JP6526865B1 - Metal-air battery and method of setting inter-electrode distance of metal-air battery - Google Patents

Metal-air battery and method of setting inter-electrode distance of metal-air battery Download PDF

Info

Publication number
JP6526865B1
JP6526865B1 JP2018078517A JP2018078517A JP6526865B1 JP 6526865 B1 JP6526865 B1 JP 6526865B1 JP 2018078517 A JP2018078517 A JP 2018078517A JP 2018078517 A JP2018078517 A JP 2018078517A JP 6526865 B1 JP6526865 B1 JP 6526865B1
Authority
JP
Japan
Prior art keywords
electrode
metal
air
distance
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018078517A
Other languages
Japanese (ja)
Other versions
JP2019186150A (en
Inventor
彩乃 小出
彩乃 小出
龍次 松山
龍次 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018078517A priority Critical patent/JP6526865B1/en
Priority to TW108111651A priority patent/TWI683467B/en
Priority to CN201980002172.3A priority patent/CN110622350A/en
Priority to PCT/JP2019/014855 priority patent/WO2019202997A1/en
Application granted granted Critical
Publication of JP6526865B1 publication Critical patent/JP6526865B1/en
Publication of JP2019186150A publication Critical patent/JP2019186150A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type

Abstract

【課題】高性能な金属空気電池を効率良く得ること。【解決手段】金属極15と、金属極15に対向する空気極13A、13Bとを備える金属空気電池10において、空気極13A、13Bは金属極15の両側にそれぞれ配置され、金属極15は両側の空気極13A、13Bのいずれか一方に寄せた位置に配置されている。【選択図】図2An object is to efficiently obtain a high performance metal-air battery. In a metal-air battery (10) provided with a metal electrode (15) and air electrodes (13A, 13B) facing the metal electrode (15), the air electrodes (13A, 13B) are disposed on both sides of the metal electrode (15). Of the air electrodes 13A, 13B. [Selected figure] Figure 2

Description

本発明は、金属空気電池、及び金属空気電池の極間距離設定方法に関するものである。   The present invention relates to a metal-air battery and a method of setting the distance between electrodes of the metal-air battery.

一般的に、金属空気電池は、正極である空気極と負極である金属極とが対に存在している。また、金属空気電池には、金属極(燃料極)の両側に空気極を等距離で配置した構成も提案されている(例えば、特許文献1参照)。   Generally, in a metal-air battery, an air electrode which is a positive electrode and a metal electrode which is a negative electrode exist in a pair. Further, a configuration in which air electrodes are disposed equidistantly on both sides of a metal electrode (fuel electrode) is also proposed for a metal-air battery (see, for example, Patent Document 1).

特開2015−99740号公報JP, 2015-99740, A

ところで、金属空気電池は主に空気極と金属極が対向した面で反応が起こるため、空気極が金属極の片面にしか対向していない構成の場合、一セルあたりの反応面積が制約され、電池性能の向上に制約がある。例えば、電流が流れたときの電流密度が大きくなるため、結果として分極が大きくなり易い。
一方、特許文献1の構成は、一セルあたりの空気極面積を広くすることで電流密度が小さくなるため、結果として分極が小さくなる。しかし、市場からはより高性能の電池が望まれ、特に、災害用の金属空気電池には、高電流充電が可能なスマートフォン等の充電用途が望まれる。すなわち、金属空気電池は更に分極を小さくする必要がある。
By the way, since the metal-air battery mainly reacts on the surface where the air electrode and the metal electrode face each other, the reaction area per cell is restricted when the air electrode is configured to face only one side of the metal electrode, There are limitations in improving battery performance. For example, since the current density when current flows increases, as a result, the polarization tends to increase.
On the other hand, in the configuration of Patent Document 1, the current density is reduced by increasing the air electrode area per cell, and as a result, the polarization is reduced. However, higher performance batteries are desired from the market, and particularly for metal-air batteries for disasters, charging applications such as smartphones capable of high current charging are desired. That is, the metal-air battery needs to further reduce the polarization.

そこで、本発明は、高性能な金属空気電池を効率良く得ることを目的とする。   Then, an object of this invention is to obtain a high performance metal air battery efficiently.

上述した課題を解決するため、本発明は、金属極と、前記金属極に対向する空気極とを備える金属空気電池において、前記空気極は、前記金属極の両側にそれぞれ配置され、前記金属極は、両側の前記空気極のいずれか一方に寄せた位置に配置され、前記金属極と一方の前記空気極の極間距離である第1距離と、前記金属極と他方の前記空気極の極間距離である第2距離は、次の条件、即ち、前記金属極と前記一方の空気極とを前記第1距離で配置した第1電池から得られる電圧と、前記金属極と他方の前記空気極とを前記第2距離で配置した第2電池から得られる電圧との平均値が、前記金属極を両側の前記空気極の中央位置に配置する場合に得られる電圧よりも高いことを満たしていることを特徴とする。 In order to solve the problems described above, the present invention relates to a metal-air battery including a metal electrode and an air electrode facing the metal electrode, wherein the air electrodes are respectively disposed on both sides of the metal electrode, and the metal electrode is A first distance between the metal electrode and one of the air electrodes, and a first distance between the metal electrode and one of the air electrodes, and a pole of the metal electrode and the other air electrode. The second distance, which is the distance between, is obtained under the following conditions: a voltage obtained from the first battery in which the metal pole and the one air pole are disposed at the first distance, the metal pole and the other air The average value of the voltage obtained from the second battery in which the pole is placed at the second distance is higher than the voltage obtained when the metal pole is placed at the central position of the air pole on both sides, It is characterized by

また、上記構成において、前記極間距離の短い方を値LA、極間距離の長い方を値LBとした場合に、値(LB/LA)を2以上にしてもよい。   Further, in the above configuration, when the shorter inter-electrode distance is a value LA and the longer inter-electrode distance is a value LB, the value (LB / LA) may be 2 or more.

また、上記構成において、前記金属極を、この金属極を収容する電槽の底板部から浮かして支持する支持部材を有するようにしてもよい。   Further, in the above configuration, a support member may be provided to float and support the metal electrode from the bottom plate portion of the battery case accommodating the metal electrode.

また、金属極と、前記金属極に対向する空気極とを備え、前記空気極を、前記金属極の両側にそれぞれ配置し、前記金属極を、両側の前記空気極のいずれか一方に寄せた位置に配置した金属空気電池の極間距離設定方法であって、前記金属極と一方の前記空気極の極間距離である第1距離と、前記金属極と他方の前記空気極の極間距離である第2距離とを、極間距離と電圧との関係を示す非直線特性に基づき、前記金属極と前記一方の空気極とを前記第1距離で配置した第1電池から得られる電圧と、前記金属極と他方の前記空気極とを前記第2距離で配置した第2電池から得られる電圧との平均値が、前記金属極を両側の前記空気極の中央位置に配置する場合に得られる電圧よりも高くなるように設定していることを特徴とする。   In addition, a metal electrode and an air electrode facing the metal electrode are provided, and the air electrodes are disposed on both sides of the metal electrode, and the metal electrode is brought close to any one of the air electrodes on both sides. A method for setting an interelectrode distance of a metal-air battery disposed at a position, comprising: a first distance which is an interelectrode distance between the metal electrode and one of the air electrodes; and an electrode distance between the metal electrode and the other air electrode. And a voltage obtained from a first battery in which the metal electrode and the one air electrode are disposed at the first distance based on the non-linear characteristic indicating the relationship between the distance between the electrodes and the voltage. The average value of the voltage obtained from the second battery in which the metal electrode and the other air electrode are arranged at the second distance is obtained when the metal electrode is arranged at the central position of the air electrodes on both sides. It is set to be higher than the voltage to be

本発明によれば、容量を確保しつつ高い電圧を得やすくなり、高性能な金属空気電池を効率良く得ることができる。 According to the present invention , a high voltage can be easily obtained while securing a capacity, and a high performance metal-air battery can be obtained efficiently.

