JP6525522B2 - 画像処理装置および画像処理方法 - Google Patents

画像処理装置および画像処理方法 Download PDF

Info

Publication number
JP6525522B2
JP6525522B2 JP2014142639A JP2014142639A JP6525522B2 JP 6525522 B2 JP6525522 B2 JP 6525522B2 JP 2014142639 A JP2014142639 A JP 2014142639A JP 2014142639 A JP2014142639 A JP 2014142639A JP 6525522 B2 JP6525522 B2 JP 6525522B2
Authority
JP
Japan
Prior art keywords
pixel
value
correction target
target pixel
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014142639A
Other languages
English (en)
Other versions
JP2016019245A (ja
Inventor
俊宏 望月
俊宏 望月
智史 生田
智史 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014142639A priority Critical patent/JP6525522B2/ja
Publication of JP2016019245A publication Critical patent/JP2016019245A/ja
Application granted granted Critical
Publication of JP6525522B2 publication Critical patent/JP6525522B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は画像処理装置および画像処理方法に関し、特に画素の補間技術に関する。
近年、テレビジョンカメラ、デジタルカメラ等においては、CCD撮像素子やCMOS撮像素子が多く使用されている。これらの撮像素子には1千万以上の画素が設けられることも珍しくなく、製造誤差などの原因により、正常な出力が得られない欠陥画素が発生する場合がある。撮像素子が欠陥画素を有する場合、欠陥画素はノイズとなって撮影画像に現れる。このような画質劣化を改善するため、撮像素子の欠陥画素の値を補間(補正)する補間処理(欠陥画素補正処理ともよばれる)が知られている。
特許文献1には、補間対象の画素と同色の周辺画素について、垂直方向と水平方向とで相関の度合いを求め、相関の度合いに応じて垂直方向の画素による補間と水平方向の画素による補間とを重み付けする方法が開示されている。
特開2001−320720号公報
特許文献1の方法を用いることで、被写体のエッジが垂直方向もしくは水平方向に連続する低周波成分の場合、補間による画質劣化を改善することができる。しかし、被写体のエッジが斜め方向や曲線など高周波成分の場合、垂直方向と水平方向の相関関係からでは精度の良い補間が難しく、高周波成分の情報が失われて被写体のエッジがぼやけてしまうことがある。
本発明はこのような従来技術の課題に鑑みてなされたものであり、高周波成分の情報の損失を抑制することのできる補間処理が可能な画像処理装置および画像処理方法を提供することを目的とする。
上述の目的は、カラーフィルタを有する単板式の撮像素子で得られた画像信号のうち、補正対象画素の値を補間する画像処理装置であって、補正対象画素の位置における、補正対象画素が出力する色成分とは異なる色成分の値を取得する第1の取得手段と、補正対象画素の位置とは異なる複数の位置における、異なる色成分の値を取得する第2の取得手段と、第1の取得手段が取得した値と、第2の取得手段が取得した複数の値の各々との比較結果に応じて、異なる複数の位置の1つを選択する選択手段と、選択手段が選択した位置に対応する画素が出力する色成分の値を用いて、補正対象画素の値を補間する補間手段と、を有し、複数の位置が、補正対象画素が出力する色成分と同じ色成分を出力する画素に対応した位置であり、第1の取得手段および第2の取得手段は、異なる色成分の値を、異なる色成分の値を取得する位置の周辺画素であって、異なる色成分を出力する複数の画素の値から取得することを特徴とする画像処理装置によって達成される。
このような構成により本発明によれば、高周波成分の情報の損失を抑制することのできる補間処理が可能な画像処理装置および画像処理方法を提供することができる。
第1の実施形態に係るデジタルカメラの機能構成例を示すブロック図 第1の実施形態における画素補間処理のフローチャート 第1の実施形態におけるデジタル画像信号の例を示す図 第1の実施形態における選択部と補間部の動作を説明するための図 第2の実施形態に係るデジタルカメラの機能構成例を示すブロック図 第2の実施形態におけるデジタル画像信号の例を示す図 第3の実施形態に係るデジタルカメラの機能構成例を示すブロック図 第3の実施形態における撮像素子の画素構造例を説明するための図 第3の実施形態における撮像素子の画素配列例を説明するための図 第3の実施形態おけるデジタル画像信号の例を示す図 第3の実施形態における画素補間処理のフローチャート 第4の実施形態における方向判定処理を説明するための図
以下、図面を参照して本発明の例示的な実施形態について詳細に説明する。なお、以下では本発明の画像処理装置の一例であるデジタルカメラに適用した実施形態について説明するが、本発明はデジタル画像データを処理可能な任意の電子機器に対して適用可能である。このような電子機器には、デジタルビデオカメラ、パーソナルコンピュータ、タブレット端末、携帯電話機、ゲーム機、ドライブレコーダなどが含まれるが、これらに限定されない。
●(第1の実施形態)
第1の実施形態は、3板式の撮像素子を用いて得られた画像データを補間処理する方法に関する。図1は本実施形態に係る画像処理装置としての画素補間部106を有するデジタルカメラ100の機能構成例を示すブロック図である。
制御部101は例えばCPUやMPUのようなプログラマブルプロセッサであり、ROM102に記憶されている動作プログラムを読み出し、RAM103に展開して実行することにより、デジタルカメラ100の各機能ブロックの動作を制御する。ROM102には動作プログラムに加え、各種の設定値やGUIデータなどが格納される。ROM102は書き換え可能であってよい。また、RAM103は動作プログラムのほか、各機能ブロックの動作に必要なパラメータ、設定等を一時的に格納する領域としても用いられる。
光学系104は結像光学系および分光プリズムを含み、被写体像をR,G,Bの色成分ごとに撮像素子105R,105G,105Bに結像する。撮像素子105R,105G,105Bは受光用の色フィルタがR,G,Bと異なる3つの撮像素子で構成され、被写体像を構成するR画像,G画像,B画像を独立して撮像する。撮像素子105R,105G,105Bは複数の画素が2次元配置されたCCDやCMOSイメージセンサであり、被写体像を画素単位のアナログ電気信号(アナログ画像信号)に変換する。撮像素子105R,105G,105Bにより撮像されたR,G,B各色のアナログ画像信号は、A/D変換部108でデジタル画像信号(画像データ)に変換され、欠陥画素検出部120と画素補間部106に供給される。
