JP6522959B2 - Waste water treatment equipment - Google Patents

Waste water treatment equipment Download PDF

Info

Publication number
JP6522959B2
JP6522959B2 JP2015009819A JP2015009819A JP6522959B2 JP 6522959 B2 JP6522959 B2 JP 6522959B2 JP 2015009819 A JP2015009819 A JP 2015009819A JP 2015009819 A JP2015009819 A JP 2015009819A JP 6522959 B2 JP6522959 B2 JP 6522959B2
Authority
JP
Japan
Prior art keywords
tank
solid
liquid separation
liquid
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015009819A
Other languages
Japanese (ja)
Other versions
JP2015180492A (en
Inventor
朝将 本永
朝将 本永
裕士 中西
裕士 中西
中本 学
学 中本
準平 宮崎
準平 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2015009819A priority Critical patent/JP6522959B2/en
Publication of JP2015180492A publication Critical patent/JP2015180492A/en
Application granted granted Critical
Publication of JP6522959B2 publication Critical patent/JP6522959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、生ごみ粉砕処理廃液を受け入れる受け入れ部を備え、前記受け入れ部から前記生ごみ粉砕処理廃液を移流させて、前記生ごみ粉砕処理廃液を沈殿分離する固液分離槽を備え、前記固液分離槽で固液分離された液相を受け入れて好気処理する好気処理槽を備え、前記固液分離槽にて沈殿分離された沈殿物を受け入れてバイオガス化する嫌気発酵槽を備え、前記固液分離槽から前記好気処理槽に液相を移送する移送部を設け、前記好気処理槽にて沈殿分離された沈殿物を前記受け入れ部まで返送する返送手段を設けてなる排水処理装置に関する。   The present invention comprises a solid-liquid separation tank that includes a receiving unit for receiving the waste garbage crush processing waste, transfers the waste garbage crush processing waste from the receiving unit, and separates the waste garbage crush processing waste by precipitation; It is equipped with an aerobic treatment tank that receives the liquid phase separated in solid-liquid separation in the liquid separation tank and aerobically processes it, and is equipped with an anaerobic fermenter that receives and biogases the sediment separated in the solid-liquid separation tank. Draining means for transferring the liquid phase from the solid-liquid separation tank to the aerobic treatment tank, and return means for returning the precipitate separated in the aerobic treatment tank to the receiving part It relates to a processing device.

近年、各家庭や集合住宅において、ゴミの減容化等を目的として、生ごみディスポーザが普及する傾向にあり、ディスポーザにより粉砕処理された生ごみを処理可能とする排水処理装置が設置される傾向にある。
このような排水処理装置は、粉砕処理された生ごみを水で希釈した生ごみ粉砕処理廃液を受け入れて、固液分離槽で固液分離し、固液分離された液相を好気処理槽にて好気処理して浄化するとともに、沈殿物を嫌気発酵槽にてバイオガス化する。
In recent years, garbage disposers tend to be disseminated in each household and collective housing for the purpose of volume reduction of garbage, etc. There is a tendency to install a wastewater treatment device capable of processing garbage shredded by disposers It is in.
Such a waste water treatment apparatus receives the garbage waste treatment waste fluid obtained by diluting the food waste subjected to the grinding treatment with water, solid-liquid separation in the solid-liquid separation tank, and the liquid phase separated in solid-liquid separation by aerobic treatment At the same time, aerobic treatment and purification are conducted, and the precipitate is biogasified in an anaerobic fermenter.

このような排水処理装置において、従来は、固液分離槽と好気処理槽とを仕切壁にて仕切った状態で隣接して設けるとともに、固液分離槽から液相の上澄液が仕切壁の上端をオーバーフローして好気処理槽に移流するように構成して、移送部を、仕切壁の上端部のオーバーフロー状の移送部にて構成していた(例えば、特許文献1参照。)。   In such a waste water treatment apparatus, conventionally, a solid-liquid separation tank and an aerobic treatment tank are provided adjacent to each other in a state of being separated by a dividing wall, and the supernatant liquid of the liquid phase is divided from the solid-liquid separation tank The upper end of the upper portion is overflowed and transferred to the aerobic treatment tank, and the transfer portion is configured as an overflow-like transfer portion at the upper end portion of the partition wall (for example, see Patent Document 1).

