JP6523839B2 - MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME - Google Patents

MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP6523839B2
JP6523839B2 JP2015141482A JP2015141482A JP6523839B2 JP 6523839 B2 JP6523839 B2 JP 6523839B2 JP 2015141482 A JP2015141482 A JP 2015141482A JP 2015141482 A JP2015141482 A JP 2015141482A JP 6523839 B2 JP6523839 B2 JP 6523839B2
Authority
JP
Japan
Prior art keywords
magnesium
holes
based alloy
manufacturing
upper mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015141482A
Other languages
Japanese (ja)
Other versions
JP2016040049A (en
Inventor
利信 宮田
利信 宮田
賢児 田崎
賢児 田崎
良憲 護法
良憲 護法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gohsyu Corp
Original Assignee
Gohsyu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gohsyu Corp filed Critical Gohsyu Corp
Priority to JP2015141482A priority Critical patent/JP6523839B2/en
Publication of JP2016040049A publication Critical patent/JP2016040049A/en
Application granted granted Critical
Publication of JP6523839B2 publication Critical patent/JP6523839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Extrusion Of Metal (AREA)

Description

本発明は、マグネシウム基合金管及びその製造方法に関し、特に、ステント(狭心症や心筋梗塞等の冠動脈疾患に対する有効的な治療法として、経皮的冠動脈インタベンション(PCI:Percutaneous Coronary Intervention)があるが、このPCIにおける冠動脈留置術で使用される、薄肉細管にレーザー加工などを施して作製される網目状金属製チューブをいう。)の製造に好適に用いることができる小径のマグネシウム基合金管及びその製造方法に関するものである。   The present invention relates to a magnesium-based alloy tube and a method of manufacturing the same, and in particular, a percutaneous coronary intervention (PCI) as a stent (as an effective treatment for coronary artery disease such as angina and myocardial infarction) There is a small diameter magnesium-based alloy tube that can be suitably used in the manufacture of a reticulated metal tube manufactured by subjecting a thin thin tube to laser processing etc., which is used in coronary artery indwelling in this PCI. And a method of manufacturing the same.

マグネシウムは、比重が鉄の1/4、アルミニウムの2/3であり、構造用金属の中で最も比重の小さい金属として注目されている。特に、マグネシウム基合金は、他の金属に比べ高い剛性を保ちつつ、軽量化が可能なため、各種分野における構造材料としての用途が開発されている(例えば、特許文献1参照。)。   Magnesium has a specific gravity of 1⁄4 of iron and 2⁄3 of aluminum, and is noted as the metal with the smallest specific gravity among structural metals. In particular, magnesium-based alloys can be reduced in weight while maintaining high rigidity as compared to other metals, and applications as structural materials in various fields have been developed (see, for example, Patent Document 1).

また、マグネシウム基合金は、その優れた生体適合性から医療用材料、例えば、ステントとしての用途が開発されている(例えば、特許文献2参照。)。
しかしながら、マグネシウム基合金は、常温でのすべり系の数が少なく、冷間加工性の低さから、広範囲な用途への適用に制約があるのが現状であり、特に、ステントの製造に用いられるような小径のマグネシウム基合金管の場合、引抜き加工では、加工性が低いことから、大きな断面減少率を得るために管状の素材を直列に配置した多数のダイスを通して行うようにする等、特殊な製造工程を経て製造する必要があり、製造にコストがかかることに加え、加工硬化等の影響を受けやすいこともあって、ステントを作製するために必要とされる、長尺で、寸法精度が高く、機械的性質に優れた小径のマグネシウム基合金管を得ることは困難であった。
In addition, magnesium-based alloys have been developed for use as medical materials such as stents because of their excellent biocompatibility (see, for example, Patent Document 2).
However, magnesium-based alloys have a limited number of slip systems at room temperature and low cold-workability, which limit their application to a wide range of applications, and are particularly used for the manufacture of stents. In the case of such small-diameter magnesium-based alloy tubes, the drawing process is special because, for example, the processability is low, and in order to obtain a large reduction in area, tubular materials are made through a large number of dies arranged in series. It is necessary to manufacture through the manufacturing process, and in addition to the cost of manufacturing, it is susceptible to work hardening etc., and the long, dimensional accuracy required to manufacture the stent is required. It has been difficult to obtain a small diameter magnesium based alloy tube which is high in mechanical properties.

