JP6526432B2 - Waste heat recovery system - Google Patents

Waste heat recovery system Download PDF

Info

Publication number
JP6526432B2
JP6526432B2 JP2015023460A JP2015023460A JP6526432B2 JP 6526432 B2 JP6526432 B2 JP 6526432B2 JP 2015023460 A JP2015023460 A JP 2015023460A JP 2015023460 A JP2015023460 A JP 2015023460A JP 6526432 B2 JP6526432 B2 JP 6526432B2
Authority
JP
Japan
Prior art keywords
working fluid
expander
gas
waste heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015023460A
Other languages
Japanese (ja)
Other versions
JP2016145560A (en
Inventor
中村 正明
正明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2015023460A priority Critical patent/JP6526432B2/en
Publication of JP2016145560A publication Critical patent/JP2016145560A/en
Application granted granted Critical
Publication of JP6526432B2 publication Critical patent/JP6526432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、廃熱回収装置に関し、特にランキンサイクル装置を備える廃熱回収装置に関する。   The present invention relates to a waste heat recovery apparatus, and more particularly to a waste heat recovery apparatus including a Rankine cycle device.

従来、ランキンサイクル装置を備える廃熱回収装置に関する技術として、例えば特許文献1に記載された廃熱回収装置が知られている。特許文献1に記載された廃熱回収装置は、蒸発器及び膨張機を有するランキンサイクル装置と、蒸発器及び膨張機の間に設けられた気液分離機とを備えている。この廃熱回収装置では、気液分離機で作動流体の液相と気相とを分離し、当該液相の熱を利用して蒸発器に向かう作動流体を加熱する。   Conventionally, as a technology relating to a waste heat recovery device provided with a Rankine cycle device, for example, a waste heat recovery device described in Patent Document 1 is known. The waste heat recovery device described in Patent Document 1 includes a Rankine cycle device having an evaporator and an expander, and a gas-liquid separator provided between the evaporator and the expander. In this waste heat recovery apparatus, the liquid phase and the gas phase of the working fluid are separated by the gas-liquid separator, and the working fluid directed to the evaporator is heated using the heat of the liquid phase.

国際公開WO2010/137360号パンフレットInternational Publication WO 2010/137360 Brochure

ここで、近年の廃熱回収装置としては、例えばエンジンにおける燃費低減を図るため、膨張機から流出する作動流体が有するエネルギを有効に利用し、廃熱回収効率を更に向上させ得るものが求められている。   Here, as a waste heat recovery apparatus in recent years, for example, in order to reduce fuel consumption in the engine, one that can effectively improve the waste heat recovery efficiency by using energy possessed by the working fluid flowing out of the expander is required. ing.

本発明は、上記実情に鑑みてなされたものであり、廃熱回収効率を向上できる廃熱回収装置を提供することを課題とする。   This invention is made in view of the said situation, and makes it a subject to provide the waste heat recovery apparatus which can improve waste heat recovery efficiency.

本発明に係る廃熱回収装置は、作動流体が循環されるランキンサイクル装置を備える廃熱回収装置であって、ランキンサイクル装置は、作動流体が流入されて動力を出力する膨張機と、膨張機の下流に設けられ、作動流体の気相と液相とを分離する気液分離機と、膨張機の上流に設けられ、気液分離機で分離した作動流体の気相を膨張機の上流に導くエジェクタと、を有する。   The waste heat recovery apparatus according to the present invention is a waste heat recovery apparatus provided with a Rankine cycle apparatus in which a working fluid is circulated, and the Rankine cycle apparatus is an expander that receives the working fluid and outputs power. A gas-liquid separator that separates the gas phase and the liquid phase of the working fluid, and a steam-liquid separator provided upstream of the expander, the gas phase of the working fluid separated by the gas-liquid separator being upstream of the expander And an ejector for guiding.