特開2013−27851号公報JP, 2013-27851, A

ところで、生ごみ粉砕処理廃液中の生ごみには、水に浮遊する浮遊性の固形分が含まれているので、固液分離槽の上澄層は、浮遊性の生ごみ(以下、浮遊物と記載する場合がある)が混在した状態となっている。
しかしながら、従来の排水処理装置は、固液分離槽の上澄液が仕切壁の上端をオーバーフローして好気処理槽に移流する構成であるので、浮遊物が混在した上澄液が好気処理槽に移流することになり、好気処理槽には、固液分離槽から比較的多量の浮遊物が移流することになる。
したがって、好気処理槽における好気処理の負荷が大きくなるので、好気処理槽において好気処理を十分に行わせて、好気処理槽から排出する排水の清浄度を向上する上で、改善の余地があった。
By the way, since the garbage in the garbage waste processing waste liquid contains floating solids floating in water, the upper layer of the solid-liquid separation tank is floating garbage (hereinafter suspended solids). It may be described as ") is mixed.
However, since the conventional waste water treatment apparatus has a configuration in which the supernatant liquid of the solid-liquid separation tank overflows the upper end of the partition wall and is transferred to the aerobic treatment tank, the supernatant liquid containing suspended matter is treated aerobically It will be transferred to the tank, and a relatively large amount of suspended matter will be transferred from the solid-liquid separation tank to the aerobic treatment tank.
Therefore, since the load of aerobic treatment in the aerobic treatment tank is increased, aerobic treatment is sufficiently performed in the aerobic treatment tank to improve the cleanliness of the drainage discharged from the aerobic treatment tank. There was room for

本発明は、かかる実情に鑑みてなされたものであり、その目的は、浄化処理して排出する排水の清浄度を向上し得る排水処理装置を提供することにある。   This invention is made in view of this situation, The objective is to provide the waste-water-treatment apparatus which can improve the purity of the waste_water | drain which carries out a purification process and to discharge | emit.

〔構成1〕
上記目的を達成するための本発明にかかる排水処理装置は、生ごみ粉砕処理廃液を受け入れる受け入れ部を備え、
前記受け入れ部から前記生ごみ粉砕処理廃液を移流させて、前記生ごみ粉砕処理廃液を沈殿分離する固液分離槽を備え、
前記固液分離槽で固液分離された液相を受け入れて好気処理する好気処理槽を備え、
前記固液分離槽にて沈殿分離された沈殿物を受け入れてバイオガス化する嫌気発酵槽を備え、
前記固液分離槽から前記好気処理槽に液相を移送する移送部を設け、
前記好気処理槽にて沈殿分離された沈殿物を前記受け入れ部まで返送する返送手段を設けてなる排水処理装置であって、
特徴構成は、前記固液分離槽から前記嫌気発酵槽に液相を移流させる液相移流部と、前記固液分離槽の下部に、前記沈殿物を移流させる沈殿物移流部を設けてなり、
端を前記固液分離槽の最低水位高さとして、前記固液分離槽と前記嫌気発酵槽とを仕切るように、上端縁が前記液相移流部となる仕切壁を設けるとともに、前記液相移流部の前記受け入れ部側に、前記固液分離槽の液面又はその液面の近くから、散気方向を前記仕切壁の上端として、嫌気性ガスを散気する散気装置を設け、
前記散気装置の散気領域と前記移送部の液相流入領域との間における浮遊物の移流を抑制する抑制機構を設けた点にある。
[Configuration 1]
In order to achieve the above object, the waste water treatment apparatus according to the present invention comprises a receiving unit for receiving a garbage waste treatment waste solution,
A solid-liquid separation tank for transferring the garbage waste treatment waste solution from the receiving part to transfer the waste material waste treatment waste liquid;
It has an aerobic treatment tank for receiving and aerobically treating the liquid phase separated in the solid-liquid separation tank,
And an anaerobic fermenter for receiving and biogasifying the precipitate separated in the solid-liquid separation tank,
Providing a transfer unit for transferring a liquid phase from the solid-liquid separation tank to the aerobic treatment tank;
A waste water treatment apparatus comprising a return means for returning the precipitate separated in the aerobic treatment tank to the receiving part,
Characteristic features include a liquid phase advection section for advecting the liquid phase from the solid-liquid separation tank to the anaerobic fermentation tank, and a sediment advection section for advecting the precipitate in the lower part of the solid-liquid separation tank ,
The upper end as the lowest water level height of the solid-liquid separation tank, so as to partition the the solid-liquid separation tank and the anaerobic fermentation tank, provided with a partition wall upper end edge is the liquid phase advection part, said liquid phase A diffuser is provided on the receiving part side of the advection part, from the liquid surface of the solid-liquid separation tank or near the liquid surface, with an aeration direction as the upper end of the partition wall, for diffusing the anaerobic gas.
The point which provided the control mechanism which controls the advection of the floating matter between the aeration area of the above-mentioned aeration device, and the liquid phase inflow area of the above-mentioned transfer part.

