の範囲内で実施することもできる。たとえば、複数のブラダーを使用して気球安定性を改善することができる。
[0080] 例示的な実施形態では、エンベロープ302は、密度が典型的な大気ガスより小さいヘリウム、水素、または他のガス状材料(すなわち、「空気よりも軽い」ガス)で充填することができる。すなわち、エンベロープ302は、その排気量に基づく付随する上向き浮力を有することができる。このような実施形態では、ブラダー310中の空気は、付随する下向きバラスト力を有し得るバラストタンクとみなすことができる。別の例示的な実施形態では、ブラダー310中の空気の量は、空気をブラダー310に出し入れすることによって(たとえば、空気圧縮機を用いて)変えることができる。ブラダー310中の空気の量を調節することによって、バラスト力を制御することができる。いくつかの実施形態では、バラスト力を一部使用して浮力に対抗すること、および/または高度安定性を得ることができる。
[0081] 別の実施態様では、エンベロープ302は、実質的に剛性とすることができ、ある密封容積を含むことができる。空気はエンベロープ302から排出することができるが、密封容積は実質的に維持される。言い換えると、少なくとも不完全な真空を密封容積の中に作り出し、維持することができる。すなわち、エンベロープ302および密封容積は、空気よりも軽くなり、浮力を得ることができる。さらに別の実施形態では、全浮力を調節し、かつ/または高度制御を行うために、空気または別の材料を密封容積の不完全な真空の中に制御可能に導入することができる。
[0082] 別の実施形態では、エンベロープ302の一部分を第1の色(たとえば、黒)とし、かつ/または、第2の色(たとえば、白)および/または第2の材料を有し得るエンベロープ302の残りの部分と異なる、第1の材料から形成することができ、たとえば、第1の色および/または第1の材料は、第2の色および/または第2の材料よりも相対的に多い量の太陽エネルギーを吸収するように構成することができる。すなわち、第1の材料が太陽に向いているように気球を回転させることが、エンベロープ302ならびにエンベロープ302の内部のガスを加熱するように作用し得る。このようにして、エンベロープ302の浮力が増大し得る。第2の材料が太陽に向いているように気球を回転させることによって、エンベロープ302の内部のガスの温度が低下し得る。したがって、浮力は減少し得る。このようにして、気球の浮力は、太陽エネルギーを使用してエンベロープ302の内部のガスの温度/体積を変えることによって調節することができる。このような実施形態では、ブラダー310が気球300の必要な要素でなくなり得るという可能性がある。すなわち、企図される様々な実施形態において、気球300の高度制御は、太陽に対して気球の回転を調節してエンベロープ302の中のガスを選択的に加熱/冷却し、それによってこのようなガスの密度を調節することによって、少なくとも部分的に実現することができる。
[0083] さらに、気球306は、ナビゲーションシステム(図示せず)を含むことができる。ナビゲーションシステムは、測位機能を実施して、気球の所望の空間分布(気球ネットワークトポロジ)の中の位置を維持する、かつ/または所望の空間分布に応じた位置まで移動することができる。具体的には、ナビゲーションシステムは、高度に関する風データを使用して、気球を所望の方向および/または所望の場所へ運ぶ風が得られる高度調節を決定することができる。この場合、高度制御システムが気球エンベロープ302の密度の調節をして、決定された高度調節を行い、それによって気球300を所望の方向に、かつ/または所望の場所まで横に移動させることができる。付加的または代替的に、所望の高度調節は、地上または衛星の制御システムで計算し、気球300に伝えることもできる。別の実施形態では、気球ネットワーク内の特定の気球は、他の気球の高度調節を計算し、その調節コマンドをこれら他の気球へ送出するように構成することができる。
[0084] いくつかの例示的な実施態様が本明細書で説明される。本明細書に記載のデバイス、システム、および方法を実施するには多くの手法があることを理解されたい。したがって、以下の例は本開示の範囲を限定するものではない。
3.全二重光通信
[0085] 図4Aは、自由空間光リンクを介して互いに通信する気球のネットワーク400の図である。ネットワーク400は、複数の光通信端末装置403a、404bを有する第1の気球402と、複数の光通信端末装置407b、408bを有する第2の気球406と、複数の光通信端末装置411a、412aを有する第3の気球410とを含む。ネットワーク400内の気球の間で網目状ネットワークを形成するために、ネットワーク内の所与の気球402、406、410は、互いの間で光信号を送受信することができる。すなわち、第1の気球402と第2の気球406は、光路414に沿ってそれぞれの端末装置403aと406bの間でデータ変調光信号を交換することによって、通信することができる。光路414は自由空間光学経路であり、これに沿って光信号が2つの気球402、406の間で、具体的には端末装置403a、407bの間で、伝搬する。同様に、第1の気球402と第3の気球410は、光路416に沿ってそれぞれの端末装置404bと412aの間でデータ変調光信号を交換することによって、通信することができる。また第2の気球406と第3の気球410は、光路418に沿ってそれぞれの端末装置408bと411aの間でデータ変調光信号を交換することによって、通信することができる。
[0086] ネットワーク400内の光通信リンクのそれぞれは、送信信号と受信信号を区別するための波長分割を使用して、双方向通信を可能にする。たとえば、光路414を介して、気球402は、第1の波長λ1を有する光を使用してデータを気球406へ送信し、気球406もまた、第2の波長λ2を有する光を使用してデータを気球402へ送信することができる。そのため、データは、同じ光路414を介して両方向に同時に送出することができ、2つの端末装置403a、407bは、ダイクロイックビームスプリッタ、フィルタなどの波長選択性光学部品を使用してλ1とλ2の光を分離し、受信信号の変調を検出することができる。2つの端末装置403a、407bはまた、送出信号のλ1またはλ2でデータ変調光を放出するように構成される、レーザダイオードおよび/またはレーザなどの波長別光源を含むこともできる。すなわち、光通信端末装置403aは、出力データを表す波長λ1の光を放出し、同時に、入力データを表す波長λ2の光を検出するように構成される。相補的に、光通信端末装置407bは、出力データを表すλ2の光を放出し、同時に、入力データを表すλ1の光を検出するように構成される。そうして組み合わされて、光通信端末装置403a、407bは、光路414を介して気球402、406の間で双方向(全二重)データ通信を可能にする相補対を形成する。
[0087] したがって、任意の2つの気球間の全二重通信を容易にするには、一般に2つの気球が相補対の端末装置を有する必要がある(すなわち、λ1で送出しλ2で受信する1つと、λ2で送出しλ1で受信するもう1つ)。全二重通信を可能にするこのような光通信端末装置の2つの相補モードは、本明細書の説明では便宜上、「モードA」および「モードB」と呼ばれることがある。モードAでは、所与の端末装置がλ1の光を送出し、λ2の光を受光する。モードBでは、所与の端末装置がλ2の光を送出し、λ1の光を受光する。すなわち、端末装置403aはモードA端末装置であり、端末装置407bはモードB端末装置である。
[0088] 同様に、光路416を介する気球402と410の間の通信リンクは、λ2の光を送出しλ1の光を受光する(したがってモードB端末装置である)端末装置404bと、λ1の光を送出しλ2の光を受光する(したがってモードA端末装置である)端末装置412aとによって終端される。また、光路418を介する気球406と410の間の通信リンクは、λ2の光を送出しλ1の光を受光する(したがってモードB端末装置である)端末装置408bと、λ1の光を送出しλ2の光を受光する(したがってモードA端末装置である)端末装置411aとによって終端される。したがって、光通信端末装置の相補対のそれぞれは、気球402、406、410のそれぞれが互いの間で全二重通信を行うことを可能にする。
[0089] 図4Bは、光通信端末装置420の簡略化したブロック図である。光通信端末装置420は、個々の端末装置403a、404b、407b、408b、411a、412aのいずれかとすることができる。光通信端末装置420は、固定光学構成要素422の間で行き来するデータ変調レーザ光428を、(たとえば、ネットワーク400内の別の気球の)別の端末装置の方へ光路431に沿って向けるように配置されたステアリングミラー430を含む。固定光学構成要素422およびステアリングミラー430は、フレームまたは他の構造的機能に取り付けて、様々な光学構成要素422とステアリングミラーの相対位置を実質的に固定することができる。
[0090] ステアリングミラー430は、端末装置420の視野(FOVと表示された領域)に広がる様々な方向から入ってくる(また様々な方向に出ていく)光を方向づけるように構成される、向きが調節可能な反射面とすることができる。ステアリングミラーは、回転可能に取り付けることができ、反射面を回転軸に対して旋回させる調節可能な機械構成要素(たとえば、ステッピングモータなど)を含むことができる。固定光学構成要素422は、データ変調光を放出するための1つまたは複数のレーザ光源424と、受光した光を検出するための1つまたは複数の光検出器426とを含む。そうして検出器426からの信号を使用して、受光した光の変調に従って、入ってくるデータを抽出することができる。モデムを使用して、出力データをデータ変調レーザ光にマッピングすることができ、また受光したデータ変調光を入力データにマッピングすることもできる。
[0091] 固定光学構成要素422は、レーザ光源424からの放出光をステアリングミラー430の方に、データ変調レーザ光を方向431(たとえば、別の端末装置に向かう光路)に沿って送出するように向ける。光学構成要素422はまた、同じ光学軸に沿って入ってくる光を受光し、この入ってくる光をレーザ光検出器426に向けるように構成される。固定光学構成要素422は、入ってくるのと出ていくのと両方のデータ変調光428の共用光学経路を提供するので、ステアリングミラー430は、放出光を方向431に送出されるように向けるために、また方向431からの入ってくる光を検出器426に向けるために使用することができる。ステアリングミラー430の向きを方向矢印432によって示されるように動かすと、反射光の方向が変化して、光通信端末装置420が、視野FOV内の別の方向の端末装置と通信することが可能になる。実際には、ステアリングミラー430は、複数の軸のまわりを旋回/回転するように構成して、方位角と仰角の両方に沿って広がる視野を得ることができる。たとえば、光通信端末装置420は、固定光学構成要素422に出入りするデータ変調レーザ光428が垂直に向けられるように(たとえば、地球の表面に対してほぼ直角)、またステアリングミラー430が約45°に向けられて光を同様の高度の気球間で反射するように、気球のペイロードに取り付けることができる。そうして、光端末装置420の視点から、ステアリングミラーの傾斜角を調節すると異なる仰角を得ることができ、またデータ変調レーザ光428の方向と平行な軸のまわりにステアリングミラー430を回転させると、異なる方位角を得ることができる。