欠陥画素検出部120はA/D変換部108より入力されたデジタル画像信号から撮像素子105R,105G,105Bに含まれる欠陥画素を検出する。欠陥画素の検出方法に特に制限はなく、任意の公知の方法を用いることができる。欠陥画素は出力が異常な画素であるため、遮光状態で撮影して取得した画像データや、隣接画素との差分から判断する方法などが知られている。
なお、製造時に判明している欠陥画素の位置情報は、予めROM102に記憶されていてもよい。また、既に記録されている画像データを処理対象とする場合、画像データが含まれる画像データファイルのヘッダなどに付加情報として記録されている、撮影に用いられた撮像素子の欠陥画素情報を取得してもよい。つまり、欠陥画素検出部120は、画像データの撮影に用いられた撮像素子が有する欠陥画素の位置もしくは画像データに含まれる欠陥画素データを何らかの方法によって検出もしくは取得可能であれば、どのような構成であってもよい。欠陥画素検出部120が検出および/または取得した欠陥画素の情報は、欠陥画素情報として例えばRAM103に格納される。なお、補間処理の対象とすべき画素は必ずしも欠陥画素に限らないことから、欠陥画素情報はより汎用的に記載すれば補間対象画素情報もしくは補正対象画素情報である。
画素補間部106はRAM103に格納された欠陥画素情報を用いて、デジタル画像データに含まれる欠陥画素の値を補間(補正)する。画素補間部106は制御端子117、入力端子110、第1の画素取得部111、第2の画素取得部112、比較部113、選択部114、補間部115、出力端子116で構成される。制御部101はRAM103に格納された欠陥画素情報に応じて制御端子117を通じて画素補間部106の動作を制御する。具体的には、制御部101は、欠陥画素の情報(本実施形態では色プレーンの種別と位置を含む情報)を画素補間部106に入力し、補間動作の実施を指示する。
次に、本実施形態における画素補間部106の各機能ブロックの処理の例を、図2に示すフローチャートを用いて説明する。なお、撮像素子105R,105G,105Bの画素と、得られる画像の画素信号とが対応していることから、以下の説明においては、画像信号に含まれる欠陥画素信号についても「欠陥画素」と呼ぶことがある。
図3(a)〜(c)は入力端子110に入力される、3板式の撮像素子105から得られるデジタル画像信号の一部を抜き出した例を示し、図3(a)〜(c)はそれぞれ同じ領域におけるR成分,G成分,B成分を示している。従って、例えば(R1,G1,B1)が同一位置のRGB値を表し、また、R(またはG,B)成分からなる画像をR(またはG,B)プレーンと呼ぶ。図3の例において、Bプレーン(図3(c))の画素A5は欠陥画素である。欠陥画素A5は欠陥画素検出部120により検出され、欠陥画素情報がRAM103に格納されている。
まず、第1の画素取得部111は、欠陥画素A5と位置が対応する他のプレーン(ここではGプレーンとする)の画素G5(画素A)の値を取得し、比較部113に出力する(S302)。
また、第2の画素取得部112は、欠陥画素A5以外について、Bプレーンの画素と位置が対応するGプレーンの画素G1〜G4、G6〜G9(画素B)の値を参照画素値として取得し、比較部113に出力する(S303)。なお、S302とS303の処理は並列に実行されてもよい。
なお、ここでは欠陥画素位置に垂直、水平、斜め方向に隣接する周辺8画素に位置が対応する画素を参照画素として取得するものとした。しかし、参照画素の数および位置は、デジタル画像信号のサイズや制御部101の処理能力などに応じて適宜変更することができる。また、参照画素値を取得するプレーンは、欠陥画素と異なるプレーンであればよく、Bプレーンを用いてもよい。なお、参照画素に欠陥画素が含まれる場合は、他のプレーンから欠陥画素値を含まない参照画素値を取得するようにしてもよい。
次に比較部113は画素G5の値と、参照画素の値とを比較し、画素G5(画素A)と参照画素(画素B)との類似度または相関の程度を示す評価値を算出する(S304)。具体的には比較部113は以下の式(1)を用い、Gプレーンにおける、欠陥画素A5に位置が対応する画素(G5)と、参照画素の差の絶対値GDiffGmGnを求める。
GDiffGmGn=|Gm−Gn|(m=5,n=1〜4,6〜9)…(1)
比較部113は、求めたGDiffGmGnを選択部114に出力する。なお、GDiffGmGnは、算出に用いる画素値として、ガンマ補正後の値を用いてもよい。
選択部114と補間部115の動作について、図4(a)〜(c)を用いて説明する。図4(a)〜(c)は図3(a)〜(c)と同じ領域のデジタル画像信号を示している。
選択部114はGDiffGmGnに基づいて、画素G5の値に近い値を有する参照画素の位置を選択し、選択した参照画素と位置が対応するBプレーンの画素値を補間画素値(補正値)として補間部115に出力する(S305)。選択部114は例えばGDiffGmGnが最小値となる参照画素の位置を選択してよい。図4(b)は、GDiffGmGnの比較動作と、最小値がGDiffG5G1であることを示している。この場合、選択部114は参照画素G1の位置を選択し、参照画素G1と位置が対応するBプレーンの画素B1の値を補間画素値として出力する。
なお、GDiffGmGnが最小となる参照画素の位置が複数存在する場合、選択部114は、該当する参照画素と位置が対応する複数のBプレーンの画素値をソートし、中央値を補間画素値として出力する。あるいは、GDiffGmGnが最小となる複数の参照画素のうち、画素G5との距離が最小の参照画素の位置を選択してもよい。また、選択する参照画素の位置の優先順位を予めRAM103に設定しておき、選択部114はGDiffGmGnが最小となる複数の参照画素のうち優先順位の高いものを選択してもよい。
補間部115は選択部114から受信する補間画素値を用いて欠陥画素値を補間する(S306)。図4(c)は、Bプレーンの欠陥画素A5の値を、選択部114で選択された補間画素B1の値で補間(置換)した場合を示している。補間部115は、欠陥画素A5を補間した後のR,G,B各プレーンのデジタル画像信号を出力端子116を介して出力する。出力端子116から出力されたデジタル画像信号には、例えばホワイトバランス処理や符号化処理など、表示、記録等の目的に応じた処理が行われる。
欠陥画素を挟んで両側に位置する画素の値を平均化して補間する場合、欠陥画素の値はこれら両側の画素の値の中間値となる。そのため、両側の画素が同一のエッジにかかる場合には問題ないが、同一のエッジにかからない場合には、欠陥画素が本来得るべき値と、平均化により求めた値が近い値になるとは限らない。これに対し、欠陥画素の周囲に欠陥画素と相関が高いと推定される画素があるならば、その相関の高い画素の値は、欠陥画素が本来得るべき値と類似する可能性が高いと考えられる。そこで、本実施形態では、欠陥画素と相関が高い1つの画素の値をコピーする構成とすることで、欠陥画素の両側の画素が同一のエッジにかからない場合であっても、高周波成分の損失(ぼけ)を抑制することができる。また、本実施形態によれば、欠陥画素の値を補間するための画素値を、欠陥画素と位置の対応する他の色プレーンの画素の水平方向、垂直方向に存在する画素だけでなく、斜め方向に存在する画素からも探索する。そのため、欠陥画素が水平方向や垂直方向以外のエッジに対応する場合も、補間による高周波成分の損失を抑制することができる。
●(第2の実施形態)
次に、本発明の第2の実施形態について説明する。本実施形態では、カラーモザイクフィルタを有する単板式の撮像素子を用いて得られる撮影データの欠陥画素値を補間処理する点で第1の実施形態と異なる。