この廃熱回収装置では、膨張機から流出した作動流体の気相は、気液分離機により分離されてエジェクタにより膨張機の上流に導かれ、再度膨張機に流入される。これにより、膨張機における作動流体の気相の流量を増すことができ、膨張機から流出する作動流体のエネルギを有効に利用することができる。よって、廃熱回収効率を向上することが可能となる。   In this waste heat recovery apparatus, the gas phase of the working fluid that has flowed out of the expander is separated by the gas-liquid separator, guided by the ejector to the upstream of the expander, and re-introduced into the expander. Thus, the flow rate of the gas phase of the working fluid in the expander can be increased, and the energy of the working fluid flowing out of the expander can be effectively used. Therefore, it is possible to improve the waste heat recovery efficiency.

また、ランキンサイクル装置は、作動流体を冷却して凝縮させる凝縮器を有し、気液分離機は、膨張機と凝縮器との間に設けられていてもよい。この場合、凝縮器には、気液分離機により分離された作動流体の液相が流入するため、凝縮器において凝縮に係る放熱量が低減される。その結果、凝縮器の小型化が見込まれる。   In addition, the Rankine cycle device may have a condenser that cools and condenses the working fluid, and the gas-liquid separator may be provided between the expander and the condenser. In this case, since the liquid phase of the working fluid separated by the gas-liquid separator flows into the condenser, the amount of heat release related to condensation is reduced in the condenser. As a result, miniaturization of the condenser is expected.

また、ランキンサイクル装置は、作動流体を加熱して蒸発させる蒸発器を有し、エジェクタは、蒸発器の下流側において蒸発器と一体に形成されていてもよい。蒸発器とエジェクタとが別体の場合、蒸発器の下流側とエジェクタとのそれぞれが作動流体の圧力損失箇所となり得るが、蒸発器の下流側でエジェクタが一体に形成されていると、当該圧力損失箇所が減ることになるため、作動流体の圧力損失を抑制することができる。   Also, the Rankine cycle device may have an evaporator for heating and evaporating the working fluid, and the ejector may be integrally formed with the evaporator on the downstream side of the evaporator. When the evaporator and the ejector are separate bodies, each of the downstream side of the evaporator and the ejector may be a pressure loss point of the working fluid, but when the ejector is integrally formed downstream of the evaporator, the pressure concerned Since the loss point is reduced, the pressure loss of the working fluid can be suppressed.

本発明によれば、廃熱回収効率を向上できる廃熱回収装置を提供することができる。   According to the present invention, it is possible to provide a waste heat recovery apparatus capable of improving the waste heat recovery efficiency.

第1の実施形態に係る廃熱回収装置を示す概略ブロック図である。It is a schematic block diagram showing a waste heat recovery system concerning a 1st embodiment. 第2の実施形態に係る廃熱回収装置を示す概略ブロック図である。It is a schematic block diagram showing a waste heat recovery system concerning a 2nd embodiment.

以下、本発明の一側面に係る好適な実施形態について、図面を参照しつつ詳細に説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明を省略する。
(第1の実施形態)
Hereinafter, preferred embodiments according to one aspect of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals and redundant description will be omitted.
First Embodiment

図1は、第1の実施形態に係る廃熱回収装置を示す概略ブロック図である。図1に示すように、第1の実施形態に係る廃熱回収装置1は、ランキンサイクル装置10を備え、例えば車両に搭載される。適用される車両としては、例えばトラックやバス等の商用車が挙げられる。なお、車両としては、特に限定されるものではなく、例えば大型車両や中型車両、普通乗用車、小型車両又は軽車両等の何れであってもよい。   FIG. 1 is a schematic block diagram showing a waste heat recovery apparatus according to the first embodiment. As shown in FIG. 1, the waste heat recovery apparatus 1 according to the first embodiment includes a Rankine cycle device 10 and is mounted on, for example, a vehicle. As a vehicle applied, commercial vehicles, such as a truck and a bus, are mentioned, for example. The vehicle is not particularly limited, and may be, for example, any of a large vehicle, a medium vehicle, a passenger car, a small vehicle, a light vehicle, and the like.