[0092] 光源424および光検出器426に加えて、光通信端末装置420はまた、光径路を提供するように位置合わせされた様々な光学要素(たとえば、レンズ、フィルタ、反射器、ファイバ、開口部など)、および1つまたは複数のハードウェア、ソフトウェアおよび/またはファームウェア実装モジュールが実装されたコントローラを含むことができる。コントローラは、データを送出レーザ光に符号化するように、受光したレーザ光からデータを復号するように、送出/受光した光を特定の光路などと位置合わせするためにステアリングミラーの向きを調節するように、構成することができる。リニア符号器、および/または感光アレイの照明によって角度もしくは受光した光を検出する到着角センサなどの、ステアリングミラー430の向きを示すフィードバックセンサもまた含むことができる。
[0093] 時間が経つにつれて、ネットワーク400の構成は様々な理由のために再配置され得る。気球の互いの位置が変化するので、新しい構成に対応するための新しい光通信リンクが形成され得る。さらに、気球がネットワークから取り除かれ、または見通し光接続するにはあまりに遠くに移動すると、かつ/または気球がネットワークに追加され、または見通し光接続が可能な領域に入ると、ネットワーク400内の気球の個体数が時間の経過と共に変化し得る。上記のように、2つの任意の気球間に全二重通信リンクを形成するには、2つの端末装置に相補端末装置(たとえば、一方にモードA端末装置、もう一方にモードB端末装置)が装備される必要がある。このような光リンクを任意の対の気球間で形成しやすくするために、光通信端末装置は、全二重通信の2つの相補モード間で切り換わるように構成することができる(たとえば、モードAからモードBに、また逆も同様に)。
[0094] 図4Cおよび図4Dに示されるように、光端末装置420は、2つのモード間で切り換えてステアリングミラー430の向きを調節するように構成することができる。光端末装置420は、操作モードに応じて、ステアリングミラーによって所与の光路と選択的に位置合わせされるように配置された、空間的に分離された発光器および検出器を含むことができる。たとえば、光端末装置は、共通の方向に光を送出/受光する第1の発光器/検出器の対を含むことができ、ステアリングミラーは第1の向きを有する。光端末装置はまた、同じ方向に光を送出/受光する第2の発光器/検出器の対を含むこともでき、ステアリングミラーは第2の向きを有する。第1の発光器/検出器の対はλ1で送出し、λ2で受光し、したがって光端末装置420はモードAで動作するように構成することができ、ステアリングミラー430は第1の向きを有し、また第2の発光器/検出器の対はλ2で送出し、λ1で受光し、したがって光端末装置420はモードBで動作するように構成することができ、ステアリングミラー430は第2の向きを有する。すなわち、端末装置420は、モードAで動作しているときに使用されるλ1レーザ光源442およびλ2検出器444を含み、モードBで動作しているときに使用されるλ2レーザ光源450およびλ1検出器452もまた含むことができる。
[0095] 図4Cは、全二重通信の第1のモード(たとえば、モードA)で動作するように位置合わせされた光通信端末装置420の簡略化したブロック図である。モードAでは、光通信端末装置420は、λ1で送出しλ2で受光し、ステアリングミラー430は、固定光学構成要素との間のデータ変調光428を方向431に(別の端末装置の方へ)向ける。光学構成要素は、λ1光を実質的に反射しλ2光を実質的に透過させるダイクロイックビームスプリッタ440を含む。それによって、ダイクロイックビームスプリッタ440は、光端末装置420を通過する波長依存性光径路を提供し、またそれによって送出λ1光446を、受光したλ2光448から分離する。それによって、ダイクロイックビームスプリッタ440は、λ1光446が、光端末装置内の、受光されるλ2光448が検出される場所とは空間的に異なる場所から放出されることを可能にし、さらに、λ1光およびλ2光(428)は、ダイクロイックビームスプリッタ440とステアリングミラー430の間の共通光経路をたどって(反対向きであるが)伝搬する。図4Cで、ステアリングミラー430は第1の向きを有し、λ1レーザ光源442からのデータ変調レーザ光446を方向431の方へ向ける。同時に、ステアリングミラー430は、方向431からの入ってくるλ2光448をλ2検出器444の方へ向ける。第1の向きにある間、光端末装置420はモードAで動作し、方向431に位置する遠隔の端末装置と全二重通信を行うように構成される。
[0096] 図4Dは、全二重通信の第2のモード(たとえば、モードA)で動作するように位置合わせされた光通信端末装置420の簡略化したブロック図である。モードBでは、光通信端末装置420は、λ2で送出しλ1で受光し、ステアリングミラー430は、固定光学構成要素との間のデータ変調光429を方向431に(別の端末装置の方へ)向ける。図4Dで、ステアリングミラー430は、λ2レーザ光源452からのデータ変調レーザ光456を方向431に向けて方向づける、第2の向きを有する。同時に、ステアリングミラー430は、方向431からの入ってくるλ1光454をλ1検出器450の方へ向ける。第2の向きにある間、光端末装置420はモードBで動作し、方向431に位置する遠隔の端末装置と全二重通信を行うように構成される。
[0097] ステアリングミラー420が、出ていく光および入ってくる光をモード別発光器/検出器の対と位置合わせし、次に、ステアリングミラー430の位置合わせを変更することによってモードを単独で変えることを可能にするために、光端末装置内の光径路は、共通の量だけ互いに角度オフセットされる。すなわち、端末装置430内で、出ていくλ1光が(モードAで)通る、λ1レーザ442とステアリングミラー430の間の光径路は、入ってくるλ1光が(モードBで)通る、λ1検出器450とステアリングミラー430の間の光学経路から角度分離されている。この角度分離は、出ていく/入ってくる光が、動作モードに応じて、ステアリングミラー430の操作によってλ1レーザ442またはλ1検出器450に交互に向けられることを可能にする。同様に、出ていくλ2光が(モードBで)通る、λ2レーザ452とステアリングミラー430の間の光径路は、入ってくるλ2光が(モードAで)通る、λ2検出器444とステアリングミラー430の間の光径路から角度分離されている。2つのλ1光学経路間の角度分離は、2つのλ2光学経路間の角度分離と同じにすることができる。
[0098] レーザ光源442、452、検出器444、450、およびダイクロイックビームスプリッタ440を前述のように共同角度分離が実現するように配置することによって、端末装置420は、ステアリングミラー430を動かすことによって、また対応する光源と検出器を作動させることによって、単独に動作モード間で切り換わることができる。その結果、端末装置420は、ステアリングミラーを動かすことによって単独で全二重通信のモードを切り換えるように動的に再構成することができ、端末装置420内の残りの光学構成要素は固定のままとすることができ、位置合わせは維持することができる。それによって、この配置は、端末装置420が光端末装置内のステアリングミラー420以外の構成要素を何ら調整または調節せずに動作モードを切り換えることを可能にする。
[0099] 実際には、ステアリングミラー430の「第1の向き」および「第2の向き」は、所与の方向431に対して実質的に固定された角度の向きとすることができる。しかし、任意の方向の(端末装置420の視野内の)遠隔端末装置と通信するために、端末装置420は、ある範囲の角度にかけてミラーを向けて、出ていく光および入ってくる光をそれに応じて方向づけるように構成することができる。一般に、光自由空間伝搬の所与の方向(すなわち、所与の光路)に対して、ステアリングミラー430の実現可能な2つの異なる向きがある。すなわち、送出/受光される光を(モードA通信のために)λ1発光器およびλ2検出器と位置合わせするものと、送出/受光される光を(モードB通信のために)λ2発光器およびλ1検出器と位置合わせする別のものである。したがって光端末装置は、全二重通信のモード、および光路の方向に基づいてステアリングミラー430の向きを選択および維持できる制御システムを含むことができる。
[00100] 場合によっては、ネットワーク400内の個々の光通信端末装置の動作モードは、集中制御システム(たとえば、図2に関連して説明された制御システム200)によって割り当てることができる。別の場合では、動作モードは、ネットワーク400内の個々の気球間の初期通信に基づくアドホックベースで確立して、網目状ネットワークを作り上げるリンクを形成することができる。
4.例示的な全二重光通信端末装置
[00101] 図5は、2つの異なるモードで交互に動作するように配置された例示的な光通信端末装置500の図である。光通信端末装置500は、いくつかの点で上述の光通信端末装置420と類似していることができ、上述のネットワーク内の気球などの高高度プラットフォームのペイロードに取り付けられるように構成することができる。端末装置500は、ステアリングミラー502と、λ1を反射しλ2を透過し、それによって光を波長に基づいて分離するダイクロイックビームスプリッタ518とを含む。図5の図は、光端末装置500を通る、モードAとモードBの交互の動作に対応する2つの別個の光経路を示す。破線は、モードAでの動作中に通る、送出されるλ1光の光経路を示し、また受光されるλ2光の光経路も示す。点線は、モードBでの動作中に通る、送出されるλ2光の光経路を示し、また受光されるλ1光の光経路も示す。別個の各光経路は、ビームステアリングミラー502の異なる向きに対応すると共に、集束/平行化光学部品、フィルタ、ビームスプリッタなどの光学構成要素を共用するのに十分なだけ小さく角度分離されている。しかし、別個の経路はまた、光端末装置500内の空間的に分離された場所との間で光を方向づけ、それによって別個の動作モードを可能にするには十分なだけ大きく角度分離される。
4a)波長差別化光経路
[00102] 光端末装置500の特徴は一般に、入ってくる光に関して説明されるが、光は反対の(出ていく)方向にも伝搬できることを理解されたい。別の遠隔端末装置からの光の平行ビームは、端末装置500への自由空間光学経路に沿って伝搬してから、入ってくる光を中継光学部品506の方に向けるステアリングミラー500で反射される。中継光学部品は、ステアリングミラー502と端末装置500内の残りの光学構成要素との間の光の平行ビームを中継する1つまたは複数のレンズ、反射器、開口部などを含むことができる。中継光学部品506は、必要があればビームを別のサイズに縮小拡大し、ビームスプリッタ508に向けて平行ビームを出力することができる。ビームスプリッタ508は、入ってくる光の一部を、ステアリングミラー502の位置合わせを制御するために使用する方位フィードバックセンサ514に向けて逸らす。これについては以下でさらに説明される。ビームスプリッタ508は、たとえば、入って来る光の約2%〜5%を逸らすことができ、残りの光がダイクロイックビームスプリッタ518へ透過される。