3板式の撮像素子を用いた場合、デジタル画像信号の1画素ごとにR,G,B各色成分を独立して取得できるため、例えばBプレーンに欠陥画素が存在した場合、RまたはGプレーンの同じ位置に対応する画素値を参照することができる。しかし、単板式の撮像素子では、複数の色成分R,G,Bのうち1つの値しか各画素で取得できないため、各色プレーンを構成する画素の位置は異なる。
図5は、第2の実施形態におけるデジタルカメラ100の機能構成を示すブロック図である。光学系104、撮像素子105、A/D変換部108の構成および画素補間部106の動作を除き、第1の実施形態のデジタルカメラ100と同様である。
光学系104は撮像素子105の撮像面に被写体像を結像する。撮像素子105は単板式のカラーイメージセンサであり、本実施形態では一例としてベイヤー配列のカラーフィルタを備えるものとする。撮像素子105に含まれる画素にはRGBのうち1つに対応するカラーフィルタが設けられており、各画素からは設けられたカラーフィルタの色に応じたR,G,B成分の1つが出力される。撮像素子105より撮像されたアナログ画像信号はA/D変換部108に出力する。A/D変換部108は入力されたアナログ画像信号をデジタル画像信号に変換して画像補間部106に出力する。
図6(a)は、A/D変換部108から画像補間部106の入力端子110に入力される、第2の実施形態におけるデジタル画像信号の構成を示している。デジタル画像信号は、R画素、G画素、B画素が撮像素子105が有するベイヤー配列のカラーフィルタと同様に配列された構成を有する。縦横2画素の4画素を繰り返し単位として、2つのG画素と、R画素およびB画素がそれぞれ対角に配置される。
本実施形態において、欠陥画素A5はB画素に対応する位置に存在しているものとする。なお、欠陥画素A5の位置は第1の実施形態で説明したように欠陥画素検出部120が取得または検出し、RAM103に格納されている。
次に、本実施形態の画素補間部106の動作を、第1の実施形態における動作との違いに着目して説明する。
第1の実施形態では色成分ごとに画素プレーンが存在していたため、欠陥画素に対応する位置の他の色プレーンの画素値を参照することができた。しかし、第2の実施形態では欠陥画素の位置に対応する他の色成分値を、他の位置の色成分値から求める必要がある。
本実施形態の画素補間部106は、図6(b)に示すように、B画素の位置に存在する欠陥画素A5に対応する他の色成分(ここではG成分)を、欠陥画素A5の周辺のB画素の値から求める。
具体的には、第1の画素取得部111は、欠陥画素A5の位置に対応するG画素(G成分)GA5の値を、式(2)を用いて左右のG画素の値から求める。
GA5=(G12+G13)/2…(2)
そして、第1の画素取得部111は求めたGA5の値を比較部113に出力する。
第2の画素取得部112は欠陥画素A5の周辺の同色画素のB1〜B4、B6〜B9のそれぞれの位置において、左右のG画素の値から式(2)と同様にG成分GB1〜GB4、GB6〜GB9を参照画素の色成分値として求める。第2の画素取得部112は求めた参照画素のG成分値GB1〜GB4、GB6〜GB9を比較部113に出力する。
このようにして欠陥画素と対応する位置および、欠陥画素と同色の周辺画素の位置における、欠陥画素と異なる色成分の値を求めた後、比較部113は第1の実施形態と同様にして絶対値GDiffGmGnを求める。具体的には以下の式(1’)に基づき、欠陥画素A5の位置におけるG成分の値GA5と、参照画素のG成分値GB1〜GB4、GB6〜GB9との差の絶対値GDiffGmGnを求める。
GDiffGmGn=|Gm−Gn|(m=A5、n=B1〜B4、B6〜B9)…(1’)
そして比較部113は、求めたGDiffGmGnを選択部114に出力する。
選択部114はGDiffGmGnに基づいて、欠陥画素A5の位置におけるG成分GA5と近い値を有する参照画素の位置を選択し、選択した参照画素の位置と対応するB成分の値を補間画素値(補正値)として補間部115に出力する。図6(b)はGDiffGmGnの比較動作と、最小値がGDiffGA5GB1であることを示している。この場合、選択部114は参照画素GB1の位置を選択し、参照画素GB1におけるB成分B1の値を補間画素値として出力する。
なお、GDiffGmGnが最小となる参照画素の位置が複数存在する場合、選択部114は、該当する複数のB成分の値をソートし、中央値を補間画素値として出力する。あるいは、GDiffGmGnが最小となる複数の参照画素のうち、画素GA5との距離が最小の参照画素の位置を選択してもよい。また、選択する参照画素の位置の優先順位を予めRAM103に設定しておき、選択部114はGDiffGmGnが最小となる複数の参照画素のうち優先順位の高いものを選択してもよい。
補間部115は選択部114から受信する補間画素値を用いて欠陥画素値を補間する。図6(c)は、B画素である欠陥画素A5の値を、選択部114で選択された補間画素B1の値で補間(置換)した場合を示している。補間部115は、欠陥画素A5を補間した後、デモザイク処理を行ってR,G,B各プレーンのデジタル画像信号を出力端子116を介して出力する。
以上のように、撮像素子が単板式である場合にも、欠陥画素とは異なる色成分値を欠陥画素位置と、欠陥画素と同色成分の周辺画素位置とについて求めることにより、第1の実施形態と同様に補間処理を行うことができる。これにより、本実施形態においても、第1の実施形態と同様の効果が得られる。
(変形例)
なお、欠陥画素がB画素またはR画素に対応する場合、本実施形態における第1の画素取得部111および第2の画素取得部112は以下の方法によって補正値を求めてもよい。
まず、第1の画素取得部111は、以下の式(3)により、欠陥画素を挟んで水平および垂直方向にある2つのG画素の差の絶対値(HDiff,VDiff)を求める。ここでは、説明および理解を容易にするため、欠陥画素A5が図6(a)に示したようにB画素B1の位置に存在するものとする。
HDiff=|G12−G13|
VDiff=|G9−G16|…(3)
そして、第1の画素取得部111は、式(4)により欠陥画素A5の水平、垂直方向にあるG画素(G成分)の変化方向を示す割合αを求める。
α=(VDiff−HDiff)/(2×Th)+0.5…(4)
この割合αは1より大きい場合に欠陥画素位置におけるG成分の垂直方向の変化が水平方向の変化より有意に大きく、負の場合に欠陥画素位置におけるG成分の水平方向の変化が垂直方向の変化より有意に大きいことを示す。また、Thは欠陥画素位置におけるG成分の水平方向と垂直方向の変化が近似している場合に割合αが0≦α≦1となるように設定された閾値であり、予めROM102に設定されている。
そして第1の画素取得部111は、得られた割合αに応じて、以下の3通りの方法のいずれかで欠陥画素位置におけるG成分の値GA5を取得する。
1.(0≦α≦1)の場合
欠陥画素位置におけるG成分の水平方向と垂直方向の変化が近似しているため、第1の画素取得部111は、以下の式(5)を用いて、水平補間値と垂直補間値を割合αに応じて重み付け加算して、欠陥画素位置におけるG成分GA5の値を求める。
GA5=(α(G12+G13)+(1−α)(G9+G16)))/2…(5)
2.(α<0)の場合
欠陥画素位置におけるG成分の水平方向の変化が垂直方向の変化より有意に大きいため、第1の画素取得部111は、以下の式(6)を用いて垂直方向の補間によりG成分GA5の値を求める。
GA5=(G9+G16)/2…(6)
3.(α>1)の場合
欠陥画素位置におけるG成分の垂直方向の変化が水平方向の変化より有意に大きいため、第1の画素取得部111は以下の式(7)を用いて水平方向の補間によりG成分GA5の値を求める。