特許第3597186号公報Patent No. 3597186 gazette 国際公開第2014/021454号International Publication No. 2014/021454

本発明は、上記従来のマグネシウム基合金製品、特に、小径のマグネシウム基合金の有する問題点に鑑み、長尺で、寸法精度が高く、機械的性質に優れた小径のマグネシウム基合金管及びその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the problems of the conventional magnesium-based alloy products, particularly, small-diameter magnesium-based alloys, the present invention is a small-diameter magnesium-based alloy pipe having high dimensional accuracy and excellent mechanical properties. Intended to provide a method.

上記目的を達成するため、本発明のマグネシウム基合金管は、外径が1.0〜6.0mm、内径が0.8〜5.5mm、全長が500mm以上、同軸度が20μm以下、伸びが10%以上であることを特徴とする。   In order to achieve the above object, the magnesium-based alloy tube of the present invention has an outer diameter of 1.0 to 6.0 mm, an inner diameter of 0.8 to 5.5 mm, a total length of 500 mm or more, coaxiality of 20 μm or less, and elongation It is characterized by being 10% or more.

また、本発明のマグネシウム基合金管の製造方法は、上記マグネシウム基合金管の製造方法であって、マグネシウム基合金の粉体からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とする。   A method of manufacturing a magnesium-based alloy pipe according to the present invention is the method of manufacturing a magnesium-based alloy pipe according to the present invention, wherein a plurality of raw materials composed of magnesium-based alloy powder are supplied at equal angular intervals on the circumference. Upper mold having a through hole and a cylindrical projection positioned at the center of the plurality of through holes so as to be surrounded by the through holes on the outlet side of the through hole, and common to the outlets of the plurality of through holes in the upper mold Using a mold comprising a recess having a shape to communicate with each other and a lower mold provided with a through hole which is located at the center of the recess and in which the cylindrical protrusion of the upper mold is inserted for providing a tube molding gap; It is characterized by extrusion molding.

また、同様に、本発明のマグネシウム基合金管の製造方法は、上記マグネシウム基合金管の製造方法であって、マグネシウム基合金の鋳造材からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とする。   Also, in the same manner, the method of manufacturing a magnesium-based alloy pipe of the present invention is a method of manufacturing the above-mentioned magnesium-based alloy pipe, wherein raw materials made of cast magnesium-based alloy are circumferentially spaced at equal angular intervals. An upper mold comprising a plurality of through holes to be supplied and cylindrical projections positioned at the centers of the plurality of through holes so as to be surrounded by the through holes on the outlet side of the through holes; A mold comprising a recess having a shape commonly communicating with the outlet and a lower mold having a through hole located at the center of the recess and in which the cylindrical protrusion of the upper mold has a tube forming gap and is inserted It is characterized by using and extrusion molding.

また、同様に、本発明のマグネシウム基合金管の製造方法は、上記マグネシウム基合金管の製造方法であって、マグネシウム基合金の押出成形材からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とするマグネシウム基合金管の製造方法。   Also, in the same manner, the method of manufacturing a magnesium-based alloy pipe according to the present invention is the method of manufacturing a magnesium-based alloy pipe according to the present invention, wherein raw materials made of extrusion-formed material of magnesium-based alloy And an upper die provided with a plurality of through holes for supplying water and cylindrical protrusions positioned at the centers of the plurality of through holes so as to be surrounded by the through holes on the outlet side of the through holes; A mold comprising a recess having a shape commonly in communication with the outlet of the lower mold and a lower mold located at the center of the recess and having a through hole into which the cylindrical protrusion of the upper mold is inserted for providing a tube molding gap A method of manufacturing a magnesium based alloy pipe, characterized by extrusion molding using

本発明のマグネシウム基合金管及びその製造方法によれば、ステントを作製するのに適した、長尺で、寸法精度が高く、機械的性質に優れた小径のマグネシウム基合金管及びその製造方法を提供することができる。   According to the magnesium-based alloy tube of the present invention and the method for producing the same, a narrow-sized magnesium-based alloy tube having a long size, high dimensional accuracy and excellent mechanical properties suitable for producing a stent, and a method for producing the same Can be provided.