ランキンサイクル装置10は、例えばエンジン20の廃熱を入熱として、当該廃熱に係る熱エネルギを動力に変換して出力する。ランキンサイクル装置10は、その流路17において、作動流体ポンプ11と、蒸発器12と、膨張機14と、凝縮器16と、を有している。ランキンサイクル装置10の流路17は、第1流路17a〜第7流路17gを含み、流路17には、作動流体Mが循環される。作動流体Mとしては、種々のものを用いることができ、ここでは、低沸点媒体であるR134aが用いられる。   For example, using the waste heat of the engine 20 as heat input, the Rankine cycle device 10 converts the heat energy related to the waste heat into motive power and outputs it. The Rankine cycle device 10 includes a working fluid pump 11, an evaporator 12, an expander 14, and a condenser 16 in its flow path 17. The flow path 17 of the Rankine cycle device 10 includes a first flow path 17 a to a seventh flow path 17 g, and the working fluid M is circulated in the flow path 17. As the working fluid M, various ones can be used, and here, a low boiling point medium R134a is used.

作動流体ポンプ11は、流路17上において作動流体Mを送出(圧送)して循環させるポンプである。作動流体ポンプ11は、作動流体Mを圧縮すると共に、当該作動流体Mを流路17における下流側の第1流路17aに送出する。   The working fluid pump 11 is a pump that delivers (pumps) the working fluid M and circulates it on the flow path 17. The working fluid pump 11 compresses the working fluid M and delivers the working fluid M to the downstream first flow path 17 a in the flow path 17.

蒸発器12は、第1流路17aの下流側に設けられ、作動流体ポンプ11で圧縮された作動流体Mを加熱して蒸発させる熱交換器である。蒸発器12には、エンジン20の冷却水Wが流通される。蒸発器12は、冷却水Wを介して入熱されたエンジン20の廃熱により作動流体Mを加熱する。蒸発器12は、蒸発させた作動流体Mを流路17における下流側の第2流路17bに流出する。   The evaporator 12 is a heat exchanger which is provided on the downstream side of the first flow path 17 a and heats and evaporates the working fluid M compressed by the working fluid pump 11. Cooling water W of the engine 20 is circulated through the evaporator 12. The evaporator 12 heats the working fluid M by the waste heat of the engine 20 which is heat-input via the cooling water W. The evaporator 12 discharges the evaporated working fluid M to the downstream second flow passage 17 b in the flow passage 17.

エジェクタ13は、第2流路17bの下流側に設けられ、膨張機14の上流に設けられている。エジェクタ13は、絞り部13aと、吸引部13bと、膨張部13cと、を有する。絞り部13aは、第2流路17bの下流側と接続されており、流路17における下流側に向かって先細りとなるノズル状部材である。吸引部13bは、絞り部13a及び膨張部13cの境界部に配置されており、膨張部13cと気液分離機15とを第5流路17eを介して接続する。膨張部13cは、流路17の下流側に向かって末広がりとされた略円錐形状を呈している。膨張部13cは、第3流路17cの上流側と接続されている。エジェクタ13は、蒸発器12で蒸発した作動流体Mの気相と、気液分離機15から導かれた作動流体Mの気相とを、流路17における下流側の第3流路17cに流出する(詳しくは後述)。   The ejector 13 is provided on the downstream side of the second flow passage 17 b and is provided on the upstream side of the expander 14. The ejector 13 has a throttling portion 13a, a suction portion 13b, and an expansion portion 13c. The throttling portion 13 a is a nozzle-like member that is connected to the downstream side of the second flow path 17 b and is tapered toward the downstream side of the flow path 17. The suction part 13b is disposed at the boundary between the throttling part 13a and the expansion part 13c, and connects the expansion part 13c and the gas-liquid separator 15 via the fifth flow path 17e. The expansion portion 13 c has a substantially conical shape that is widened toward the downstream side of the flow path 17. The expansion portion 13c is connected to the upstream side of the third flow path 17c. The ejector 13 causes the gas phase of the working fluid M evaporated in the evaporator 12 and the gas phase of the working fluid M led from the gas-liquid separator 15 to flow out to the downstream third flow path 17 c in the flow path 17 Yes (more on this later).