GA5=(G12+G13)/2…(7)
第2の画素取得部112も、参照画素位置におけるG成分の値GB1〜GB4、GB6〜GB9を同様にして求める。
なお、欠陥画素がR画素の位置に存在する場合、B画素とR画素は同じ位相であるため同様の処理をすればよい。従って、欠陥画素がR画素の位置に対応する場合の処理については説明を省略する。
本変形例によれば、補間により求める色成分値の精度を高めることができるため、結果として補正値の精度を向上することができる。
●(第3の実施形態)
第2の実施形態で説明した画素補間処理によれば、補正対象の欠陥画素が高周波成分を有するエッジに対応する場合の補間精度を向上させることができる。その一方、被写体のエッジ成分と欠陥画素が連続的に重畳している場合はエッジ成分を参照することができず、補間処理の精度が低下する可能性がある。
具体的には、以下の2条件を満たす場合に補間処理の精度が低下する可能性がある。
条件1:同色画素位置に対応する欠陥画素が一定方向に複数連続して存在する
条件2:条件1に合致する複数の欠陥画素に被写体のエッジが重畳している
条件1が満たされる例としては、撮像素子に、通常画素としての出力が得られない焦点検出用画素が規則的に配置されている場合がある。このような焦点検出用画素は、欠陥画素として取り扱われるのが一般的である。そして、このような撮像素子を用いて撮像した被写体のエッジが複数の焦点検出用画素にわたって重畳している場合、条件1,2の両方が満たされる。
本実施形態では、第2の実施形態の効果を維持しながら、条件1,2が満たされる場合であっても、見た目の画質劣化を抑制することが可能な画素補間方法を提供する。
図7は、本発明の第3の実施形態に係る画像処理装置としての画素補間部106を有するデジタルカメラ100の機能構成を示すブロック図である。第2の実施形態のデジタルカメラ100の構成に加え、第3の画素取得部118、第1の方向判定部119、第2の方向判定部121、第2の比較部122、第2の選択部123が画素補間部106に追加されている。なお、本実施形態においては便宜上、第2の実施形態における比較部113および選択部114を第1の比較部113および第1の選択部114と呼ぶ。
撮像素子105は第2の実施形態と同様に単板式であり、ベイヤー配列のカラーフィルタを有している。ただし、撮像素子105には図9を用いて後述するように、欠陥画素として取り扱われる焦点検出用画素が規則的に配置されている。焦点検出用画素以外の画素を通常画素と呼ぶ。なお、通常画素にも製造上の理由などで生じた欠陥画素が含まれる。
本実施形態に係るデジタルカメラ100のROM102には、焦点検出用画素群の配置位置や配列方向等の焦点検出用画素情報が予め格納されている。焦点検出用画素は記録や表示に用いる画像信号の取得には適さないため、焦点検出用画素情報は、欠陥画素情報と同様に取り扱う。従って、本実施形態における欠陥画素検出部120は、通常画素に関する欠陥画素情報と、焦点検出用画素情報とを合わせてRAM103に格納する。
なお、焦点検出用画素が出力する信号は、制御部101が画素補間部106を通じて取得し、焦点検出部109へ入力される。焦点検出部109は複数の焦点検出用画素の出力信号を基に1対の瞳分割像を生成し、位相差検出方式による焦点検出(光学系104のデフォーカス量の算出)を行う。制御部101は焦点検出部109が算出したデフォーカス量に基づいて光学系104が有するフォーカシングレンズの位置を制御する。なお、焦点検出用画素の出力信号を用いた位相差検出方式による焦点検出動作は公知であり、また本発明とは直接関係しないため、これ以上の説明は割愛する。
次に、図8〜図9を参照して撮像素子105の構成について説明する。
図8(a)は撮像素子105が有する通常画素の構造を模式的に示す垂直断面図である。画素にはマイクロレンズ1001が設けられ、入射する光束を光電変換部1003に集光する。カラーフィルタ1002は特定波長の光のみを透過する分光感度特性を有する。本実施形態の撮像素子105は原色ベイヤー配列のカラーフィルタを有するため、通常画素にはR,G,Bいずれかの色を有するカラーフィルタ1002が設けられている。光電変換部1003は受光量に応じた電荷を発生する。以降、R,G,Bの波長の光を透過するカラーフィルタ1002を有する通常画素をそれぞれR画素,G画素,B画素と呼ぶ。
図8(b)および(c)は焦点検出用画素の構造を模式的に示す垂直断面図である。
マイクロレンズ1101は入射する光束を光電変換部1103に集光する点で通常画素のマイクロレンズ1001と同様であるが、通常画素のマイクロレンズ1001よりも曲率が大きくなるように設計されている。カラーフィルタ1102はR,G,Bの全ての波長の光を透過するような分光感度特性を有する(例えば透明である)。カラーフィルタ1102は設けられなくてもよい。光電変換部1103の構成は通常画素と同様であるが、光電変換部1103とマイクロレンズ1101との間に遮光層1104が設けられており、光電変換部1103にはマイクロレンズ1101に入射した光束の一部が到達するように形成される。図8(b)と(c)とでは遮光層1104の設けられる場所が異なるため、図8(b)に示す第1の焦点検出用画素と、図8(c)に示す第2の焦点検出用画素からは、瞳分割された1対の信号が得られる。
焦点検出用画素は分光感度特性、遮光層の有無などによって通常画素とは異なる特性を持つ画素である。焦点検出用画素によって得られる画素値は焦点検出に用いる信号としては適しているが、撮影画像を生成する信号としては適さない。そのため、記録や表示に用いられる撮影画像の生成時には、焦点検出用画素は欠陥画素として扱われ、画素補間部106によって焦点検出用画素の位置における撮影画像用の画素値が補間によって生成される。
図9は本実施形態における撮像素子105の画素配列の例を模式的に示す図である。図9は撮像素子105の画素領域の一部1200における撮影画素と焦点検出用画素の配列の例を示し、R,G,Bは通常画素(R画素,G画素,B画素)1201であり、黒塗りは焦点検出用画素1202である。このように、撮像素子105にはR画素、G画素、B画素がベイヤー配列に従って配置されるとともに、一部の領域には図8(b)および(c)で説明した、遮光形状の異なる焦点検出用画素が所定のパターン(配列方向および周期)で配置されている。
本実施形態においては撮像素子105の、G画素およびB画素によって構成される水平画素ラインにおいて、一部のB画素位置に焦点検出用画素が配置された構成を、上述の条件1を満たす一例として説明を行う。なお、図9では水平方向にのみ焦点検出用画素が配置された例を示したが、垂直方向に焦点検出用画素が配置された領域も存在してよい。
図10は画素補間部106の入力端子110に入力されるデジタル画像信号の配列例を示す。図10(a)においては、焦点検出用画素(欠陥画素)A4〜A6がハッチングされている。上述の通り、焦点検出用画素A4〜A6はベイヤー配列におけるB画素の位置に、水平方向で連続して配置されている。なお、焦点検出用画素の配置位置や配置方向の情報は予めROM102に格納されている。
以下では、焦点検出用画素A5を補正対象画素とした場合の、本実施形態における画素補間部106の各機能ブロックの処理の例を、図11に示すフローチャートをさらに用いて説明する。なお、以下に説明する処理は焦点検出用画素に限らず、通常画素の欠陥画素を含む任意の補正対象画素について共通して実行される。以下では説明および理解を容易にするため、画素A5を欠陥画素と記載する。