[00103] ダイクロイックビームスプリッタ518は、波長に依存する透過/反射プロファイルを有する光学要素とすることができる。場合によって、ダイクロイックビームスプリッタ518は、レンズなどの他の光学要素に施される波長依存型コーティングによって実施することができる。ダイクロイックビームスプリッタ518は、波長λ1を有する光を実質的に反射し、波長λ2を有する光を実質的に透過させることができる。したがって、ダイクロイックビームスプリッタ518により、入って来る光が波長に応じて別々の光経路を通ることになる。波長λ1を有する光は、中継光学部品506の光学軸を実質的に横切る枝路に入り、波長λ2を有する光は、中継光学部品の光学軸と平行な枝路へ進むことができる。
[00104] λ1枝路をたどって光は、他の波長を有する光を阻止する助けになるフィルタ520を通過する。フィルタ520は、ある範囲のλ1を含む波長を透過させる。フィルタ520はまた、λ2光を実質的に阻止することもでき、これは、光端末装置500の別の枝路の光からのクロストークを軽減する助けになる。次に、フィルタリングされたλ1光は集束光学部品522によって集束されて、検出場所524を照明する。集束光学部品522は、モードBで端末装置が動作する間、点線で示されるように、λ1光の平行ビームを検出場所524の上に集束する適切な焦点距離を持つレンズを含むことができる。検出場所524は、たとえばファイバ接続を介して、λ1検出器542(たとえば、アバランシェフォトダイオードなど)に光学的に結合することができる。いくつかの例では、検出場所524は、λ1検出器542に接続される光ファイバケーブルを終端するフェルールの開口部によって実施することができる。
[00105] 光伝搬の逆方向では、λ1レーザ544からの光を放出場所526にファイバ結合することができる。破線で示されるように、モードAで、放出場所526から放出されたλ1光は、放出光を平行化し光を逆に向けてフィルタ520からダイクロイックビームスプリッタ518まで通す、集束光学部品522の方へ伝搬し、ダイクロイックビームスプリッタでは、λ1光が、自由空間光経路を介して伝送するためのステアリングミラー502に向かって反射される(中継光学部品506を経由して)。放出場所526は、λ1レーザ544に接続される光ファイバケーブルを終端するフェルールの開口部によって実施することができる。場合によって、検出場所524および放出場所526は、デュアルコアファイバフェルールによって実施することができ、そうするとそれぞれの光信号は、ファイバ内のそれぞれのコアを介してλ1検出器542およびλ1レーザ544まで搬送することができる。
[00106] 入って来る光を再び参照すると、λ2枝路を(ダイクロイックビームスプリッタ518を透過したλ2光から)たどって、光は、他の波長を有する光を阻止する助けになるフィルタ528を通過する。フィルタ528は、ある範囲のλ2を含む波長を透過させる。フィルタ528はまた、λ1光を実質的に阻止することもでき、これは、光端末装置500の別の枝路の光からのクロストークを軽減する助けになる。次に、フィルタリングされたλ2光は集束光学部品530によって集束されて、検出場所534を照明する。集束光学部品530は、モードAで端末装置500が動作する間、破線で示されるように、λ2光の平行ビームを検出場所530の上に集束する適切な焦点距離を持つレンズを含むことができる。検出場所530は、たとえばファイバ接続を介して、λ2検出器548(たとえば、アバランシェフォトダイオードなど)に光学的に結合することができる。いくつかの例では、検出場所534は、λ2検出器548に接続される光ファイバケーブルを終端する、フェルールの開口部によって実施することができる。
[00107] 光伝搬の逆方向では、λ2レーザ546からの光を放出場所532にファイバ結合することができる。点線で示されるように、モードBで、放出場所532から放出されたλ2光は、放出光を平行化し光を逆に向けてフィルタ528からダイクロイックビームスプリッタ518まで通す、集束光学部品530の方へ伝搬し、ダイクロイックビームスプリッタでは、λ2光が、自由空間光経路を介して伝送するためのステアリングミラー502に向かって透過する(中継光学部品506を経由して)。放出場所532は、λ2レーザ546に接続される光ファイバケーブルを終端する、フェルールの開口部によって実施することができる。場合によって、検出場所534および放出場所532は、デュアルコアファイバフェルールによって実施することができ、そうするとそれぞれの光信号は、ファイバ内のそれぞれのコアを介してλ2検出器548およびλ2レーザ546まで搬送することができる。
4b)向きフィードバック
[00108] 上記のように、光端末装置500はまた、ステアリングミラー502で反射した後にビームスプリッタ508で逸れた、入ってくる光の一部分を検出する方位フィードバックセンサ514を含む。逸れた光(ビームスプリッタ508に入射する光の約2%〜5%であり得る)は、フィルタ510(λ1光とλ2光の両方を通し、他の波長の光を阻止することができる)を通過し、次に、集束光学部品512によって、方位フィードバックセンサ514上に集束する。方位フィードバックセンサ514は、アレイを照明する光のパターンに基づいて電気信号を生成するフォトダイオードのアレイなどの感光アレイ516を含むことができる。モードAでは、遠隔端末装置から受光されたλ2光が、破線で示されるように感光アレイ516を照明する。モードBでは、遠隔端末装置から受光されたλ1光が、点線で示されるように感光アレイ516を照明する。
[00109] 照明される感光アレイ516上の位置は、入射光の到着角に依存する。したがって、感光アレイ516を用いて検出される照明パターンを使用して、ステアリングミラー502の向きを決定することができる。たとえば、感光アレイ516上に集束した光の重心位置を決定することができ、ステアリングミラー502の向きは、この重心位置に基づいて決定することができる。このような決定は、たとえば、方位フィードバックセンサ514からの、測定された照明パターンを表す信号を受信するコントローラ550を使用して行うことができる。方位フィードバックセンサ514からの信号に基づいて、コントローラ550は、ミラー位置調整システム504に対するコマンドを生成し、それによってステアリングミラー502の向きを調節し、またそれによって入射光を所望の手法で位置合わせすることができる。さらに、端末装置500内の光学構成要素が互いに固定されるので(たとえば、共通フレーム構造体に取り付けられることによって)、感光アレイ516の方へ逸れた光の異なる重心位置は、λ1またはλ2枝路へ進む光の異なる位置合わせに対応する。具体的には、端末装置500がモードAまたはモードBで動作する位置合わせに入射光が対応する、感光アレイ516上の2つの特定の目標場所がある。
[00110] たとえば、逸れたλ1光が、感光アレイ516上で点線が収束するBの印が付いた場所に集束するとき、ビームスプリッタ508で逸れていないλ1光は、検出場所524を照明するように位置合わせされ、また放出場所532から放出されたλ2光は同時に、λ1光が受光されるのと同じ方向(たとえば、遠隔端末装置の方)に伝搬するように方向づけられる(ステアリングミラー502によって)。したがって、目標場所Bは、モードBでの端末装置500の動作と関連付けられた感光アレイ516上の場所とすることができる。同様に、逸れたλ2光が、感光アレイ516上で破線が収束するAの印が付いた場所に集束するとき、ビームスプリッタ508で逸れていないλ2光は、検出場所534を照明するように位置合わせされ、また放出場所526から放出されたλ1光は同時に、λ2光が受光されるのと同じ方向(たとえば、遠隔端末装置の方)に伝搬するように方向づけられる(ステアリングミラー502によって)。したがって、目標場所Aは、モードAでの端末装置500の動作と関連付けられた感光アレイ516上の場所とすることができる。目標場所AおよびBは、感光アレイ516上の実質的に固定された場所とすることができ、較正ルーチンに基づいて決定することができる。いくつかの例では、2つの目標場所AおよびBは、単一の感光アレイ(たとえば、感光アレイ516)上の位置とすることができる。とはいえ、いくつかの例では、方位フィードバックセンサ514は、目標場所AおよびBのそれぞれに設置された2つの別個の感光アレイを含むこともできる。
4c)コントローラ
[00111] コントローラ550は、感光アレイ516を照明する光の測定値を使用してステアリングミラー502の向きを調節するように構成することができる。コントローラ550は、感光アレイを照明する光の重心位置が、動作モードに応じて、2つの目標場所のうちの1つに近づくようにステアリングミラー502を調節することができる。たとえば、コントローラ550は、感光アレイ516上の照明パターンの測定値を取得し、照明パターンを所望の目標場所により近く移動させるステアリングミラー502の向きの調節を決定し、次に、それに応じて位置調整システム504に指示することができる。さらに、コントローラ550は、継続的に動作してステアリングミラー502を調節することができ、それによって進路が、たとえば遠隔端末装置の相対的動きにより、入射光の方向に微妙な変化をする。
[00112] 1つの例では、コントローラ550は、処理ユニット552、データ記憶装置556、および1つまたは複数の入出力ポート554を含むことができ、これらは、システムバス、または1つもしくは複数の他の接続機構562によって通信可能に一緒に連結することができる。データ記憶装置556は、非一時的コンピュータ可読媒体を含むことができ、また位置データ558および動作命令560を含む。命令560は、たとえば、処理ユニット552によって実行されたときに本明細書に記載の機能をコントローラ550が行うプログラム論理を含むことができる。すなわち、命令560により、コントローラ550は、方位フィードバックセンサ514からのデータに基づいてステアリングミラー502の向きに対する調節を決定し、ミラー位置調整システム504への対応する命令を生成することができる。位置データ558は、全二重通信の2つの異なるモードに対応する、感光アレイ上の特定の目標場所についての格納された表示を含むことができる。したがって、位置データ558は、たとえば較正ルーチン中に確立することができる。入出力ポート554は、向きフィードバックシステム514からデータを受信するように、またミラー位置調整システム504にコマンド命令を与えるように、機能する。
[00113] 加えて、コントローラ550は、おそらく他のエンティティと連係して、集中コントローラ(または他のエンティティ)からモード選択コマンドを受信するように、またそれに応じて端末装置500がそれ自体を構成するように(たとえば、対応する目標場所と位置合わせすることによって)、機能することができる。