本発明のマグネシウム基合金管の製造方法を実施する製造装置の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing apparatus which enforces the manufacturing method of the magnesium base alloy pipe | tube of this invention. 同製造装置の成形型の上型を示し、(a1)は断面図((b2)のX−X断面図)、(b1)は底面図、(a2)は(a1)の拡大図、(b2)は(b1)の拡大図である。The upper mold of the mold of the manufacturing apparatus is shown, (a1) is a cross-sectional view (a cross-sectional view taken along the line XX of (b2)), (b1) is a bottom view, (a2) is an enlarged view of (a1), (b2) ) Is an enlarged view of (b1). 同製造装置の成形型の下型を示し、(a1)は平面図、(b1)は断面図((a2)のY−Y断面図)、(a2)は(a1)の拡大図、(b2)は(b1)の拡大図である。The lower mold of the mold of the manufacturing apparatus is shown, (a1) is a plan view, (b1) is a cross-sectional view (Y-Y cross-sectional view of (a2)), (a2) is an enlarged view of (a1), (b2) ) Is an enlarged view of (b1). マグネシウム基合金管を示す写真である。It is a photograph which shows a magnesium base alloy pipe. マグネシウム基合金管を示す写真である。It is a photograph which shows a magnesium base alloy pipe. マグネシウム基合金管を示す写真である。It is a photograph which shows a magnesium base alloy pipe. マグネシウム基合金管の応力-歪曲線(stress strain curve)を示すグラフである。It is a graph which shows the stress-strain line (stress strain curve) of a magnesium base alloy pipe. マグネシウム基合金管の組織写真を示す写真である。It is a photograph which shows the structure | tissue photograph of a magnesium base alloy pipe. 成形時に超音波振動を付加した場合と付加しない場合の成形荷重の変動を示すグラフである。It is a graph which shows the fluctuation | variation of the shaping | molding load at the time of adding and not adding an ultrasonic vibration at the time of shaping | molding. 本発明のマグネシウム基合金管の製造方法に原材料として使用するマグネシウム基合金の押出成形材の製造工程の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing process of the extrusion-forming material of the magnesium base alloy used as a raw material in the manufacturing method of the magnesium base alloy pipe | tube of this invention.

以下、本発明のマグネシウム基合金管及びその製造方法の実施の形態を、図面に基づいて説明する。   Hereinafter, embodiments of a magnesium-based alloy pipe and a method of manufacturing the same of the present invention will be described based on the drawings.

図1〜図3に、マグネシウム基合金管の製造方法を実施する製造装置の一例を示す。
この製造装置は、円周上に等角度間隔にマグネシウム基合金の原材料1を供給する複数(本実施例においては、4個。)の貫通孔21及びこの貫通孔21の出口側に貫通孔21に囲まれるように複数の貫通孔21の中心に位置する円柱形状の突起22を備えた上型2と、上型2の複数の貫通孔21の出口に共通して連通する形状(本実施例においては、十字形状。)の凹部31及びこの凹部31の中心に位置し、上型2の円柱形状の突起22が管成形隙間を設けて挿入される貫通孔32を備えた下型3とからなる成形型を、プレス機5のホルダ52に設置し、このホルダ52の上型2の上方の筒状空間52aに装入したマグネシウム基合金の原材料1を、プレス機5のパンチ51によって加圧するようにし、これによって、小径のマグネシウム基合金管を押出成形することができるようにしている。
An example of a manufacturing apparatus which enforces the manufacturing method of a magnesium base alloy pipe in FIGS. 1-3 is shown.
This manufacturing apparatus is provided with a plurality of (four in the present embodiment) through holes 21 for supplying the raw material 1 of magnesium base alloy at equal angular intervals on the circumference and the through holes 21 on the outlet side of the through holes 21. The upper mold 2 provided with cylindrical projections 22 located at the centers of the plurality of through holes 21 so as to be surrounded by the shape, and the shape commonly communicated with the outlets of the plurality of through holes 21 of the upper mold 2 (this embodiment (The cross shape) and the lower mold 3 provided with the through hole 32 which is located at the center of the concave 31 and the cylindrical protrusion 22 of the upper mold 2 is inserted to provide a tube forming gap. The forming die is placed in the holder 52 of the press 5, and the raw material 1 of the magnesium based alloy charged in the cylindrical space 52 a above the upper die 2 of the holder 52 is pressed by the punch 51 of the press 5 So that the small diameter magnesium So that it is possible to extrude a base alloy tube.

この場合において、下型3の貫通孔32は、突起22が挿入される上部が、所定の管成形隙間が形成される絞り部32aに形成し、下部は、絞り部32aより大口径の押出成形されたマグネシウム基合金管の導出部32bに形成するようにしている。
また、成形型を構成する上型2と下型3とは、上型2及び下型3にそれぞれ形成した小径の穴23、33に、共通のピン4を挿入することにより、相対的に回転しないようにしている。
In this case, in the through hole 32 of the lower die 3, the upper part where the protrusion 22 is inserted is formed in the narrowed portion 32a where the predetermined tube forming gap is formed, and the lower portion is extrusion formed with a larger diameter than the narrowed portion 32a. The lead-out portion 32b of the magnesium-based alloy pipe is formed.
The upper mold 2 and the lower mold 3 constituting the mold are relatively rotated by inserting the common pin 4 into the small diameter holes 23 and 33 formed in the upper mold 2 and the lower mold 3 respectively. I try not to.

マグネシウム基合金の原材料1には、最終製品(用途)に応じて、従来公知の各種マグネシウム基合金を用いることができるが、強度等の機械的性質や鍛造性(押出成形性)に優れた、AZ系(Mg−Al−Znの合金)やWE系(Mg−Y−希土類元素の合金)のマグネシウム基合金を好適に用いることができる。   As the raw material 1 of the magnesium base alloy, various conventionally known magnesium base alloys can be used according to the final product (use), but the mechanical properties such as strength and the forgeability (extrusion formability) are excellent. A magnesium based alloy of AZ series (alloy of Mg-Al-Zn) and WE series (alloy of Mg-Y-rare earth element) can be used suitably.

マグネシウム基合金の原材料1の形態としては、粉体や鋳造材(プレス機5のホルダ52の筒状空間52aに適合した円柱形状や円筒形状のもの。)を好適に用いることができるが、製造装置に上記の上型2及び下型3からなる成形型を使用する関係上、押出成形したマグネシウム基合金管の周方向に均一な組織を得ることができ、欠陥が発生しにくい粉体をより好適に用いることができる(図3及び図5のマグネシウム基合金管の断面を示す写真参照。)。   As the form of the raw material 1 of magnesium base alloy, powder or cast material (a cylindrical shape or a cylindrical shape adapted to the cylindrical space 52a of the holder 52 of the press 5) can be suitably used, but it is manufactured Due to the use of a mold consisting of the upper mold 2 and the lower mold 3 in the apparatus, a uniform structure can be obtained in the circumferential direction of the extruded magnesium-based alloy tube, and powder that is less likely to cause defects It can be suitably used (see the photograph showing the cross section of the magnesium-based alloy tube in FIGS. 3 and 5).

この製造装置による小径のマグネシウム基合金管を押出成形は、冷間で行うこともできるが、例えば、300℃〜500℃程度の温度条件の下で行うことが好ましく、さらに、押出成形したマグネシウム基合金管を、必要に応じて、熱処理(加熱後、徐冷)することができる。   The small-diameter magnesium-based alloy tube by this manufacturing apparatus can be extrusion-formed cold, but it is preferable to carry out, for example, under a temperature condition of about 300 ° C. to 500 ° C. The alloy tube can be heat-treated (after annealing, slowly cooled), if necessary.

この製造装置を用いて製造される小径のマグネシウム基合金管は、外径が1.0〜6.0mm、内径が0.8〜5.5mm、肉厚が0.1〜1.0mm、全長が500mm以上、好ましくは、1000mm以上、同軸度が20μm以下、伸びが10%以上であり、これにより、ステント等の医療用部材を作製するのに適した、長尺で、寸法精度が高く、機械的性質に優れた小径のマグネシウム基合金管を得ることができる。   The small diameter magnesium-based alloy tube manufactured using this manufacturing apparatus has an outer diameter of 1.0 to 6.0 mm, an inner diameter of 0.8 to 5.5 mm, a thickness of 0.1 to 1.0 mm, and a full length Is 500 mm or more, preferably 1000 mm or more, coaxial degree is 20 μm or less, elongation is 10% or more, and thereby long, suitable for producing a medical member such as a stent, having high dimensional accuracy, It is possible to obtain a small diameter magnesium based alloy pipe excellent in mechanical properties.

以下、この製造装置を用いて製造された小径のマグネシウム基合金管の具体例を表1及び図4〜図6(写真)に、その特性値(成形時のもの及び熱(T5)処理(加熱後、徐冷)したものの引張強度:TS、降伏強度:YP、降伏比:YP/TS及び伸び:EL)を表2に、その引張条件(環境温度25℃、歪速度0.025min−1)における応力-歪曲線(stress strain curve)を図7に、その組織写真(成形時のもの及び熱処理(加熱後、徐冷)したもの)を図8に、それぞれ示す。
ここで、マグネシウム基合金管の全長は、500mmであるが、原材料1を追加供給することによって、必要に応じて、2000mm以上の長さのものを製造することができる。
また、同軸度は、キーエンス社製のデジタルマイクロスコープVHX-2000を使用し、マグネシウム基合金管の任意の断面の外径円(外周面)と内径円(内周面)の中心間距離を測定した。
Hereinafter, specific examples of the small-diameter magnesium-based alloy pipe manufactured using this manufacturing apparatus are shown in Table 1 and FIGS. 4 to 6 (photographs), and their characteristic values (processing at molding and heat (T5) treatment (heating) After that, the tensile strength: TS, yield strength: YP, yield ratio: YP / TS and elongation: EL) in Table 2 under the tensile conditions (environmental temperature 25 ° C, strain rate 0.025 min -1 ) The stress-strain curve in FIG. 7 is shown in FIG. 7, and the structure photograph (the one during molding and the heat treatment (after annealing, gradual cooling)) is shown in FIG.
Here, the total length of the magnesium-based alloy pipe is 500 mm, but by additionally supplying the raw material 1, one having a length of 2000 mm or more can be manufactured as needed.
In addition, the coaxiality measures the distance between the centers of the outer diameter circle (outer peripheral surface) and the inner diameter circle (inner peripheral surface) of an arbitrary cross section of a magnesium based alloy tube using a digital microscope VHX-2000 manufactured by Keyence Corporation. did.

ところで、上記製造装置による小径のマグネシウム基合金管を押出成形は、減面率が高いことから、成形型(上型2及び下型3)にかかる負荷が大きく、成形型が、変形、座屈、破壊等しやすいという問題がある。
これに対処するために、必要に応じて、パンチ51及び/又はホルダ52(成形型(上型2及び下型3))に超音波発振機を配設し(図示省略。)、成形時に超音波振動を付加することによって、成形型(上型2及び下型3)等の製造装置と原材料1や押出成形されたマグネシウム基合金管との間の摩擦抵抗を低減するようにしている。
図9に示す、成形時に超音波振動を付加した場合と付加しない場合の成形荷重の変動のグラフからも明らかなように、成形時に超音波振動を付加することによって、付加しない場合と比較して、6.7%の成形荷重低減効果が得られることを確認した。
By the way, extrusion of a small diameter magnesium base alloy tube by the above-mentioned manufacturing apparatus has a high surface reduction rate, so the load applied to the forming die (upper die 2 and lower die 3) is large, and the forming die is deformed and buckled. There is a problem that it is easy to destroy.
In order to cope with this, if necessary, an ultrasonic oscillator is disposed on the punch 51 and / or the holder 52 (forming mold (upper mold 2 and lower mold 3)) (not shown), and super-forming at the time of molding. By applying sonic vibration, the frictional resistance between the manufacturing apparatus such as a mold (upper mold 2 and lower mold 3) and the raw material 1 or an extruded magnesium-based alloy pipe is reduced.
As is clear from the graph of the variation in molding load when ultrasonic vibration is applied during molding and when it is not added, as shown in FIG. 9, compared with the case where ultrasonic vibration is applied when molding is not applied. It was confirmed that a molding load reduction effect of 6.7% was obtained.

ところで、マグネシウム基合金の原材料1の形態としては、上記の粉体や鋳造材のほか、押出成形材(プレス機5のホルダ52の筒状空間52aに適合した円柱形状のもの。)を用いることもできる。
この押出成形材は、図10に示す、押出開口を有する押出用金型61及び押出ツール64を備えた押出装置6を用いて製造することができる。
押出用金型61は、ダイス部61aと、本体部61bとを有する。
マグネシウム基粉末加熱工程(図10(a))では、容器62内に入れられているマグネシウム基粉末63を所定の温度に加熱する。マグネシウム基粉末の好ましい加熱温度は、絶対温度で表したマグネシウム基粉末の融点をTmとしたとき、0.6Tm〜0.9Tmの範囲内にある。
マグネシウム基粉末投入工程(図10(b))では、容器62内の加熱したマグネシウム基粉末63を押出用金型61内に粉末状態のままで投入する。マグネシウム基粉末63の最初の投入時には、ダイス部61aの押出開口を閉塞するプラグ67が配置されている。このプラグ67は、マグネシウム基粉末63が成形された押出成形材65と共に押出用金型61から押し出される。ここで、押出用金型61は、好ましくは、300℃以上の温度に加熱されている。
一次押出工程(図10(c))では、押出ツール64を押し下げて、押出用金型61内のマグネシウム基粉末63を押出加工する。押出加工の好ましい押出比は、30以上である。一次押出加工終了時には、押出成形材65は、押出用金型61の押出開口から外部に押し出されることによって棒状をしており、押出用金型61内にはマグネシウム基粉末圧縮体としてディスカード部66が残る。一次押出加工をしている間、好ましくは、別の場所で容器62内の追加のマグネシウム基粉末63を所定の温度に加熱しておく。
追加マグネシウム基粉末投入工程(図10(d))では、押出ツール64を上方に移動させ、容器62内の追加のマグネシウム基粉末63を押出用金型61内に粉末状態のままで投入する。投入された追加のマグネシウム基粉末63は、押出用金型61内に残っていたディスカード部66上に堆積する。
二次押出工程(図10(e))では、押出ツール64を押し下げて、押出用金型61内のディスカード部66及び追加のマグネシウム基粉末63を、例えば、押出比30以上で押出加工する。二次押出加工終了時には、押出用金型61内にはマグネシウム基粉末圧縮体としてディスカード部66が残る。二次押出加工をしている間、好ましくは、別の場所で容器62内の追加のマグネシウム基粉末63を所定の温度に加熱しておく。
上記追加マグネシウム基粉末投入工程(図10(d))と二次押出工程(図10(e))とを繰り返して行えば、非常に長い押出材を得ることができる。
このようにして得た押出成形材65を、プレス機5のホルダ52の筒状空間52aに適合した長さに切断して、原材料1として使用することができる。
By the way, as a form of the raw material 1 of a magnesium base alloy, using the extrusion molding material (The column-shaped thing adapted to the cylindrical space 52a of the holder 52 of the press 5) besides said powder and cast material is used. You can also.
This extruded material can be manufactured using the extrusion device 6 equipped with an extrusion die 61 having an extrusion opening and an extrusion tool 64 as shown in FIG.
The extrusion die 61 has a die portion 61a and a main portion 61b.
In the magnesium-based powder heating step (FIG. 10A), the magnesium-based powder 63 contained in the container 62 is heated to a predetermined temperature. The preferable heating temperature of the magnesium-based powder is in the range of 0.6 Tm to 0.9 Tm, where Tm is the melting point of the magnesium-based powder expressed in absolute temperature.
In the magnesium-based powder charging step (FIG. 10 (b)), the heated magnesium-based powder 63 in the container 62 is charged into the extrusion die 61 as it is in the powder state. At the time of the first introduction of the magnesium-based powder 63, a plug 67 for closing the extrusion opening of the die portion 61a is disposed. The plug 67 is pushed out of the extrusion die 61 together with the extrusion-molded material 65 in which the magnesium-based powder 63 is formed. Here, the extrusion mold 61 is preferably heated to a temperature of 300 ° C. or higher.
In the primary extrusion process (FIG. 10 (c)), the extrusion tool 64 is depressed to extrude the magnesium-based powder 63 in the extrusion mold 61. The preferred extrusion ratio for extrusion processing is 30 or more. At the end of the primary extrusion process, the extruded material 65 is rod-shaped by being extruded from the extrusion opening of the extrusion mold 61, and the discard portion in the extrusion mold 61 as a magnesium-based powder compact. 66 remain. Preferably, additional magnesium-based powder 63 in vessel 62 is heated to a predetermined temperature elsewhere during primary extrusion processing.
In the additional magnesium-based powder charging step (FIG. 10 (d)), the extrusion tool 64 is moved upward, and the additional magnesium-based powder 63 in the container 62 is charged into the extrusion mold 61 as it is in powder form. The added additional magnesium-based powder 63 is deposited on the discard portion 66 remaining in the extrusion die 61.
In the secondary extrusion step (FIG. 10 (e)), the extrusion tool 64 is pushed down to extrude the discard part 66 and the additional magnesium-based powder 63 in the extrusion mold 61, for example, at an extrusion ratio of 30 or more . At the end of the secondary extrusion processing, the discard unit 66 remains as a magnesium-based powder compact in the extrusion die 61. Preferably, additional magnesium-based powder 63 in vessel 62 is heated to a predetermined temperature elsewhere during secondary extrusion.
By repeating the additional magnesium-based powder charging step (FIG. 10 (d)) and the secondary extrusion step (FIG. 10 (e)), a very long extruded material can be obtained.
The extruded material 65 thus obtained can be cut into a length suitable for the cylindrical space 52 a of the holder 52 of the press 5 and used as the raw material 1.

このようにして得た押出成形材65を、マグネシウム基合金の原材料1に用いて製造された小径のマグネシウム基合金管は、2度の押出成形を経ることによって、加工硬化による組織の微細化及び高強度化され、機械的性質が一層優れたものとなり、併せて、マグネシウム基合金の固溶による腐食核減少及び析出の抑制によって耐食性に優れたものとなる。   The small diameter magnesium based alloy tube manufactured by using the extruded material 65 obtained in this way as the raw material 1 of the magnesium based alloy is subjected to twice extrusion forming, thereby refining the structure by work hardening and The strength is enhanced, the mechanical properties are further improved, and the corrosion resistance is reduced due to the reduction of the corrosion nuclei and the precipitation due to the solid solution of the magnesium-based alloy.

以上、本発明のマグネシウム基合金管及びその製造方法について、その実施の形態に基づいて説明したが、本発明は上記実施の形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。   As mentioned above, although the magnesium base alloy pipe of the present invention and its manufacturing method were explained based on the embodiment, the present invention is not limited to the composition indicated in the above-mentioned embodiment, and does not deviate from the meaning The configuration can be changed as appropriate in the range.

本発明のマグネシウム基合金管及びその製造方法は、長尺で、寸法精度が高く、機械的性質に優れた小径のマグネシウム基合金管を提供するものであることから、マグネシウム基合金の優れた生体適合性を利用したステント、尿管、胆管等の体内管状組織への代替部材等の医療用部材の製造に好適に用いることができる小径のマグネシウム基合金管及びその製造方法に好適に用いることができるほか、各種分野における構造材料としての用途にも用いることができる。   The magnesium-based alloy pipe of the present invention and the method for producing the same provide a small-diameter magnesium-based alloy pipe having a long size, high dimensional accuracy, and excellent mechanical properties. A small-diameter magnesium-based alloy tube that can be suitably used for manufacturing medical members such as stents utilizing compatibility, substitutes for body tubular tissue such as urinary tract and bile duct, and methods for manufacturing the same In addition to being able to be used, it can be used also as an application as a structural material in various fields.

1 原材料
2 上型
21 貫通孔
22 突起
3 下型
31 凹部
32 貫通孔
4 ピン
5 プレス機
51 パンチ
52 ホルダ
6 押出装置
Reference Signs List 1 raw material 2 upper die 21 through hole 22 protrusion 3 lower die 31 recess 32 through hole 4 pin 5 press 51 punch 52 holder 6 extrusion device

Claims (4)

マグネシウム基合金管であって、外径が1.0〜6.0mm、内径が0.8〜5.5mm、全長が500mm以上、同軸度が20μm以下、伸びが10%以上であることを特徴とするマグネシウム基合金管。   A magnesium based alloy tube having an outer diameter of 1.0 to 6.0 mm, an inner diameter of 0.8 to 5.5 mm, a total length of 500 mm or more, a concentricity of 20 μm or less, and an elongation of 10% or more Magnesium-based alloy tube to be. 請求項1記載のマグネシウム基合金管の製造方法であって、マグネシウム基合金の粉体からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とするマグネシウム基合金管の製造方法。   The method of manufacturing a magnesium based alloy pipe according to claim 1, wherein the raw material comprising a powder of magnesium based alloy is divided into a plurality of through holes for supplying the raw material at equal angular intervals along the circumference and the outlet side of the through holes. An upper mold provided with cylindrical projections located at the centers of the plurality of through holes so as to be surrounded by the through holes, a recess having a shape communicating with the outlets of the plurality of through holes in the upper mold and the recesses A magnesium-based material characterized by extrusion molding using a molding die consisting of a lower die provided with a through hole in which the cylindrical protrusion of the upper die is inserted to provide a tube forming gap, which is located at the center of Method of manufacturing alloy tube. 請求項1記載のマグネシウム基合金管の製造方法であって、マグネシウム基合金の鋳造材からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とするマグネシウム基合金管の製造方法。   A method of manufacturing a magnesium based alloy pipe according to claim 1, wherein the raw material comprising a cast material of a magnesium based alloy is divided into a plurality of through holes for supplying the raw material at equal angular intervals along the circumference and the outlet side of the through holes. An upper mold provided with cylindrical projections located at the centers of the plurality of through holes so as to be surrounded by the through holes, a recess having a shape communicating with the outlets of the plurality of through holes in the upper mold and the recesses A magnesium-based material characterized by extrusion molding using a molding die consisting of a lower die provided with a through hole in which the cylindrical protrusion of the upper die is inserted to provide a tube forming gap, which is located at the center of Method of manufacturing alloy tube. 請求項1記載のマグネシウム基合金管の製造方法であって、マグネシウム基合金の押出成形材からなる原材料を、円周上に等角度間隔に原材料を供給する複数の貫通孔及び該貫通孔の出口側に貫通孔に囲まれるように複数の貫通孔の中心に位置する円柱形状の突起を備えた上型と、該上型の複数の貫通孔の出口に共通して連通する形状の凹部及び該凹部の中心に位置し、前記上型の円柱形状の突起が管成形隙間を設けて挿入される貫通孔を備えた下型とからなる成形型を用いて、押出成形することを特徴とするマグネシウム基合金管の製造方法。   A method of manufacturing a magnesium based alloy pipe according to claim 1, wherein the raw material comprising an extruded material of a magnesium based alloy is divided into a plurality of through holes for supplying the raw material at equal angular intervals along the circumference and the outlet of the through holes. An upper mold provided with cylindrical projections located at the centers of the plurality of through holes so as to be surrounded by the through holes on the side, and a recess having a shape commonly communicated with the outlets of the plurality of through holes in the upper mold The magnesium is characterized by using a mold which is located at the center of the recess and which comprises a lower mold having a through hole into which the upper cylindrical protrusion of the upper mold is inserted for providing a tube forming gap. Method of manufacturing base alloy pipe.
JP2015141482A 2014-08-11 2015-07-15 MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME Active JP6523839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141482A JP6523839B2 (en) 2014-08-11 2015-07-15 MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014163494 2014-08-11
JP2014163494 2014-08-11
JP2015141482A JP6523839B2 (en) 2014-08-11 2015-07-15 MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
JP2016040049A JP2016040049A (en) 2016-03-24
JP6523839B2 true JP6523839B2 (en) 2019-06-05

Family

ID=55540634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141482A Active JP6523839B2 (en) 2014-08-11 2015-07-15 MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP6523839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111822534A (en) * 2020-07-21 2020-10-27 东北轻合金有限责任公司 Extrusion method of SiC particle reinforced AZ91D magnesium-based composite pipe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599214A (en) * 1983-08-17 1986-07-08 Exxon Research And Engineering Co. Dispersion strengthened extruded metal products substantially free of texture
JPH0622729B2 (en) * 1989-09-29 1994-03-30 昭和アルミニウム株式会社 Method for manufacturing hollow mold material with no weld line on the outer surface by porthole die
JPH05277549A (en) * 1992-04-06 1993-10-26 Showa Alum Corp Extrusion working method
DE112005000491T5 (en) * 2004-03-02 2007-01-11 Magtech-Magnesium Technologies Ltd. A method of extruding tubes from metal alloy billets
JP2008229650A (en) * 2007-03-19 2008-10-02 Mitsui Mining & Smelting Co Ltd Plastically worked magnesium alloy member, and method for producing the same
JP2009144207A (en) * 2007-12-14 2009-07-02 Gooshuu:Kk Method for continuously extruding metal powder
JP2010036203A (en) * 2008-08-01 2010-02-18 Katsuyoshi Kondo Method of extruding light metal
AT508309A1 (en) * 2009-05-19 2010-12-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh METHOD FOR PRODUCING A THIN-WALLED TUBE FROM A MAGNESIUM ALLOY
JP6257069B2 (en) * 2012-08-03 2018-01-10 国立研究開発法人産業技術総合研究所 Thin drawn tubule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111822534A (en) * 2020-07-21 2020-10-27 东北轻合金有限责任公司 Extrusion method of SiC particle reinforced AZ91D magnesium-based composite pipe

Also Published As

Publication number Publication date
JP2016040049A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP2017024011A (en) Magnesium-based alloy pipe and method for manufacturing the same
CN101422861B (en) Accurate forming method of special-shape deep-hole type parts
JP2020032466A (en) Methods for producing forged products and other worked products
CN108246937B (en) Manufacturing method of multi-step large-diameter casing ring forging
JP4693007B2 (en) Manufacturing method of high strength metal material
JP4696980B2 (en) Hollow material manufacturing apparatus and hollow material manufacturing method
JP2012527355A (en) Method for manufacturing small thin-walled tubes formed from magnesium alloys
RU2018130134A (en) NICKEL-BASED ALLOY PIPES AND METHOD FOR PRODUCING THEM
RU2684992C2 (en) Systems and methods for extruding tubes
JP2012219931A (en) Rack bar and method of manufacturing the same
JP2018069255A (en) Pure titanium metal wire and processing method thereof
JP6523839B2 (en) MAGNESIUM BASE ALLOY TUBE AND METHOD FOR MANUFACTURING THE SAME
TWI279446B (en) The method for producing magnesium alloy molding
JP2014240082A (en) Hot upset forging device and hot upset forging method
RU2602936C2 (en) Method of extrusion parts such as glasses and device for its implementation
JP5080359B2 (en) Manufacturing method of hollow tooth profile parts
JP2010000515A (en) Forging method of magnesium alloy
JP2019141906A (en) Manufacturing method of hot forging material
JP7066934B2 (en) Titanium alloy drawing method
RU2352417C2 (en) Pressing method of profiles and matrix for implementation of current method
RU2584195C1 (en) Method of making cylindrical components with conical part
US339534A (en) John s
Furushima et al. Heat assisted dieless drawing process of superplastic metal microtubes-from Zn22Al to β titanium alloys
CN110883502A (en) Titanium alloy pipe and preparation method thereof
RU2584103C2 (en) Hardening of metal sleeve at heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6523839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250