膨張機14は、第3流路17cの下流側に設けられている。膨張機14は、流入された作動流体Mが膨張することで回転され、動力を出力する。膨張機14としては、例えばタービン等が用いられる。膨張機14は、例えば機械出力を出力してもよく、例えば発電機が接続されて電気出力を出力してもよい。膨張機14は、膨張した作動流体Mを流路17における下流側の第4流路17dに流出する。   The expander 14 is provided on the downstream side of the third flow path 17c. The expander 14 is rotated by expansion of the inflowing working fluid M, and outputs power. For example, a turbine or the like is used as the expander 14. The expander 14 may output, for example, a mechanical output. For example, a generator may be connected to output an electric output. The expander 14 causes the expanded working fluid M to flow out to the downstream fourth flow path 17 d in the flow path 17.

気液分離機15は、第4流路17dの下流(膨張機14の下流)に設けられ、膨張機14から流出した作動流体Mが流入される。気液分離機15は、膨張機14を流出した作動流体Mの気相と液相とを分離する。気液分離機15としては、例えば、遠心力で作動流体Mの液相が分離される遠心式のものを採用することができる。気液分離機15は、分離した作動流体Mの気相を第5流路17eに流出する。また、気液分離機15は、膨張機14と凝縮器16との間に設けられており、分離した作動流体Mの液相を第6流路17fに流出する。   The gas-liquid separator 15 is provided downstream of the fourth flow path 17 d (downstream of the expander 14), into which the working fluid M flowing out of the expander 14 flows. The gas-liquid separator 15 separates the gas phase and the liquid phase of the working fluid M that has flowed out of the expander 14. As the gas-liquid separator 15, for example, a centrifugal type in which the liquid phase of the working fluid M is separated by centrifugal force can be employed. The gas-liquid separator 15 causes the separated gas phase of the working fluid M to flow out to the fifth flow path 17 e. In addition, the gas-liquid separator 15 is provided between the expander 14 and the condenser 16, and the separated liquid phase of the working fluid M flows out to the sixth flow path 17f.

凝縮器16は、第6流路17fの下流側に設けられ、作動流体Mを冷却して凝縮(液化)させる熱交換器である。凝縮器16は、低温熱源(図示せず)により冷却される。低温熱源は、例えばサブラジエータが含まれ、車両が走行する際の走行風により凝縮器16を冷却する。凝縮器16は、凝縮させた作動流体Mを流路17における下流側の第7流路17gに流出する。   The condenser 16 is a heat exchanger which is provided on the downstream side of the sixth flow path 17f and cools and condenses (liquefies) the working fluid M. The condenser 16 is cooled by a low temperature heat source (not shown). The low-temperature heat source includes, for example, a sub-radiator, and cools the condenser 16 by a traveling wind when the vehicle travels. The condenser 16 discharges the condensed working fluid M to the downstream seventh flow passage 17 g in the flow passage 17.

エンジン20は、例えば水冷式ディーゼルエンジン等の内燃機関であり、EGRクーラ21と、冷却水流路22と、ラジエータ23と、を有している。EGRクーラ21は、EGR[Exhaust Gas Recirculation]ガスを冷却するための熱交換器である。冷却水流路22は、エンジン20の冷却水Wが流通される流路である。冷却水流路22では、例えば、エンジン20のシリンダヘッド内部及びシリンダブロック等に冷却水Wが流通されてエンジン20が冷却されると共に、EGRクーラ21に冷却水Wが流通されてEGRクーラ21が冷却される。冷却水流路22は、ラジエータ23に接続されている。ラジエータ23は、エンジン20及びEGRクーラ21を冷却した冷却水Wを、例えば走行風との熱交換により冷却する。   The engine 20 is an internal combustion engine such as a water-cooled diesel engine, for example, and includes an EGR cooler 21, a cooling water passage 22, and a radiator 23. The EGR cooler 21 is a heat exchanger for cooling an EGR (Exhaust Gas Recirculation) gas. The cooling water flow path 22 is a flow path through which the cooling water W of the engine 20 flows. In the cooling water flow path 22, for example, the cooling water W is circulated in the cylinder head inside of the engine 20, the cylinder block, etc. to cool the engine 20, and the cooling water W is circulated in the EGR cooler 21 to cool the EGR cooler 21. Be done. The cooling water flow path 22 is connected to the radiator 23. The radiator 23 cools the cooling water W obtained by cooling the engine 20 and the EGR cooler 21 by, for example, heat exchange with traveling air.