[00114] さらに、コントローラ550は、おそらく他のエンティティと連係して、端末装置を動作させてデータを送受信するように機能することができる。コントローラ550および/またはモデム540は、モードAの間、自由空間光リンクを介して伝送する出力データを受信し、またλ1レーザ544に、出力データに従って変調されている光を放出光させることができる。同時に、コントローラ550および/またはモデム540は、λ2検出器548によって検出された光の変調に基づいて入力データを抽出することができる。同様に、コントローラ550および/またはモデム540は、モードBの間、自由空間光リンクを介して伝送する出力データを受信し、またλ2レーザ546に、出力データに従って変調されている光を放出させることができる。同時に、コントローラ550および/またはモデム540は、λ1検出器542によって検出された光の変調に基づいて入力データを抽出することができる。
[00115] 端末装置500は、波長λ1およびλ2の光信号に関して一般的に説明されているが、2つの波長は様々な値の範囲を有し得ることを理解されたい。場合によって、大気中で吸収されにくい波長を選択することができる。たとえば、λ1は約1540ナノメートル、またλ2は約1560ナノメートルとすることができる。もちろん、別の例では、2つの波長の大きい方が横に逸れ、端末装置500のλ1枝路をたどるように、λ1を1560に、λ2を1540にすることができる。しかし、紫外、可視、および近赤外スペクトルの多くの他の波長もまた選択することができる。加えて、λ1およびλ2の所与の値に対して、様々なフィルタ、510、520、528、レーザ542、546、検出器544、548、およびダイクロイックビームスプリッタ518を選択して(レージング媒体、フォトダイオード、コーティングなどの選択を含めて)、本明細書に記載の波長固有の挙動を得ることができる。さらに、向きフィードバック514の感光アレイ516は、受信波長の検出に適している技術を用いて実施することができる。一例として、ヒ化インジウムガリウム(InGaAs)要素を含むフォトダイオードから形成されたセンサアレイは、エルビウムドープ固体レーザダイオードからの光(たとえば、1550ナノメートル近辺の帯域内)を検出するのに適している。他の多くの例が、様々な材料でドープしたイットリウムアルミニウムガーネット(YAG)を含むレージング媒体を有する、レーザダイ
オードによって実現された1000ナノメートル近辺の帯域内の波長を含めて、可能である。
4d)代替方位フィードバックセンサ
[00116] 図6は、別の例示的な光通信端末装置600の図である。端末装置600は、図5に関連して上述した端末装置500といくつかの点で類似しており、ネットワーク内の気球などの高高度プラットフォームのペイロードに取り付けて、別の気球との間に自由空間光通信リンクを提供することができる。しかし、端末装置600は、上述の方位フィードバックセンサの代替配置を含む。端末装置600は、粗位置センサ624および精密位置センサ614を含み、これらはそれぞれ、ビームスプリッタ508で逸らされフィルタ510を通過する光の一部分を受光する。図6に示された例示的な構成では、第2のビームスプリッタ610は、ビームスプリッタ508からの入ってくる光ビームを分割し、一部を精密位置センサ614の方へ反射し、一部を粗位置センサ624の方へ透過させる。ビームスプリッタ610は光を、およそ半分がそれぞれの方向に進むように分割することができるが、他の可能性を用いることもできる(たとえば、40/60、30/70など)。いくつかの例では、端末装置600は、ステアリングミラー502で反射された少なくとも一部の光をそれぞれのセンサが受光するように端末装置600の光学経路に沿って様々な異なる位置に置かれた、精密位置センサ614および粗位置センサ624を用いて実施することができる。そのため、精密位置センサ614および粗位置センサ624を使用して、ステアリングミラー502の向きの、したがってまた端末装置600の動作モードの、フィードバックを得ることができる。
[00117] 集束光学部品622は、粗位置センサ624の感光アレイ626上に光を集束し、集束光学部品612は、精密位置センサ614の感光アレイ616上に光を集束する。感光アレイ616、626のそれぞれには、モードAまたはモードBにおける動作の位置合わせと関連付けられた目標場所がある。粗位置センサ624は、ステアリングミラー502に粗い向きフィードバックを与えるのに使用され、精密位置センサ614は、向きの精密調整を行うのに使用される。したがって、粗位置センサ624によって検出できる入射光の角度は、精密位置センサ614によって検出できる入射光の角度よりも、細分性は粗いが大きい範囲に及ぶことができる。一般に、位置センサ614、624のいずれかを用いて検出できる角度スパン、および特定の角度を分解できる程度は、それぞれの集束光学部品622、612と、それぞれの感光アレイ616、626のサイズおよび分解能との両方に依存する。たとえば、両方の感光アレイ616、626は実質的に類似のものとすることができるが、集束光学部品622は相対的に短い焦点距離を有することができ、これにより、感光アレイ614が光学部品622に近接して位置付けられ、また感光アレイ626を照明する入射光の角度範囲をより大きくすることが可能になる。対照的に、集束光学部品612は、相対的に長い焦点距離を有することができ、これにより、感光アレイ616がより遠く離れて位置付けられ、また感光アレイ616を照明する入射光の角度範囲は小さくなるが、角度間の分解能をより大きくすることが可能になる。
[00118] いくつかの例では、粗位置センサ624は主に、入射光が精密位置センサ614の感光アレイ616を照明するように、ステアリングミラー502を十分な精度で位置合わせするために使用することができる。さらに、いくつかの例では、端末装置600はまた、端末装置の光学経路内に、一次粗ステアリングミラー(たとえば、ステアリングミラー502)によって反射された光を受光する追加の精密ステアリングミラーを含むこともできる。このような配置では、粗ステアリングミラーは、粗位置センサからの向きフィードバックを受けることができる。この場合、粗位置センサを使用して、入射光が精密ステアリングミラーによって反射されるように粗ステアリングミラーを指向させることができる。そうして精密ステアリングミラーは、精密ステアリングミラーによって反射された光を受光するように位置している精密位置センサから、向きフィードバックを受けることができる。
[00119] 別の例では、2つの感光アレイ616、626は、異なる構成を有することができる。たとえば、精密位置センサアレイ616は、4つの画素検出器または別の位置検知検出器の交点を基準として入射ビームの位置を検出する、4セル検出器とすることができる。粗位置センサアレイ626は、撮像用途に使用されているものと類似している画素検出器の二次元アレイなど、視野が大きい感光アレイとすることができる。さらに、精密位置センサアレイ616(たとえば、4セル検出器)は、粗位置センサアレイ626よりも相対的に高い読出し速度で動作させることができ、それによって、より頻繁なフィードバックがステアリングミラー502の向きを調節するのに可能になる。
[00120] 両方の位置センサ624、614からのフィードバックは、コントローラ650に与えることができ、コントローラは、測定光の位置をモード別の目標場所(たとえば、図6でAおよびBの印が付けられた場所)と位置合わせするためにステアリングミラー502の向きの調節を決定し、それに応じてミラー位置調整システム504に命令する。いくつかの例では、初期リンクを形成するとき、コントローラ600は最初に、入ってくる光の重心位置を精密なセンサ614で検出できるかどうかを調べることができる。最初の位置合わせがあまりにオフセットしていて精密位置センサ614に到達しない場合など、検出できない場合には、コントローラ600は、粗位置センサ624からの情報に基づいてステアリングミラー502の向きの調節を開始し、次に、検出重心位置が粗位置目標場所に近くなると、精密位置センサ614を使用することに移行することができる。場合によって、粗位置センサ624および/または精密位置センサ614は、複数の別個の感光検出器を含むことができ、1つの検出器が、上述の方位フィードバックセンサ514と同様に、それぞれのモード別の目標場所に位置している。たとえば、精密位置センサアレイ616は、1つが目標場所Aに、1つが目標場所Bにある2つの4セル検出器を含むことができる。さらになお、コントローラ650は、2つの位置センサ614、624からの測定値の組合せを同時に使用するように構成することもできる。
4e)位置合わせレーザ
[00121] 図7は、別の例示的な光通信端末装置700の図である。端末装置700は、図5に関連して上述した端末装置500といくつかの点で類似しており、ネットワーク内の気球などの高高度プラットフォームのペイロードに取り付けて、別の気球との間に自由空間光通信リンクを提供することができる。しかし、端末装置700は、λ1ともλ2とも異なる第3の波長λ3の光を放出する位置合わせレーザ光源728を含む。別のダイクロイック要素710は、λ1光およびλ2光を実質的に透過させ、λ3光を実質的に反射する。ダイクロイック要素710は、入ってくる光を中継光学部品506から受光するように位置付けられ、それによって、入ってくるλ3光をλ1枝路およびλ2枝路とは別個のλ3光経路に沿って逸らす。逸れたλ3光は、λ3光を選択的に透過させるフィルタ712を通過し、次にビームスプリッタ720が、入ってくるλ3光の一部を方位フィードバックセンサ716の方へ通過させる。ビームスプリッタ720は、λ3レーザ光源728からの光を、遠隔端末装置までダイクロイック要素710、中継光学部品506、およびステアリングミラー502を介して伝送するように方向づける。
[00122] 位置合わせレーザ728は、ファイバを介して放出場所726に光学的に結合される。光学部品724は、放出場所726からのλ3光を平行化し、その光をビームスプリッタ720の方へ向ける。ビームスプリッタ720は、λ3の光を一部反射すると共にλ3の光を一部透過させる光学要素とすることができる。上記のように、ビームスプリッタ720は、端末装置700から送出されるべきλ3光の少なくとも一部を逸らし、また一部の入ってくる(遠隔の端末装置からの)λ3光を方位フィードバックセンサ716へと通過させる。
[00123] λ3枝路に入った後、入ってくるλ3光はフィルタ712を通過し、集束光学部品714によって方位フィードバックセンサ716の感光アレイ718上に集束される。方位フィードバックセンサ716は、感光アレイ718がλ1およびλ2ではなくλ3の光を検出するように構成されていることを除いて、図5に関連して説明された方位フィードバックセンサ514と類似のものにすることができる。方位フィードバックセンサ716は、感光アレイ718を照明する測定λ3光を表す信号をコントローラ750に供給する。またコントローラ750は、ミラー位置決めシステム504を作動させてステアリングミラー502の向きを、照明光の重心位置がモード別の目標場所(たとえば、図7でAおよびBの印が付けられた場所)と位置合わせされるように調節することができる。