まず、第1の画素取得部111は、補正対象の欠陥画素A5の位置に対応する、欠陥画素位置とは異なる色成分(ここではG成分)の値(色成分値A)を、周辺のG画素の値を用いて取得する(S1502)。具体的には第1の画素取得部111は第2の実施形態と同様、図10(b)に斜線で示す水平方向に隣接するG画素G12,G13の値を用い、欠陥画素A5の位置におけるG成分値GA5を式(2)に従って取得する。
GA5=(G12+G13)/2…(2)
そして、第1の画素取得部111は求めたG成分GA5の値を比較部113に出力する。
一方、第2の画素取得部112は、欠陥画素A5の近傍に存在する欠陥画素位置と同色の複数の画素位置におけるG成分値(色成分値B)を、各位置の周辺G画素の値を用いて取得する(S1503)。なお、S1502とS1503は並列に実行されてもよい。欠陥画素A5はベイヤー配列のB画素位置に存在するため、本実施形態では図10(c)の斜線で示すB画素群B1〜B3およびB7〜B9(参照画素)の位置についてG成分を求める。なお、欠陥画素A5と水平方向に隣接するB画素は欠陥画素A4,A6であるため、欠陥画素A4,A6の位置におけるG成分値は求めない。
第2の画素取得部112は、B1〜B3およびB7〜B9の位置におけるG成分値GB1〜GB3およびGB7〜GB9を、それぞれ式(2)に従い、水平両方向に隣接する2つのG画素の値を平均することにより取得する。図10(d)に、B1〜B3およびB7〜B9の位置でのG成分値取得に用いられる画素を斜線で示す。第2の画素取得部112は求めたG成分値GB1〜GB3、GB7〜GB9(参照画素のG成分値)を比較部113に出力する。
比較部113、選択部114は第1および第2の実施形態と同様の処理(S1504,S1505)を行うため説明を割愛する。なお、本実施形態では選択部114が選択する補間画素値を第1の補間画素値(第1の補正値)とする。
第3の画素取得部118は、補正対象となる欠陥画素の周囲に存在する、欠陥画素位置と同色の複数の画素値から、第2の補間画素値(第2の補正値)を取得して第2の選択部123に出力する(S1506)。具体的には第3の画素取得部118は、第2の画素取得部がG成分値を求めた位置のB画素B1〜B3,B7〜B9の平均値を、欠陥画素A5を補間するための第2の補間画素値BA5’として算出する。
すなわち、第3の画素取得部は、欠陥画素A5に対する第2の補間画素値BA5’を以下の式(9)によって取得する。
BA5‘=(B1+B2+B3+B7+B8+B9)/6…(9)
なお、第3の画素取得部118は第2の画素補間値BA5’を他の方法で取得してもよい。例えば第1の画素取得部111および第2の画素取得部112によって算出される色成分値A,Bを用い、以下に示す式(10)、式(11)のようにして第2の画素補間値BA5’を取得してもよい。
BA5‘=(((B1/GB1)+(B2/GB2)+(B3/GB3)+(B7/GB7)+(B8/GB8)+(B9/GB9))/6)×GA5 ・・・(10)
BA5‘=(((B1―GB1)+(B2―GB2)+(B3―GB3)+(B7―GB7)+(B8―GB8)+(B9―GB9))/6)+GA5 ・・・(11)
なお、式10は参照画素位置におけるG成分とB成分との比の加算平均値を欠陥画素位置におけるG成分値に乗じて、画素補間値BA5‘を取得するものである。
また、式11は、参照画素位置におけるG成分とB成分との差分の加算平均値を欠陥画素位置におけるG成分値に乗じて、画素補間値BA5‘を取得するものである。
ここで説明した第3の画素取得部118の動作は、式(9)を用いる場合には第1または第2の画素取得部111または112の動作と並行して実行されてもよい。式(10)または(11)を用いる場合には第1および第2の画素取得部111,112の動作が終了してから実行する。
第1の方向判定部119は、被写体のエッジ方向を示すパラメータOBJDIRを取得し、第2の比較部122へと出力する(S1507)。まず、第1の方向判定部119は、以下の式(12)に従い、欠陥画素A5の周囲のB画素を用いて水平および垂直方向の相関値(HDiff,VDiff)を求める。欠陥画素A5位置における相関値を得るために参照する画素を図10(e)に斜線で示す。
HDiff=|(B1+B7)−(B3+B9)|/2
VDiff=|(B1+B3)−(B7+B9)|/2…(12)
次に第1の方向判定部119は、式(13)により欠陥画素A5の水平、垂直方向にあるB成分の変化方向を示す割合αを求める。
α=(VDiff−HDiff)/(2×Th)+0.5…(13)
第2の実施形態における割合αと同様、この割合αは1より大きい場合に欠陥画素位置におけるG成分の垂直方向の変化が水平方向の変化より有意に大きく、負の場合に欠陥画素位置におけるG成分の水平方向の変化が垂直方向の変化より有意に大きいことを示す。正の場合に垂直方向の割合が強く、負の場合に水平方向の割合が強いことを示す。また、Thは欠陥画素位置におけるG成分の水平方向と垂直方向の変化が近似している場合に割合αが0≦α≦1となるように設定された閾値であり、予めROM102に設定されている。そして第3の画素取得部118は、得られた割合αにより、以下の様にエッジの方向パラメータOBJDIRを決定する。
1.(0≦α≦1)の場合
OBJDIR=(00)b
2.(α<0)の場合
OBJDIR=(01)b
3.(α>1)の場合
OBJDIR=(10)b
方向パラメータOBJDIRは2bitのフラグであり、下位ビットが垂直方向の相関に、上位ビットが水平方向の相関と関連付けられている。そして、水平、垂直方向の相関のいずれかが有意に強いと判定された場合、第3の画素取得部118は相関が強い方向と関連付けられたビットを”1”に設定した方向パラメータを決定する。
また、ここでは欠陥画素がB画素位置に存在する場合のエッジ方向判定方法の例を示したが、欠陥画素がB画素と同じラインのG画素位置に存在する場合においても同様の方法で被写体のエッジ方向を判定をすることができる。
第2の方向判定部121は補正対象となる欠陥画素が、所定方向に連続する複数の欠陥画素の1つかどうか、またどの方向に連続する欠陥画素群(補正対象画素群)に属するかを判定する(S1508)。そして、第2の方向判定部121は判定結果を表す配置方向パラメータAFDIRの値を第2の比較部122へ出力する。この判定は例えばROM102またはRAM103に記憶された欠陥画素の位置情報に基づいて実行することができる。特に、欠陥画素が焦点検出用画素の場合、例えば各焦点検出用画素の位置情報ごとに関連付けられて予めROM102に記憶されている、焦点検出用画素の配列方向を表すパラメータを用いて判定することができる。
第2の比較部122は配置方向パラメータAFDIRを以下のように決定する。
補正対象の欠陥画素(焦点検出用画素)が垂直方向に配列された欠陥画素群に属している場合
AFDIR=(01)b
補正対象の欠陥画素(焦点検出用画素)が水平方向の配列にされた欠陥画素群に属している場合
AFDIR=(10)b
補正対象の欠陥画素(焦点検出用画素)が特定方向の配列にされた欠陥画素群に属さない場合
AFDIR=(00)b
配置方向パラメータAFDIRは2bitのフラグであり、下位ビットが垂直方向、上位ビットが水平方向と関連付けられている。そして、第2の方向判定部121は、補正対象の焦点検出用画素が水平方向、垂直方向のいずれかの方向に配置された焦点検出用画素群に属するかに応じて一方のビットに”1”を設定する。仮に両方向に該当する場合には、AFDIR=(11)bとしてもよい。