以上のように構成された廃熱回収装置1では、エジェクタ13において、蒸発器12からの作動流体Mが絞り部13aを通過することで生じる当該作動流体Mの圧力低下を利用して、気液分離機15で分離された作動流体Mの気相が膨張機14の上流に導かれる。   In the waste heat recovery apparatus 1 configured as described above, in the ejector 13, the pressure drop of the working fluid M generated when the working fluid M from the evaporator 12 passes through the throttling portion 13 a is used to generate gas and liquid The gas phase of the working fluid M separated by the separator 15 is led to the upstream of the expander 14.

具体的には、蒸発器12で蒸発した作動流体M(作動流体Mの気相)は、絞り部13aに流入し通過する。絞り部13aを通過した作動流体Mは、膨張部13cにおいて膨張するため、膨張部13cにおける作動流体Mの圧力が低下する。よって、膨張部13cにおける作動流体Mの圧力は、気液分離機15側(第5流路17e側)の作動流体Mの圧力よりも低くなる。その結果、気液分離機15で分離された作動流体Mの気相は、第5流路17eを介して当該圧力差でもって吸引部13bに導かれ、エジェクタ13の膨張部13cに導入される。   Specifically, the working fluid M (the gas phase of the working fluid M) evaporated by the evaporator 12 flows into and passes through the narrowed portion 13a. The working fluid M that has passed through the narrowed portion 13a expands at the expansion portion 13c, so the pressure of the working fluid M at the expansion portion 13c decreases. Therefore, the pressure of the working fluid M in the expansion portion 13c is lower than the pressure of the working fluid M on the gas-liquid separator 15 side (the fifth flow path 17e side). As a result, the gas phase of the working fluid M separated by the gas-liquid separator 15 is led to the suction part 13 b with the pressure difference via the fifth flow path 17 e and introduced to the expansion part 13 c of the ejector 13 .

膨張機14には、蒸発器12で蒸発した作動流体Mと、エジェクタ13により気液分離機15から導かれた作動流体Mの気相とが流入される。その結果、膨張機14における作動流体Mの流量が増加されると共に、膨張機14から流出後の作動流体Mのうち、液相よりもエネルギが高い気相が膨張機14に再度流入する。   The working fluid M evaporated in the evaporator 12 and the gas phase of the working fluid M introduced from the gas-liquid separator 15 by the ejector 13 flow into the expander 14. As a result, the flow rate of the working fluid M in the expander 14 is increased, and, of the working fluid M after flowing out of the expander 14, a gas phase whose energy is higher than that of the liquid phase flows into the expander 14 again.

他方、凝縮器16には、気液分離機15で分離された作動流体Mの液相が流入する。具体的には、気液分離機15が膨張機14と凝縮器16との間に設けられているため、凝縮器16には、膨張機14から流出後の作動流体Mのうち、気相よりもエネルギが低い液相が流入する。その結果、凝縮器16において凝縮に係る放熱量(必要放熱量)が低減されると共に、作動流体Mの気相と液相とが混在している場合と比較して凝縮器16における作動流体Mの熱容量が増大し、凝縮器16の熱交換効率が向上する。   On the other hand, the liquid phase of the working fluid M separated by the gas-liquid separator 15 flows into the condenser 16. Specifically, since the gas-liquid separator 15 is provided between the expander 14 and the condenser 16, the condenser 16 can be constructed from the gas phase of the working fluid M after flowing out of the expander 14. Even liquid phase with low energy flows in. As a result, the heat release amount (necessary heat release amount) related to condensation is reduced in the condenser 16, and the working fluid M in the condenser 16 is compared with the case where the gas phase and the liquid phase of the working fluid M are mixed. The heat capacity of the condenser 16 is increased, and the heat exchange efficiency of the condenser 16 is improved.