本発明の実施形態に係る金属空気電池の斜視図である。It is a perspective view of the metal air battery concerning the embodiment of the present invention. 図1のA−A縦断面図である。It is an AA longitudinal cross-sectional view of FIG. (A)は実施例1を示し、(B)は比較例1を示し、(C)は比較例2を示す図である。(A) shows Example 1, (B) shows Comparative Example 1, (C) shows Comparative Example 2. 実施例1、比較例1及び比較例2の容量試験の結果を示した図である。It is the figure which showed the result of the capacity | capacitance test of Example 1, the comparative example 1, and the comparative example 2. FIG. 極間距離LA、LBの組み合わせ毎の分極試験を示した図である。It is the figure which showed the polarization test for every combination of distance LA, LB between poles. 極間距離LA、LBの組み合わせ毎の定電流放電試験の結果を示した図である。It is the figure which showed the result of the constant current discharge test for every combination of distance LA, LB between electrodes. 極間距離[mm]−電圧[V]の関係を示す非直線特性の図である。It is a figure of the nonlinear characteristic which shows the relation between distance [mm]-voltage [V] between poles. 他の極間距離LA、LBの組み合わせ毎の分極試験結果を示した図である。It is the figure which showed the polarization test result for every combination of other inter electrode distance LA and LB. 図8に示す組み合わせ毎の定電流放電試験の結果を示した図である。It is the figure which showed the result of the constant current discharge test for every combination shown in FIG.

以下、図面を参照して本発明の一実施の形態について説明する。
図1は本発明の実施形態に係る金属空気電池10の斜視図であり、図2は図1のA−A縦断面図である。
金属空気電池10は、電槽11(セルとも称する)を備え、この電槽11に二枚の空気極13A、13Bと一枚の金属極15とを配置し、電槽11内に電解液が注液されることによって発電を開始する一次電池である。発電時には、空気極13A、13Bが正極として機能し、金属極15が負極として機能する。なお、図2中、符号ULは、電槽11に注入される電解液の上面位置を示している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of a metal-air battery 10 according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view taken along line A-A of FIG.
The metal-air battery 10 includes a battery case 11 (also referred to as a cell), in which two air electrodes 13A and 13B and one metal electrode 15 are disposed, and in the battery case 11, an electrolytic solution is contained. It is a primary battery that starts power generation by being injected. At the time of power generation, the air electrodes 13A and 13B function as a positive electrode, and the metal electrode 15 functions as a negative electrode. In addition, the code | symbol UL has shown the upper surface position of the electrolyte solution inject | poured into the battery case 11 in FIG.

なお、前記電槽11の素材は、特に限定されるものではないが、例えば、紙、又は樹脂を用いることが可能である。前記電槽11を紙にする場合には、基材を構成する紙の表面にフィルムを設けたシート材が用いられ、具体例を挙げると、熱融着性樹脂(例えば、ポリエチレン(PE))で少なくとも内面がラミネート加工されたラミネート紙を用いることが可能である。前記ラミネート加工を施すことで、電解液の漏出等を防止することが可能である。   The material of the battery case 11 is not particularly limited, but, for example, paper or resin can be used. In the case where the battery case 11 is made of paper, a sheet material provided with a film on the surface of the paper constituting the base material is used. To give a specific example, a heat fusible resin (for example, polyethylene (PE)) It is possible to use laminated paper at least the inner surface of which is laminated. By applying the laminating process, it is possible to prevent leakage of the electrolytic solution and the like.

本説明において、上下左右等の各方向は、金属空気電池10を使用するときの方向に対応しており、図1等に示す符号Xは前方向を示し、符号Yは右方向を示し、符号Zは上方向を示している。X方向は空気極13A、金属極15及び空気極13Bの並び方向と一致している。なお、使用状況等によって設置方向は変更される場合もある。   In the present description, each direction such as top, bottom, left, or right corresponds to the direction when using the metal air battery 10, the symbol X shown in FIG. 1 etc. indicates the forward direction, the symbol Y indicates the right direction, the symbol Z indicates the upward direction. The X direction coincides with the alignment direction of the air electrode 13A, the metal electrode 15, and the air electrode 13B. Note that the installation direction may be changed depending on the usage conditions and the like.

電槽11は、薄型の直方体形状であり、紙を含有するシートを折り曲げることによって、電槽11の底面を構成する底板部21と、前面を構成する前壁部22と、後面を構成する後壁部23と、左右側面を構成する左右の側壁部(左壁部、右壁部)24と、上面を構成する上板部25とを一体に有している。
前壁部22及び後壁部23は、同一形状の面であって、互いに平行に配置され、電槽11の中で最も大きい面を形成しており、形状及びサイズが同じ矩形の開口部22Kを有している。前壁部22の開口部22Kは、矩形の空気極13Aで覆われ、後壁部23の開口部22Kは、矩形の空気極13Bで覆われる。
The battery case 11 is a thin rectangular parallelepiped shape, and by folding a sheet containing paper, the bottom plate portion 21 constituting the bottom surface of the battery case 11, the front wall portion 22 constituting the front surface, and the rear surface A wall portion 23, left and right side wall portions (left wall portion, right wall portion) 24 constituting left and right side surfaces, and an upper plate portion 25 constituting an upper surface are integrally provided.
The front wall portion 22 and the rear wall portion 23 are surfaces of the same shape, arranged in parallel with each other, forming the largest surface in the battery case 11, and having a rectangular opening 22K of the same shape and size. have. The opening 22K of the front wall 22 is covered with a rectangular air electrode 13A, and the opening 22K of the rear wall 23 is covered with a rectangular air electrode 13B.

空気極13A、13Bは、同一の形状及び同一サイズで形成され、金属極15の両側にそれぞれ配置されている。各空気極13A、13Bは、外部の空気を電槽11内に通気可能にする通気性、及び電解液を漏らさない非透液性を有する部材であり、例えば、集電体を構成する矩形状の銅メッシュ(集電体とも言う)の両面に、触媒層を構成する触媒シートを圧迫(プレス)等により一体化して形成される。
各空気極13A、13Bは、電槽11に設けられた開口部22Kを介して電槽11内に露出し、各開口部22K内の領域が実質的に空気極13A、13Bとして機能する。なお、非透液性については、非透液性を有するシートを別途設けて確保してもよい。また、空気極13A、13Bは上記構成に限らず、公知の構成を広く適用可能である。
The air electrodes 13A and 13B are formed in the same shape and the same size, and are disposed on both sides of the metal electrode 15, respectively. Each of the air electrodes 13A and 13B is a member having air-permeability that allows external air to flow in the battery case 11 and non-liquid-permeability that does not leak the electrolyte solution, for example, a rectangular shape that constitutes a current collector. The catalyst sheet which comprises a catalyst layer is integrated by pressure (press) etc. on both surfaces of the copper mesh (it is also called an electrical power collector) of this.
The air electrodes 13A and 13B are exposed in the battery case 11 through the openings 22K provided in the battery case 11, and the regions in the openings 22K substantially function as the air electrodes 13A and 13B. The liquid impermeability may be ensured by separately providing a sheet having liquid imperviousness. Also, the air electrodes 13A and 13B are not limited to the above-described configuration, and widely known configurations can be applied.