欠陥画素A5は図9に示すように水平方向に連続した焦点検出用画素群に属するため、第2の方向判定部121は配置方向パラメータAFDIR=(10)bを決定し、第2の比較部122に出力する。
なお、補正対象画素が焦点検出用画素でない場合には、欠陥画素の位置情報を用いて、同様の判定を行うことができる。例えば、補正対象画素を含む画素ラインに含まれる補正対象画素と同色の画素が、補正対象画素を含んで予め定められた複数以上連続して欠陥画素(焦点検出用画素を含む)かどうかの判定を、異なる方向の画素ラインについて実行する。条件を満たす方向が複数あれば、それぞれの方向に対応するフラグに1を設定すればよい。この点については第4の実施形態において説明する。
第2の比較部122は、方向パラメータOBJDIRと、配列方向パラメータAFDIRとから、重畳するエッジの方向と欠陥画素の連続方向とを比較し(S150)、両者が一致しているかを判定する(S1510)。具体的には第2の比較部122は方向パラメータOBJDIRと、配列方向パラメータAFDIRとの論理積を取得することにより、論理積が(00)bである場合には、”0”を第2の選択部123へと出力する。一方、論理積が(00)b以外の場合には、”1”を第2の選択部123へと出力する。即ち、第2の比較部122は、被写体のエッジ成分の方向と欠陥画素の連続方向とが一致している場合には”1”を、一致していない若しくは被写体に方向性が無い場合は”0”を第2の選択部123に出力する。
第2の選択部123には第2の比較部122からの比較結果、第1の選択部114の出力である第1の補間画素値、および第3の画素取得部113からの出力である第2の補間画素値が入力される。第2の選択部123は第2の比較部122の比較結果に基づいて第1および第2の補間画素値の一方を出力するセレクタである。具体的には第2の選択部123は第2の比較部122の比較結果が”0”の場合は第1の選択部の出力である第1の補間画素値を補間部115に出力し、補間部115が補間処理に用いる(S1511)。また、第2の比較部の比較結果が”1”の場合は第3の画素取得部の出力である第2の補間画素値を、補間部115に出力し、補間部115が補間処理に用いる(S1512)。被写体のエッジ成分の方向と欠陥画素の連続方向とが一致している場合に、第1の補間画素値を用いると、欠陥画素に、欠陥画素に対してエッジ成分とは異なる方向に位置する画素の値をコピーすることになってしまう。そのため、被写体のエッジ成分の方向と欠陥画素の連続方向とが一致している場合には、第1の補間画素値を用いずに、欠陥画素の周囲に存在する画素の値の平均値である第2の補間画素値を用いたほうが、自然な画像となる可能性が高くなる。
補間部115の動作と出力端子116は第2の実施形態と同様であるため説明を割愛する。以上の補間処理を、個々の欠陥画素を補正対象画素として順次実行する。
つまり、本実施形態では、欠陥画素が連続して存在する方向と、重畳する被写体のエッジの方向とが同一であれば、欠陥画素の周辺における特定の1つの位置における値ではなく、周辺の複数の位置における値に基づいて得られた補間値を用いて補間を行う。これにより、欠陥画素が連続して存在する方向と同方向のエッジが欠陥画素に重畳する場合における補間精度の低下を抑制することができる。そして、欠陥画素が連続して存在する方向と、重畳する被写体のエッジ方向とが合致しない場合(あるいは被写体のエッジが重畳しない場合)には、第2の実施形態と同様の補間値を用いることで、高周波成分のエッジに対する補間精度を改善できる。
●(第4の実施形態)
第3の実施形態では主に、焦点検出用画素のように、配列方向が既知である複数の欠陥画素群に含まれる欠陥画素を補間(補正)する処理について説明した。しかし、第1および第2の実施形態のように通常画素のみによって構成された撮像素子を用いた場合であっても、上述の第1および第2の条件を満たすことが起こりうる。製造時に生じた欠陥画素がたまたま一定の方向に連続して存在する場合には方向性の情報を欠陥画素情報として含めておけば第3の実施形態と同様に対応することができる。しかし、欠陥画素は経年劣化などに起因して経時的に増加するため、撮影時における欠陥画素の位置や配列の方向性を事前に記憶しておくことは難しい。そこで、本実施形態では欠陥画素の方向性を動的に検出し、撮影時に存在する欠陥画素の方向性に応じた画素補間処理を行うことを特徴とする。
以下、本実施形態における第2の方向判定部121が図11のS1508で行う欠陥画素の方向判定処理について、図12を用いて説明する。
第2の方向判定部121はRAM103に記憶されている欠陥画素情報に基づいて、補正対象の欠陥画素が、特定の方向に連続した欠陥画素群に含まれるか否かと、欠陥画素群の配列方向とを判定する。なお、RAM103に記憶されている欠陥画素情報には、欠陥画素検出部120が動的に検出した欠陥画素の情報と、製造時および製造時から現在までに検出され、ROM102に記憶された既知の欠陥画素の情報が含まれている。
図12(a)〜(c)は撮像素子105中の欠陥画素A5を中心とした7×7画素の領域の拡大図であり、補間処理対象の欠陥画素A5が、特定の方向に連続して配列した欠陥画素群に含まれる例を示す。なお、ここでは説明および理解を容易にするため、特定方向に3つ以上連続して同色画素が欠陥画素である場合を、特定の方向に連続した欠陥画素群とするが、連続数の閾値は任意に設定可能である。また、以下では補間処理対象の欠陥画素を中心として左右や上下といった両方向に欠陥画素が存在する場合を例示しているが、補間処理対象の画素から左方向や下方向のみといったように、一方向に欠陥画素が連続していてもよい。
図12(a)は欠陥画素A5の左右の同色画素A4,A6が欠陥画素である。このような場合、第2の方向判定部121は、欠陥画素A5は左右に方向性がある欠陥画素群に含まれると判定し、配列方向パラメーターKDIRに(10)bを設定して第2の比較部122に出力する。なお、配列方向パラメーターKDIRは第3の実施形態における配置方向パラメータAFDIRと実質的に同等である。
図12(b)は欠陥画素A5の上下の同色画素A2,A8が欠陥画素である。このような場合、第2の方向判定部121は、欠陥画素A5は上下に方向性がある欠陥画素群に含まれると判定し、配列方向パラメーターKDIRに(01)bを設定して第2の比較部122に出力する。
図12(c)は欠陥画素A5の左右ならびに上下の同色画素A4,A6,A2,A8が欠陥画素である。このような場合、第2の方向判定部121は、欠陥画素A5は左右に方向性がある欠陥画素群および上下に方向性がある欠陥画素群に含まれると判定し、配列方向パラメーターKDIRに(11)bを設定して第2の比較部122に出力する。
図12(a)〜(c)のパターンに該当しない場合、第2の方向判定部121は、欠陥画素A5は方向性がある欠陥画素群に含まれないと判定し、配列方向パラメーターKDIRに(00)bを設定して第2の比較部122に出力する。なお、ここでは水平および垂直方向についてのみ判定を行っているが、斜め方向にも判定を行ってよい。ただし、その場合には被写体のエッジ方向についても斜め方向に判定を行う。
なお、ここでの判定は例えば以下のように行うことができる。第2の方向判定部121は、欠陥画素情報に含まれる位置情報から、補間処理対象の欠陥画素を通る特定方向の画素ラインに含まれる同色画素について、隣接する画素から順に欠陥画素かどうかを調べ、欠陥画素の連続数を判定する。判定された連続数が予め定めた閾値(ここでは3)以上であれば、第2の方向判定部121は、補間処理対象の欠陥画素が、特定方向に方向性をもって存在する欠陥画素群に含まれると判定する。