以上、第1の実施形態に係る廃熱回収装置1によれば、膨張機14から流出した作動流体Mは、気液分離機15により液相と気相とに分離される。分離された作動流体Mの気相は、エジェクタ13により膨張機14の上流に導かれ、再度膨張機14に流入される。これにより、膨張機14における作動流体Mの流量を増すことができ、膨張機14から流出する作動流体Mの廃熱をそのまま利用することができる。このように、膨張機14から流出する作動流体Mが有するエネルギを有効に利用でき、廃熱回収効率(システム効率)を向上することが可能となる。   As described above, according to the waste heat recovery apparatus 1 according to the first embodiment, the working fluid M that has flowed out of the expander 14 is separated by the gas-liquid separator 15 into a liquid phase and a gas phase. The separated gas phase of the working fluid M is introduced upstream of the expander 14 by the ejector 13 and flows into the expander 14 again. Thus, the flow rate of the working fluid M in the expander 14 can be increased, and waste heat of the working fluid M flowing out of the expander 14 can be used as it is. Thus, the energy of the working fluid M flowing out of the expander 14 can be effectively used, and the waste heat recovery efficiency (system efficiency) can be improved.

また、ランキンサイクル装置10は、作動流体Mを冷却して凝縮させる凝縮器16を有し、気液分離機15は、膨張機14と凝縮器16との間に設けられている。この場合、凝縮器16には、気液分離機15により分離された作動流体Mの液相が流入するため、凝縮器16において凝縮に係る放熱量が低減される。その結果、凝縮器16の小型化が見込まれる。
(第2の実施形態)
In addition, the Rankine cycle device 10 includes a condenser 16 that cools and condenses the working fluid M, and the gas-liquid separator 15 is provided between the expander 14 and the condenser 16. In this case, since the liquid phase of the working fluid M separated by the gas-liquid separator 15 flows into the condenser 16, the amount of heat release related to condensation in the condenser 16 is reduced. As a result, downsizing of the condenser 16 is expected.
Second Embodiment

次に、第2の実施形態について説明する。第2の実施形態に係る廃熱回収装置1Aは、エジェクタ13が蒸発器12の下流側において蒸発器12と一体に形成されている点以外は、基本的に第1の実施形態と同様である。以下の説明では、第1の実施形態と相違する事項のみを説明し、第1の実施形態と同様の説明を省略する。   Next, a second embodiment will be described. The waste heat recovery apparatus 1A according to the second embodiment is basically the same as the first embodiment except that the ejector 13 is integrally formed with the evaporator 12 on the downstream side of the evaporator 12. . In the following description, only matters different from the first embodiment will be described, and the same descriptions as the first embodiment will be omitted.

図2は、第2の実施形態に係る廃熱回収装置を示す概略ブロック図である。図2に示すように、エジェクタ13は、蒸発器12の下流側において蒸発器12と一体に形成されている。エジェクタ13は、絞り部13dと、吸引部13bと、膨張部13cと、を有する。吸引部13b及び膨張部13cは、第1の実施形態と同様に構成されている。   FIG. 2 is a schematic block diagram showing a waste heat recovery apparatus according to a second embodiment. As shown in FIG. 2, the ejector 13 is integrally formed with the evaporator 12 at the downstream side of the evaporator 12. The ejector 13 has a throttling portion 13 d, a suction portion 13 b, and an expansion portion 13 c. The suction unit 13 b and the expansion unit 13 c are configured in the same manner as in the first embodiment.

絞り部13dは、流路17における下流側に向かって先細りとなるノズル状部材であり、第2流路17bを介することなく蒸発器12の下流側の出口部と接続されている。絞り部13dは、例えば蒸発器12の下流側の出口部を流路17における下流側に向かって先細りとなるように形成することにより、蒸発器12と一体に形成することができる。   The throttling portion 13 d is a nozzle-like member that is tapered toward the downstream side in the flow path 17 and is connected to the downstream outlet of the evaporator 12 without the second flow path 17 b. The throttling portion 13 d can be formed integrally with the evaporator 12, for example, by forming an outlet portion on the downstream side of the evaporator 12 so as to be tapered toward the downstream side in the flow path 17.