〔作用効果1〕
上記特徴構成によれば、固液分離槽において生ごみ粉砕処理廃液が固液分離され、沈殿分離された沈殿物は、沈殿物移流部により嫌気発酵槽に移流され、上澄みの液相は液相移流部により嫌気発酵槽に移流されるとともに、移送部により好気処理槽に移送される。
その液相移流部には、上端を固液分離槽の最低水位高さとして、固液分離槽と嫌気発酵槽とを仕切る仕切壁が設けられ、散気装置により、固液分離槽の液面又はその液面の近くから、仕切壁の上端に向けて嫌気性ガスが散気されるので、浮遊物が混在する状態の固液分離槽の上澄みの液層は、浮遊物が混在した状態で仕切壁の上端に向けて流動案内されて、仕切壁の上端をオーバーフローして、嫌気発酵槽に流入する。
そして、抑制機構により、散気領域から浮遊物が移送部の液相流入領域に流入するのが防止される。
これにより、移送部によって、固液分離槽の浮遊物が液相とともに好気処理槽に移送されるのを抑制することができるので、好気処理槽における好気処理の負荷を低くすることができる。
したがって、浄化処理して排出する排水の清浄度を向上し得る排水処理装置を提供することができる。
[Operation effect 1]
According to the above configuration, solid waste liquid waste is separated from solid waste in the solid-liquid separation tank, and the precipitate separated is transferred to the anaerobic fermentation tank by the sediment transfer part, and the liquid phase of the supernatant is liquid phase While being transferred to the anaerobic fermentation tank by the advection part, it is transferred to the aerobic treatment tank by the transfer part.
In the liquid phase advection section, a partition wall is provided to separate the solid-liquid separation tank and the anaerobic fermentation tank, with the upper end being the lowest water level of the solid-liquid separation tank, and the liquid level of the solid-liquid separation tank Alternatively, since the anaerobic gas is diffused toward the upper end of the partition wall from near the liquid surface, the liquid layer of the supernatant of the solid-liquid separation tank in the state in which the suspended matter is mixed with the suspended matter mixed in It is flow-guided toward the upper end of the partition wall, overflows the upper end of the partition wall, and flows into the anaerobic fermentation tank.
And the suppression mechanism prevents the floating matter from flowing into the liquid phase inflow area of the transfer section from the aeration area.
As a result, since it is possible to suppress the transfer of the suspended matter in the solid-liquid separation tank to the aerobic treatment tank together with the liquid phase by the transfer unit, the load of the aerobic treatment in the aerobic treatment tank can be reduced. it can.
Therefore, it is possible to provide a waste water treatment apparatus capable of improving the cleanliness of the waste water to be purified and discharged.

〔構成2〕
また、前記好気処理槽で沈殿分離された沈殿物を受け入れる汚泥沈降槽を備え、
前記返送手段を、前記好気処理槽から前記汚泥沈降槽まで沈殿物を返送する第一返送路と、前記汚泥沈降槽から前記受け入れ部まで沈殿物を返送する第二返送路とを備えて構成し、
少なくとも前記第二返送路における搬送ガスが嫌気性ガスであっても良い。
[Configuration 2]
In addition, it comprises a sludge sedimentation tank for receiving the sediment separated in the aerobic treatment tank,
The return means comprises a first return path for returning precipitates from the aerobic treatment tank to the sludge settling tank, and a second return path for returning precipitates from the sludge settling tank to the receiving portion. And
The carrier gas in at least the second return path may be an anaerobic gas.

〔作用効果2〕
上記構成によれば、好気処理槽で沈殿分離された沈殿物は、第一返送路を通して汚泥沈降槽に返送され、その汚泥沈降槽において例えば好気処理されて減容化され、さらに、汚泥沈降槽で沈殿分離された沈殿物は、第二返送路を通して受け入れ部に返送される。これにより、移送部によって固液分離槽から液相とともに好気処理槽に移流される浮遊物の量を一層低減することができるので、好気処理槽における好気処理の負荷を一層低くすることができる。
なお、少なくとも第二返送路における搬送ガスが嫌気性ガスであるので、嫌気発酵槽が好気性に偏って沈殿物のバイオガス化が低下するのを防止することができる。
したがって、浄化処理して排出する排水の清浄度を一層向上することができる。
[Operation effect 2]
According to the above configuration, the precipitate separated in the aerobic treatment tank is returned to the sludge sedimentation tank through the first return path, and, for example, aerobically treated and reduced in volume in the sludge sedimentation tank, and sludge The precipitate deposited in the settling tank is returned to the receiving unit through the second return path. As a result, the amount of suspended solids transferred from the solid-liquid separation tank to the aerobic treatment tank together with the liquid phase can be further reduced by the transfer unit, and therefore the load of the aerobic treatment in the aerobic treatment tank can be further reduced. Can.
In addition, since the carrier gas in at least the second return path is the anaerobic gas, it is possible to prevent the anaerobic fermentation tank from being biased aerobically and the biogasification of the precipitate being reduced.
Therefore, the cleanliness of the waste water to be purified and discharged can be further improved.