前記集電体は、多孔質集電体であり、矩形状の銅メッシュ(銅の網状体)にすることで、良好な通気性を有する。なお、前記集電体は銅に限定されず、鉄、ニッケル及び真鍮などの他の金属でも良い。また、メッシュ(網状体)からなる多孔構造に限定されず、メッシュ以外の通気性を有する多孔構造を広く適用可能である。特に銅メッシュが電池特性とコストの両面において好適である。   The current collector is a porous current collector, and has good air permeability by forming a rectangular copper mesh (copper reticulated body). The current collector is not limited to copper, and may be another metal such as iron, nickel and brass. Moreover, it is not limited to the porous structure which consists of meshes (net-like body), The porous structure which has air permeability other than a mesh is widely applicable. In particular, a copper mesh is suitable in terms of both battery characteristics and cost.

前記触媒シートは、導電剤と有機物バインダとを水で混練したペーストを、ポリエチレンテレフタレート(PET)製のフィルム(以下、PETフィルムと言う)で挟み、ローラープレス機でプレスしてシート状にし、乾燥工程を経て作製される。
前記導電剤は、カーボンパウダー、銅又はアルミニウムなどの金属材料、又はポリフェニレン誘導体などの有機導電性材料などを用いることができる。なお、カーボンパウダーは、ケッチェンブラックなどのカーボンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンナノホーンの粉末が好ましい。
前記有機物バインダは、高分子ディスパージョンであり、具体的には、ポリテトラフルオロエチレン(PTFE、テフロン(登録商標)などのフッ素系樹脂、又はポリプロピレン(PP)などのポリオレフィン系樹脂等の熱可塑性樹脂が好適である。
In the catalyst sheet, a paste obtained by kneading a conductive agent and an organic binder with water is sandwiched by a film made of polyethylene terephthalate (PET) (hereinafter referred to as a PET film), pressed by a roller press to form a sheet, and dried It is manufactured through the process.
The conductive agent may be carbon powder, a metal material such as copper or aluminum, or an organic conductive material such as polyphenylene derivative. The carbon powder is preferably a powder of carbon black such as ketjen black, graphite, activated carbon, carbon nanotubes, or carbon nanohorns.
The organic binder is a polymer dispersion, and specifically, a thermoplastic resin such as polytetrafluoroethylene (PTFE, a fluorine-based resin such as Teflon (registered trademark)), or a polyolefin-based resin such as polypropylene (PP) Is preferred.

金属極15は、左右一対の支持部材30によって電槽11内に支持され、各空気極13A、13Bと対向する。金属極15には、マグネシウム合金からなる金属板で形成され、各空気極13A、13Bと平行に配置されている。この金属空気電池10の電解液には、塩化ナトリウム水溶液が使用される。つまり、本実施形態の金属空気電池10はマグネシウム空気電池である。マグネシウム空気電池は、電解液に海水を用いたり、水道水に塩を混合した液体を用いることができるので、電解液の調達が容易である。なお、電槽11の内部に、電解質である塩化ナトリウムを収容した袋体を予め配置し、水道水等の水を注液するだけで発電するように構成してもよい。電解液中の塩化ナトリウムの質量は、溶媒の質量に対し4%〜18%が好ましい。4%未満では電解質不足により、液抵抗が大きく電池としての性能が見込めず、18%を超えると、放電に伴い電解液が徐々に蒸発し食塩が析出してしまい抵抗となり、電池としての性能が見込めないためである。   The metal electrode 15 is supported in the battery case 11 by a pair of left and right support members 30 and faces the air electrodes 13A and 13B. The metal electrode 15 is formed of a metal plate made of a magnesium alloy and disposed in parallel to the air electrodes 13A and 13B. An aqueous solution of sodium chloride is used as the electrolyte of the metal-air battery 10. That is, the metal air battery 10 of the present embodiment is a magnesium air battery. The magnesium-air battery can use seawater as the electrolytic solution or a liquid obtained by mixing salt with tap water, so the electrolytic solution can be easily procured. In addition, you may comprise so that it may be comprised so that the bag body which accommodated the sodium chloride which is electrolyte may be previously arrange | positioned inside the battery case 11, and water, such as tap water, may be injected. The mass of sodium chloride in the electrolytic solution is preferably 4% to 18% with respect to the mass of the solvent. If it is less than 4%, the electrolyte resistance will be large and performance as a battery can not be expected due to insufficient electrolyte, and if it exceeds 18%, the electrolyte will be gradually evaporated with discharge and salt will be deposited to become resistance and the performance as a battery It is because it can not be expected.

金属極15は、上方に延びて電解液の上方に露出する左右一対のタブ部15A1を有し、いずれか一方のタブ部15A1が電気配線52(図3)を接続する配線接続部として利用される。
なお、図1に示すように、金属極15の左右下端部には、上方に切り欠かれた切り欠き部15A2が形成され、各切り欠き部15A2の外形状はタブ部15A1の外形状と一致する。これにより、金属極15の上面と下面とが同一形状に形成され、一枚の金属板(本構成ではマグネシウム合金の板)から金属極15を切り抜く際に、隙間を空けずに連続で切り抜くことが可能になる。
The metal electrode 15 has a pair of left and right tab parts 15A1 extending upward and exposing the electrolyte above, and one of the tab parts 15A1 is used as a wiring connection part for connecting the electric wiring 52 (FIG. 3) Ru.
As shown in FIG. 1, notches 15A2 which are notched upward are formed at the left and right lower end portions of the metal pole 15, and the outer shape of each notch 15A2 matches the outer shape of the tab 15A1. Do. Thereby, the upper surface and the lower surface of the metal electrode 15 are formed in the same shape, and when cutting out the metal electrode 15 from a single metal plate (in the present configuration, a plate of magnesium alloy), cutting out continuously without leaving a gap. Becomes possible.

本構成では、左右一対の支持部材30とともに金属極15を電槽11内に挿入した場合に、支持部材30によって金属極15が電槽11に位置決めされる。これにより、金属極15が、開口部22Kを介して内部に露出する空気極13A、13Bに対向し、且つ、空気極13A、13Bと金属極15との間の離間距離である極間距離LA、LBがそれぞれ一定に保たれる。なお、支持部材30を予め電槽11内に挿入しておき、その後、金属極15を挿入してもよい。   In this configuration, when the metal electrode 15 is inserted into the battery case 11 together with the pair of left and right support members 30, the metal electrode 15 is positioned on the battery case 11 by the support member 30. Thereby, the metal electrode 15 faces the air electrodes 13A and 13B exposed to the inside through the opening 22K, and the distance LA between the air electrodes 13A and 13B and the metal electrode 15 is an interelectrode distance LA. , LB are kept constant respectively. The support member 30 may be inserted in advance into the battery case 11 and then the metal electrode 15 may be inserted.