ところで、一般的に、蒸発器12とエジェクタ13とが別体で設けられる場合、蒸発器12の下流側の出口部で絞られると共に、エジェクタ13の絞り部13aで絞られ、すなわち、蒸発器12の下流側及びエジェクタ13の両方において、作動流体Mの流路17に断面積変化が生じる。よって、蒸発器12の下流側及びエジェクタ13の絞り部13aは、作動流体Mの圧力損失が大きい圧力損失箇所となり得る。この点、第2の実施形態では、エジェクタ13が蒸発器12の下流側で蒸発器12と一体に形成されていることから、作動流体Mの流路17に断面積変化が生じる当該圧力損失箇所を一箇所にまとめることができる。よって、当該圧力損失箇所が減ることになるため、作動流体Mの圧力損失を抑制することができる。   Generally, when the evaporator 12 and the ejector 13 are separately provided, they are squeezed at the outlet on the downstream side of the evaporator 12 and squeezed by the throttling portion 13 a of the ejector 13, that is, the evaporator 12 The cross-sectional area change occurs in the flow path 17 of the working fluid M on both the downstream side of the and the ejector 13. Therefore, the downstream side of the evaporator 12 and the narrowed portion 13a of the ejector 13 can be a pressure loss point where the pressure loss of the working fluid M is large. In this respect, in the second embodiment, since the ejector 13 is integrally formed with the evaporator 12 on the downstream side of the evaporator 12, the pressure loss point where the cross-sectional area change occurs in the flow path 17 of the working fluid M Can be put together in one place. Therefore, since the pressure loss point is reduced, the pressure loss of the working fluid M can be suppressed.

以上、本発明に係る好適な実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用してもよい。   As mentioned above, although the suitable embodiment concerning the present invention was described, the present invention is not restricted to the above-mentioned embodiment, it changes in the range which does not change the gist described in each claim, or it applies to other things You may

例えば、上記実施形態では、エンジン20の一例としてディーゼルエンジンを用いて説明したが、ガソリンエンジン等のエンジンでもよい。   For example, in the above-mentioned embodiment, although explained using a diesel engine as an example of engine 20, engines, such as a gasoline engine, may be used.

また、絞り部13a(13d)と、吸引部13bと、膨張部13cと、を有するエジェクタ13を例示したが、エジェクタ13は、これに限定されるものではない。膨張機14の上流に設けられ、気液分離機15で分離した作動流体Mの気相を膨張機14の上流に導くものであれば、種々のエジェクタを用いることができる。   Moreover, although the ejector 13 which has the throttle part 13a (13d), the attraction | suction part 13b, and the expansion part 13c was illustrated, the ejector 13 is not limited to this. Various ejectors can be used as long as they are provided upstream of the expander 14 and lead the gas phase of the working fluid M separated by the gas-liquid separator 15 to the upstream of the expander 14.

1,1A…廃熱回収装置、10…ランキンサイクル装置、12…蒸発器、13…エジェクタ、14…膨張機、15…気液分離機、16…凝縮器、M…作動流体。   1, 1A: waste heat recovery device, 10: Rankine cycle device, 12: evaporator, 13: ejector, 14: expander, 15: gas-liquid separator, 16: condenser, M: working fluid.

Claims (3)

作動流体が循環されるランキンサイクル装置を備える廃熱回収装置であって、
前記ランキンサイクル装置は、
前記作動流体が流入されて動力を出力する膨張機と、
前記膨張機の下流に設けられ、前記作動流体の気相と液相とを分離する気液分離機と、
前記膨張機の上流に設けられ、前記気液分離機で分離した前記作動流体の前記気相を前記膨張機の上流に導くエジェクタと
前記作動流体を冷却する熱交換器と、を有し、
前記気液分離機は、前記膨張機と前記熱交換器との間に設けられている、廃熱回収装置。
A waste heat recovery device comprising a Rankine cycle device through which working fluid is circulated, comprising:
The Rankine cycle device is
An expander which receives the working fluid and outputs power;
A gas-liquid separator provided downstream of the expander for separating a gas phase and a liquid phase of the working fluid;
An ejector provided upstream of the expander for guiding the gas phase of the working fluid separated by the gas-liquid separator upstream of the expander ;
And a heat exchanger for cooling the working fluid,
The waste heat recovery apparatus , wherein the gas-liquid separator is provided between the expander and the heat exchanger .
前記膨張機と前記気液分離機との間には、前記作動流体を冷却する熱交換器が設けられていない、請求項1に記載の廃熱回収装置。The waste heat recovery apparatus according to claim 1, wherein a heat exchanger for cooling the working fluid is not provided between the expander and the gas-liquid separator. 前記ランキンサイクル装置は、前記作動流体を加熱して蒸発させる蒸発器を有し、
前記エジェクタは、前記蒸発器の下流側において流路を介することなく前記蒸発器と一体に形成されている、請求項1又は2に記載の廃熱回収装置。
The Rankine cycle device has an evaporator for heating and evaporating the working fluid,
The waste heat recovery apparatus according to claim 1, wherein the ejector is integrally formed with the evaporator on the downstream side of the evaporator without a flow path .
JP2015023460A 2015-02-09 2015-02-09 Waste heat recovery system Expired - Fee Related JP6526432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023460A JP6526432B2 (en) 2015-02-09 2015-02-09 Waste heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023460A JP6526432B2 (en) 2015-02-09 2015-02-09 Waste heat recovery system