〔構成3〕
前記移送部が、前記固液分離槽で固液分離された液相を、前記汚泥沈降槽を経由して好気処理槽に移送させるものであってもよい。
[Configuration 3]
The transfer unit may transfer the liquid phase, which has been solid-liquid separated in the solid-liquid separation tank, to the aerobic treatment tank via the sludge sedimentation tank.

〔作用効果3〕
固液分離槽で固液分離された液相は、固液分離槽から好気処理槽に移送することにより、好気処理槽に受け入れられて好気処理されるが、汚泥沈降槽を設けてなる構成においては、固液分離槽から直接好気処理槽に液相を移送させるのに代えて、汚泥沈降槽を経由して好気処理槽に移送する構成とすることもできる。すなわち、上記構成によっても、固液分離槽で固液分離された液相は良好に好気処理を受けるとともに、汚泥沈降槽で汚泥を沈殿分離した後の上澄液についても簡易に再度好気処理可能にする構成を実現することができる。
[Operation effect 3]
The liquid phase separated in the solid-liquid separation tank is transferred from the solid-liquid separation tank to the aerobic treatment tank to be received in the aerobic treatment tank and subjected to aerobic treatment, but a sludge sedimentation tank is provided. In the above configuration, instead of transferring the liquid phase from the solid-liquid separation tank directly to the aerobic treatment tank, the liquid phase may be transferred to the aerobic treatment tank via the sludge settling tank. That is, even with the above configuration, the liquid phase solid-liquid separated in the solid-liquid separation tank is subjected to aerobic treatment well, and the supernatant after the sludge is separated in the sludge sedimentation tank is also easily aerobically again A configuration that enables processing can be realized.

〔構成4〕
また、前記受け入れ部から前記固液分離槽へ前記生ごみ粉砕処理廃液を移流させる処理廃液移流部を、前記仕切壁に対向させた状態で、前記仕切壁の横方向における一端側に対応する側に寄せて設け、
前記散気装置を、前記処理廃液移流部と前記仕切壁との間に、前記処理廃液移流部側に寄せて設け、
前記移送部の液相流入領域を、前記散気装置の散気領域に対して、前記仕切壁の横方向における前記処理廃液移流部側とは反対側に対応する側方に設けてあっても良い。
[Configuration 4]
Further, a side corresponding to one end side in the lateral direction of the partition wall in a state in which the processing waste solution advection unit for transferring the garbage waste processing waste solution from the receiving unit to the solid-liquid separation tank is opposed to the partition wall Set up,
The aeration device is provided between the processing waste solution advection unit and the partition wall, and is provided near the processing waste solution advection unit side.
Even if the liquid phase inflow region of the transfer portion is provided on the side corresponding to the side opposite to the processing waste solution advection portion side in the lateral direction of the partition wall with respect to the aeration region of the aeration device good.

〔作用効果4〕
上記構成によれば、散気装置により、固液分離槽の上澄みの液層を一層効果的に仕切壁の上端に向けて流動案内できるとともに、抑制機構により、散気領域から浮遊物が移送部の液相流入領域に流入するのを的確に防止できるので、移送部によって好気処理槽に移送される浮遊物の量をさらに低減して、好気処理槽における好気処理の負荷をさらに低くすることができる。
したがって、浄化処理して排出する排水の清浄度をさらに向上することができる。
[Operation effect 4]
According to the above-described configuration, the liquid dispersion of the supernatant of the solid-liquid separation tank can be more effectively flow-directed toward the upper end of the partition wall by the air diffuser, and the suspended matter is transported from the aeration area by the suppression mechanism. Can be properly prevented from flowing into the liquid phase inflow region of the fluid, so the amount of suspended matter transferred to the aerobic treatment tank by the transfer unit can be further reduced to further reduce the load of the aerobic treatment in the aerobic treatment tank. can do.
Therefore, the cleanliness of the waste water to be purified and discharged can be further improved.

〔構成5〕
また、前記抑制機構が、前記固液分離槽における前記散気領域と前記液相流入領域との間に、前記固液分離槽の液面より下側まで下降して設けられる下降仕切りであっても良い。
[Configuration 5]
In addition, the restraining mechanism is a descending partition provided so as to descend below the liquid surface of the solid-liquid separation tank between the aeration area and the liquid phase inflow area in the solid-liquid separation tank, Also good.