第2の比較部122はAFDIRの代わりにKDIRを用いることを除き、第3の実施形態と同様にして第1および第2の補間画素値を選択する。つまり、KDIRとOBJDIRとの論理積が(00)bである場合には”0”を、論理積が(00)b以外の場合には”1”を、第2の選択部123へと出力する。
本実施形態によれば、出荷後に発生した欠陥画素のように、製造時に既知でない欠陥画素についても第3の実施形態と同様に適切な補間が可能となる。
●(第5の実施形態)
第3および第4の実施形態では、第1の補間画素値および第2の補間画素値の一方を選択的に使用して補間処理を行うものであったが、本実施形態では第1の補間画素値と第2の補間画素値を混合して補間することを特徴とする。
具体的には、本実施形態の第1の方向判定部119は、割合αを第2の比較部122に加え、第2の選択部123にも出力する。そして、本実施形態の第2の選択部123が、割合αに応じた重みβにより、第1の補間画素値と第2の補間画素値を重み付け加算して、補間部115に出力する。
具体的には、第2の選択部123は、被写体のエッジ方向と、欠陥画素が含まれる欠陥画素群の配列方向とが合致しない場合(第2の比較部122の比較結果が”0”の場合)は上述の重み付け加算により第3の補間画素値を生成する。そして、補間部115は第3の補間画素値を用いて補間を行う。つまり、図11のS1511における処理が、第1の補間画素値の選択および第1の補間画素値を用いた補間から、補間画素値の重み付け加算による第3の補間画素値の生成および第3の補間画素値を用いた補間に変更される。
被写体のエッジ方向と、欠陥画素が含まれる欠陥画素群の配列方向とが合致する場合(第2の比較部122の比較結果が”1”の場合)は、第3および第4の実施形態と同様に第2の補間画素値を選択して第2の補間画素値を用いた補間が行われる。
第2の選択部123は、割合αに応じた重みβを例えば以下の様に決定する。
α>1またはα<0の場合:β=1
0≦α<0.5の場合 :β=1−(α×2)
0.5≦α≦1の場合 :β=1−((1−α)×2)
そして、第2の選択部123は、第3の補間画素値INTP3を以下のように求める。
INTP3 = (INTP1*β)+(INTP2*(1−β))
ここで、INTP1は第1の補間画素値を、INTP2は第2の補間画素値を示す。つまり、一定の方向に強い相関がある場合(α>1またはα<0の場合)には、第3の補間画素値に寄与する第1の補間画素値の重みが大きくなり、相関に方向性が無い場合には第3の補間画素値に寄与する第2の補間値の重みを大きくする。ただし、ここで示した重みβの決定方法は一例にすぎず、他の方法を用いて決定してもよい。
本実施形態によれば、相関の方向に有意な差がない場合における画素補間値の精度をより細かく求めることができ、他の実施形態の効果に加え、補間精度の向上が実現できる。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
また、本発明は上述した特定の実施形態の構成に限定されるものではなく、特許請求の範囲に規定された範囲内で種々の変形および変更が可能である。
101…制御部,104…光学系,105…撮像素子,106…画素補間部,110…入力端子,111…第1の画素取得部,112…第2の画素取得部,113…比較部,114…選択部,115…補間部,116…出力端子,117…制御端子,120…欠陥画素検出部

Claims (12)

  1. カラーフィルタを有する単板式の撮像素子で得られた画像信号のうち、補正対象画素の値を補間する画像処理装置であって、
    前記補正対象画素の位置における、前記補正対象画素が出力する色成分とは異なる色成分の値を取得する第1の取得手段と、
    前記補正対象画素の位置とは異なる複数の位置における、前記異なる色成分の値を取得する第2の取得手段と、
    前記第1の取得手段が取得した値と、前記第2の取得手段が取得した複数の値の各々との比較結果に応じて、前記異なる複数の位置の1つを選択する選択手段と、
    前記選択手段が選択した位置に対応する画素が出力する色成分の値を用いて、前記補正対象画素の値を補間する補間手段と、を有し、
    前記複数の位置が、前記補正対象画素が出力する色成分と同じ色成分を出力する画素に対応した位置であり、
    前記第1の取得手段および前記第2の取得手段は、前記異なる色成分の値を、前記異なる色成分の値を取得する位置の周辺画素であって、前記異なる色成分を出力する複数の画素の値から取得することを特徴とする画像処理装置。
  2. 前記カラーフィルタが赤(R)、緑(G)、青(B)から構成されるベイヤー配列のカラーフィルタであり、前記補正対象画素がRまたはBのカラーフィルタに対応する場合、前記第1の取得手段および前記第2の取得手段は、前記異なる色成分の値としてG成分の値を取得することを特徴とする請求項に記載の画像処理装置。
  3. 前記第1の取得手段および前記第2の取得手段は、前記補正対象画素の位置および前記異なる複数の位置のそれぞれについてのG成分の値を、水平方向における周辺の複数のG画素の値から求めたG成分の値と、垂直方向における周辺の複数のG画素の値から求めたG成分の値とを重み付け加算して取得することを特徴とする請求項に記載の画像処理装置。
  4. 前記第1の取得手段および前記第2の取得手段は、前記重み付け加算に用いる重みを、前記水平方向における周辺の複数のG画素の値の差と、前記垂直方向における周辺の複数のG画素の値の差に基づいて前記重みを決定することを特徴とする請求項に記載の画像処理装置。
  5. 前記補正対象画素の周辺画素であって、前記補正対象画素と同じ色成分を出力する複数の画素の値から、前記補正対象画素の位置における、前記補正対象画素と同じ色成分の値を取得する第3の取得手段をさらに有し、
    前記補間手段は、
    前記補正対象画素が特定の方向に連続して存在する補正対象画素群に含まれ、かつ、前記特定の方向を有する被写体のエッジが成分が前記補正対象画素群に重畳していると判定された場合には、前記第3の取得手段が取得した色成分の値を用いて前記補正対象画素の値を補間し、
    前記補正対象画素が特定の方向に連続して存在する補正対象画素群に含まれ、かつ、前記特定の方向を有する被写体のエッジが成分が前記補正対象画素群に重畳していると判定されない場合には、前記選択手段が選択した位置に対応する画素が出力する色成分の値を用いて前記補正対象画素の値を補間する、
    ことを特徴とする請求項1からのいずれか1項に記載の画像処理装置。
  6. 前記選択手段は、前記第2の取得手段が取得した複数の値のうち、前記第1の取得手段が取得した値との差が最も小さくなる値が取得された位置を選択することを特徴とする請求項1からのいずれか1項に記載の画像処理装置。
  7. 前記複数の位置が、前記補正対象画素の位置に対して水平、垂直、および斜め方向の位置を含むことを特徴とする請求項1からのいずれか1項に記載の画像処理装置。
  8. 前記補正対象画素が、前記撮像素子の製造時もしくは経時的に発生する欠陥画素と、前記撮像素子に設けられた焦点検出用画素の少なくとも一方であることを特徴とする請求項1からのいずれか1項に記載の画像処理装置。
  9. 請求項1からのいずれか1項に記載の画像処理装置と、
    前記画像信号を取得する手段と、
    を有することを特徴とする電子機器。
  10. 前記画像信号を取得する手段が、カラーフィルタを有する撮像素子を含むことを特徴とする請求項記載の電子機器。
  11. カラーフィルタを有する単板式の撮像素子で得られた画像信号のうち、補正対象画素の値を補間する画像処理装置が実行する画像処理方法であって、
    前記補正対象画素の位置における、前記補正対象画素が出力する色成分とは異なる色成分の値を取得する第1の取得工程と、
    前記補正対象画素の位置とは異なる複数の位置における、前記異なる色成分の値を取得する第2の取得工程と、
    前記第1の取得工程で取得した値と、前記第2の取得工程で取得した複数の値の各々との比較結果に応じて、前記異なる複数の位置の1つを選択する選択工程と、
    前記選択工程で選択した位置に対応する画素が出力する色成分の値を用いて、前記補正対象画素の値を補間する補間工程と、を有し、
    前記複数の位置が、前記補正対象画素が出力する色成分と同じ色成分を出力する画素に対応した位置であり、
    前記第1の取得工程および前記第2の取得工程では、前記異なる色成分の値を、前記異なる色成分の値を取得する位置の周辺画素であって、前記異なる色成分を出力する複数の画素の値から取得することを特徴とする画像処理方法。
  12. コンピュータを、請求項1からのいずれか1項に記載の画像処理装置の各手段として機能させるためのプログラム。
JP2014142639A 2014-07-10 2014-07-10 画像処理装置および画像処理方法 Active JP6525522B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142639A JP6525522B2 (ja) 2014-07-10 2014-07-10 画像処理装置および画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142639A JP6525522B2 (ja) 2014-07-10 2014-07-10 画像処理装置および画像処理方法

Publications (2)

Publication Number Publication Date
JP2016019245A JP2016019245A (ja) 2016-02-01
JP6525522B2 true JP6525522B2 (ja) 2019-06-05

Family

ID=55234141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142639A Active JP6525522B2 (ja) 2014-07-10 2014-07-10 画像処理装置および画像処理方法

Country Status (1)

Country Link
JP (1) JP6525522B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461430B1 (ja) 2016-11-30 2019-01-30 広東欧珀移動通信有限公司 画像の不良画素補償方法、装置及び非一時的なコンピュータ可読記憶媒体
JP6807281B2 (ja) * 2017-06-23 2021-01-06 株式会社日立製作所 撮像装置、撮像システム、及び撮像方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153087A (ja) * 1992-09-17 1994-05-31 Sony Corp 画素欠陥補正方法
JP4054184B2 (ja) * 2001-10-03 2008-02-27 オリンパス株式会社 欠陥画素補正装置
JP4941285B2 (ja) * 2007-02-20 2012-05-30 セイコーエプソン株式会社 撮像装置、撮像システム、撮像方法及び画像処理装置
JP5200955B2 (ja) * 2008-02-14 2013-06-05 株式会社ニコン 画像処理装置、撮像装置及び画像処理プログラム

Also Published As

Publication number Publication date
JP2016019245A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5853594B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP4289419B2 (ja) 撮像装置、欠陥画素補正装置およびこれらにおける処理方法ならびにプログラム
US7839437B2 (en) Image pickup apparatus, image processing method, and computer program capable of obtaining high-quality image data by controlling imbalance among sensitivities of light-receiving devices
JP5664255B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
US8982236B2 (en) Imaging apparatus
JP2007037104A (ja) 画像処理装置及び画像処理方法、撮像装置、並びにコンピュータ・プログラム
US8723991B2 (en) Color imaging element, imaging device, and storage medium storing an imaging program
JP2008153836A (ja) 撮像装置、画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
WO2016047240A1 (ja) 画像処理装置、撮像素子、撮像装置および画像処理方法
JP2018093257A (ja) 撮像装置
JPWO2013046827A1 (ja) 画像処理装置、方法及びプログラム並びに撮像装置
JP5680797B2 (ja) 撮像装置、画像処理装置、及び画像処理方法
US20090167917A1 (en) Imaging device
JP2008177794A (ja) 撮像装置の色シェーディング補正装置、撮像装置および撮像装置の色シェーディング補正方法
JP5621053B2 (ja) 画像処理装置、方法及びプログラム並びに撮像装置
JP2005012479A (ja) データ処理装置、画像処理装置、カメラおよびデータ処理方法
JP5456206B2 (ja) 撮像装置、撮像装置の制御プログラム、及び撮像装置の制御方法
JP5425343B2 (ja) 撮像装置、撮像装置の制御方法、及び撮像装置の制御プログラム
US8441543B2 (en) Image processing apparatus, image processing method, and computer program
JP6525522B2 (ja) 画像処理装置および画像処理方法
JP5291788B2 (ja) 撮像装置
JP5631769B2 (ja) 画像処理装置
JP4380399B2 (ja) 撮像装置、ノイズリダクション装置およびノイズリダクション方法並びにプログラム
JP4962293B2 (ja) 画像処理装置、画像処理方法、プログラム
US8154627B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R151 Written notification of patent or utility model registration

Ref document number: 6525522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151