Publications (2)

Publication Number Publication Date
JP2016145560A JP2016145560A (en) 2016-08-12
JP6526432B2 true JP6526432B2 (en) 2019-06-05

Family

ID=56686166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023460A Expired - Fee Related JP6526432B2 (en) 2015-02-09 2015-02-09 Waste heat recovery system

Country Status (1)

Country Link
JP (1) JP6526432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019011723A (en) * 2017-06-30 2019-01-24 株式会社Ihi Combined heat and power system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588210A (en) * 1981-07-08 1983-01-18 Tokyo Electric Power Co Inc:The Heat medium flow control system for ranking cycle to flow variations liquefied natural gas
JPS58140409A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Circulation system of steam
JPS61207806A (en) * 1985-03-13 1986-09-16 Kawasaki Heavy Ind Ltd Energy recovering system
US5822990A (en) * 1996-02-09 1998-10-20 Exergy, Inc. Converting heat into useful energy using separate closed loops
JP4770891B2 (en) * 2005-04-05 2011-09-14 株式会社デンソー Ejector type refrigeration cycle unit
JP4801810B2 (en) * 2006-05-30 2011-10-26 株式会社デンソー Refrigeration equipment with waste heat utilization device
JP2009103029A (en) * 2007-10-23 2009-05-14 Panasonic Corp Rankine cycle device
JP5338731B2 (en) * 2010-03-29 2013-11-13 株式会社豊田自動織機 Waste heat regeneration system
JP6306821B2 (en) * 2013-01-08 2018-04-04 日野自動車株式会社 Rankine cycle engine

Also Published As

Publication number Publication date
JP2016145560A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
US9745887B2 (en) Engine cooling system
CN103154488B (en) Apparatus for utilizing waste heat from internal combustion engine
US9650941B2 (en) Rankine cycle for a vehicle
JP2015214308A5 (en)
CN109844424A (en) The cooling optimization of vehicle Waste Heat Recovery
JP2013526682A (en) Cooler device for a vehicle powered by a supercharged combustion engine
US10801372B2 (en) Cooling module and method for rejecting heat from a coupled engine system and rankine cycle waste heat recovery system
WO2013046853A1 (en) Waste heat regeneration system
US9896985B2 (en) Method and apparatus for recovering energy from coolant in a vehicle exhaust system
JP2008127017A (en) Combination of cooling circuit and rankine circuit for air-conditioning vehicle interior
JP2009144676A (en) Energy recovery system
WO2016002711A1 (en) Waste heat regeneration system
JP5452346B2 (en) Engine exhaust heat regeneration system
JP6526432B2 (en) Waste heat recovery system
JP6197459B2 (en) Engine cooling system
JP6186866B2 (en) Engine cooling system
Kulkarni et al. Performance analysis of organic Rankine cycle (ORC) for recovering waste heat from a heavy duty diesel engine
US11371393B2 (en) Arrangement for converting thermal energy from lost heat of an internal combustion engine
JP2013160076A (en) Rankine cycle device
JP2015059425A (en) Waste heat recovery device for internal combustion engine
JP6298369B2 (en) Waste heat recovery device
JP2015140669A (en) waste heat regeneration system
CN108026791B (en) Heat energy recovery system
JP2019116857A (en) Waste heat recovery device
JP6727779B2 (en) Rankine cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees