JP6523156B2 - Stove burner and stove with the same - Google Patents

Stove burner and stove with the same Download PDF

Info

Publication number
JP6523156B2
JP6523156B2 JP2015241528A JP2015241528A JP6523156B2 JP 6523156 B2 JP6523156 B2 JP 6523156B2 JP 2015241528 A JP2015241528 A JP 2015241528A JP 2015241528 A JP2015241528 A JP 2015241528A JP 6523156 B2 JP6523156 B2 JP 6523156B2
Authority
JP
Japan
Prior art keywords
burner
annular
infrared
infrared ray
stove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015241528A
Other languages
Japanese (ja)
Other versions
JP2017106682A (en
Inventor
俊介 染澤
俊介 染澤
章 宮藤
章 宮藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015241528A priority Critical patent/JP6523156B2/en
Publication of JP2017106682A publication Critical patent/JP2017106682A/en
Application granted granted Critical
Publication of JP6523156B2 publication Critical patent/JP6523156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナより下方に備えられ、前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナ、及びそれを備えたコンロに関する。   The present invention has a burner body and a burner head removably mounted on the burner body from above, and radially outward from the annular peripheral portion in plan view of the burner head in an annular radial direction An annular burner having a radial injection hole for forming a flame is provided, and an infrared intensity detecting means for detecting an infrared intensity of infrared rays radiated from the object to be heated is provided below the annular burner, and the infrared intensity detecting means The present invention relates to a stove burner equipped with temperature deriving means for deriving the temperature of the object based on the detected infrared intensity, and a stove equipped with the same.

従来、調理用コンロとして、被加熱物としての鍋の底部の温度を検出する温度検出手段として、サーミスタや熱電対等の接触式温度センサを備え、当該接触式温度センサでの検出温度に基づいて、コンロ用バーナの火力調整を行う制御部が備えたものが知られている。当該調理用コンロにあっては、てんぷら火災等の防止や、調理の利便性を向上させるべく、制御部がコンロ用バーナの火力を適切に調整する。
しかしながら、温度検出手段としての接触式温度センサは、接触不良を起こす場合があり、鍋の底部の温度を適切に測定することができない虞があった。また、接触式温度センサは、鍋の底部に接触する必要があるから、天板から上方へ突出した構成を採用せざるを得ず、コンロの美観を損ねていた。
そこで、特許文献1に記載のように、赤外線の強度を検出する赤外線センサから成る非接触式温度検出装置を備えたコンロが提案されている。通常、非接触式温度検出装置にて被加熱物としての鍋の底部の温度を検出する場合、非接触式温度検出装置をコンロ用バーナの平面視で略中央部位に対し鉛直方向で下方に備える構成を採用することが多いが、当該構成にあっては、非接触式温度検出装置に対し、被加熱物からの吹きこぼれが、付着し易いという問題がある。
そこで、上記特許文献1においては、その図4の実施形態に示されるように、非接触式温度検出装置に吹きこぼれが付着することを防止するべく、平面視で、非接触式温度検出装置をコンロ用バーナの平面視での略中央部位からずらした位置に配設すると共に、被加熱物の底面からの赤外線を非接触式温度検出装置へ向けて通過する赤外線通過孔を有するコンロ用バーナを備える構成が提案されている。
Conventionally, as a cooking stove, a contact temperature sensor such as a thermistor or a thermocouple is provided as a temperature detection means for detecting the temperature of the bottom of the pan as the object to be heated, based on the temperature detected by the contact temperature sensor It is known that the control unit for adjusting the heating power of the stove burner is provided. In the cooking stove, the control unit appropriately adjusts the heating power of the stove burner to prevent a tempura fire or the like and to improve the convenience of cooking.
However, the contact-type temperature sensor as the temperature detection means may cause contact failure, and there is a possibility that the temperature at the bottom of the pan can not be appropriately measured. In addition, since the contact type temperature sensor needs to be in contact with the bottom of the pan, it has no choice but to adopt a configuration which protrudes upward from the top plate, which impairs the aesthetic appearance of the stove.
Therefore, as described in Patent Document 1, there has been proposed a stove provided with a non-contact temperature detection device including an infrared sensor that detects the intensity of infrared light. In general, when the temperature of the bottom of the pan as the object to be heated is detected by the noncontact temperature detection device, the noncontact temperature detection device is provided vertically below the substantially central portion in plan view of the stove burner Although the configuration is often employed, in the configuration, there is a problem that the non-contact temperature detection device is likely to adhere to the spilled material from the object to be heated.
Therefore, in Patent Document 1 described above, as shown in the embodiment of FIG. 4, the non-contact temperature detection device is a stove in a plan view in order to prevent adhesion of the blowout to the non-contact temperature detection device. The stove burner has an infrared ray passing hole disposed at a position shifted from a substantially central portion in plan view of the burner and passing infrared rays from the bottom surface of the object to the non-contact temperature detection device. A configuration has been proposed.

特許4422943号公報Patent No. 4422943

上記特許文献1の図4に示される実施形態にあっては、コンロ用バーナのどの部位に対し、どのように赤外線通過孔が設けられているか示されておらず、また、非接触式温度検出装置が、コンロ用バーナ及び赤外線通過孔に対し、どのように設けられているかについて、具体的な開示がなかった。
このため、上記特許文献1の図4に示される実施形態にあっては、赤外線通過孔及び非接触式温度検出装置の配置の仕方によっては、赤外線通過孔を通過した被加熱物からの吹きこぼれが、非接触式温度検出装置へ到達して付着し、適切な温度検出ができなくなる虞があった。
また、上記特許文献1の図4に示されるコンロ用バーナにあっては、コンロを構成する他の多くの構成部品との関係で、赤外線通過孔から非接触式温度検出装置へ向けて通過する赤外線の斜度(被加熱物Hとしての鍋の底面と赤外線とが成す角度)が比較的大きくなるように、非接触式温度検出装置が設置されていた。このような設置形態にあっては、赤外線通過孔からコンロ用バーナの内部に進入した吹きこぼれが、非接触式温度検出装置の側へ滴下する虞があり、非接触式温度検出装置の十分な汚れ防止効果が得られているとは言い難かった。このため、十分な汚れ防止効果を得るためには、非接触式温度検出装置をコンロ用バーナ本体から離間させる必要があり、コンロ用バーナを小型化し難くなるという問題があった。
In the embodiment shown in FIG. 4 of the above-mentioned Patent Document 1, it is not shown how to which the infrared ray passing hole is provided for which portion of the stove burner, and non-contact type temperature detection There was no specific disclosure as to how the device is provided for the stove burner and the infrared passage hole.
For this reason, in the embodiment shown in FIG. 4 of Patent Document 1, depending on the arrangement of the infrared ray passing hole and the non-contact type temperature detection device, the boilout from the object to be heated passing through the infrared ray passing hole is There is a possibility that the non-contact temperature detection device may reach and adhere to it, making it impossible to detect an appropriate temperature.
Moreover, in the stove burner shown in FIG. 4 of the above-mentioned Patent Document 1, it passes from the infrared ray passing hole toward the non-contacting temperature detection device in relation to many other components constituting the stove. The non-contact type temperature detection device was installed such that the inclination of the infrared rays (the angle formed by the bottom surface of the pan as the object to be heated H and the infrared rays) becomes relatively large. In such an installation mode, there is a risk that the boil-over spilled into the interior of the stove burner from the infrared passage hole may drip to the side of the non-contact temperature detection device, and sufficient contamination of the non-contact temperature detection device It was hard to say that the prevention effect was obtained. For this reason, in order to obtain a sufficient stain preventing effect, it is necessary to separate the non-contact temperature detection device from the stove burner main body, and there is a problem that it becomes difficult to miniaturize the stove burner.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、被加熱物の吹きこぼれが赤外線強度検出手段に付着することを抑制し、赤外線強度検出手段にて適切に赤外線強度を検出して、温度導出を良好に実行することができると共に、小型化を実現し得るコンロ用バーナ、及びそれを備えたコンロを提供する点にある。   The present invention has been made in view of the above-mentioned problems, and its object is to suppress adhesion of a boil-out of the object to be heated to the infrared intensity detecting means and to appropriately detect the infrared intensity by the infrared intensity detecting means As a result, it is possible to provide a stove burner and a stove equipped with the same, which can perform temperature derivation well and realize miniaturization.

上記目的を達成するためのコンロ用バーナは、
バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、
加熱対象の被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナの前記放射状噴孔より下方に備えられ、
前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナであって、その特徴構成は、
平面視において、前記バーナヘッドの前記環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、前記赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、前記被加熱物から放射された赤外線を前記赤外線強度検出手段へ向けて前記バーナヘッドを通過させる赤外線通過孔が備えられ、
前記環状バーナは、燃料ガス及び燃焼用空気の混合気を前記放射状噴孔へ導く平面視で環状の環状混合気流路を有し、当該環状混合気流路は、当該環状混合気流路の一部が凹欠された被凹欠流路部位を有し、
前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が、前記被凹欠流路部位が凹欠されることにより形成された空間に形成される形態で、前記赤外線強度検出手段及び前記赤外線通過孔が設けられている点にある。
The stove burner for achieving the above purpose is
A burner body and a burner head removably mounted on the burner body from above are formed to form flames radially outward in an annular radial direction from an annular peripheral portion in plan view of the burner head An annular burner with radial injection holes is provided,
Infrared intensity detection means for detecting the infrared intensity of infrared radiation emitted from the object to be heated is provided below the radial injection holes of the annular burner,
A stove burner comprising a temperature deriving means for deriving the temperature of the object to be heated based on the infrared intensity detected by the infrared intensity detecting means, characterized in that
The infrared intensity detection means is provided on one side region which is one side region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head in plan view, and the other side which is the other side region The region is provided with an infrared ray passing hole which makes infrared rays emitted from the object to be heated be directed to the infrared intensity detecting means and pass through the burner head.
The annular burner has an annular mixture passage in an annular view in plan view for introducing a mixture of fuel gas and combustion air to the radial injection holes, and the annular mixture passage is a part of the annular mixture passage. Having a recessed and recessed flow passage portion,
The infrared ray passage area passing through the infrared ray passage hole and radiated toward the infrared ray intensity detection means is formed in a space formed by the concave and concave flow passage portion being recessed. The infrared intensity detecting means and the infrared ray passing hole are provided.

上記特徴構成によれば、バーナとしては、バーナヘッドを有する環状バーナを採用しており、当該バーナヘッドには赤外線通過孔が設けられているのみであるから、環状バーナの内部への吹きこぼれの進入経路は、赤外線通過孔からのみとなり、吹きこぼれの環状バーナ内部への進入を十分に抑制できる。
更に、上記環状バーナにあっては、平面視において、バーナヘッドの環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、被加熱物から放射された赤外線を赤外線強度検出手段へ向けてバーナヘッドを通過させる赤外線通過孔が備えられる構成を採用しているから、赤外線通過孔と赤外線強度検出手段とを鉛直方向に沿わせるように設ける構成に比べて、赤外線通過孔から環状バーナの内部に流入した吹きこぼれが、赤外線強度検出手段へ導かれることを抑制できる。
更に、例えば、バーナヘッドとして、その天面部が環中心を頂部として上方へ膨出した膨出形状を有するものを採用することで、赤外線通過孔から吹きこぼれが環状バーナの内部に進入することがあったとしても、当該吹きこぼれは、バーナヘッドの上方への膨出形状とされた天面部の内面を伝って移動するから、吹きこぼれのほとんどが、赤外線通過孔が設けられる他方側領域を伝って下方へ移動することとなり、一方側領域に設けられる赤外線強度検出手段へ伝わることを良好に防止できる。これにより、吹きこぼれにより赤外線強度検出手段が汚れることを防止でき、当該赤外線強度検出手段による赤外線の強度の良好な検出を維持できる。
また、燃料ガス及び燃焼用空気の混合気を放射状噴孔へ導く平面視で環状の環状混合気流路が、その一部が凹欠された被凹欠流路部位を有し、赤外線通過孔を通過して赤外線強度検出手段へ向けて放射される赤外線の通過領域が、被凹欠流路部位が凹欠されることにより形成された空間(環状混合気流路が凹欠されることにより広がった流路の外部の空間)に形成される形態で、赤外線強度検出手段及び赤外線通過孔が設けられているから、赤外線通過孔から赤外線強度検出手段へ向けた赤外線と被加熱物の底面とが成す角度を十分に小さくした状態を実現できる。
これにより、赤外線強度検出手段を環状バーナから大きく離間させなくても、赤外線通過孔から進入した吹きこぼれが赤外線強度検出手段へ向けて伝わることを好適に防止できるから、比較的コンパクトなコンロ用バーナを実現できる。
According to the above-mentioned characteristic configuration, since the annular burner which has a burner head is adopted as a burner and only the infrared rays passage hole is provided in the burner head concerned, the approach of the blowout to the inside of the annular burner The path is only from the infrared ray passing hole, and the entry of the blowout into the annular burner can be sufficiently suppressed.
Furthermore, in the above annular burner, infrared intensity detection means is provided on one side region which is one side region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head in plan view. Since the infrared passage hole for passing the burner head by directing the infrared ray radiated from the object to the infrared intensity detection means is adopted in the other side region which is the side region, the infrared ray passing hole and the infrared ray Compared with the configuration in which the intensity detection means is provided along the vertical direction, it is possible to suppress the blowout that has flowed into the inside of the annular burner from the infrared ray passing hole from being led to the infrared intensity detection means.
Furthermore, for example, by adopting a burner head having a bulging shape in which the top surface thereof bulges upward with the ring center at the top, the blowout from the infrared ray passing hole may enter the inside of the annular burner. In any case, the blowout moves along the inner surface of the upper surface of the burner head in a bulging shape, so most of the blowout travels downward along the other side area where the infrared ray passing hole is provided. It is possible to prevent movement to the infrared intensity detecting means provided in the one side area. As a result, it is possible to prevent the infrared intensity detection means from being soiled by the blowout, and it is possible to maintain good detection of the infrared intensity by the infrared intensity detection means.
In addition, the annular mixture gas flow path annular in plan view for introducing a mixture of fuel gas and combustion air to the radial injection holes has a recessed flow passage portion in which a portion thereof is recessed and an infrared ray passing hole The space through which the infrared ray passing through and emitted toward the infrared intensity detection means is formed by the recess and recess of the recessed channel portion (the annular mixed gas channel is expanded by the recess. Since the infrared intensity detecting means and the infrared ray passing hole are provided in a form formed in the space outside the flow path, the infrared ray directed from the infrared ray passing hole to the infrared intensity detecting means and the bottom surface of the object to be heated A state in which the angle is sufficiently reduced can be realized.
As a result, even if the infrared intensity detection means is not separated from the annular burner greatly, it is possible to preferably prevent the blowout entering from the infrared passage hole from being transmitted to the infrared intensity detection means, so a relatively compact burner for a stove realizable.

コンロ用バーナの更なる特徴構成は、
前記被凹欠流路部位は、前記環状混合気流路の環周方向で、一部に形成されている点にある。
Further features of the stove burner are:
The recessed and missing flow passage portion is formed in a part in an annular circumferential direction of the annular mixture flow passage.

環状混合気流路の被凹欠流路部位の近傍は、流路の他の部位に比べて、流路断面積が小さくなるため、混合気の流れに乱れが生じる虞がある。
上記特徴構成によれば、当該被凹欠流路部位を、環状混合気流路の環周方向で、一部に形成するから、環状混合気流路を通流する混合気の流れの乱れを環状混合気流路の環周方向で、一部に限定でき、不要な混合気の流れの乱れを抑制できる。
Since the cross-sectional area of the flow passage is smaller in the vicinity of the recessed portion of the annular mixture flow passage than the other portion of the flow passage, the flow of the mixture may be disturbed.
According to the above-mentioned characteristic configuration, since the portion to be recessed and notched is formed in a part of the annular circumferential direction of the annular mixture flow passage, the turbulence of the flow of the mixture flowing through the annular mixture passage can be annularly mixed The circumferential direction of the air flow path can be limited to a part, and the disturbance of the unnecessary mixture flow can be suppressed.

コンロ用バーナの更なる特徴構成は、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記バーナヘッドの前記環中心を挟んで対向する状態で備えられ、
前記被凹欠流路部位は、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域のうち、前記赤外線強度検出手段と前記環中心との間の領域と前記環状混合気流路とが重なる部位に形成されている点にある。
Further features of the stove burner are:
The infrared intensity detection means and the infrared passage hole are provided to face each other across the ring center of the burner head in plan view,
In the planar view, the concave and not-falling flow passage portion is a region between the infrared intensity detection means and the ring center in a passing region of infrared rays emitted toward the infrared intensity detection means through the infrared ray passing hole. It is in the point formed in the part which the area | region between and the said annular mixture flow path overlap.

上記特徴構成によれば、赤外線強度検出手段と赤外線通過孔とが、平面視において、バーナヘッドの環中心を挟んで対向する状態で備えられているから、例えば、バーナヘッドとして、その天面部が環中心を頂部として上方へ膨出した膨出形状を有するものを採用することで、赤外線通過孔から吹きこぼれが環状バーナの内部に進入することがあったとしても、当該吹きこぼれは、バーナヘッドの上方への膨出形状とされた天面部の内面を伝って移動するから、吹きこぼれのほとんどが、赤外線通過孔が設けられる他方側領域を伝って下方へ移動することとなり、一方側領域に設けられる赤外線強度検出手段へ伝わることを良好に防止できる。これにより、吹きこぼれにより赤外線強度検出手段が汚れることを防止でき、当該赤外線強度検出手段による赤外線の強度の良好な検出を維持できる。
更に、上記特徴構成によれば、平面視において、赤外線強度検出手段と赤外線通過孔とを、バーナヘッドの環中心を挟んで対向する状態で備えると共に、被凹欠流路部位を、赤外線通過孔を通過して赤外線強度検出手段へ向けて放射される赤外線の通過領域のうち、赤外線強度検出手段と環中心との間の領域と環状混合気流路とが重なる部位に形成するから、平面視で赤外線強度検出手段と赤外線通過孔とを同一距離に設ける条件で、且つ被加熱物から放射され赤外線通過孔を通過して赤外線強度検出手段へ到達する赤外線と被加熱物の底面との成す角度を同一角度に設定する条件において、赤外線強度検出手段と赤外線通過孔とが、バーナヘッドの環状周部の環中心を挟まずに設けられる場合に比べ、環状混合気流路の被凹欠流路部位の凹欠量を小さくでき、当該被凹欠流路部位での混合気の流れの乱れを抑制できる。
According to the above-mentioned characteristic configuration, since the infrared intensity detection means and the infrared passage hole are provided in a state of facing each other across the ring center of the burner head in plan view, for example, the top surface portion is a burner head. By adopting a bulging shape that bulges upward with the ring center at the top, even if blewout may enter the inside of the annular burner from the infrared ray passing hole, the boilout will occur above the burner head. Since it moves along the inner surface of the upper surface portion in a bulging shape, most of the blowout moves downward along the other side area where the infrared ray passing hole is provided, and the infrared ray provided in one side area Transmission to the intensity detection means can be well prevented. As a result, it is possible to prevent the infrared intensity detection means from being soiled by the blowout, and it is possible to maintain good detection of the infrared intensity by the infrared intensity detection means.
Furthermore, according to the above-mentioned characteristic configuration, the infrared intensity detecting means and the infrared ray passing hole are opposed to each other across the ring center of the burner head in plan view, and the recessed passage portion is the infrared ray passing hole In the passing area of the infrared rays emitted toward the infrared intensity detecting means through the light flux, the area between the infrared intensity detecting means and the ring center and the annular mixture Under the condition that the infrared intensity detecting means and the infrared ray passing hole are provided at the same distance, and the angle between the infrared ray radiated from the object to be heated and passing through the infrared ray passing hole to reach the infrared intensity detecting means and the bottom surface of the object to be heated Compared to the case where the infrared intensity detection means and the infrared passage hole are provided without pinching the ring center of the annular peripheral portion of the burner head under the conditions set at the same angle, Concave Amounts can be reduced, it is possible to suppress the turbulence of the air-fuel mixture flow in the object to be concave channel portion.

コンロ用バーナの更なる特徴構成は、
前記環状バーナが、燃料ガスと燃焼用空気とを混合する混合管を備えたブンゼンバーナであり、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が前記混合管の管軸心に重なる状態で、且つ前記赤外線強度検出手段と前記混合管とが前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている点にある。
Further features of the stove burner are:
The annular burner is a Bunsen burner provided with a mixing tube for mixing fuel gas and combustion air,
The infrared ray intensity detection means and the infrared ray passage hole pass through the infrared ray passage hole and the infrared ray passage region emitted toward the infrared ray intensity detection means overlaps the tube axis of the mixing tube in plan view. In the state, the infrared intensity detecting means and the mixing tube are provided in a state of facing each other across the ring center of the burner head.

通常、ブンゼンバーナにあっては、混合管が設けられている領域にあっては、他の構成部品を設置するスペースを十分に確保できないため、当該領域に他の構成部品を設置する設計の自由度が下がるという問題がある。
上記特徴構成によれば、赤外線強度検出手段と赤外線通過孔とを、平面視において、赤外線通過孔を通過して赤外線強度検出手段へ向けて放射される赤外線の通過領域が混合管の管軸心に重なる状態で、且つ赤外線強度検出手段と混合管とがバーナヘッドの環中心を挟んで対向する状態で備えるから、赤外線強度検出手段を混合管から十分に離間した位置に設置することができ、例えば、当該赤外線強度検出手段の受光部位の設置方向等に関する設計の自由度を上げることができる。
また、上記特徴構成によれば、赤外線通過孔を通過した赤外線の通過領域が混合管に被ることを好適に防止でき、赤外線強度検出手段へ到達する赤外線量を十分に確保できる。
上記特徴構成によれば、赤外線強度検出手段と赤外線通過孔とを、平面視において、赤外線通過孔を通過して赤外線強度検出手段へ向けて放射される赤外線の通過領域が混合管の管軸心に重なる状態で、且つ赤外線強度検出手段と混合管とがバーナヘッドの環中心を挟んで対向する状態で備えるから、赤外線強度検出手段を混合管から十分に離間した位置に設置することができ、例えば、当該赤外線強度検出手段の受光部位の設置方向等に関する設計の自由度を上げることができる。
また、上記特徴構成によれば、赤外線通過孔を通過した赤外線の通過領域が混合管に被り難くできるため、赤外線強度検出手段へ到達する赤外線量を十分に確保することができる。
Usually, in the Bunsen burner, in the area where the mixing tube is provided, sufficient space for installing other components can not be secured, so the design freedom for installing other components in the area is concerned. There is a problem that the degree falls.
According to the above feature configuration, the infrared ray passing region emitted through the infrared ray passing hole toward the infrared ray intensity detecting means in the plan view is an axial center of the mixing tube. Since the infrared intensity detecting means and the mixing tube are opposed to each other across the ring center of the burner head, the infrared intensity detecting means can be installed at a position sufficiently separated from the mixing tube, For example, it is possible to increase the degree of freedom in design regarding the installation direction of the light receiving portion of the infrared intensity detection means.
Further, according to the above-mentioned characteristic configuration, it is possible to preferably prevent the passing area of the infrared rays which has passed through the infrared ray passing hole from covering the mixing tube, and it is possible to sufficiently secure the amount of infrared rays reaching the infrared intensity detection means.
According to the above feature configuration, the infrared ray passing region emitted through the infrared ray passing hole toward the infrared ray intensity detecting means in the plan view is an axial center of the mixing tube. Since the infrared intensity detecting means and the mixing tube are opposed to each other across the ring center of the burner head, the infrared intensity detecting means can be installed at a position sufficiently separated from the mixing tube, For example, it is possible to increase the degree of freedom in design regarding the installation direction of the light receiving portion of the infrared intensity detection means.
Further, according to the above-mentioned characteristic configuration, since the passing area of the infrared rays which has passed through the infrared ray passing hole can be hard to cover the mixing tube, the amount of infrared rays reaching the infrared intensity detecting means can be sufficiently secured.

コンロ用バーナの更なる特徴構成は、
前記赤外線通過孔は、平面視において、前記バーナヘッドの前記環状周部と前記環中心との間で前記環状周部に近い領域に設けられている点にある。
Further features of the stove burner are:
The infrared ray passing hole is provided in a region near the annular peripheral portion between the annular peripheral portion of the burner head and the ring center in a plan view.

上記特徴構成によれば、平面視において、赤外線通過孔がバーナヘッドの環状周部と環中心との間で環状周部に近い領域に設けられている構成で、バーナヘッドの環状周部と環中心との間で環状周部に近い領域に設けているから、赤外線強度検出手段と赤外線通過孔とをより一層離間させることができ、赤外線通過孔からバーナ内部へ進入した吹きこぼれが赤外線強度検出手段の側へ伝わることをより一層良好に防止できる。   According to the above characteristic configuration, the infrared ray passing hole is provided in a region near the annular circumferential portion between the annular circumferential portion and the annular center of the burner head in plan view, and the annular circumferential portion of the burner head and the ring The infrared intensity detecting means and the infrared ray passing hole can be further separated from each other, since the infrared ray intensity detecting means and the infrared ray passing hole can be separated further from each other, and the blowout which has entered into the burner from the infrared ray passing hole is the infrared intensity detecting means Transmission to the side of the vehicle can be prevented better.

コンロ用バーナの更なる特徴構成は、
前記バーナヘッドは、前記環状周部の前記環中心が上方へ膨出する膨出形状の膨出頂部を有しており、
前記赤外線通過孔は、前記バーナヘッドの前記膨出頂部から偏心した位置に設けられている点にある。
Further features of the stove burner are:
The burner head has a bulging crest portion in a bulging shape in which the ring center of the annular peripheral portion bulges upward.
The infrared ray passing hole is provided at a position eccentric to the bulging top of the burner head.

上記特徴構成によれば、バーナヘッドとして、環状周部の環中心が上方へ膨出する膨出形状の膨出頂部を有するものを採用すると共に、赤外線通過孔を、バーナヘッドの膨出頂部から偏心した位置に設けるから、例え、赤外線通過孔から吹きこぼれが流入したとしても、当該吹きこぼれは、膨出頂部と環状周部とを結ぶ直線のうち、赤外線通過孔を通る直線に沿って伝わるから、吹きこぼれを他方側領域内に留めることができ、更には、一方側領域に設けられる赤外線強度検出手段から離間する方向へ導くことができる。これにより、赤外線強度検出手段への吹きこぼれの付着をより一層良好に防止できる。   According to the above-mentioned characteristic configuration, as the burner head, one having a bulging crest with a bulging shape in which the ring center of the annular peripheral part bulges upward is adopted, and the infrared ray passing hole is formed from the bulging crest of the burner head Since the blowout is provided at an eccentric position, for example, even if the blowout flows from the infrared passage hole, the blowout is transmitted along the straight line passing through the infrared passage hole among the straight lines connecting the bulging crest and the annular peripheral portion, The blowout can be retained in the other side area, and can be further directed away from the infrared intensity detection means provided in the one side area. This makes it possible to prevent the adhesion of the blowout to the infrared intensity detection means even better.

コンロ用バーナの更なる特徴構成は、
前記バーナヘッドは、天面部を有すると共に、当該天面部から下方へ延びる円筒形状の円筒脚部を有するキャップ部を含み、
前記バーナヘッドが前記バーナ本体に載置された状態で、前記キャップ部の前記円筒脚部が、前記環状混合気流路と前記環状バーナの中央に形成される中央空洞とを隔離する隔離壁として配置され、
前記赤外線通過孔は、前記中央空洞と前記環状バーナの外部とを連通する状態で前記キャップ部の前記天面部に設けられている点にある。
Further features of the stove burner are:
The burner head includes a cap portion having a top surface portion and a cylindrical cylindrical leg portion extending downward from the top surface portion,
With the burner head mounted on the burner body, the cylindrical leg of the cap is arranged as an isolation wall separating the annular mixture channel from the central cavity formed in the center of the annular burner. And
The infrared ray passing hole is provided in the top surface portion of the cap portion in a state where the central cavity and the outside of the annular burner are in communication with each other.

上記特徴構成によれば、赤外線通過孔から流入することがある吹きこぼれは、中央空洞を形成する隔離壁を伝わる状態で下方へ流下するように構成できる。   According to the above-mentioned feature configuration, the blowout that may flow from the infrared ray passing hole can be configured to flow downward in the state of traveling along the separation wall forming the central cavity.

これまで説明してきたコンロ用バーナを備えたコンロは、これまで説明してきた作用効果を好適に奏するコンロとして、良好に機能する。   The stove equipped with the stove burner described so far functions well as a stove that preferably achieves the effects described so far.

コンロ用バーナの全体斜視図Whole perspective view of stove burner コンロ用バーナの分解斜視図An exploded perspective view of the stove burner コンロ用バーナの分解断面図Decomposition sectional view of stove burner コンロ用バーナの組付断面図Assembly sectional view of stove burner コンロ用バーナの平面図Top view of stove burner 斜め前方下側からの斜視でのコンロ用バーナの図Illustration of the burner for the stove in oblique view from the lower front コンロに備えられたコンロ用バーナを示す図Figure showing a stove burner on a stove コンロ用バーナを備えたコンロの斜視図Perspective view of a stove with a stove burner

本発明の実施形態に係るコンロ用バーナ、及び当該コンロ用バーナを備えたコンロ200について、図面に基づいて説明する。尚、当該実施形態においては、矢印Zの矢示方向を上方側とし、矢印Zの矢示方向と逆方向を下方側とする。
図7、8に示すコンロ200は、平面状の上面を有すると共に加熱口を有する天板50と、加熱口の上方に離間させた状態で被加熱物Hを載置可能な五徳51と、燃料ガスGと一次燃焼用空気Aとの混合気Mを燃焼させ加熱口から上方へ混合気Mを噴出して被加熱物Hを加熱するコンロ用バーナとを備えている。
尚、被加熱物Hとしては、ガラス、鉄、アルマイト、及びステンレス等の一般的な材質の鍋等が好適に用いられる。
A stove burner and a stove 200 equipped with the stove burner according to an embodiment of the present invention will be described based on the drawings. In the embodiment, the arrow direction of the arrow Z is the upper side, and the direction opposite to the arrow direction of the arrow Z is the lower side.
The stove 200 shown in FIGS. 7 and 8 has a top plate 50 having a planar upper surface and a heating port, and a five-to-one 51 capable of mounting the object H in a state of being separated above the heating port, and fuel A stove burner is provided which burns the mixture M of the gas G and the primary combustion air A and jets the mixture M upward from the heating port to heat the object H to be heated.
In addition, as the to-be-heated material H, the pan etc. of general materials, such as glass, iron, alumite, and stainless steel, are used suitably.

コンロ用バーナは、図1〜7に示すように、ブンゼン燃焼式の外炎式バーナであり、バーナ本体70と、当該バーナ本体70に上方から着脱自在に載置されたバーナヘッド80とを有し、当該バーナヘッド80の平面視での環状周部80aから環径方向で外側へ向けて放射状に主火炎K1を形成する主火炎用噴孔81(放射状噴孔の一例)と、主火炎K1を保炎する袖火K2を形成する袖火用噴孔82(放射状噴孔の一例)とを有する環状バーナ100を備えて構成されている。
当該環状バーナ100のバーナ本体70は、図2、3、4に示すように、内部に燃料ガスGと一次燃焼用空気Aとを混合する混合管65を形成するように構成されている。当該混合管65には、燃料ガスGを噴出させるガスノズル64が設けられており、ガスノズル64から噴出する燃料ガスGと共に一次燃焼用空気Aが流入して、混合管65の内部にて混合気Mが形成される。
The stove burner is, as shown in FIGS. 1 to 7, a Bunsen combustion type external flame type burner, which includes a burner main body 70 and a burner head 80 mounted on the burner main body 70 in a detachable manner from above. And a main flame injection hole 81 (an example of a radial injection hole) forming the main flame K1 radially outward from the annular peripheral portion 80a in plan view of the burner head 80, and the main flame K1. And an annular burner 100 having a sleeve flame injection hole 82 (an example of a radial spray hole) for forming a sleeve flame K2 for holding flames.
The burner main body 70 of the annular burner 100 is configured to form a mixing pipe 65 for mixing the fuel gas G and the primary combustion air A inside as shown in FIGS. The mixing pipe 65 is provided with a gas nozzle 64 for spouting the fuel gas G, and the primary combustion air A flows in with the fuel gas G spouted from the gas nozzle 64, and the mixture M in the mixing pipe 65. Is formed.

コンロ用バーナは、図7に示すように、被加熱物Hの底面から放射され、環状バーナ100の内部を通過した赤外線の強度を検出する赤外線強度検出手段60を備えると共に、当該赤外線強度検出手段60にて検出された赤外線の強度に基づいて、被加熱物Hの温度を導出する温度導出手段61とを備えている。制御装置62は、温度導出手段61にて導出された温度に基づいて、ガスノズル64に接続されるガス流路に設けられる燃料ガスGの流量調整弁63の開度を調整し、被加熱物Hの自動温度制御や、過昇温時の緊急停止制御等を実行する。因みに、赤外線強度検出手段60は、図7に示すように、天板50、及び環状バーナ100の鉛直方向で下方に設けられる。尚、環状バーナ100の下方とは、平面視で、環状バーナ100に重畳しない領域も含むものである。
尚、赤外線強度検出手段60は、被加熱物Hの底面から放射される赤外線の、互いに異なる2つの波長域における夫々の赤外線強度を各別に検出するものであり、さらに、温度導出手段61は、赤外線強度検出手段60により検出された2つの波長域における赤外線強度の比に基づいて、被加熱物Hの温度を導出するものである。このように構成することで、被加熱物Hの輻射率に依存することなく、正確に被加熱物Hの底面の温度を検出することができる。尚、赤外線強度検出手段60の具体的構成については、公知であるので、ここではその詳細な説明は割愛する。
The stove burner includes infrared intensity detecting means 60 for detecting the intensity of infrared rays emitted from the bottom surface of the object H to be heated and passing through the inside of the annular burner 100 as shown in FIG. 7, and the infrared intensity detecting means And temperature deriving means 61 for deriving the temperature of the object H based on the intensity of the infrared ray detected at 60. The controller 62 adjusts the opening degree of the flow rate adjusting valve 63 of the fuel gas G provided in the gas flow path connected to the gas nozzle 64 based on the temperature derived by the temperature deriving means 61, and the object H to be heated Perform automatic temperature control, and emergency stop control at excessive temperature rise. Incidentally, as shown in FIG. 7, the infrared intensity detection means 60 is provided below the top plate 50 and the annular burner 100 in the vertical direction. The lower side of the annular burner 100 also includes a region not overlapping the annular burner 100 in a plan view.
The infrared intensity detecting means 60 separately detects the infrared intensities of the infrared rays emitted from the bottom surface of the object H in two different wavelength ranges, and the temperature deriving means 61 further comprises The temperature of the object H to be heated is derived based on the ratio of the infrared light intensities in the two wavelength ranges detected by the infrared light intensity detection means 60. With this configuration, the temperature of the bottom surface of the article H can be accurately detected without depending on the emissivity of the article H. The specific configuration of the infrared intensity detection means 60 is known, so the detailed description thereof is omitted here.

このように、環状バーナ100は、その内部を、被加熱物Hの底面から放射された赤外線を通過するように構成しているのであるが、その具体的構成につき、以下に説明する。
環状バーナ100は、図2、3、4に示すように、バーナ本体70を構成するバーナ本体基部40と、バーナ本体70を構成するバーナ本体上部30と、バーナヘッド80を構成する環状切欠部材20と、バーナヘッド80を構成するキャップ部10とを、記載の順に下方から積載する形態で、設けられている。
バーナ本体基部40は、混合管65の管軸心P1(図2で水平方向Xに沿う軸)に沿う状態で、混合管65の下方側を成す第1樋形状部位44を備えると共に、混合管65の管軸心P1に直交する直線P2(図2で鉛直方向Zに沿う直線)に沿う軸心を有すると共に内部に中央空洞S1を有する円筒部位41を備えている。
当該円筒部位41の筒側面には、平面視で混合管65の管軸心P1に沿う方向で第1樋形状部位44とは逆方向に向かって延びると共に側面視(図3、4に示す方向視)で斜め下方に向けて延びる庇部位42が設けられている。更に、円筒部位41の筒側面には、当該庇部位42の下方空間と円筒部位41の中央空洞S1とを連通する開孔42aが設けられている。
因みに、円筒部位41の中央空洞S1側の内面には、中央空洞S1側へ突出する突起部43aが設けられており、詳細については後述するが、当該突起部43aにより、バーナヘッド80がバーナ本体70に対して環周方向において位置決めされる。
尚、バーナ本体基部40の円筒部位41の近傍で中央空洞S1の外側には、図2に示すように、バーナ本体基部40を上下方向に貫通する開口部45が設けられており、当該開口部45を挿通する形態で点火プラグ(図示せず)が配設されている。
Thus, although the annular burner 100 is comprised so that the infrared rays radiated | emitted from the bottom face of the to-be-heated material H may be passed through the inside, the concrete structure is demonstrated below.
As shown in FIGS. 2, 3 and 4, the annular burner 100 comprises a burner main body base 40 constituting the burner main body 70, a burner main body upper part 30 constituting the burner main body 70, and an annular notch member 20 constituting the burner head 80. And the cap portion 10 constituting the burner head 80 are provided in the order described from the lower side.
The burner main body base 40 has a first wedge-shaped portion 44 forming the lower side of the mixing tube 65 in a state along the tube axis P1 (an axis along the horizontal direction X in FIG. 2) of the mixing tube 65 A cylindrical portion 41 having an axial center along a straight line P2 (a straight line along the vertical direction Z in FIG. 2) orthogonal to the tube axial center P1 of 65 is provided, and has a central cavity S1 inside.
The side surface of the cylindrical portion 41 extends in the direction opposite to the first wedge-shaped portion 44 in a direction along the tube axis P1 of the mixing tube 65 in a plan view and the side view (the direction shown in FIGS. An eyelid portion 42 extending obliquely downward in FIG. Furthermore, an opening 42 a is provided on the side surface of the cylindrical portion 41 so as to communicate the space below the weir portion 42 with the central cavity S 1 of the cylindrical portion 41.
Incidentally, a projection 43a protruding toward the central cavity S1 is provided on the inner surface of the cylindrical portion 41 on the central cavity S1 side, and the details thereof will be described later, but the burner head 80 is a burner main body by the projection 43a. It is positioned in the circumferential direction with respect to 70.
In the vicinity of the cylindrical portion 41 of the burner body base 40, as shown in FIG. 2, an opening 45 penetrating the burner body base 40 in the vertical direction is provided outside the central cavity S1. A spark plug (not shown) is disposed in such a manner as to pass through 45.

バーナ本体上部30は、混合管65の管軸心P1に沿う状態で、混合管65の上方側を成す第2樋形状部位34を備えると共に、バーナ本体70へのバーナヘッド80の載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41の筒外周を所定の間隔を隔てて外囲すると共にバーナ本体基部40の庇部位42の上面に当接する当接部35を有する環状外囲部位31を備えている。
更に、バーナ本体上部30には、バーナ本体上部30とバーナ本体基部40との締結状態(図4に示す状態)で、環状外囲部位31の上部の環内側を削り取って形成された空間である受入部位32が設けられている。
説明を追加すると、当該受入部位32は、図2に示すように、環状外囲部位31の上方内側を環状に切り欠いて形成されており、環状の底部を有する環状受入部位32bと、当該環状受入部位32bの上方に連続する形状で且つ上方へ向けて擂鉢形状に広がる擂鉢状受入部位32cとから成る。尚、環状受入部位32bには、環周方向の一部に環径方向の外方へ切り欠く切欠部位32aが形成されている。
そして、当該受入部位32にバーナヘッド80が受け入れられて、バーナ本体70に対してバーナヘッド80が載置されることになる。
また、バーナ本体上部30に形成される開口部33には、熱電対(図示せず)が挿通されて設けられており、制御装置62は、当該熱電対の検出結果に基づいて、環状バーナ100での失火の有無を判定する。
The burner main body upper portion 30 is provided with a second wedge-shaped portion 34 forming the upper side of the mixing tube 65 in a state along the tube axis P1 of the mixing tube 65, and the mounting state of the burner head 80 on the burner main body In the state shown in FIG. 4, the outer periphery of the cylindrical portion 41 of the cylindrical portion 41 of the burner main body base 40 is surrounded at a predetermined interval, and has an annular contact portion 35 contacting the upper surface of the wedge portion 42 of the burner main body base 40 An outer portion 31 is provided.
Furthermore, it is a space formed by scraping off the inner ring of the upper portion of the annular outer portion 31 in the state of fastening the upper portion 30 of the burner body and the base portion 40 of the burner body (state shown in FIG. 4) A receiving site 32 is provided.
To add the explanation, as shown in FIG. 2, the receiving portion 32 is formed by notching the upper inner side of the annular outer portion 31 and has an annular receiving portion 32 b having an annular bottom, and the annular receiving portion 32 b It consists of a cone-shaped receiving part 32c which has a continuous shape above the receiving part 32b and extends upward in a mortar shape. The annular receiving portion 32b is formed with a cutout portion 32a which is cut out outward in the ring radial direction at a part of the ring circumferential direction.
Then, the burner head 80 is received at the receiving portion 32, and the burner head 80 is mounted on the burner body 70.
Further, a thermocouple (not shown) is provided in the opening 33 formed in the upper portion 30 of the burner main body so as to be inserted, and the control device 62 controls the annular burner 100 based on the detection result of the thermocouple. Determine if there is a misfire at

バーナヘッド80は、図1〜5に示すように、平面視で円盤形状のキャップ部10と、平面視で環形状を有すると共にその上部において環中央から外側へ放射状に延びる直線に沿う複数の第1切欠溝21を有する環状切欠部材20とから構成されている。
説明を追加すると、キャップ部10は、平面視で円盤中心O(バーナヘッド80の環状周部80aの環中心に相当)が上方へ膨出する膨出形状の膨出頂部を有すると共に当該膨出頂部から偏心した位置に赤外線通過孔12を有する天面部14と、当該天面部14から下方へ延びる円筒形状の円筒脚部13を備えている。説明を追加すると、天面部14は、側面視で、その上面が円弧形状に構成されている。
キャップ部10は、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、円筒脚部13の筒外面がバーナ本体基部40の円筒部位41の筒内面に摺動案内される形態で、円筒部位41の軸心P2と円盤中心Oが一致するように位置決めされる。
更に、キャップ部10の円筒脚部13は、バーナ本体70側の端部から天面部14側へ向けて、円筒壁の一部を切り欠く切欠部位13bを備えている。当該切欠部位13bは、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、円筒部位41の内面に設けられる突起部43aと係合する形態で、キャップ部10をバーナ本体基部40に対して軸心P2回りで位置決めする。
また、キャップ部10の円筒脚部13は、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41に形成される開孔42aに対向する部位に、開孔13aを有している。
As shown in FIGS. 1 to 5, the burner head 80 has a disk-shaped cap portion 10 in plan view, and a plurality of first along a straight line extending radially outward from the center of the ring at the top thereof. It comprises an annular notch member 20 having a notch groove 21.
To add the description, the cap portion 10 has a bulging crest portion having a bulging shape in which the disk center O (corresponding to the ring center of the annular peripheral portion 80a of the burner head 80) bulges upward in plan view A top surface portion 14 having an infrared ray passing hole 12 at a position eccentric from the top portion, and a cylindrical cylindrical leg portion 13 extending downward from the top surface portion 14 are provided. To add the description, the top surface portion 14 is configured in an arc shape on the top surface in a side view.
In the mounting state where the burner head 80 is mounted on the burner main body 70 (the state shown in FIG. 4), the cap outer surface of the cylindrical leg portion 13 slides on the cylindrical inner surface of the cylindrical portion 41 of the burner main body base 40. It is positioned so that the axial center P2 of the cylindrical portion 41 and the disk center O coincide with each other.
Furthermore, the cylindrical leg portion 13 of the cap portion 10 is provided with a cutout portion 13b that cuts out a part of the cylindrical wall from the end on the burner main body 70 side toward the top surface portion 14 side. The notch portion 13 b engages with the projection 43 a provided on the inner surface of the cylindrical portion 41 in the mounted state (state shown in FIG. 4) in which the burner head 80 is mounted on the burner main body 70. 10 is positioned with respect to the burner body base 40 around the axis P2.
Further, the cylindrical leg portion 13 of the cap portion 10 is an aperture formed in the cylindrical portion 41 of the burner main body base 40 in the mounted state (state shown in FIG. 4) in which the burner head 80 is mounted on the burner main body 70. An opening 13a is provided at a position opposite to 42a.

環状切欠部材20は、上述したように、平面視で環形状を有すると共にその上部において環中央から外側へ放射状に延びる直線に沿う複数の第1切欠溝21を有しており、当該複数の第1切欠溝21は、環周方向で略等間隔に形成されている。ただし、環状バーナ100がコンロ200に設置されている設置状態(図7、8に示す状態)において、五徳51と対向する部位においては、隣接する第1切欠溝21の間隔を広くとるように構成している。
環状切欠部材20の下部には、バーナ本体基部40の受入部位32の環状受入部位32bの環状の底部に当接支持される底面を有すると共に、当該底面において平面視で環中央から外側へ放射状に延びる直線に沿う複数の第2切欠溝22を有している。当該複数の第2切欠溝22は、環周方向で略等間隔に形成されている。当該実施形態においては、第1切欠溝21に対し、環周方向で略同一位置に設けられている。
尚、環状切欠部材20は、下方側面に側方へ突出する突起24を有しており、当該突起24が、バーナ本体上部30の環状受入部位32bに形成される切欠部位32aに嵌入する形態で、バーナ本体上部30に対する環周方向での位置決めされる。
更に、当該環状切欠部材20は、受入部位32への受入状態(図4に示す状態)において、その下方側面と、受入部位32の環状受入部位32b及び擂鉢状受入部位32cとの間に、間隙を有する状態となる。
当該構成により、図4に示すように、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、キャップ部10の下方側面と環状切欠部材20の上方側面の第1切欠溝21とで外囲される領域にて主火炎用流路R2が形成されると共に、バーナ本体70の上方側面(受入部位32の環状受入部位32b及び擂鉢状受入部位32cにて形成される面)と環状切欠部材20の下方側面(底面以外で第2切欠溝22にて形成される面、及び受入部位32の環状受入部位32bと擂鉢状受入部位32cとに対向する面)とに外囲される隙間にて袖火用流路R3が形成される。
袖火用流路R3に関し、説明を追加すると、図4に示す断面図において、まずもって、環状受入部位32bは、水平方向に沿う底面部位32bbと、当該底面部位32bbから略垂直に立ち上がる側面部位32bsを有すると共に、擂鉢状受入部位32cは、傾斜面を構成する傾斜面部位32csを有する。そして、袖火用流路R3は、当該其処面部位32bbと側面部位32bsと傾斜面部位32csと、それらに対向する環状切欠部材20の下方側面との間に形成される。
As described above, the annular notch member 20 has a plurality of first notch grooves 21 along the straight line extending in the radial direction from the center of the ring to the outside in the upper portion thereof and has an annular shape in plan view. The first notch grooves 21 are formed at substantially equal intervals in the ring circumferential direction. However, in the installation state where the annular burner 100 is installed on the stove 200 (the state shown in FIGS. 7 and 8), in the part facing the Vitoku 51, the interval between the adjacent first notch grooves 21 is wide. doing.
The bottom of the annular notch member 20 has a bottom surface supported in contact with the annular bottom of the annular receiving portion 32b of the receiving portion 32 of the burner body base 40, and radially outward from the center of the ring in plan view A plurality of second notch grooves 22 along the extending straight line are provided. The plurality of second notch grooves 22 are formed at substantially equal intervals in the ring circumferential direction. In the embodiment, the first notch groove 21 is provided at substantially the same position in the ring circumferential direction.
The annular notch member 20 has a protrusion 24 projecting laterally on the lower side, and the protrusion 24 is fitted into a notch portion 32 a formed in the annular receiving portion 32 b of the burner main body upper portion 30. , In the circumferential direction relative to the upper portion 30 of the burner body.
Furthermore, the annular notch member 20 has a gap between the lower side surface thereof and the annular receiving portion 32b and the mortar-shaped receiving portion 32c of the receiving portion 32 in the receiving state (state shown in FIG. 4) to the receiving portion 32. It becomes the state which has
With this configuration, as shown in FIG. 4, in the mounted state where the burner head 80 is mounted on the burner main body 70 (the state shown in FIG. 4), the lower side surface of the cap portion 10 and the upper side surface of the annular notch member 20 The main flame flow passage R2 is formed in the area surrounded by the first notch groove 21 and the upper side surface of the burner body 70 (formed by the annular receiving portion 32b of the receiving portion 32 and the mortar-shaped receiving portion 32c And a lower side surface of the annular notch member 20 (a surface formed by the second notch groove 22 other than the bottom surface, and a surface opposing the annular receiving portion 32b and the bowl-shaped receiving portion 32c of the receiving portion 32) The sleeve flame channel R3 is formed in the gap surrounded by the above.
In the cross-sectional view shown in FIG. 4 with regard to the channel R3 for sleeve flame, in the cross-sectional view shown in FIG. 4, first, the annular receiving portion 32b is a bottom portion 32bb along the horizontal direction and a side portion rising substantially vertically from the bottom portion 32bb While having 32bs, the mortar-like receiving part 32c has inclined surface part 32cs which comprises an inclined surface. And the channel R3 for sleeve flames is formed between the said treatment side site | part 32bb, side part 32bs, inclined surface site | part 32cs, and the lower side of the cyclic | annular notch member 20 which opposes them.

以上の構成を採用することにより、図4に示すように、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体基部40の円筒部位41の外周面と、バーナ本体基部40の庇部位42の上方側面と、バーナ本体上部30の環状外囲部位31と、環状切欠部材20とで外囲される空間に形成される平面視で環状の環状混合気流路R1が形成される。尚、図4の断面図では示されていないが、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、バーナ本体上部30の環状外囲部位31は、バーナ本体基部40の外囲壁46(図2に図示)と気密に連結されており、当該外囲壁46も、環状混合気流路R1を形成する部位となる。また、当該構成において、円筒脚部13は、バーナヘッド80がバーナ本体70に載置された載置状態(図4に示す状態)で、環状混合気流路R1とバーナ本体基部40の円筒部位41の内側に形成される中央空洞S1とを隔離する隔離壁として働く。
更に、以上の構成を採用することにより、図4に示すように、当該環状混合気流路R1と主火炎用噴孔81とを連通接続する主火炎用流路R2と、環状混合気流路R1と袖火用噴孔82とを連通接続する袖火用流路R3とが、独立して環状混合気流路R1に接続して設けられる。
また、袖火用流路R3は、環状切欠部材20とバーナ本体上部30との受入部位32との間に形成される間隙にて構成しているから、その流路長を十分に長くできる。結果、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも長く構成されている。
更に、環状混合気流路R1の管周方向の特定位置での、袖火用流路R3の環状混合気流路R1の側の端部R3aと、主火炎用流路R2の環状混合気流路R1の側の端部R2aとの位置関係に関し、袖火用流路R3の環状混合気流路R1の側の端部R3aは、主火炎用流路R2の環状混合気流路R1の側の端部R2aよりも、環状混合気流路R1の上流側に設けられている。
主火炎用流路R2に関し、説明を追加すると、図4に示す断面図において、まずもって、環状切欠部材20は、その環内周側において上下方向(矢印Zに沿う方向)に延びる環内周垂直壁部20aと、その環内周側において環内周垂直壁部20aに連続して設けられると共に環径方向で外側で斜め上方に延びる環内周傾斜壁20bが備えられている。そして、主火炎用流路R2は、当該環内周壁部20a及び環内周傾斜壁20bと、バーナヘッド80の下方側面と、バーナ本体70の円筒部位41の外面とに外囲される隙間にて主火炎用流路R2が形成される。
また、当該実施形態に係る環状バーナ100にあっては、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失よりも小さくなるように、袖火用流路R3と主火炎用流路R2とが構成されている。
以上の構成により、火力を大きくして一次空気量が多くなった場合でも、袖火用噴孔82にて形成される袖火K2が、主火炎用噴孔81にて形成される主火炎K1の燃焼状態の変化の影響を受けることをより一層抑制できる。
尚、当該実施形態にあっては、環状バーナ100の環状周部80aに形成される主火炎用噴孔81と袖火用噴孔82とは、図4に示すように、環状切欠部材20の上方側の環状端部壁83にて互いに分離した状態で設けられている。図4の断面図において、当該環状端部壁83の上端部は、キャップ部10の天面部14の下端部と、バーナ本体上部30の擂鉢状受入部位32cの上端部とを結ぶ直線の近傍まで延設されている。
これにより、主火炎用噴孔81と袖火用噴孔82とを通流する混合気Mの流れは、より一層互いに独立した状態を維持でき、袖火K2が、主火炎用噴孔81にて形成される主火炎K1の燃焼状態の変化の影響を受けることを抑制できる。
By adopting the above configuration, as shown in FIG. 4, the outer periphery of cylindrical portion 41 of burner main body base 40 in the mounted state (the state shown in FIG. 4) where burner head 80 is mounted on burner main body 70. Annular mixed ring in plan view formed in a space surrounded by the surface, the upper side surface of the weir portion 42 of the burner main body base 40, the annular surrounding portion 31 of the burner main body upper portion 30, and the annular notch member 20 A gas flow path R1 is formed. Although not shown in the cross-sectional view of FIG. 4, in the mounted state where the burner head 80 is mounted on the burner main body 70 (the state shown in FIG. 4), the annular outer portion 31 of the burner main body upper portion 30 is It is airtightly connected with the surrounding wall 46 (shown in FIG. 2) of the burner main body base 40, and the surrounding wall 46 is also a part that forms the annular mixture flow passage R1. Further, in the configuration, in the mounting state where the burner head 80 is mounted on the burner main body 70 (the state shown in FIG. 4), the cylindrical leg portion 13 has the annular portion 41 and the cylindrical portion 41 of the burner main body base 40. Act as an isolation wall separating the central cavity S1 formed inside the
Furthermore, as shown in FIG. 4, by adopting the above configuration, a main flame flow passage R2 connecting the annular mixture gas flow passage R1 and the main flame injection hole 81 in communication, and an annular mixture flow passage R1. A sleeve flame channel R3 communicating with the sleeve flame injection hole 82 is independently connected to the annular mixture flow channel R1.
In addition, since the sleeve flame channel R3 is formed by the gap formed between the annular notch member 20 and the receiving portion 32 of the burner main body upper portion 30, the channel length can be made sufficiently long. As a result, the flow path length of the end flame flow path R3 which is the flow path length from the end R3a on the side of the annular mixed gas flow path R1 of the end flame flow path R3 to the injection port 82 for the end flame is the main flame flow. It is configured to be longer than the flow path length of the main flame flow path R2, which is the flow path length from the end R2a on the side of the annular mixed gas flow path R1 of the path R2 to the main flame injection hole 81.
Furthermore, at a specific position in the pipe circumferential direction of the annular mixture flow passage R1, between an end R3a on the side of the annular mixture flow passage R1 of the sleeve flow passage R3 and an annular mixture flow passage R1 of the main flame passage R2. With regard to the positional relationship with the side end R2a, the end R3a on the side of the annular mixture channel R1 of the end flame channel R3 is closer to the end R2a on the side of the annular mixture channel R1 of the main flame channel R2. Is also provided upstream of the annular mixture passage R1.
In the cross-sectional view shown in FIG. 4 with respect to the main flame flow passage R2, in the cross-sectional view shown in FIG. 4, the annular notch member 20 first extends in the vertical direction (direction along arrow Z) on the inner circumferential side thereof. A vertical wall portion 20a and a ring inner peripheral inclined wall 20b provided continuously with the ring inner peripheral vertical wall portion 20a on the ring inner peripheral side and extending obliquely upward on the outer side in the ring radial direction are provided. The main flame flow passage R2 is a gap surrounded by the ring inner peripheral wall portion 20a and the ring inner peripheral inclined wall 20b, the lower side surface of the burner head 80, and the outer surface of the cylindrical portion 41 of the burner main body 70. Thus, the main flame flow passage R2 is formed.
Further, in the annular burner 100 according to the embodiment, the pressure loss of the mixture M flowing through the endothermic flow passage R3 is more than the pressure loss of the mixture M flowing through the main flame flow passage R2. Also, the sleeve flow channel R3 and the main flame flow channel R2 are configured to be smaller.
Even if the thermal power is increased and the primary air amount is increased by the above configuration, the main flame K1 formed by the main flame injection holes 81 is the sleeve flame K2 formed by the main flame injection holes 82. It is possible to further suppress the influence of the change of the combustion state of
In the embodiment, the main flame injection holes 81 and the sleeve flame injection holes 82 formed in the annular peripheral portion 80a of the annular burner 100 are, as shown in FIG. It is provided in a mutually separated state at the upper annular end wall 83. In the cross-sectional view of FIG. 4, the upper end of the annular end wall 83 extends to the vicinity of a straight line connecting the lower end of the top surface 14 of the cap 10 and the upper end of the bowl-shaped receiving portion 32 c of the burner main body 30. It is extended.
As a result, the flows of the air-fuel mixture M flowing through the main flame injection holes 81 and the sleeve flame injection holes 82 can be maintained further independent of each other, and the sleeve flame K 2 is used as the main flame injection holes 81. It is possible to suppress the influence of the change of the combustion state of the main flame K1 formed.

次に、赤外線の通過領域Rについて説明を加える。
以上の構成を採用することにより、バーナヘッド80がバーナ本体70へ載置された載置状態(図4に示す状態)において、図4に示すように、環状混合気流路R1にその一部を凹欠する被凹欠流路部位(流路断面積が小さくなる部位で、図4で符号R1aで示される部位)が、環状混合気流路R1の環周方向で一部に設けられる。当該構成により、赤外線通過孔12を通過して赤外線強度検出手段60(図5、図7に図示)へ向けて放射される赤外線の通過領域Rが、被凹欠流路部位R1aが凹欠されることにより形成される空間S2(庇部位42の下方側の領域:環状混合気流路R1が凹欠されることにより流路の外部に広がった空間)に形成されることとなる。
即ち、被加熱物Hの底面から放射された赤外線のうち、キャップ部10の天面部14に設けられる赤外線通過孔12を通過した赤外線は、図4に示すように、中央空洞S1を通過し、キャップ部10の円筒脚部13の開孔13aを通過し、バーナ本体基部40の円筒部位41の開孔42aを通過し、庇部位42の下方側の領域である空間S2を通過した後、赤外線強度検出手段60へ到達する。
換言すると、赤外線通過孔12を通過した赤外線が、図4に示すように、中央空洞S1を通過し、キャップ部10の円筒脚部13の開孔13aを通過し、バーナ本体基部40の円筒部位41の開孔42aを通過し、庇部位42の下方側の領域である空間S2を通過した後、赤外線強度検出手段60へ到達するように、赤外線通過孔12及び赤外線強度検出手段60が設けられる。因みに、赤外線強度検出手段60から赤外線通過孔12を臨む場合、図6に示されるように、環状バーナ100は、その下方部位が大きくえぐれた形状となる。
当該構成を採用することにより、図7に示すように、被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と、被加熱物Hの底面との成す角度αを、例えば、角度の比較的小さい鋭角に設定することができ、赤外線強度検出手段60と赤外線通過孔12との距離を十分に大きくした場合であっても、コンロ200の鉛直方向(矢印Zに沿う方向)での高さを十分に小さくしてコンパクト化を図ることができる。これにより、コンロ200の高さ方向でのコンパクト化を図りつつ、赤外線強度検出手段60と赤外線通過孔12との距離を十分に大きくして、赤外線通過孔12から環状バーナ100の内部に進入する虞のある吹きこぼれが、赤外線強度検出手段60まで伝わることを良好に防止できる。
Next, the infrared ray passing area R will be described.
By adopting the above configuration, in the mounted state where the burner head 80 is mounted on the burner main body 70 (the state shown in FIG. 4), as shown in FIG. A recessed concave flow passage portion (a portion where the flow passage cross-sectional area is reduced and a portion shown by reference numeral R1a in FIG. 4) which is concaved and recessed is partially provided in the ring circumferential direction of the annular mixture flow passage R1. With this configuration, the passage region R of the infrared radiation which passes through the infrared passage hole 12 and is emitted toward the infrared intensity detection means 60 (shown in FIG. 5 and FIG. 7) As a result, the space S2 (the area on the lower side of the weir portion 42: a space which spreads to the outside of the flow passage due to the annular mixture flow passage R1 being recessed) is formed.
That is, among the infrared rays radiated from the bottom surface of the object H, the infrared rays passing through the infrared ray passing hole 12 provided in the top surface portion 14 of the cap 10 pass through the central cavity S1, as shown in FIG. After passing through the aperture 13a of the cylindrical leg portion 13 of the cap portion 10, passing through the aperture 42a of the cylindrical portion 41 of the burner main body base 40, and passing through the space S2 which is the area under the weir portion 42 The intensity detection means 60 is reached.
In other words, as shown in FIG. 4, the infrared ray passing through the infrared ray passing hole 12 passes through the central cavity S1, passes through the opening 13a of the cylindrical leg portion 13 of the cap portion 10, and the cylindrical portion of the burner main portion 40 The infrared ray passing hole 12 and the infrared intensity detecting means 60 are provided so as to reach the infrared intensity detecting means 60 after passing through the opening 42a of 41 and passing through the space S2 which is the area below the heel portion 42 . Incidentally, when the infrared ray passing hole 12 is faced from the infrared intensity detecting means 60, as shown in FIG. 6, the annular burner 100 has a shape in which the lower portion thereof is greatly cut.
By adopting the configuration, as shown in FIG. 7, the infrared rays emitted from the object H to be heated and passing through the infrared ray passing holes 12 to reach the infrared intensity detection means 60 and the bottom surface of the object H The angle α can be set to, for example, a relatively small acute angle, and the vertical direction of the stove 200 (arrows even when the distance between the infrared intensity detection means 60 and the infrared passage hole 12 is sufficiently large The height in the direction along Z) can be made sufficiently small to achieve compactness. As a result, while making the stove 200 compact in the height direction, the distance between the infrared intensity detection means 60 and the infrared passage hole 12 is sufficiently large, and the inside of the annular burner 100 is entered from the infrared passage hole 12 It is possible to well prevent the possible boil over from being transmitted to the infrared intensity detection means 60.

尚、上述の如く、環状混合気流路R1に被凹欠流路部位R1aを設ける場合、当該被凹欠流路部位R1aの流路断面積は小さくなり、当該流路断面積は小さいほど、被凹欠流路部位R1aの近傍に設けられる主火炎用噴孔81及び袖火用噴孔82へ導かれる混合気Mの流量が、被凹欠流路部位R1aから離れて設けられる主火炎用噴孔81及び袖火用噴孔82へ導かれる混合気Mの流量と異なることとなる。主火炎用噴孔81及び袖火用噴孔82にて形成される火炎が、環状バーナ100の環周方向で、略均等な燃焼状態を維持する観点からは、被凹欠流路部位R1aの流路断面積は、被凹欠流路部位R1a以外の環状混合気流路R1の流路断面積と大きく異ならないことが好ましい。このため、当該実施形態では、赤外線通過孔12は、図5に示すように、平面視において、バーナヘッド80の環状周部80aと環中心(キャップ部10の円盤中心O)との間で環状周部80aに近い領域に設けられている。
これにより、平面視で赤外線強度検出手段60と赤外線通過孔12とを同一距離に設ける条件で、且つ被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と被加熱物Hの底面との成す角度を同一角度に設定する条件において、赤外線通過孔12を平面視においてバーナヘッド80の環状周部80aと環中心(キャップ部10の円盤中心O)との間で環中心に近い領域に設ける場合に比べ、赤外線通過孔12から環状混合気流路R1までの距離を大きくすることができるから、環状混合気流路R1の被凹欠流路部位R1aの凹欠量を小さくでき、当該被凹欠流路部位R1aでの混合気Mの流れの乱れを抑制できる。
尚、被凹欠流路部位R1aと袖火用流路R3とを繋ぐ部位は、図4に示すように、切欠溝R1akの流路断面積を大きくするよう構成されている。これにより、被凹欠流路部位R1aに連続する袖火用流路R3へ供給される袖火用の混合気Mの流量を増加して、燃焼安定性を確保している。
As described above, in the case where the annular mixed gas flow passage R1 is provided with the recessed and missing flow passage portion R1a, the flow passage cross-sectional area of the recessed and falling flow passage portion R1a becomes smaller, and the smaller the flow passage cross-sectional area is, The flow rate of the air-fuel mixture M led to the main flame injection hole 81 and the tail flame injection hole 82 provided in the vicinity of the concave and concave flow passage portion R1a is provided away from the concave and concave flow passage portion R1a. It will be different from the flow rate of the air-fuel mixture M introduced to the hole 81 and the sleeve fire injection hole 82. From the viewpoint of maintaining a substantially uniform combustion state in the circumferential direction of the annular burner 100, the flame formed by the main flame injection holes 81 and the sleeve flame injection holes 82 is the concave flow passage portion R1a. It is preferable that the flow passage cross-sectional area does not greatly differ from the flow passage cross-sectional area of the annular mixed gas flow passage R1 other than the recessed and absent flow passage portion R1a. Therefore, in the embodiment, as shown in FIG. 5, the infrared ray passing hole 12 is annularly formed between the annular peripheral portion 80a of the burner head 80 and the ring center (the disk center O of the cap portion 10) in plan view. It is provided in the area | region near the peripheral part 80a.
Thereby, the infrared rays emitted from the object H to be heated and passing through the infrared ray passing hole 12 and reach the infrared ray intensity detecting means 60 under the condition that the infrared ray intensity detecting means 60 and the infrared ray passing hole 12 are provided at the same distance in plan view. And the bottom surface of the object to be heated H, when the infrared ray passing hole 12 is viewed in a plan view, between the annular peripheral portion 80a of the burner head 80 and the ring center (the disk center O of the cap portion 10). Since the distance from the infrared ray passing hole 12 to the annular mixed gas flow passage R1 can be made larger than in the case where it is provided in the region close to the ring center, The amount can be made small, and the disturbance of the flow of the air-fuel mixture M in the concave and concave flow passage site R1a can be suppressed.
In addition, as shown in FIG. 4, the site | part which connects the to-be-recessed recessed flow-path site | part R1a and the flow path R3 for sleeves is comprised so that the flow-path cross-sectional area of notch groove R1ak may be enlarged. Thereby, the flow rate of the air-fuel mixture M supplied to the end flame channel R3 continuing to the recessed and missing flow path portion R1a is increased, and the combustion stability is secured.

赤外線強度検出手段60と赤外線通過孔12との位置関係について、説明を追加すると、図5に示すように、平面視において、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を通る直線Lで分けた一方側の領域である一方側領域S3に、赤外線強度検出手段60が備えられると共に、他方側の領域である他方側領域S4に、被加熱物Hから放射された赤外線を赤外線強度検出手段60へ向けて通過させる赤外線通過孔12が備えられる。
当該実施形態に係るキャップ部10は、その天面部14の円盤中心Oが上方へ膨出する膨出形状を有し、天面部14の内面は外面と略同形状に構成されているため、上述の配置を採用することで、赤外線通過孔12から進入する吹きこぼれは、膨出形状を有する天面部14の内面に沿って伝わるから、赤外線強度検出手段60の側へ伝わることを良好に抑制できる。
更に、赤外線通過孔12から進入する吹きこぼれが赤外線強度検出手段60へ伝わることを更に抑制する観点から、図4に示すように、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられている。
As to the positional relationship between the infrared intensity detecting means 60 and the infrared ray passing hole 12, as shown in FIG. 5, the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center of the cap portion 10 The infrared intensity detection means 60 is provided in the one side region S3 which is one side region divided by the straight line L passing through O), and the object H is emitted from the object H in the other side region S4 which is the other side region. An infrared ray passing hole 12 for passing the infrared rays toward the infrared intensity detecting means 60 is provided.
The cap portion 10 according to the embodiment has a bulging shape in which the disk center O of the top surface portion 14 bulges upward, and the inner surface of the top surface portion 14 is configured substantially the same as the outer surface. By adopting the above arrangement, the blowout entering from the infrared ray passing hole 12 is transmitted along the inner surface of the top surface portion 14 having the bulging shape, so that it can be favorably suppressed to be transmitted to the infrared intensity detection means 60 side.
Furthermore, from the viewpoint of further suppressing transfer of the boil-over spilled from the infrared ray passing hole 12 to the infrared ray intensity detecting means 60, the infrared ray intensity detecting means 60 and the infrared ray passing hole 12 in plan view are shown in FIG. It is provided in the state which opposes on both sides of the ring center (disk center O of the cap part 10) of the annular peripheral part 80a of the burner head 80. As shown in FIG.

更に、上述した環状混合気流路R1の被凹欠流路部位R1aは、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域Rのうち、赤外線強度検出手段60とバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)との間の領域と環状混合気流路R1とが重なる部位に形成されている。これにより、平面視で赤外線強度検出手段60と赤外線通過孔12とを同一距離に設ける条件で、且つ被加熱物Hから放射され赤外線通過孔12を通過して赤外線強度検出手段60へ到達する赤外線と、被加熱物Hの底面との成す角度を同一角度に設定する条件において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟まずに設けられる場合に比べ、赤外線通過孔12から環状混合気流路R1までの距離を大きくすることができるから、環状混合気流路R1の被凹欠流路部位R1aの凹欠量を小さくでき、当該被凹欠流路部位R1aでの混合気Mの流れの乱れを抑制できる。   Further, the above-mentioned concave / droplet flow passage portion R1a of the annular mixed gas flow passage R1 is an infrared intensity detecting means within the passing region R of the infrared rays emitted toward the infrared intensity detecting means 60 through the infrared ray passing hole 12 A region between the ring 60 and the ring center (the disk center O of the cap portion 10) of the ring peripheral portion 80a of the burner head 80 is formed at the overlapping portion of the ring mixture channel R1. Thereby, the infrared rays emitted from the object H to be heated and passing through the infrared ray passing hole 12 and reach the infrared ray intensity detecting means 60 under the condition that the infrared ray intensity detecting means 60 and the infrared ray passing hole 12 are provided at the same distance in plan view. The infrared intensity detecting means 60 and the infrared ray passing hole 12 are at the ring center of the annular peripheral portion 80a of the burner head 80 under the condition that the angle formed by the bottom of the object H to be heated is set to the same angle. Since the distance from the infrared ray passage hole 12 to the annular mixed gas flow passage R1 can be increased compared to the case where the disk center O) is not provided, the concaved flow passage portion R1a of the annular mixed gas flow passage R1 is recessed. The missing amount can be reduced, and the disturbance of the flow of the air-fuel mixture M in the recessed and missing flow passage portion R1a can be suppressed.

通常、ブンゼンバーナとしての環状バーナ100にあっては、混合管65が設けられている領域にあっては、他の構成部品を設置するスペースを十分に確保できないため、当該領域に他の構成部品を設置する設計の自由度が下がるという問題がある。
そこで、当該実施形態にあっては、赤外線強度検出手段60と赤外線通過孔12とが、平面視において、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域が混合管65の管軸心P1に重なる状態で、且つ赤外線強度検出手段60と混合管65とがバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で備えられている。これにより、例えば、赤外線強度検出手段60の受光部位の設置方向等に関する設計の自由度を上げることができる。
Usually, in the annular burner 100 as a Bunsen burner, in the area where the mixing tube 65 is provided, a sufficient space for installing other components can not be secured. There is a problem that the degree of freedom in design of installing
So, in the said embodiment, the infrared rays intensity detection means 60 and the infrared rays passage hole 12 pass the infrared rays passage hole 12 and the passing area of the infrared rays radiated toward the infrared intensity detection means 60 in plan view And the infrared intensity detecting means 60 and the mixing tube 65 face each other across the ring center of the annular peripheral portion 80a of the burner head 80 (the disk center O of the cap portion 10). It is prepared in the state to do. Thereby, for example, the degree of freedom in design regarding the installation direction of the light receiving part of the infrared intensity detecting means 60 can be raised.

〔別実施形態〕
(1)上記実施形態にあっては、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられている構成例を示した。
しかしながら、平面視において、赤外線強度検出手段60と赤外線通過孔12とが、必ずしも、バーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で設けられていなくても構わない。
[Another embodiment]
(1) In the above embodiment, the infrared intensity detecting means 60 and the infrared passage hole 12 sandwich the ring center (the disk center O of the cap portion 10) of the annular peripheral portion 80a of the burner head 80 in plan view. Show an example of the configuration provided in a state of facing each other.
However, in plan view, the infrared intensity detection means 60 and the infrared passage hole 12 are necessarily provided facing each other across the ring center of the annular peripheral portion 80a of the burner head 80 (disk center O of the cap portion 10). You don't have to.

(2)上記実施形態にあっては、赤外線強度検出手段60と赤外線通過孔12とが、平面視において、赤外線通過孔12を通過して赤外線強度検出手段60へ向けて放射される赤外線の通過領域が混合管65の管軸心P1に重なる状態で、且つ赤外線強度検出手段60と混合管65とがバーナヘッド80の環状周部80aの環中心(キャップ部10の円盤中心O)を挟んで対向する状態で備えられている構成例を示した。
しかしながら、本発明は当該実施形態に限定されるものではなく、平面視において、赤外線強度検出手段60と赤外線通過孔12とを結ぶ直線が、混合管65の管軸心P1と所定の角度を有する構成であっても良い。
(2) In the above embodiment, the infrared intensity detecting means 60 and the infrared ray passing hole 12 pass through the infrared ray passing hole 12 and the infrared ray emitted toward the infrared intensity detecting means 60 in plan view. In a state where the region overlaps the tube axis P1 of the mixing tube 65, the infrared intensity detecting means 60 and the mixing tube 65 sandwich the ring center of the annular peripheral portion 80a of the burner head 80 (disk center O of the cap portion 10) The configuration example provided in the opposite state is shown.
However, the present invention is not limited to the embodiment, and the straight line connecting the infrared intensity detection means 60 and the infrared passage hole 12 has a predetermined angle with the tube axis P1 of the mixing tube 65 in plan view. It may be a configuration.

(3)上記実施形態にあっては、バーナヘッド80は、清掃性向上の観点から、別体のキャップ部10と環状切欠部材20とから構成する例を示したが、キャップ部10と環状切欠部材20とを一体に構成しても構わない。 (3) In the above embodiment, the burner head 80 has been described as an example comprising the separate cap portion 10 and the annular notch member 20 from the viewpoint of improving the cleaning performance, but the cap portion 10 and the annular notch are illustrated. You may comprise the member 20 integrally.

(4)上記実施形態において、キャップ部10の天面部14は、平面視で円盤中心O(バーナヘッド80の環状周部80aの環中心に相当)が上方へ膨出する膨出形状の膨出頂部を有すると共に当該膨出頂部から偏心した位置に赤外線通過孔12を有する構成例を示した。しかしながら、キャップ部10の天面部14は、上方へ膨出していなくても良く、上面が平面の平板形状であっても良い。 (4) In the above embodiment, the top surface portion 14 of the cap portion 10 has a bulging shape in which the disk center O (corresponding to the ring center of the annular peripheral portion 80a of the burner head 80) bulges upward in plan view. The example of composition which has an infrared rays passage hole 12 in the position which had a top and was eccentric from the bulging top was shown. However, the top surface portion 14 of the cap portion 10 may not bulge upward, and may have a flat plate shape whose upper surface is flat.

(5)上記実施形態にあっては、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも長く構成されている例を示した。
しかしながら、本発明は、当該構成に限定されるものではなく、袖火用流路R3の環状混合気流路R1の側の端部R3aから袖火用噴孔82までの流路長である袖火用流路R3の流路長が、主火炎用流路R2の環状混合気流路R1の側の端部R2aから主火炎用噴孔81までの流路長である主火炎用流路R2の流路長よりも短い構成や、同一の長さの構成であっても良い。
(5) In the above embodiment, the end R3a on the side of the annular mixture flow path R1 of the end flow path R3 is a flow path length from the end R3a to the end injection hole 82 for the end flame The flow path length is longer than the flow path length of the main flame flow path R2, which is the flow path from the end R2a on the annular gas mixture flow path R1 side of the main flame flow path R2 to the main flame injection hole 81. An example has been shown.
However, the present invention is not limited to the above configuration, and the sleeve flame having a flow length from the end R3a on the side of the annular mixed gas flow passage R1 of the sleeve flame channel R3 to the sleeve flame injection hole 82 The flow path of the main flame flow path R2, which is the flow path length from the end R2a on the annular gas mixture flow path R1 side of the main flame flow path R2 to the main flame injection hole 81 The configuration may be shorter than the path length, or may be the same length.

(6)上記実施形態に係る環状バーナ100にあっては、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失よりも小さくなるように、袖火用流路R3と主火炎用流路R2とが構成されている例を示した。
しかしながら、袖火用流路R3を通流する混合気Mの圧力損失が、主火炎用流路R2を通流する混合気Mの圧力損失以上となるように、袖火用流路R3と主火炎用流路R2とが構成されていても構わない。
(6) In the annular burner 100 according to the above embodiment, the pressure loss of the air-fuel mixture M flowing through the end flame flow path R3 is the pressure loss of the air-fuel mixture M flowing through the main flame flow path R2. An example is shown in which the sleeve flame channel R3 and the main flame channel R2 are configured to be smaller than the above.
However, in order for the pressure loss of the mixture M flowing through the sleeve flame channel R3 to be equal to or higher than the pressure loss of the mixture M flowing through the main flame channel R2, The flame channel R2 may be configured.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configurations disclosed in the above embodiment (including the other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明のコンロ用バーナ、及びそれを備えたコンロは、被加熱物の吹きこぼれが赤外線強度検出手段に付着することを抑制し、赤外線強度検出手段にて適切に赤外線強度を検出して、温度導出を良好に実行することができると共に、小型化を実現し得るコンロ用バーナ、及びそれを備えたコンロとして、有効に利用可能である。   The stove burner according to the present invention and the stove provided with the same suppress adhesion of the boil-off of the object to be heated to the infrared intensity detection means, and the infrared intensity detection means appropriately detects the infrared intensity to derive the temperature It can be effectively used as a stove burner and a stove equipped with the same, which can realize the miniaturization as well as can perform well.

10 :キャップ部
12 :赤外線通過孔
60 :赤外線強度検出手段
61 :温度導出手段
70 :バーナ本体
80 :バーナヘッド
80a :環状周部
100 :環状バーナ
200 :コンロ
A :一次燃焼用空気
G :燃料ガス
H :被加熱物
M :混合気
P1 :管軸心
R :通過領域
R1 :環状混合気流路
R1a :被凹欠流路部位
S2 :凹欠空間
S3 :一方側領域
S4 :他方側領域
10: cap 12: infrared ray passing hole 60: infrared intensity detecting means 61: temperature deriving means 70: burner main body 80: burner head 80a: annular peripheral portion 100: annular burner 200: stove A: air for primary combustion G: fuel gas H: object to be heated M: mixture P1: tube axial center R: passage region R1: annular mixture passage R1a: recess / deletion passage portion S2: recess / deletion space S3: one side region S4: other side region

Claims (8)

バーナ本体と、当該バーナ本体に上方から着脱自在に載置されたバーナヘッドとを有し、前記バーナヘッドの平面視での環状周部から環径方向で外側へ向けて放射状に火炎を形成する放射状噴孔を有する環状バーナが備えられ、
加熱対象の被加熱物から放射された赤外線の赤外線強度を検出する赤外線強度検出手段が、前記環状バーナの前記放射状噴孔より下方に備えられ、
前記赤外線強度検出手段により検出された前記赤外線強度に基づいて前記被加熱物の温度を導出する温度導出手段が備えられたコンロ用バーナであって、
平面視において、前記バーナヘッドの前記環状周部の環中心を通る直線で分けた一方側の領域である一方側領域に、前記赤外線強度検出手段が備えられる共に、他方側の領域である他方側領域に、前記被加熱物から放射された赤外線を前記赤外線強度検出手段へ向けて前記バーナヘッドを通過させる赤外線通過孔が備えられ、
前記環状バーナは、燃料ガス及び燃焼用空気の混合気を前記放射状噴孔へ導く平面視で環状の環状混合気流路を有し、当該環状混合気流路は、当該環状混合気流路の一部が凹欠された被凹欠流路部位を有し、
前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が、前記被凹欠流路部位が凹欠されることにより形成された空間に形成される形態で、前記赤外線強度検出手段及び前記赤外線通過孔が設けられているコンロ用バーナ。
A burner body and a burner head removably mounted on the burner body from above are formed to form flames radially outward in an annular radial direction from an annular peripheral portion in plan view of the burner head An annular burner with radial injection holes is provided,
Infrared intensity detection means for detecting the infrared intensity of infrared radiation emitted from the object to be heated is provided below the radial injection holes of the annular burner,
A stove burner comprising a temperature deriving means for deriving a temperature of the object to be heated based on the infrared intensity detected by the infrared intensity detecting means,
The infrared intensity detection means is provided on one side region which is one side region divided by a straight line passing through the ring center of the annular peripheral portion of the burner head in plan view, and the other side which is the other side region The region is provided with an infrared ray passing hole which makes infrared rays emitted from the object to be heated be directed to the infrared intensity detecting means and pass through the burner head.
The annular burner has an annular mixture passage in an annular view in plan view for introducing a mixture of fuel gas and combustion air to the radial injection holes, and the annular mixture passage is a part of the annular mixture passage. Having a recessed and recessed flow passage portion,
The infrared ray passage area passing through the infrared ray passage hole and radiated toward the infrared ray intensity detection means is formed in a space formed by the concave and concave flow passage portion being recessed. A burner for a stove provided with the infrared intensity detection means and the infrared passage hole.
前記被凹欠流路部位は、前記環状混合気流路の環周方向で、一部に形成されている請求項1に記載のコンロ用バーナ。   The burner for a stove according to claim 1, wherein the recessed and missing flow passage portion is formed in part in an annular circumferential direction of the annular mixture flow passage. 前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記バーナヘッドの前記環中心を挟んで対向する状態で備えられ、
前記被凹欠流路部位は、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域のうち、前記赤外線強度検出手段と前記環中心との間の領域と前記環状混合気流路とが重なる部位に形成されている請求項1又は2に記載のコンロ用バーナ。
The infrared intensity detection means and the infrared passage hole are provided to face each other across the ring center of the burner head in plan view,
In the planar view, the concave and not-falling flow passage portion is a region between the infrared intensity detection means and the ring center in a passing region of infrared rays emitted toward the infrared intensity detection means through the infrared ray passing hole. The burner for stoves according to claim 1 or 2 formed in the part which the field and the above-mentioned annular mixture flow path overlap.
前記環状バーナが、燃料ガスと燃焼用空気とを混合する混合管を備えたブンゼンバーナであり、
前記赤外線強度検出手段と前記赤外線通過孔とが、平面視において、前記赤外線通過孔を通過して前記赤外線強度検出手段へ向けて放射される赤外線の通過領域が前記混合管の管軸心に重なる状態で、且つ前記赤外線強度検出手段と前記混合管とが前記バーナヘッドの前記環中心を挟んで対向する状態で備えられている請求項3に記載のコンロ用バーナ。
The annular burner is a Bunsen burner provided with a mixing tube for mixing fuel gas and combustion air,
The infrared ray intensity detection means and the infrared ray passage hole pass through the infrared ray passage hole and the infrared ray passage region emitted toward the infrared ray intensity detection means overlaps the tube axis of the mixing tube in plan view. The stove burner according to claim 3, wherein in the state, the infrared intensity detection means and the mixing tube are provided opposite to each other across the ring center of the burner head.
前記赤外線通過孔は、平面視において、前記バーナヘッドの前記環状周部と前記環中心との間で前記環状周部に近い領域に設けられている請求項1〜4の何れか一項に記載のコンロ用バーナ。   The said infrared rays passage hole is provided in the area | region near the said annular peripheral part between the said annular peripheral part of the said burner head and the said ring center in planar view, It is described in any one of Claims 1-4. Stove burner. 前記バーナヘッドは、前記環状周部の前記環中心が上方へ膨出する膨出形状の膨出頂部を有しており、
前記赤外線通過孔は、前記バーナヘッドの前記膨出頂部から偏心した位置に設けられている請求項1〜5の何れか一項に記載のコンロ用バーナ。
The burner head has a bulging crest portion in a bulging shape in which the ring center of the annular peripheral portion bulges upward.
The burner for a stove according to any one of claims 1 to 5, wherein the infrared ray passing hole is provided at a position eccentric from the bulging top of the burner head.
前記バーナヘッドは、天面部を有すると共に、当該天面部から下方へ延びる円筒形状の円筒脚部を有するキャップ部を含み、
前記バーナヘッドが前記バーナ本体に載置された状態で、前記キャップ部の前記円筒脚部が、前記環状混合気流路と前記環状バーナの中央に形成される中央空洞とを隔離する隔離壁として配置され、
前記赤外線通過孔は、前記中央空洞と前記環状バーナの外部とを連通する状態で前記キャップ部の前記天面部に設けられている請求項1〜6の何れか一項に記載のコンロ用バーナ。
The burner head includes a cap portion having a top surface portion and a cylindrical cylindrical leg portion extending downward from the top surface portion,
With the burner head mounted on the burner body, the cylindrical leg of the cap is arranged as an isolation wall separating the annular mixture channel from the central cavity formed in the center of the annular burner. And
The stove burner according to any one of claims 1 to 6, wherein the infrared ray passing hole is provided in the top surface portion of the cap portion in a state of communicating the central cavity with the outside of the annular burner.
請求項1〜7の何れか一項に記載のコンロ用バーナを備えたコンロ。   A stove provided with the stove burner according to any one of claims 1 to 7.
JP2015241528A 2015-12-10 2015-12-10 Stove burner and stove with the same Active JP6523156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015241528A JP6523156B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015241528A JP6523156B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Publications (2)

Publication Number Publication Date
JP2017106682A JP2017106682A (en) 2017-06-15
JP6523156B2 true JP6523156B2 (en) 2019-05-29

Family

ID=59060712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015241528A Active JP6523156B2 (en) 2015-12-10 2015-12-10 Stove burner and stove with the same

Country Status (1)

Country Link
JP (1) JP6523156B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132331U (en) * 1982-03-01 1983-09-06 株式会社ターダ gas stove
JPH01117428U (en) * 1988-02-02 1989-08-08
JP3710604B2 (en) * 1997-08-11 2005-10-26 リンナイ株式会社 Stove burner
JP4422943B2 (en) * 2001-03-16 2010-03-03 大阪瓦斯株式会社 Stove
JP4557737B2 (en) * 2005-02-03 2010-10-06 大阪瓦斯株式会社 Stove
JP4530894B2 (en) * 2005-03-29 2010-08-25 大阪瓦斯株式会社 Stove
JP2009150613A (en) * 2007-12-21 2009-07-09 Hanshin Electric Co Ltd Cooking heating device
JP6037854B2 (en) * 2013-01-29 2016-12-07 大阪瓦斯株式会社 Stove, operating method of stove, estimation method of heating container material used on stove, and estimation method of heating container material
JP5980255B2 (en) * 2014-03-03 2016-08-31 リンナイ株式会社 Stove burner

Also Published As

Publication number Publication date
JP2017106682A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
EP1809946B1 (en) Improved gas burner system for food cooking
TWI451051B (en) A gas furnace with a pot bottom temperature sensor
KR101847285B1 (en) Burner and cooking appliance therewith and manufacturing method therof
JP2014037961A (en) Cup type burner
JP6523154B2 (en) Stove burner and stove with the same
JP6523155B2 (en) Stove burner and stove with the same
JP6523156B2 (en) Stove burner and stove with the same
JP6513017B2 (en) Stove burner and stove with the same
JP2015230144A (en) Cooking stove burner
JP2019002666A (en) Gas cooking stove
JP6635778B2 (en) Stove burner and stove provided with it
JP6434250B2 (en) Gas burner
CA2934672A1 (en) Dual ring burner ovni
JP6127345B2 (en) Gas burner
JP2017020705A (en) Gas burner
KR101300899B1 (en) Burner
JP2008202865A (en) Burner for cooking stove
JP2003194310A (en) Burner for gas stove
JP2017198415A (en) Cooking stove burner
JP2000065320A (en) Burner for cooking appliance
JP6553891B2 (en) Seal structure between the stove burner and the top plate
JP2009121706A (en) Concentric burner for stove
JP4428669B2 (en) Stove burner for stove
JPH0645131Y2 (en) Burner for stove
KR20130001396U (en) Burner assembly for gas range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6523156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150