左右一対の支持部材30が同一部品で形成されており、より具体的には、支持部材30は、金属極15に着脱自在に装着されて上下方向(Y方向)に延びる支持部材本体31と、支持部材本体31から張り出して電槽11の内面に当接する複数(4個)の当接部41とを備えている。各当接部41は、支持部材本体31から前方(+X方向)に向けて張り出す上下一対の前側張り出し部42と、支持部材本体31から後方(−X方向)に張り出す上下一対の後側張り出し部43とを備えている。   A pair of left and right support members 30 are formed of the same component, and more specifically, the support member main body 31 which is detachably mounted on the metal pole 15 and extends in the vertical direction (Y direction); A plurality of (four) contact portions 41 that project from the support member main body 31 and contact the inner surface of the battery case 11 are provided. Each contact portion 41 includes a pair of upper and lower front projecting portions 42 projecting forward from the supporting member main body 31 (+ X direction), and a pair of upper and lower rear sides projecting backward from the supporting member main body 31 (−X direction) And an overhang portion 43.

支持部材30を電槽11内に挿入した際に、支持部材30の前側張り出し部42の突出面が前壁部22に当接し、後側張り出し部43の突出面が後壁部23に当接することで、支持部材30に支持された金属極15の前後位置が位置決めされる。また、前側張り出し部42は、左右外側にも張り出して電槽11の側壁部24に当接し、金属極15の左右位置を位置決めする。これによって、金属極15を電槽11に位置決めし、極間距離LA、LB等を一定に保持することができる。
また、左右一対の支持部材30は、金属極15を電槽11の底板部21から浮かして支持している。
When the support member 30 is inserted into the battery case 11, the projecting surface of the front projecting portion 42 of the supporting member 30 contacts the front wall 22, and the projecting surface of the rear projecting portion 43 contacts the rear wall 23. Thus, the front and back position of the metal pole 15 supported by the support member 30 is positioned. Further, the front side projecting portion 42 also protrudes to the left and right outside and abuts on the side wall portion 24 of the battery case 11 to position the left and right positions of the metal electrode 15. As a result, the metal electrode 15 can be positioned in the battery case 11, and the inter-electrode distances LA, LB, etc. can be held constant.
Further, the pair of left and right support members 30 support the metal electrode 15 by floating from the bottom plate portion 21 of the battery case 11.

ところで、負極活物質である金属極15が充分な量である場合、電池容量は電解液の溶媒である水の量に依存する。そこで、発明者らは同一の電池容積を有する空気電池において、容量を確保しつつ高い発電電圧を得るために、種々検討を行った。本構成では、図2に示すように、金属極15を両側の空気極13A、13Bのいずれか一方に寄せた位置に配置することによって、容量を確保しつつ高い発電電圧を得ている。以下、実施例及び比較例について説明する。なお、実施例は以下のものに限定されるものではない。   By the way, when the metal electrode 15 which is a negative electrode active material has a sufficient amount, the battery capacity depends on the amount of water which is a solvent of the electrolytic solution. Therefore, the inventors conducted various studies in order to obtain a high generated voltage while securing the capacity in an air battery having the same battery volume. In this configuration, as shown in FIG. 2, by arranging the metal electrode 15 at a position close to one of the air electrodes 13A and 13B on both sides, a high generated voltage is obtained while securing the capacity. Hereinafter, Examples and Comparative Examples will be described. The examples are not limited to the following.

図3(A)は実施例1を示し、図3(B)は比較例1を示し、図3(C)は比較例2を示している。なお、図3(A)〜図3(C)は実施例1、比較例1及び2に係る金属空気電池10の左右中央の断面構造を示している。各図において、符号51は空気極13A、13Bに接続された電気配線を示し、符号52は金属極15に接続された電気配線を示している。   3 (A) shows Example 1, FIG. 3 (B) shows Comparative Example 1, and FIG. 3 (C) shows Comparative Example 2. As shown in FIG. 3A to 3C show the cross-sectional structures at the left and right center of the metal-air battery 10 according to Example 1 and Comparative Examples 1 and 2, respectively. In each of the drawings, reference numeral 51 denotes an electric wiring connected to the air electrodes 13A and 13B, and reference numeral 52 denotes an electric wiring connected to the metal electrode 15.

実施例1は、金属極15を一方の空気極13Aに寄せて配置した構成であり、オフセットタイプと表記することができる。これに対し、比較例1は、金属極15を両側の空気極13A、13Bの中央に配置した構成であり、以下、中央配置タイプと適宜に表記する。また、比較例2は、実施例1から右側の空気極13Bを除いた構成であり、つまり、金属極15の片側にだけ空気極13Aを配置した片側タイプである。   The first embodiment is a configuration in which the metal electrode 15 is disposed close to one air electrode 13A, and can be described as an offset type. On the other hand, the comparative example 1 is the structure which has arrange | positioned the metal pole 15 in the center of air pole 13A, 13B of both sides, and in the following, it describes suitably with center arrangement | positioning type. Further, Comparative Example 2 has a configuration in which the air electrode 13B on the right side is removed from Example 1, that is, it is a single-sided type in which the air electrode 13A is disposed only on one side of the metal electrode 15.

図4は上記3タイプの金属空気電池10の定電流放電試験を下記条件下で行った結果(容量−電圧特性)を示した図である。図4及び後述する各図に示す特性図は、内容積が650cmであり、空気極13Aと空気極13Bとの離間距離が26mmの電槽11に、四辺が150mmで厚さ3mmの金属極15を利用し、定電流放電試験を行った結果である。なお、前記電槽には電解液として食塩水を600cm程度注液した。 FIG. 4 is a view showing the results (capacitance-voltage characteristics) of the constant current discharge test of the three types of metal air batteries 10 under the following conditions. The characteristic diagram shown in FIG. 4 and each figure to be described later has an inner volume of 650 cm 3 and a metal case 11 having 150 mm of four sides and 3 mm of thickness in the battery case 11 having a separation distance of 26 mm between the air electrode 13A and the air electrode 13B. It is the result of performing a constant current discharge test using No. 15. In addition, about 600 cm 3 of saline was injected as an electrolytic solution into the battery case.

前記定電流放電試験は、常温(25℃とする)環境下で2A相当の一定電流を、電池電圧が0Vに達するまで(金属極15が消耗して電池寿命となるまで)流し続ける定電流放電試験である。なお、図4中の横軸は電池容量[Ah]であり、縦軸は電池電圧[V]である。
図4に示すように、実施例1は、比較例1、2よりも分極が小さくなっており、さらに分極が小さいまま放電末期まで維持されていることが判る。比較例1は、比較例2と比べると電圧は上昇したものの、実施例1と比較すると電圧は低かった。
In the constant current discharge test, constant current discharge is continued until the battery voltage reaches 0 V (until the metal electrode 15 is consumed and the battery life is reached) under a normal temperature (25 ° C.) environment until the battery voltage reaches 0 V It is a test. The horizontal axis in FIG. 4 is the battery capacity [Ah], and the vertical axis is the battery voltage [V].
As shown in FIG. 4, in Example 1, the polarization is smaller than in Comparative Examples 1 and 2, and it can be seen that the polarization is maintained until the end of the discharge while the polarization is small. Although the voltage of the comparative example 1 was higher than that of the comparative example 2, the voltage was lower than that of the comparative example 1.

次に、極間距離の影響を確認するため、複数種類の極間距離LA、LBとした以外は実施例1と同様の電池を用いて試験を行った。試験結果を図5(分極試験)及び図6(定電流放電試験)に示す。
前記分極試験は、電解液を注液した状態で、電池状態を同一条件に揃えると共に反応を活性化させることを目的として、3分間放置した後、放電装置に接続して10分間−2A相当の電流を流し、その後、3分間の休止を行った。次に、1.0A、1.5A、2.0A、2.5A、3.0A、4.0A、5.0A、6.0Aの電流を、5分間ずつ流した時の夫々の電流値における平均放電電圧を測定したものである。
図5は極間距離LA、LBの組み合わせ毎の電流−電圧の関係を示した図であり、横軸は電池電流[A]、縦軸は平均電池電圧[V]である。
Next, in order to confirm the influence of the inter-electrode distance, a test was conducted using the same battery as that of Example 1 except that a plurality of inter-electrode distances LA and LB were used. The test results are shown in FIG. 5 (polarization test) and FIG. 6 (constant current discharge test).
In the polarization test, after the electrolyte solution is injected, it is left for 3 minutes for the purpose of aligning the battery state under the same conditions and activating the reaction, and then connected to a discharge device for 10 minutes equivalent to 2A. The current was applied and then rested for 3 minutes. Next, at each current value when current of 1.0 A, 1.5 A, 2.0 A, 2.5 A, 3.0 A, 4.0 A, 5.0 A, 6.0 A is applied for 5 minutes each. The average discharge voltage is measured.
FIG. 5 is a diagram showing the current-voltage relationship for each combination of inter electrode distances LA and LB. The horizontal axis represents battery current [A], and the vertical axis represents average battery voltage [V].

図5に示すように、極間距離0.5mm、22.5mmの組み合わせがいずれの電流値でも相対的に高い電圧値が得られた。この組み合わせ以外では、極間距離5.5mm、17.5mmの組み合わせ、極間距離9.5mm、13.5mmの組み合わせの順で良好な結果が得られた。一方、比較例2に相当する極間距離11.5mm、11.5mmの組み合わせは、いずれの電流値でも最も電圧が低かった。   As shown in FIG. 5, the combination of the distances between the electrodes of 0.5 mm and 22.5 mm provided relatively high voltage values at any current value. Other than this combination, good results were obtained in the order of the combination of distance between poles 5.5 mm and 17.5 mm, and the combination of distance between poles 9.5 mm and 13.5 mm. On the other hand, the combination of the inter-electrode distances 11.5 mm and 11.5 mm corresponding to Comparative Example 2 had the lowest voltage at any current value.

発明者等の検討によれば、極間距離の短い方を値LAとした場合に、値(LB/LA)が2以上のときに電圧を効率良く向上させることが可能であった。なお、値(LB/LA)が2以上の場合は、図5の例では、極間距離0.5mm、22.5mmの組み合わせ、及び極間距離5.5mm、17.5mmの組み合わせである。   According to the study of the inventors, it is possible to efficiently improve the voltage when the value (LB / LA) is 2 or more, where the shorter distance between the electrodes is the value LA. When the value (LB / LA) is 2 or more, in the example of FIG. 5, the combination of inter-electrode distances 0.5 mm and 22.5 mm and the combination of inter-electrode distances 5.5 mm and 17.5 mm.

図6は極間距離LA、LBの組み合わせ毎の定電流放電試験の結果を示した図であり、横軸は電池容量[Ah]であり、縦軸は電池電圧[V]である。なお、定電流放電試験は実施例1と同様の方法で行った。   FIG. 6 is a diagram showing the results of the constant current discharge test for each combination of inter electrode distances LA and LB, the horizontal axis is the battery capacity [Ah], and the vertical axis is the battery voltage [V]. The constant current discharge test was conducted in the same manner as in Example 1.

図6に示すように、図5に示した極間距離LA、LBの全ての組み合わせで、略容量が変わらなかった。このことは、上記極間距離LA、LBの各組み合わせのように極間距離を変更しても、容量への影響が小さいことを示している。
但し、極間距離LA又はLBを狭くし過ぎると、空気極13A、13Bと金属極15との間に反応生成物が堆積し、放電容量の低下を招いてしまう。このことから、少なくとも極間距離は0.5mm以上が好ましく、0.5mm以上にすることで、放電に伴って生成される反応生成物が空気極13A、13Bと金属極15との間にほとんど堆積することなく、発電への影響を抑えることができる。
As shown in FIG. 6, substantially all the capacitances did not change in all combinations of the distances LA and LB shown in FIG. This indicates that even if the distance between the electrodes is changed as in each combination of the distances LA and LB, the influence on the capacitance is small.
However, if the distance LA or LB between the electrodes is too narrow, a reaction product is deposited between the air electrodes 13A, 13B and the metal electrode 15, resulting in a decrease in discharge capacity. From this, it is preferable that at least the distance between the electrodes be 0.5 mm or more, and by setting the distance to 0.5 mm or more, the reaction products generated along with the discharge are mostly between the air electrodes 13A and 13B and the metal electrode 15. The effect on power generation can be suppressed without depositing.

さらに、極間距離LA、LBの値については、極間距離[mm]−電圧[V]の関係を示す非直線特性に基づき設定することが好ましい。以下、極間距離設定方法について説明する。
図7は極間距離[mm]−電圧[V]の関係を示す非直線特性(以下、特性曲線f1と言う)の図である。この特性曲線f1は、空気極13A、13B、金属極15等が決定すると一意に決まる曲線である。
Furthermore, it is preferable to set the values of the inter-electrode distances LA and LB based on the non-linear characteristic indicating the relationship between the inter-electrode distance [mm] -voltage [V]. Hereinafter, the method of setting the distance between the poles will be described.
FIG. 7 is a diagram of non-linear characteristics (hereinafter referred to as a characteristic curve f1) showing the relationship between the distance between electrodes [mm] -voltage [V]. This characteristic curve f1 is a curve which is uniquely determined when the air electrodes 13A and 13B, the metal electrode 15 and the like are determined.

この特性曲線f1を利用することによって、図7に示すように、極間距離LAを空けて対向配置される一対の極板(金属極15と空気極13A)からなる第1電池の電圧VAと、極間距離LBを空けて対向配置される一対の極板(金属極15と空気極13B)からなる第2電池の電圧VBとを算出可能である。
算出した値VA、VBの和は、極間距離LA、LBに設定した図2に示す金属空気電池10の電圧とみなすことができる。
By using this characteristic curve f1, as shown in FIG. 7, the voltage VA of the first battery consisting of a pair of electrode plates (metal electrode 15 and air electrode 13A) disposed opposite to each other with a gap LA between the electrodes and It is possible to calculate the voltage VB of the second battery composed of a pair of electrode plates (metal electrode 15 and air electrode 13B) disposed opposite to each other with a gap LB between the electrodes.
The sum of the calculated values VA and VB can be regarded as the voltage of the metal-air battery 10 shown in FIG. 2 set to the inter-electrode distance LA and LB.

また、図7に示すように、特性曲線f1に基づき、中央配置タイプの極間距離LCを空けて対向配置される一対の極板(金属極15と空気極13A)からなる電池の電圧VCを算出する。算出した電圧VCを2倍にした値は、中央配置タイプの金属空気電池10の電圧とみなすことができる。
そして、次の式(1)が成立するように極間距離LA、LBを設定する。
Further, as shown in FIG. 7, based on the characteristic curve f1, the voltage VC of the battery consisting of a pair of electrode plates (metal electrode 15 and air electrode 13A) opposed to each other with an inter-electrode distance LC of the center arrangement type. calculate. The value obtained by doubling the calculated voltage VC can be regarded as the voltage of the central arrangement type metal air battery 10.
Then, the inter-pole distances LA and LB are set such that the following equation (1) is established.

(VA+VB)>2×VC
=(VA+VB)/2>VC・・・・(1)
(VA + VB)> 2 × VC
= (VA + VB) / 2> VC (1)

上記式(1)は、電圧VAと電圧VBとの平均値が、中央配置タイプの電圧VCよりも大きいことを示している。
この式(1)を満足するように極間距離LA、LBを設定することによって、中央配置タイプよりも高い電圧を得ることが可能である。
The above equation (1) indicates that the average value of the voltage VA and the voltage VB is larger than the voltage VC of the center arrangement type.
By setting the distances LA and LB so as to satisfy this equation (1), it is possible to obtain a higher voltage than in the center arrangement type.

要するに、極間距離LA、LBは、極間距離−電圧の関係を示す特性曲線f1に基づき、金属極15と空気極13Aとを極間距離LAを空けて配置した第1電池から得られる電圧VAと、金属極15と空気極13Bとを極間距離LBを空けて配置した第2電池から得られる電圧VBとの平均値が、金属極15を両側の空気極13A、13Bの中央位置に配置する場合に得られる電圧VCよりも高くなるように設定する。これによって、金属極15を両側の空気極13A、13Bのいずれか一方に寄せた金属空気電池10に対し、高い電圧が得られる極間距離LA、LBを容易に設定することが可能である。   In short, the inter-electrode distances LA and LB are voltages obtained from the first battery in which the metal electrode 15 and the air electrode 13A are disposed with the inter-electrode distance LA between them based on the characteristic curve f1 showing the relationship between the electrode distance-voltage. The average value of VA and the voltage VB obtained from the second battery in which the metal electrode 15 and the air electrode 13B are disposed with the distance LB between the electrodes is such that the metal electrode 15 is at the central position of the air electrodes 13A and 13B on both sides. It is set to be higher than the voltage VC obtained when arranging. This makes it possible to easily set the inter-electrode distances LA and LB at which a high voltage can be obtained with respect to the metal-air battery 10 in which the metal electrode 15 is moved to one of the air electrodes 13A and 13B on both sides.

図8及び図9に、内容積が350cmであり、空気極13Aと空気極13Bとの離間距離が14mmの電槽11に四辺が150mmで厚さ3mmの金属極15を利用した金属空気電池10の分極試験および定電流放電試験を行った結果を示す。なお、前記電槽11には電解液として食塩水を330cm程度注液した。 In FIGS. 8 and 9, a metal air battery using an inner volume of 350 cm 3 , a battery case 11 with a separation distance of 14 mm between the air electrode 13 A and the air electrode 13 B and a metal electrode 15 with 3 mm thickness and 150 mm on four sides. The result of having performed the polarization test and constant current discharge test of 10 is shown. A salt solution of about 330 cm 3 was injected into the battery case 11 as an electrolytic solution.

図8は他の極間距離LA、LBの組み合わせ毎の分極試験結果を示した図であり、電流値−電圧の関係を示している。分極試験は、前記同様、3分間放置した後、放電装置に接続して10分間−2A相当の電流を流し、その後、3分間の休止を行った。次に、1.0A、2.0A、3.0A、4.0A、5.0A、6.0Aの電流を、5分間ずつ流した時の夫々の電流値における平均電圧を測定したものである。
図9は、図8に示す組み合わせ毎の定電流放電試験の結果を示した図であり、横軸は電池容量[Ah]、縦軸は電池電圧[V]である。なお、定電流放電試験は実施例1と同様の方法で行った。
FIG. 8 is a view showing the polarization test result for each combination of the distances LA and LB between the other electrodes, and shows the relationship between the current value and the voltage. The polarization test was left to stand for 3 minutes as described above, and then connected to a discharge device to apply a current of -2 A for 10 minutes, and then rest for 3 minutes. Next, when the current of 1.0A, 2.0A, 3.0A, 4.0A, 5.0A, 6.0A is applied for 5 minutes, the average voltage at each current value is measured. .
FIG. 9 is a diagram showing the results of the constant current discharge test for each combination shown in FIG. 8, in which the horizontal axis is the battery capacity [Ah] and the vertical axis is the battery voltage [V]. The constant current discharge test was conducted in the same manner as in Example 1.

図8に示すように、極間距離LA、LBの組み合わせを極間距離0.5mm、10.5mmの組み合わせ、及び極間距離4.5mm、6.5mmの組み合わせとした場合には、極間距離0.5mm、10.5mmの組み合わせ、極間距離4.5mm、6.5mmの組み合わせの順で高い電圧が得られた。一方、中央配置タイプに相当する極間距離5.5mm、5.5mmの組み合わせは最も電圧が低かった。   As shown in FIG. 8, when the combination of the inter-electrode distances LA and LB is a combination of inter-electrode distances 0.5 mm and 10.5 mm, and the combination of inter-electrode distances 4.5 mm and 6.5 mm, the inter-electrode distance Higher voltages were obtained in the order of the combination of the distances 0.5 mm and 10.5 mm and the distance between the electrodes 4.5 mm and 6.5 mm. On the other hand, the combination of the distance between the poles 5.5 mm and 5.5 mm corresponding to the center arrangement type had the lowest voltage.

図9に示すように、図8に示した極間距離LA、LBの全ての組み合わせで略容量が変わらないことを確認している。したがって、図8からも、金属極15を両側の空気極13A、13Bのいずれか一方に寄せることによって、容量を確保しつつ高い電圧が得られることが判る。   As shown in FIG. 9, it is confirmed that the capacity does not substantially change in all combinations of the inter-electrode distances LA and LB shown in FIG. Therefore, it can also be understood from FIG. 8 that a high voltage can be obtained while securing the capacity by moving the metal electrode 15 to one of the air electrodes 13A and 13B on both sides.

以上説明したように、本実施形態の金属空気電池10は、金属極15の両側に空気極13A、13Bを配置し、金属極15は、両側の空気極13A、13Bのいずれか一方に寄せた位置に配置されているので、容量を確保しつつ高い電圧を得やすくなる。したがって、高性能な金属空気電池を効率良く得ることができる。   As described above, in the metal-air battery 10 of this embodiment, the air electrodes 13A and 13B are disposed on both sides of the metal electrode 15, and the metal electrode 15 is brought close to any one of the air electrodes 13A and 13B on both sides. Being arranged at a position, it is easy to obtain a high voltage while securing a capacity. Therefore, a high performance metal-air battery can be obtained efficiently.