〔作用効果5〕
上記構成によれば、下降仕切りである抑制機構によって、固液分離槽の液面の下方で浮遊する浮遊物も、散気領域から液相流入領域に流入するのが防止されるので、移送部によって液相とともに好気処理槽に移送される浮遊物の量をさらに低減して、好気処理槽における好気処理の負荷をさらに低くすることができる。
したがって、浄化処理して排出する排水の清浄度をさらに向上することができる。
[Operation effect 5]
According to the above configuration, since the floating member floating below the liquid surface of the solid-liquid separation tank is also prevented from flowing into the liquid phase inflow region from the aeration region by the suppression mechanism which is the descending partition, the transfer portion Thus, the amount of suspended matter transferred to the aerobic treatment tank together with the liquid phase can be further reduced to further reduce the load of aerobic treatment in the aerobic treatment tank.
Therefore, the cleanliness of the waste water to be purified and discharged can be further improved.

〔構成6〕
また、前記抑制機構が、前記散気領域と前記液相流入領域との間における液相の移流を許容し、浮遊物の移流を抑制する液相移流許容型抑制機構であっても良い。
[Configuration 6]
Further, the suppression mechanism may be a liquid phase advection permitted suppression mechanism that allows the advection of the liquid phase between the aeration area and the liquid phase inflow area and suppresses the advection of the floating matter.

〔作用効果6〕
上記構成によれば、抑制機構を下降仕切りで構成するに当たって、抑制機構を液相移流許容型抑制機構とすることにより、下降仕切りを、固液分離槽のより深い位置まで下降して設けることができるので、浮遊物が散気領域から液相流入領域に流入するのを一層効果的に防止できるようになり、移送部によって液相とともに好気処理槽に移送される浮遊物の量をさらに低減して、好気処理槽における好気処理の負荷をさらに低くすることができる。
したがって、浄化処理して排出する排水の清浄度をさらに向上することができる。
[Operation effect 6]
According to the above configuration, when the suppression mechanism is configured by the descending partition, the descending partition can be lowered to a deeper position of the solid-liquid separation tank by using the suppression mechanism as the liquid phase advection permitted suppression mechanism. Because this can be performed, it is possible to more effectively prevent the floating material from flowing into the liquid phase inflow region from the aeration region, and the amount of the floating material transferred to the aerobic treatment tank together with the liquid phase by the transfer unit is further reduced. Thus, the load of aerobic treatment in the aerobic treatment tank can be further reduced.
Therefore, the cleanliness of the waste water to be purified and discharged can be further improved.

〔構成7〕
また、前記移送部を、前記固液分離槽と前記好気処理槽とにわたって設けた管状移送路を備えて構成し、
前記管状移送路の基端を、前記固液分離槽の液相における液面側部分に配設して、前記基端の周囲近傍を、前記液相流入領域としてあっても良い。
[Configuration 7]
Further, the transfer unit is configured to include a tubular transfer path provided over the solid-liquid separation tank and the aerobic treatment tank,
The proximal end of the tubular transfer path may be disposed on the liquid surface side of the liquid phase of the solid-liquid separation tank, and the vicinity of the periphery of the proximal end may be the liquid phase inflow area.

〔作用効果7〕
上記構成によれば、移送部を、管状移送路を備えて構成することにより、液相流入部となる管状移送路の基端を、固液分離槽の液面から液相に進入させた形態で配設できるので、固液分離槽の浮遊物が管状移送路に流入するのを一層効果的に防止できるようになり、移送部によって液相とともに好気処理槽に移送される浮遊物の量をさらに低減して、好気処理槽における好気処理の負荷をさらに低くすることができる。
したがって、浄化処理して排出する排水の清浄度をさらに向上することができる。
[Operation effect 7]
According to the above configuration, the transfer portion is configured to include the tubular transfer path, whereby the base end of the tubular transfer path to be the liquid phase inflow portion is made to enter the liquid phase from the liquid surface of the solid-liquid separation tank It is possible to more effectively prevent the floating matter in the solid-liquid separation tank from flowing into the tubular transfer passage, and the amount of the floating matter transferred to the aerobic treatment tank together with the liquid phase by the transfer section. Can be further reduced to further reduce the load of aerobic treatment in the aerobic treatment tank.
Therefore, the cleanliness of the waste water to be purified and discharged can be further improved.

〔構成8〕
また、前記沈殿物移流部に、前記固液分離槽と前記嫌気発酵槽との間を前記沈殿物により閉塞して、固形成分の前記嫌気発酵槽から前記固液分離槽への逆流を防止可能にする絞部を設けるとともに、
前記沈殿物を前記絞部を介して前記嫌気発酵槽に移流させ、前記嫌気発酵槽の余剰の液相を前記絞部を介して前記固液分離槽に返送可能にする沈殿物移流機構を設けてあっても良い。
[Configuration 8]
Further, in the precipitate transfer unit, the space between the solid-liquid separation tank and the anaerobic fermentation tank can be blocked by the precipitate to prevent backflow of solid components from the anaerobic fermentation tank to the solid-liquid separation tank Together with a diaphragm to
A sediment advection mechanism is provided to transfer the precipitate to the anaerobic fermentation tank through the narrowing section, and to allow the excess liquid phase of the anaerobic fermentation tank to be returned to the solid-liquid separation tank through the narrowing section. May be

〔作用効果8〕
上記構成によれば、固液分離槽で分離された沈殿物は、沈殿して沈殿物移流部における絞部に達する。絞部では、固液分離槽と嫌気発酵槽との間を沈殿物により閉塞して、固形成分の嫌気発酵槽から固液分離槽への逆流を防止可能にする沈殿物移流機構を設けるから、沈殿物は、固液分離槽から嫌気発酵槽へ一方通行で移流する。一方、固液分離槽における上澄液を含む液相は、嫌気発酵槽において嫌気発酵されて、バイオガスを生成する。また、嫌気発酵槽の微生物からなる汚泥は、嫌気発酵槽内で保持され、外部に流出することなく保持される。すなわち、余剰の液相の移流量に応じて、嫌気発酵槽から固液分離槽へ液相の返流が生じるが、沈殿物がフィルタ効果を発揮し、嫌気発酵槽からの返流に含まれる嫌気微生物は沈殿物内に留まる。これにより嫌気発酵槽内の嫌気微生物濃度を高濃度に維持できる。そして、嫌気発酵槽では、固液分離槽の沈殿物が流入するが、嫌気発酵槽の内部の固形成分が固液分離槽に返送されることがなく、嫌気発酵槽内の微生物が嫌気発酵槽外に流出して減少することが抑制され、良好な嫌気発酵が維持でき、嫌気発酵により減容した固形成分量に見合う沈殿物が順次補給される運転状態を維持できる。
したがって、嫌気発酵槽では沈殿物を効率よくバイオガス化することができるので、バイオガスの生成量を増大することができる。
[Operation effect 8]
According to the above configuration, the precipitate separated in the solid-liquid separation tank precipitates and reaches the constriction part in the sediment transfer part. In the constriction section, a precipitate advection mechanism is provided that can block the solid-liquid separation tank and the anaerobic fermentation tank with the precipitate and prevent backflow of solid components from the anaerobic fermentation tank to the solid-liquid separation tank, Sediments are one-way advected from the solid-liquid separation tank to the anaerobic fermenter. On the other hand, the liquid phase containing the supernatant in the solid-liquid separation tank is anaerobically fermented in the anaerobic fermentation tank to produce biogas. Moreover, the sludge which consists of microorganisms of an anaerobic fermentation tank is hold | maintained in an anaerobic fermentation tank, and is hold | maintained without flowing out outside. That is, depending on the transfer rate of the excess liquid phase, a return flow of the liquid phase occurs from the anaerobic fermentation tank to the solid-liquid separation tank, but the precipitate exerts a filter effect and is included in the return flow from the anaerobic fermentation tank Anaerobic microorganisms remain in the sediment. Thereby, the anaerobic microorganism concentration in the anaerobic fermentation tank can be maintained at a high concentration. And in an anaerobic fermentation tank, although the precipitate of a solid-liquid separation tank flows in, the solid component inside an anaerobic fermentation tank is not returned to a solid-liquid separation tank, but the microorganism in an anaerobic fermentation tank is an anaerobic fermentation tank It is suppressed from flowing out and being reduced, and good anaerobic fermentation can be maintained, and an operating state can be maintained in which sediments corresponding to the volume of solid component reduced by anaerobic fermentation are sequentially replenished.
Therefore, in the anaerobic fermenter, since the precipitate can be efficiently biogasified, the amount of biogas produced can be increased.

〔構成9〕
また、前記絞部は、前記固液分離槽下部に設けたスリット状出口を備え、前記固液分離槽における沈殿物が、前記スリット状出口を閉塞して堆積する堆積層を形成可能に構成してあっても良い。
[Configuration 9]
In addition, the constriction portion is provided with a slit-like outlet provided in the lower part of the solid-liquid separation tank, and a deposit in the solid-liquid separation tank can form a deposited layer which blocks and deposits the slit-like outlet May be