[00124] ダイクロイック要素710は、少なくとも一部の入ってくるλ3光を方位フィードバックセンサ716に向けて逸らし、しかもなおλ3レーザからの少なくとも一部の出ていくλ3光を透過させるようにも、またλ1およびλ2のすべての光を実質的に透過させるようにも、構成される。したがって、ダイクロイック要素710は、λ3を選択的に反射する層で部分的にコーティングされた、λ3光を反射部分と透過部分に分割する光学部品によって実施することができる。さらに、2つのダイクロイック要素710、720は、λ3を(少なくとも部分的に)反射しλ1およびλ2を透過させる品物として示されているが、いくつかの実施形態では、λ3を透過させλ1およびλ2を反射するダイクロイック要素を含むことができ、その場合には、λ1光経路およびλ2光経路は、中継光学部品506の光学軸に対し横に向けることができる。同様に、位置合わせレーザ放出場所726または方位フィードバックセンサ716は、中継光学部品の光学軸と平行に設置することができる。しかし、一般にはダイクロイック要素710、720は、λ3光が端末装置700中の別の光経路を行き来するように、しかもなお、ステアリングミラー502で反射されたλ1およびλ2の透過/受光される光と一直線になるように、配置される。
[00125] 通信波長(たとえば、λ1およびλ2)とは波長が異なる(たとえば、λ3)別個の位置合わせレーザを使用すると、いくつかの利点が得られる。方位フィードバックセンサ716を照明するλ3光の電力は、端末装置500および600のように、通信信号の電力を犠牲にしては来ない。非通信波長の位置合わせセンサを分離すると、方位フィードバックセンサ716に供給されるλ3光の信号対雑音が、通信信号の信号対雑音と実質的に無関係になることが可能になる。
[00126] 加えて、感光アレイ718は、通信波長とは無関係のλ3の光に感応するフォトダイオードを設けるように実施することができる。たとえば、通信波長が1550ナノメートルに近い帯域内でも、位置合わせレーザは904ナノメートルとすることができ、また感光アレイ718は、InGaAsではなく相補型金属酸化膜半導体(CMOS)アレイのフォトダイオードを使用して実施することができる。
[00127] 一般に、本明細書に記載の光通信端末装置の様々な特徴は、様々な異なる様式で組み合わせることができる。たとえば、光通信端末装置は、図6に関連して説明された端末装置600の代替方位フィードバックセンサ配置を、図7に関連して説明された別個の位置合わせレーザと組み合わせて両方を含むように実施することができる。
[00128] 加えて、図5〜7の図に詳細には示されていないが、光端末装置500、600、700のそれぞれはまた、様々な光学構成要素が取り付けられるフレーム、ハウジング、または他の構造的機能も含む。フレーム構造体は、モードAおよびモードBの波長別の経路が互いに位置合わせされて存続するように、各光学構成要素(たとえば、レンズ、ダイクロイック要素、反射器、放出場所、検出場所など)の相対的間隔、向き、および/または位置を保持することができる。
5.例示的な動作
[00129] 図8は、例示的な実施形態による、光通信端末装置を動作させるための例示的な処理800の流れ図である。図8に示された処理800は、本明細書に記載の光通信端末装置のいずれかによって単独で、または気球に搭載してある、もしくは地上局にあるコントローラなどの、ハードウェアおよび/またはソフトウェアで実現された機能モジュールと組み合わせて実施することができる。ブロック802で、光通信端末装置は、放出λ1光を所与の方向に向けるために、同じ方向からの入射λ2光をλ2検出器に光が当たるように方向づけながら、そのステアリングミラーを指向させることによってモードAで動作するように構成される。たとえば、光通信端末装置は、入射λ2光(または位置合わせに使用される別の波長の光)の一部分によって照明される方位フィードバックセンサを含むことができ、また、方位フィードバックセンサを照明する光を目標場所に位置合わせするために、位置調整システムにフィードバックを与えてミラーを指向させる。
[00130] ブロック804で、光通信端末装置は、λ1のデータ変調光を送出しλ2のデータ変調光を受光することによって、モードAで全二重光通信を行うことができる。たとえば、モデムを使用して、λ1レーザに命令することによって出力データを送出λ1光に符号化することも、その出力データに対応する特定の変調パターンで光を放出することもできる。モデムはまた、受光したλ2光の変調パターンを検出し、この変調パターンに対応する入力データを特定することによって、受光したλ2光からデータを抽出(復号)することもできる。
[00131] ブロック806で、光通信端末装置は、モードAからモードBへ変更する決定を行うことができる。この決定は、光通信端末装置に他の気球との光リンクを開始するように命令する、集中コントローラまたは別の気球からの命令に基づいて行うことができる。このような命令は、他の気球のおおよその座標(たとえば、GPS座標)および各気球の動作モードを指定する気球ごとの情報を含むことができる。決定はまた、光通信端末装置によって単独で行われる決定を含めて、他の要因に基づいて行うこともできる。たとえば、光通信端末装置は、他の近傍の端末装置の相対的位置に関する同時通報情報を受信することができ(おそらく無線リンクを介して)、次に、位置合わせに使用するための光信号を探索することによって(また、位置合わせに使用するための光信号を送出することによっても)、端末装置のうちの特定の1つと光リンクを確立するよう試みることができる。次に端末装置は、それ自体を位置合わせして1つのモードで通信を行うことができ、ある期間を過ぎても成功しない場合には、モードを切り換えることができる。それによって光網目状ネットワークは、集中コントローラでは全く計画されていない有機的手法で全二重光通信を実現するための相補動作モードを確立するように、それ自体を構成することができる。
[00132] ブロック808で、光通信端末装置は、放出λ2光を所与の方向に向けるために、同じ方向からの入射λ1光をλ1検出器に光が当たるように方向づけながら、そのステアリングミラーを指向させることができる。すなわち、光通信端末装置は、ブロック806で行われた決定に応じてモードBで動作するように、それ自体を構成することができる。たとえば、集中ネットワークコントローラからの命令に基づいて気球の制御システムは、その光通信端末装置の1つを、指定された場所の方に向くように指向させ、位置合わせを目的とする光信号の送出を始めることができる。光通信端末装置はまた、他の気球からの入ってくる光信号の探索を始めることもでき、その信号が検出されると、端末装置はフィードバックを使用して、端末装置が位置合わせされて指定動作モードで全二重通信を行うように、そのステアリングミラーを、モード別の目標場所と位置合わせするために指向させることができる。同様に、他の端末装置も、そこで受信した光信号を使用して特定の方向に向き、相補モードで動作するようにそれ自体を位置合わせする。
[00133] ブロック810で、光通信端末装置は、λ2のデータ変調光を送出し、λ1のデータ変調光を受光することによって、モードBで全二重通信を行うことができる。たとえば、モデムを使用して、λ2レーザに命令することによって出力データを送出λ2光に符号化することも、その出力データに対応する特定の変調パターンで光を放出することもできる。モデムはまた、受光したλ1光の変調パターンを検出し、この変調パターンに対応する入力データを特定することによって、受光したλ1光からデータを抽出(復号)することもできる。
[00134] いくつかの実施形態では、開示された方法は、機械可読形式で非一時的コンピュータ可読記憶媒体上に、または他の非一時的媒体または製造物上に符号化されたコンピュータプログラム命令として実施することができる。図9は、本明細書に提示された少なくともいくつかの実施形態により配置された、計算デバイス上でコンピュータ処理を実行するためのコンピュータプログラムを含む、例示的なコンピュータプログラム製品の概念部分図を示す図である。
[00135] 1つの実施形態では、例示的なプログラム製品900は、信号保持媒体902を使用して提供される。信号保持媒体902は、1つまたは複数のプロセッサで実行されたときに図1〜8に関して上述した機能または機能の一部分を提供できる、1つまたは複数のプログラミング命令904を含むことができる。いくつかの例では、信号保持媒体902は、それだけには限らないが、ハードディスクドライブ、コンパクトディスク(CD)、デジタルビデオディスク(DVD)、デジタルテープ、メモリなどの非一時的コンピュータ可読媒体906を包含することができる。いくつかの実施態様では、信号保持媒体902は、それだけには限らないが、メモリ、リード/ライト(R/W)CD、R/W DVDなどのコンピュータ記録可能媒体708を包含することができる。いくつかの実施態様では、信号保持媒体902は、それだけには限らないが、デジタルおよび/またはアナログ通信媒体(たとえば、光ファイバケーブル、導波管、有線通信リンク、無線通信リンクなど)などの通信媒体910を包含することができる。したがって、たとえば、信号保持媒体902は、通信媒体910の無線形式で搬送することができる。
[00136] 1つまたは複数のプログラミング命令904は、たとえば、コンピュータ実行可能命令および/または論理回路実施命令とすることができる。いくつかの例では、図3のコンピュータシステム312などの計算デバイスは、コンピュータ可読媒体906、コンピュータ記録可能媒体908、および/または通信媒体910のうちの1つまたはそれ以上によって、様々な動作、機能、または作用をコンピュータシステム312に搬送されるプログラミング命令904に応じて行うように構成することができる。
[00137] 非一時的コンピュータ可読媒体はまた、互いに遠隔に設置されることもある複数のデータ記憶要素の間で分散させることもできる。格納された命令の一部または全部を実行する計算デバイスは、図3を参照して示され説明された気球300、または別の高高度プラットフォームなどのデバイスとすることができる。あるいは、格納された命令の一部または全部を実行する計算デバイスは、地上局に設置されたサーバなどの別の計算デバイスとすることもできる。
[00138] 以上の詳細な記述では、開示されたシステム、デバイスおよび方法の様々な特徴および機能を添付の図を参照して説明している。様々な態様および実施形態が本明細書に開示されたが、他の態様および実施形態も当業者には明らかであろう。本明細書に開示された様々な態様および実施形態は、説明を目的としており、限定するものではなく、真の範囲は添付の特許請求の範囲によって示されている。

Claims (20)

  1. 自由空間光通信用に構成された光通信端末装置であって、
    対応する放出場所から第1の波長の光を放出するように構成された第1の光源、および、対応する放出場所から第2の波長の光を放出するように構成された第2の光源と、
    対応する検出場所で前記第1の波長の光を検出するように構成された第1の検出器、および、対応する検出場所で前記第2の波長の光を検出するように構成された第2の検出器と、
    ステアリングミラーと、
    前記ステアリングミラーに動作可能に結合されて、1つまたは複数の遠隔の光通信端末装置との自由空間光通信の前記ステアリングミラーの向きを調節し、ステアリングミラーが、前記第1の波長の光を、前記第1の光源の前記対応する放出場所から、1つまたは複数の遠隔の光通信端末装置に向け、かつ、前記第2の波長の光を、前記1つまたは複数の光通信端末装置から、前記第2の検出器の前記対応する検出場所に向ける、1つまたは複数のプロセッサと
    を備え、
    前記対応する放出場所および前記対応する検出場所が、デュアルコアファイバフェルールによって実施される、光通信端末装置。
  2. 前記ステアリングミラーに結合され、前記1つまたは複数のプロセッサと動作可能に通信するミラー位置調整システムをさらに備え、前記ミラー位置調整システムが、前記1つまたは複数のプロセッサから受信した制御信号に応じて前記ステアリングミラーの前記向きを調節するように構成される、請求項1に記載の光通信端末装置。
  3. 中継光学部品をさらに備え、
    前記中継光学部品が、前記ステアリングミラーと前記デュアルコアファイバフェルールの間に配置され、
    前記ステアリングミラーが、前記第1の波長または前記第2の波長のいずれかの平行光を、前記1つまたは複数の遠隔の光通信端末装置のうちの所与の1つから受信し、前記受信した平行光を前記中継光学部品に送るように構成され、
    前記中継光学部品が、前記受信した平行光を調節し、前記調節した光を前記デュアルコアファイバフェルールに提供するように構成される、請求項1に記載の光通信端末装置。
  4. 前記デュアルコアファイバフェルールが、第1のデュアルコアファイバフェルールおよび第2のデュアルコアファイバフェルールを備え、
    前記第1の光源が、第1の対応する放出場所から前記第1の波長の光を放出するように
    構成され、前記第2の光源が、第2の対応する放出場所から前記第2の波長の光を放出するように構成され、
    前記第1の検出器が、第1の対応する検出場所で前記第1の波長の光を検出するように構成され、前記第2の検出器が、第2の対応する検出場所で前記第2の波長の光を検出するように構成され、
    前記第1の対応する放出場所および前記第1の対応する検出場所が、前記第1のデュアルコアファイバフェルールによって実施され、
    前記第2の対応する放出場所および前記第2の対応する検出場所が、前記第2のデュアルコアファイバフェルールによって実施される、請求項1に記載の光通信端末装置。
  5. 前記第1の対応する放出場所が、第1のファイバ接続を介して前記第1の光源に結合され、
    前記第1の対応する検出場所が、第2のファイバ接続を介して前記第1の検出器に結合され、
    前記第2の対応する放出場所が、第3のファイバ接続を介して前記第2の光源に結合され、
    前記第2の対応する検出場所が、第4のファイバ接続を介して前記第2の検出器に結合される、請求項4に記載の光通信端末装置。
  6. 前記第1の検出器および前記第2の検出器が、アバランシェフォトダイオードを含む、請求項1に記載の光通信端末装置。
  7. 前記デュアルコアファイバフェルールと前記ステアリングミラーの間に配置された集束光学部品をさらに備える、請求項1に記載の光通信端末装置。
  8. 前記第1の光源および前記第2の光源が、発光ダイオードである、請求項1に記載の光通信端末装置。
  9. 前記第1の光源および前記第2の光源が、レーザである、請求項1に記載の光通信端末装置。
  10. 前記第1の検出器が、前記第1の波長のデータ変調光を検出するように構成された第1のアバランシェフォトダイオードを含み、
    前記第2の検出器が、前記第2の波長のデータ変調光を検出するように構成された第2のアバランシェフォトダイオードを含む、請求項1に記載の光通信端末装置。
  11. 前記1つまたは複数のプロセッサが、前記1つまたは複数の遠隔の光通信端末装置との自由空間光通信用の一連の光リンクを決定するように構成される、請求項1に記載の光通信端末装置。
  12. 前記1つまたは複数のプロセッサが、複数の前記遠隔の光通信端末装置との網目状ネットワークとして機能するように、前記自由空間光通信用の前記一連の光リンクを決定する、請求項11に記載の光通信端末装置。
  13. 前記1つまたは複数のプロセッサが、自由空間光通信ネットワークの現在の状態、過去の状態、または予測状態のうちの少なくとも1つにしたがって、前記1つまたは複数の遠隔の光通信端末装置との光路の動的ルーティングを行うように構成される、請求項12に記載の光通信端末装置。
  14. 前記自由空間光通信ネットワークが、透過的な網目状ネットワークとして構成され、
    前記光通信端末装置が、前記複数の前記遠隔の光通信端末装置から受信され、前記複数の前記遠隔の光通信端末装置に伝送される光信号の光学のみによる切換えを実施する、請求項13に記載の光通信端末装置。
  15. 前記自由空間光通信ネットワークが、不透明な網目状ネットワークとして構成され、
    前記光通信端末装置が、1つまたは複数の光クロスコネクションをさらに含み、前記複数の前記遠隔の光通信端末装置から受信され、前記複数の前記遠隔の光通信端末装置に伝送される光信号の光−電気−光切換えを実施する、請求項13に記載の光通信端末装置。
  16. 前記1つまたは複数のプロセッサが、光の前記第1の波長および前記第2の波長の波長分割多重(WDM)を実施するように構成される、請求項13に記載の光通信端末装置。
  17. 前記自由空間光通信ネットワークが透過的な網目状ネットワークの場合、前記1つまたは複数のプロセッサが、所与の光路上のすべての光リンクに同じ波長を割り当てるように構成される、請求項16に記載の光通信端末装置。
  18. 前記1つまたは複数のプロセッサが、前記複数の前記遠隔の光通信端末装置のうちの少なくとも1つに状態情報を伝送するように構成され、前記状態情報が、リンク帯域幅、リンク可用性、波長使用状況、または位置データのうちの少なくとも1つを含む、請求項12に記載の光通信端末装置。
  19. 前記1つまたは複数のプロセッサが、前記複数の前記遠隔の光通信端末装置のうちの少なくとも1つにトポロジ情報を伝送するように構成される、請求項12に記載の光通信端末装置。
  20. 前記1つまたは複数のプロセッサが、前記複数の前記遠隔の光通信端末装置との全二重通信を実現するための相補動作モードを確立するように構成される、請求項12に記載の光通信端末装置。
JP2018003647A 2014-02-25 2018-01-12 光通信端末装置 Active JP6527253B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/189,582 2014-02-25
US14/189,582 US9231698B2 (en) 2014-02-25 2014-02-25 Optical communication terminal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016553808A Division JP6276869B2 (ja) 2014-02-25 2015-01-22 光通信端末装置

Publications (2)

Publication Number Publication Date
JP2018078644A JP2018078644A (ja) 2018-05-17
JP6527253B2 true JP6527253B2 (ja) 2019-06-05

Family

ID=53883286

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016553808A Active JP6276869B2 (ja) 2014-02-25 2015-01-22 光通信端末装置
JP2018003647A Active JP6527253B2 (ja) 2014-02-25 2018-01-12 光通信端末装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016553808A Active JP6276869B2 (ja) 2014-02-25 2015-01-22 光通信端末装置

Country Status (7)

Country Link
US (1) US9231698B2 (ja)
EP (2) EP3111270B1 (ja)
JP (2) JP6276869B2 (ja)
KR (2) KR101904982B1 (ja)
CN (2) CN106461932B (ja)
AU (1) AU2015223484B2 (ja)
WO (1) WO2015130414A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098108B (zh) * 2010-11-25 2017-09-08 松下电器(美国)知识产权公司 通信设备
US9252908B1 (en) 2012-04-12 2016-02-02 Tarana Wireless, Inc. Non-line of sight wireless communication system and method
US9735940B1 (en) 2012-04-12 2017-08-15 Tarana Wireless, Inc. System architecture for optimizing the capacity of adaptive array systems
US9694910B2 (en) 2013-02-22 2017-07-04 World View Enterprises Inc. Near-space operation systems
US10110270B2 (en) 2013-03-14 2018-10-23 Tarana Wireless, Inc. Precision array processing using semi-coherent transceivers
US10499456B1 (en) 2013-03-15 2019-12-03 Tarana Wireless, Inc. Distributed capacity base station architecture for broadband access with enhanced in-band GPS co-existence
US9800332B2 (en) * 2013-12-27 2017-10-24 Space Photonics, Inc. Acquisition, tracking, and pointing apparatus for free space optical communications with moving focal plane array
US9971095B2 (en) * 2014-02-25 2018-05-15 X Development Llc Free-space optical communication dual-fiber ferrule
US10348394B1 (en) 2014-03-14 2019-07-09 Tarana Wireless, Inc. System architecture and method for enhancing wireless networks with mini-satellites and pseudollites and adaptive antenna processing