また、金属極15と一方の空気極13Aの極間距離LA(第1距離に相当)と、金属極15と他方の空気極13Bの極間距離LB(第2距離に相当)とは、次の条件を満たしている。その条件は、金属極15と一方の空気極13Aとを極間距離LAで配置した第1電池から得られる電圧VAと、金属極15と他方の空気極13Bとを極間距離LBで配置した第2電池から得られる電圧VBとの平均値が、金属極15を両側の空気極13A、13Bの中央位置に配置する場合に得られる電圧VCよりも高いことである。これにより、中央配置タイプよりも高い電圧を得ることが可能になる。   Further, the distance LA (corresponding to a first distance) between the metal electrode 15 and one air electrode 13A and the distance LB (corresponding to a second distance) between the metal electrode 15 and the other air electrode 13B are Meet the conditions of The condition is that the voltage VA obtained from the first battery in which the metal electrode 15 and one of the air electrodes 13A are arranged at the interelectrode distance LA, and the metal electrode 15 and the other air electrode 13B are arranged with the interelectrode distance LB The average value of the voltage VB obtained from the second battery is higher than the voltage VC obtained when the metal electrode 15 is disposed at the central position of the air electrodes 13A and 13B on both sides. This makes it possible to obtain a higher voltage than the central arrangement type.

しかも、極間距離設定方法として、極間距離LA、LBを、極間距離−電圧の関係を示す特性曲線f1に基づき、金属極15と空気極13Aとを極間距離LAを空けて配置した第1電池から得られる電圧VAと、金属極15と空気極13Bとを極間距離LBを空けて配置した第2電池から得られる電圧VBとの平均値が、金属極15を両側の空気極13A、13Bの中央位置に配置する場合に得られる電圧VCよりも高くなるように設定するので、高い電圧が得られる極間距離LA、LBを容易に設定することが可能である。   In addition, as a method of setting the distance between the electrodes, the distance between the electrodes LA and LB is arranged with the distance LA between the metal electrode 15 and the air electrode 13A based on the characteristic curve f1 indicating the relationship between the distance between the electrodes and the voltage. The average value of the voltage VA obtained from the first battery and the voltage VB obtained from the second battery in which the metal electrode 15 and the air electrode 13B are disposed with the distance LB between the electrodes is the air electrode on both sides of the metal electrode 15. Since the voltage is set to be higher than the voltage VC obtained in the middle position of 13A and 13B, it is possible to easily set the inter-electrode distances LA and LB at which high voltages can be obtained.

さらに、極間距離の短い方を値LA、極間距離の長い方を値LBとした場合に、値(LB/LA)を2以上にすることによって、高い電圧を得る極間距離LA、LBをより容易に設定することができる。
さらに、極間距離の値LAを0.5mm以上にすることにより、放電に伴って生成される反応生成物が空気極13A、13Bと金属極15との間にほとんど堆積することなく、発電への影響を十分に抑えやすくなる。
Furthermore, when the shorter inter-electrode distance is the value LA, and the longer inter-electrode distance is the value LB, the inter-electrode distance LA, LB can be obtained by setting the value (LB / LA) to 2 or more. Can be set more easily.
Furthermore, by setting the value LA of the inter-electrode distance to 0.5 mm or more, the reaction product generated along with the discharge is hardly deposited between the air electrodes 13A, 13B and the metal electrode 15, and power can be generated. It is easy to suppress the influence of

また、本実施形態の金属空気電池10は、金属極15を電槽11の底板部21から浮かして支持する左右一対の支持部材30を備えている。これにより、放電に伴って生成される反応生成物の堆積を抑制できるとともに、電解液の対流を促進することができ、電池反応への反応生成物の影響を効果的に抑制することが可能である。   Further, the metal air battery 10 of the present embodiment is provided with a pair of left and right support members 30 that support the metal electrode 15 by floating it from the bottom plate portion 21 of the battery case 11. As a result, it is possible to suppress the deposition of the reaction product generated along with the discharge and to promote the convection of the electrolytic solution, and it is possible to effectively suppress the influence of the reaction product on the cell reaction. is there.

本発明は上述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形、及び変更が可能である。例えば、空気極13A、13B、金属極15を含む金属空気電池10の各部は適宜に変更してもよい。
また、金属極15はマグネシウム合金に限らず、他の素材を用いてもよい。他の素材としては、例えば、亜鉛、鉄、アルミニウム等の金属、又はこれらのいずれかを含む合金を挙げることができる。金属極15に亜鉛を用いる場合には、電解液に水酸化カリウム水溶液を用いるようにすれば良く、金属極15に鉄を用いる場合には、電解液にアルカリ系水溶液を用いるようにすればよい。また、金属極15にアルミニウムを用いる場合には、水酸化ナトリウム、又は水酸化カリウムを含む電解液を用いるようにすればよい。
The present invention is not limited to the embodiments described above, and various modifications and changes are possible based on the technical concept of the present invention. For example, each part of the metal air battery 10 including the air electrodes 13A and 13B and the metal electrode 15 may be appropriately changed.
Moreover, the metal electrode 15 may use not only a magnesium alloy but another raw material. As another raw material, metals, such as zinc, iron, aluminum, or an alloy containing any of these can be mentioned, for example. When zinc is used for the metal electrode 15, a potassium hydroxide aqueous solution may be used for the electrolytic solution, and when iron is used for the metal electrode 15, an alkaline aqueous solution may be used for the electrolytic solution. . When aluminum is used for the metal electrode 15, an electrolyte containing sodium hydroxide or potassium hydroxide may be used.

10 金属空気電池
11 電槽
13A、13B 空気極
15 金属極
21 底板部)
22 前壁部
22K 開口部
23 後壁部
24 側壁部
30 支持部材
LA、LB、LC 極間距離
VA、VB、VC 電圧
f1 特性曲線(極間距離−電圧の関係を示す非直線特性)
DESCRIPTION OF SYMBOLS 10 metal air battery 11 battery case 13A, 13B air pole 15 metal pole 21 bottom plate part)
22 front wall 22K opening 23 back wall 24 side wall 30 support member LA, LB, LC distance between poles VA, VB, VC voltage f1 characteristic curve (non-linear characteristic showing relation between distance between electrodes)

Claims (4)

金属極と、前記金属極に対向する空気極とを備える金属空気電池において、
前記空気極は、前記金属極の両側にそれぞれ配置され、
前記金属極は、両側の前記空気極のいずれか一方に寄せた位置に配置され
前記金属極と一方の前記空気極の極間距離である第1距離と、前記金属極と他方の前記空気極の極間距離である第2距離は、次の条件、
即ち、前記金属極と前記一方の空気極とを前記第1距離で配置した第1電池から得られる電圧と、前記金属極と他方の前記空気極とを前記第2距離で配置した第2電池から得られる電圧との平均値が、前記金属極を両側の前記空気極の中央位置に配置する場合に得られる電圧よりも高いこと
を満たすことを特徴とする金属空気電池。
In a metal-air battery comprising a metal electrode and an air electrode facing the metal electrode,
The air electrode is disposed on both sides of the metal electrode,
The metal electrode is disposed at a position close to one of the air electrodes on both sides ,
The first distance, which is the distance between the metal pole and one of the air electrodes, and the second distance, which is the distance between the metal pole and the other air electrode, satisfy the following conditions:
That is, a voltage obtained from the first battery in which the metal electrode and the one air electrode are arranged at the first distance, and a second battery in which the metal electrode and the other air electrode are arranged at the second distance Higher than the voltage obtained when the metal electrode is placed at the central position of the air electrode on both sides.
Metal-air battery characterized by satisfying .
前記極間距離の短い方を値LA、極間距離の長い方を値LBとした場合に、値(LB/LA)が2以上であることを特徴とする請求項1に記載の金属空気電池。The metal-air battery according to claim 1, wherein the value (LB / LA) is 2 or more when the shorter distance between the electrodes is a value LA and the longer distance between the electrodes is a value LB. . 前記金属極を、この金属極を収容する電槽の底板部から浮かして支持する支持部材を有することを特徴とする請求項1又は2のいずれかに記載の金属空気電池。The metal air battery according to any one of claims 1 and 2, further comprising a support member for floatingly supporting the metal electrode from a bottom plate portion of a battery case accommodating the metal electrode. 金属極と、前記金属極に対向する空気極とを備え、A metal electrode and an air electrode facing the metal electrode,
前記空気極を、前記金属極の両側にそれぞれ配置し、  The air electrode is disposed on each side of the metal electrode,
前記金属極を、両側の前記空気極のいずれか一方に寄せた位置に配置した金属空気電池の極間距離設定方法であって、  A method for setting an interelectrode distance of a metal-air battery, wherein the metal electrode is disposed at a position close to one of the air electrodes on both sides.
前記金属極と一方の前記空気極の極間距離である第1距離と、前記金属極と他方の前記空気極の極間距離である第2距離とを、  A first distance which is a distance between the metal pole and one of the air electrodes, and a second distance which is a distance between the metal pole and the other air electrode;
極間距離と電圧との関係を示す非直線特性に基づき、前記金属極と前記一方の空気極とを前記第1距離で配置した第1電池から得られる電圧と、前記金属極と他方の前記空気極とを前記第2距離で配置した第2電池から得られる電圧との平均値が、前記金属極を両側の前記空気極の中央位置に配置する場合に得られる電圧よりも高くなるように設定していることを特徴とする金属空気電池の極間距離設定方法。  A voltage obtained from a first battery in which the metal electrode and the one air electrode are disposed at the first distance based on a non-linear characteristic indicating a relationship between an inter-electrode distance and a voltage; The average value of the voltage obtained from the second battery in which the air electrode is disposed at the second distance is higher than the voltage obtained when the metal electrode is disposed at the central position of the air electrode on both sides. A method of setting a distance between electrodes of a metal-air battery characterized in that the setting is made.
JP2018078517A 2018-04-16 2018-04-16 Metal-air battery and method of setting inter-electrode distance of metal-air battery Active JP6526865B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018078517A JP6526865B1 (en) 2018-04-16 2018-04-16 Metal-air battery and method of setting inter-electrode distance of metal-air battery
TW108111651A TWI683467B (en) 2018-04-16 2019-04-02 Metal-air battery and method for setting distance between electrodes of metal-air battery
CN201980002172.3A CN110622350A (en) 2018-04-16 2019-04-03 Metal-air battery and method for setting inter-electrode distance of metal-air battery
PCT/JP2019/014855 WO2019202997A1 (en) 2018-04-16 2019-04-03 Metal-air battery, and method for setting inter-electrode distance of metal-air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018078517A JP6526865B1 (en) 2018-04-16 2018-04-16 Metal-air battery and method of setting inter-electrode distance of metal-air battery

Publications (2)

Publication Number Publication Date
JP6526865B1 true JP6526865B1 (en) 2019-06-05
JP2019186150A JP2019186150A (en) 2019-10-24

Family

ID=66730674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078517A Active JP6526865B1 (en) 2018-04-16 2018-04-16 Metal-air battery and method of setting inter-electrode distance of metal-air battery

Country Status (4)

Country Link
JP (1) JP6526865B1 (en)
CN (1) CN110622350A (en)
TW (1) TWI683467B (en)
WO (1) WO2019202997A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018883A (en) * 2019-07-18 2021-02-15 古河電池株式会社 Air battery and manufacturing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111679207B (en) * 2020-05-09 2023-03-14 军事科学院系统工程研究院军事新能源技术研究所 Metal-air battery and discharge test system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495536B1 (en) * 1969-07-25 1974-02-07
JP4905536B2 (en) * 2009-10-29 2012-03-28 カシオ計算機株式会社 Time information acquisition device and radio clock
GB0921045D0 (en) * 2009-12-01 2010-01-13 Spruce Fuel Cells Llp Electrode, fuel cell and battery
US9742048B2 (en) * 2013-03-25 2017-08-22 Sharp Kabushiki Kaisha Metal-air battery
WO2015076172A1 (en) * 2013-11-19 2015-05-28 古河電池株式会社 Metal-air battery and metal-air battery unit
JP5873579B1 (en) * 2015-02-06 2016-03-01 古河電池株式会社 Metal air battery
JP6439229B2 (en) * 2015-02-10 2018-12-19 日産自動車株式会社 ELECTRODE STRUCTURE, AIR BATTERY SINGLE CELL STRUCTURE, AND AIR BATTERY STACK STRUCTURE
US10763559B2 (en) * 2016-01-26 2020-09-01 Fujikura Rubber Ltd. Metal-air battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018883A (en) * 2019-07-18 2021-02-15 古河電池株式会社 Air battery and manufacturing method of the same

Also Published As

Publication number Publication date
TW201944648A (en) 2019-11-16
CN110622350A (en) 2019-12-27
WO2019202997A1 (en) 2019-10-24
JP2019186150A (en) 2019-10-24
TWI683467B (en) 2020-01-21

Similar Documents

Publication Publication Date Title
US8526166B2 (en) Lithium ion capacitor
JP6622802B2 (en) Silicon secondary battery
KR101138594B1 (en) lithium ion capacitor
AU2015344623B2 (en) Battery cell and redox flow battery
CN108511199B (en) Electrochemical device
CN102511107A (en) Air cell
JP2012089381A (en) Molten salt battery
WO2018155468A1 (en) Electrochemical device
JP6526865B1 (en) Metal-air battery and method of setting inter-electrode distance of metal-air battery
CN102667986B (en) Electricity-storage device
US8379368B2 (en) Method for manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
JP2008186945A (en) Electrical double-layer capacitor and manufacturing method of electrical double-layer capacitor
JP2009151977A (en) Coin type secondary battery
CN111384360B (en) Metal ion battery
US20160226079A1 (en) Water-activated power generating device
JP6837868B2 (en) Electrochemical device
JP6439229B2 (en) ELECTRODE STRUCTURE, AIR BATTERY SINGLE CELL STRUCTURE, AND AIR BATTERY STACK STRUCTURE
US10490819B2 (en) Electrochemical energy storage system and battery
JP6334361B2 (en) Power storage module
KR20150086954A (en) 3-Electrode System Cell of Cylinder Type Electric Energy Storage Element
JP2018142605A (en) Electrochemical device
JPH1154388A (en) Electric double-layer capacitor
KR102003370B1 (en) Secondary battery, battery module having the secondary battery and method for manufacturing the secondary battery
JP2018181982A (en) Electrochemical device
CN110767873A (en) Battery package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150