〔作用効果9〕
上記構成によれば、固液分離槽下部に沈殿した沈殿物が、スリット状出口において 下すぼまりに集合するから、スリット状出口で堰きとめられて堆積する。すると、スリット状出口に堆積した沈殿物は、沈殿物や、嫌気発酵槽内の微生物などの固形成分に関しては、これらを嫌気発酵槽から固液分離槽に逆流させるのを防止するフィルタとして機能することになる。
すると、スリット状出口を絞部として沈殿物を堰きとめる簡単な構成により、沈殿物は、嫌気発酵槽に徐々に流入しつつ、嫌気発酵槽からの固形成分の逆流を防止できる。これにより、嫌気発酵槽における沈殿物量を好適に維持するとともに、嫌気発酵槽内の微生物を槽内に確実に保持でき、バイオガスの発生を良好に維持できる。
[Operation effect 9]
According to the above configuration, since the precipitates deposited in the lower part of the solid-liquid separation tank gather in the lower part at the slit-like outlet, they are collected and deposited at the slit-like outlet. Then, the precipitate deposited at the slit-like outlet functions as a filter for preventing the backflow of solid components such as sediment and microorganisms in the anaerobic fermentation tank from the anaerobic fermentation tank to the solid-liquid separation tank It will be.
Then, the sediment can be prevented from backflow of the solid component from the anaerobic fermentation tank while gradually flowing into the anaerobic fermentation tank by a simple configuration in which the slit-like outlet is used as a throttling part to hold the precipitate. As a result, the amount of precipitate in the anaerobic fermentation tank can be suitably maintained, the microorganisms in the anaerobic fermentation tank can be reliably held in the tank, and the generation of biogas can be favorably maintained.

〔構成10〕
また、前記嫌気発酵槽に嫌気ガスを散気する移流用散気装置を設け、前記移流用散気装置に間欠的に嫌気ガスを供給するガス供給装置を設け、前記スリット状出口の下方から上昇する気液混相流を形成可能に配置して、前記沈殿物移流機構を形成してあっても良い。
[Configuration 10]
Further, the anaerobic fermentation tank is provided with an advection diffuser for diffusing anaerobic gas, the advection diffuser is provided with a gas supply apparatus for intermittently supplying anaerobic gas, and rising from below the slit-like outlet The precipitate advection mechanism may be formed by being arranged so as to form a gas-liquid mixed phase flow.

〔作用効果10〕
上記構成によれば、移流用散気装置により嫌気ガスを嫌気発酵槽内に散気することによって、スリット状出口の下方から上昇する気液混相流を形成できる。気液混相流が、スリット状出口の近傍を上昇すると、気液混相流の流れによるイジェクタ効果が生じ、スリット状出口に堰きとめられていた沈殿物を、嫌気発酵槽側に吸い出し、固液分離槽から嫌気発酵槽に移流させる沈殿物移流機構として機能することになる。また、このとき、散気装置に供給されるのは嫌気ガスであるため、嫌気発酵槽の嫌気発酵条件は良好に維持できる。このような嫌気ガスとしては、例えば、嫌気発酵槽で生成したバイオガスを利用できる。
そのため、簡単な構成で沈殿物移流機構を構成できるとともに、移流用散気装置から間欠的に散気する散気量、散気の時期を調整するだけの簡単な制御で、固液分離槽から嫌気発酵槽に移流する沈殿物量を制御できる。
[Operation effect 10]
According to the above-mentioned configuration, the anaerobic gas is diffused into the anaerobic fermentation tank by the advection aeration device, whereby a gas-liquid mixed phase flow rising from the lower side of the slit-like outlet can be formed. When the gas-liquid mixed phase flow rises in the vicinity of the slit-like outlet, an ejector effect is generated due to the flow of the gas-liquid mixed-phase flow, and the precipitate trapped at the slit-like outlet is sucked out to the anaerobic fermentation tank side It functions as a sediment advection mechanism for advection from the tank to the anaerobic fermenter. At this time, it is the anaerobic gas that is supplied to the aeration apparatus, so the anaerobic fermentation conditions of the anaerobic fermenter can be maintained well. As such an anaerobic gas, for example, biogas generated in an anaerobic fermentation tank can be used.
Therefore, it is possible to configure the sediment advection mechanism with a simple configuration, and to control the amount of aeration intermittently aerated from the advection aeration device, and a simple control that only adjusts the aeration timing, from the solid-liquid separation tank The amount of sediment transferred to the anaerobic fermenter can be controlled.

〔構成11〕
また、内部を一端側から他端側にわたって複数の水処理槽に仕切って、前記複数の水処理槽を一端側から前記嫌気発酵槽、前記固液分離槽、前記受け入れ部としての貯留槽、前記好気処理槽で沈殿分離された沈殿物を受け入れる汚泥沈降槽、前記好気処理槽の順に設けてあってもよい。
[Configuration 11]
Further, the inside is divided into a plurality of water treatment tanks from one end side to the other end side, and the plurality of water treatment tanks are divided from the one end side into the anaerobic fermentation tank, the solid-liquid separation tank, the storage tank as the receiving part, It may be provided in order of the sludge settling tank which receives the sediment separated by the aerobic treatment tank, and the said aerobic processing tank.