US9723386B1 (en) * 2014-05-05 2017-08-01 Google Inc. Communication device
EP3268279A4 (en) 2015-03-09 2018-08-08 World View Enterprises Inc. Rigidized assisted opening system for high altitude parafoils
US10009101B2 (en) * 2015-03-17 2018-06-26 The Boeing Company Laser communications following an atmospheric event
US9540091B1 (en) 2016-02-11 2017-01-10 World View Enterprises Inc. High altitude balloon systems and methods
KR102472525B1 (ko) * 2016-03-22 2022-11-29 라이트루프 테크놀로지스, 엘엘씨 모션 데이터 저장 시스템 및 방법
US10009107B2 (en) 2016-08-02 2018-06-26 X Development Llc Multi-point free space optical communication system
US10124875B1 (en) 2017-01-09 2018-11-13 World View Enterprises Inc. Continuous multi-chamber super pressure balloon
US10336432B1 (en) 2017-01-09 2019-07-02 World View Enterprises Inc. Lighter than air balloon systems and methods
DE102017106588A1 (de) * 2017-03-28 2018-10-04 Carl Zeiss Microscopy Gmbh Übertragung von Daten in einem optischen System
GB201712570D0 (en) * 2017-08-04 2017-09-20 Univ Edinburgh Communication apparatus, method and system
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
BR112020008197A2 (pt) 2017-10-25 2020-10-27 Skywave Networks Llc sistema de telecomunicações utilizando drones
CN108768516A (zh) * 2018-07-02 2018-11-06 北京卫星信息工程研究所 波长快速可调谐的空间激光通信终端
CN112654899A (zh) 2018-08-02 2021-04-13 利特洛普技术有限公司 用于在空腔内存储波信号的装置和方法
WO2020033783A1 (en) 2018-08-10 2020-02-13 Lyteloop Technologies, Llc System and method for extending path length of a wave signal using angle multiplexing
US10727949B2 (en) 2018-10-12 2020-07-28 Hughes Network Systems, LLC. Systems and methods for high-altitude radio/optical hybrid platform
CA3114397A1 (en) 2018-11-05 2020-05-14 Lyteloop Technologies, Llc Systems and methods for building, operating and controlling multiple amplifiers, regenerators and transceivers using shared common components
US11777603B2 (en) * 2019-01-16 2023-10-03 X Development Llc High magnification afocal telescope with high index field curvature corrector
US11716140B2 (en) * 2019-01-24 2023-08-01 X Development Llc Two-mirror tracking system for free-space optical communication
CN110189514B (zh) * 2019-04-18 2021-07-13 广东满天星云信息技术有限公司 一种红外载波透传式通信电路及其装置
GB201907574D0 (en) * 2019-05-29 2019-07-10 Purelifi Ltd Light communication system and method
KR102133501B1 (ko) 2019-07-02 2020-07-13 국방과학연구소 무선 광통신 시스템을 위한 광 송수신장치
JP7372780B2 (ja) 2019-08-21 2023-11-01 株式会社Subaru レーザ送信機
US11002894B1 (en) * 2019-09-12 2021-05-11 United States Of America As Represented By The Administrator Of Nasa Laser communication network implemented with multi-chroic filters
DE102019214913A1 (de) * 2019-09-27 2021-04-01 Robert Bosch Gmbh Bildgebungsvorrichtung
JP7353610B2 (ja) * 2019-10-03 2023-10-02 株式会社島津製作所 水中光無線通信システム、水中光無線通信方法、および、水中移動体
US10862610B1 (en) 2019-11-11 2020-12-08 X Development Llc Multi-channel integrated photonic wavelength demultiplexer
US11187854B2 (en) * 2019-11-15 2021-11-30 X Development Llc Two-channel integrated photonic wavelength demultiplexer
US20210266368A1 (en) * 2020-02-25 2021-08-26 Level 3 Communications, Llc Disaggregated & Distributed Composable Infrastructure
US11005565B1 (en) * 2020-05-29 2021-05-11 SA Photonics, Inc. Free space optical communication terminal with wavelength dependent optic
FR3112659B1 (fr) 2020-07-20 2022-07-15 Airbus Defence & Space Sas Terminal de communication optique par signaux laser
US11888569B2 (en) 2020-11-13 2024-01-30 Intelsat US LLC Communication system for multiple-input-multiple-output (MIMO) communication with aerial platform
US11398864B2 (en) * 2020-12-21 2022-07-26 Textron Innovations Inc. Light communication between aircraft
CN112596173B (zh) * 2020-12-25 2022-09-16 武汉邮电科学研究院有限公司 一种光信号发射器
US11567264B2 (en) 2021-04-28 2023-01-31 Com Dev Ltd. Wavelength separated fine steering assembly
US11936425B1 (en) * 2021-05-18 2024-03-19 Oceanit Laboratories, Inc. Devices, systems, and methods for laser-based communications
CN114499665B (zh) * 2022-03-10 2022-07-12 鹏城实验室 一种多对多激光通信组网装置和方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1154987A (en) * 1981-11-27 1983-10-11 Narinder S. Kapany Fiber optics commmunications modules
US5359446A (en) 1992-09-10 1994-10-25 Eldec Corporation Wide-angle, high-speed, free-space optical communications system
JPH0820510B2 (ja) 1993-01-19 1996-03-04 株式会社エイ・ティ・アール光電波通信研究所 光通信機光学系のアライメント調整システム
US5390040A (en) 1994-02-04 1995-02-14 Martin Marietta Corporation Optical transceiver for free-space communication links
JP3136944B2 (ja) * 1995-03-31 2001-02-19 日立電線株式会社 多機能光スイッチ
JP2000101515A (ja) * 1998-07-21 2000-04-07 Asahi Precision Co Ltd 送受信一体型光通信装置
US6462846B1 (en) 1998-07-29 2002-10-08 Trw Inc. Shared telescope optical communication terminal
US6327063B1 (en) * 1998-10-02 2001-12-04 Hughes Electronics Corporation Reconfigurable laser communications terminal
KR100301021B1 (ko) * 1999-02-18 2001-09-26 윤종용 Ieee 1394와 atm간의 게이트웨이 관리 방법 및 그에 대한 게이트 웨이
JP2003504943A (ja) * 1999-07-08 2003-02-04 クワンタムビーム リミテッド 信号システム
US6577421B1 (en) 1999-08-12 2003-06-10 Hughes Electronics Corporation Alignment system and method for optical satellite communication
AU2001230871A1 (en) 2000-01-10 2001-07-24 The Johns-Hopkins University Optical communication system using a high altitude tethered balloon
US20020109886A1 (en) 2001-01-22 2002-08-15 Barbier Pierre Robert Window-mounted free-space optical wireless communication system
JP4657472B2 (ja) * 2001-03-05 2011-03-23 富士通株式会社 光スイッチ
US20050117904A1 (en) 2001-08-01 2005-06-02 Youngwan Choi Integrated optical transmitter, receiver for free space optical communication and network system and application apparatus thereof
US20040042798A1 (en) * 2002-08-29 2004-03-04 Fsona Communications Corporation Optical transceiver with a dual-axis tilt mirror for pointing and tracking free space communication signals
US6839485B2 (en) * 2002-08-29 2005-01-04 Adc Telecommunications, Inc. Optical device for compensation of multiple wavelengths and working distances in dual-fiber collimators
US7627251B2 (en) 2002-10-29 2009-12-01 Massachusetts Institute Of Technology Wavelength division and polarization division multiple access free space optical terminal using a single aperture
US7277641B1 (en) 2003-05-06 2007-10-02 Ball Aerospace & Technologies Corp. Multiple access space communications optical system using a common telescope aperture
US20040258415A1 (en) 2003-06-18 2004-12-23 Boone Bradley G. Techniques for secure free space laser communications
US8639069B1 (en) * 2003-06-30 2014-01-28 Calient Technologies, Inc. Wavelength dependent optical switch
JP2005181580A (ja) * 2003-12-18 2005-07-07 Olympus Corp 光スイッチ装置とそのキャリブレーション方法
US7457545B2 (en) * 2004-02-12 2008-11-25 Northrop Grumman Corporation Process for controlling a Hartmann wavefront sensor (WFS) in an adaptive optic (AO) system
US7668468B1 (en) 2004-10-01 2010-02-23 Ball Aerospace & Technologies Corp. Numerous user laser communications optical system using chromatic waveplates and a common telescope aperture
US7366419B2 (en) 2004-11-22 2008-04-29 Northrop Grumman Corporation Spatial transmit/receive isolation method for optical communication systems
US8462671B2 (en) * 2005-04-07 2013-06-11 Nokia Corporation Terminal having a variable duplex capability
US7587141B2 (en) * 2005-08-02 2009-09-08 Itt Manufacturing Enterprises, Inc. Communication transceiver architecture
US7609972B2 (en) * 2005-08-02 2009-10-27 Itt Manufacturing Enterprises, Inc. Acquisition, pointing, and tracking architecture for laser communication
JP4616119B2 (ja) * 2005-08-05 2011-01-19 オリンパス株式会社 マルチビーム生成器、それを用いたマルチビーム光源および空間光伝送装置
CN1825787A (zh) * 2006-04-03 2006-08-30 哈尔滨工业大学 低轨道卫星与地面站间激光链路的建立方法
US8050568B2 (en) * 2008-11-24 2011-11-01 The Boeing Company Free-space sensor network
US8295706B2 (en) 2010-05-10 2012-10-23 Exelis Inc. Technique for simultaneously transmitting wide and narrow optical beacon signals
CN202221484U (zh) * 2011-08-16 2012-05-16 上海亨通光电科技有限公司 双芯光缆接续组件
US20130177322A1 (en) * 2012-01-09 2013-07-11 Google Inc. Establishing Optical-Communication Lock with Nearby Balloon
KR20130093564A (ko) * 2012-02-14 2013-08-22 전자부품연구원 광 송수신기
US9264137B2 (en) * 2013-03-02 2016-02-16 Aoptix Technologies, Inc. Rapid in-the-field auto-alignment for radio frequency and free-space optical data communication transceivers
CN103427903B (zh) * 2013-08-14 2016-01-06 东南大学 一种基于无线接入点的可见光通信系统
US9971095B2 (en) * 2014-02-25 2018-05-15 X Development Llc Free-space optical communication dual-fiber ferrule

Also Published As

Publication number Publication date
CN106461932A (zh) 2017-02-22
EP3111270A4 (en) 2017-10-11
EP3428709A1 (en) 2019-01-16
KR102043927B1 (ko) 2019-11-13
CN110266365A (zh) 2019-09-20
KR20180110222A (ko) 2018-10-08
JP2018078644A (ja) 2018-05-17
KR101904982B1 (ko) 2018-10-08
CN110266365B (zh) 2021-07-13
AU2015223484B2 (en) 2017-08-03
JP6276869B2 (ja) 2018-02-07
EP3111270A1 (en) 2017-01-04
EP3428709B1 (en) 2023-04-26
US20150244458A1 (en) 2015-08-27
WO2015130414A1 (en) 2015-09-03
KR20160125490A (ko) 2016-10-31
US9231698B2 (en) 2016-01-05
EP3111270B1 (en) 2018-09-26
JP2017512418A (ja) 2017-05-18
CN106461932B (zh) 2019-05-28
AU2015223484A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
JP6527253B2 (ja) 光通信端末装置
US10627576B2 (en) Free-space optical communication dual-fiber ferrule
AU2013208215B2 (en) Establishing optical-communication lock with nearby balloon
US9525484B2 (en) Photo-sensor array to adjust alignment of optical receiver
US9917633B2 (en) Using predicted movement to maintain optical-communication lock with nearby balloon
US8917995B1 (en) Balloon envelope with integrated receiver
US9528687B1 (en) Transmission apparatus for beam expansion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190509

R150 Certificate of patent or registration of utility model

Ref document number: 6527253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250