〔作用効果11〕
上記構成によると、前記固液分離槽で固液分離された液相は、嫌気発酵槽を跨ぐことなく好気処理槽に移送されるようになり、コンパクト化することができ、長期使用の間に浮遊物の付着による液相の移流路の狭窄、閉塞を招くおそれを大きく低減できるようになる。しかも、嫌気発酵槽を排水処理装置本体の最も一端側に配置して、好気処理槽を排水処理装置本体の最も他端側に配置することになるから、嫌気発酵槽において高温メタン発酵を行う場合に供給される熱が、汚泥沈降槽、好気処理槽に伝達されるのを固液分離槽や貯留槽で遮蔽して緩和することになって、固液分離槽を高温メタン発酵に適した50℃〜80℃の温度域(たとえば55℃)にまで加熱維持しやすくなる。そのために温度維持に要するエネルギー供給量を削減できるとともに、好気処理槽における排水温度が高くなりすぎて(たとえば35℃以上)、好気性微生物の活性が低下するというような問題を生起しにくい温度域(たとえば30℃程度)に維持することができる。
[Operation effect 11]
According to the above configuration, the liquid phase separated in solid-liquid separation in the solid-liquid separation tank is transferred to the aerobic treatment tank without straddling the anaerobic fermentation tank, and can be made compact, and can be used for a long period of time It is possible to greatly reduce the possibility of constriction or blockage of the transfer passage of the liquid phase due to the adhesion of suspended matter. Moreover, by the anaerobic fermentation tank located nearest one end of the waste water treatment apparatus main body, since will be located in the most other end of the waste water treatment apparatus main aerobic treatment tank, said hot methane fermentation in anaerobic fermenter In the case where the heat supplied to the sludge settling tank or aerobic treatment tank is mitigated by shielding it with a solid-liquid separation tank or a storage tank, the solid-liquid separation tank is suitable for high temperature methane fermentation It becomes easy to maintain heating to a temperature range of 50 ° C. to 80 ° C. (for example 55 ° C.). Therefore, it is possible to reduce the energy supply amount required to maintain the temperature, and the temperature at which the drainage temperature in the aerobic treatment tank becomes too high (for example, 35 ° C. or more) and the activity of aerobic microorganism is less likely to occur. It can be maintained in the range (eg, about 30 ° C.).

排水処理装置の縦断正面図Longitudinal front view of waste water treatment equipment 排水処理装置における固液分離槽及び嫌気発酵槽を示す図Diagram showing solid-liquid separation tank and anaerobic fermentation tank in wastewater treatment equipment 排水処理装置における固液分離槽及び嫌気発酵槽の横断平面図Cross-sectional plan view of solid-liquid separation tank and anaerobic fermentation tank in wastewater treatment equipment 好気処理槽へ移送される上澄液及び好気処理槽から排出される排水それぞれのT−CODの推移を示す図Figure showing transition of T-COD of supernatant liquid transferred to aerobic treatment tank and wastewater discharged from aerobic treatment tank 別実施形態における排水処理装置の横断平面図Cross-sectional plan view of the wastewater treatment device in another embodiment 別実施形態における排水処理装置の縦断正面図Longitudinal front view of waste water treatment apparatus in another embodiment 別実施形態における排水処理装置の横断平面図Cross-sectional plan view of the wastewater treatment device in another embodiment 別実施形態における排水処理装置の縦断正面図Longitudinal front view of waste water treatment apparatus in another embodiment

以下、図面に基づいて、本発明の実施形態にかかる排水処理装置を説明する。なお、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Hereinafter, the waste water treatment apparatus according to the embodiment of the present invention will be described based on the drawings. Although preferred embodiments are described below, these embodiments are each described in order to illustrate the present invention more specifically, and various changes can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔排水処理装置〕
本発明の実施形態にかかる排水処理装置は、図1〜図3に示すように、生ごみ粉砕処理廃液を受け入れる受入口11を備えるとともに、その受入口11にて受け入れた生ごみ粉砕処理廃液を貯留する貯留槽1(受け入れ部の一例)、その貯留槽1から生ごみ粉砕処理廃液を移流させて、生ごみ粉砕処理廃液を沈殿分離する固液分離槽2、固液分離槽2にて沈殿分離された沈殿物を受け入れてバイオガス化する嫌気発酵槽3、固液分離槽2で固液分離された液相を受け入れて好気処理する好気処理槽4、及び、好気処理槽4で沈殿分離された沈殿物を受け入れる汚泥沈降槽5等を備えて構成してある。
[Drainage treatment equipment]
The waste water treatment apparatus according to the embodiment of the present invention, as shown in FIG. 1 to FIG. 3, comprises a receiving port 11 for receiving the waste waste grinding waste, and the waste waste grinding waste received at the receiving inlet 11 Reservoir 1 (an example of the receiving part), solid waste separation tank 2 which deposits garbage separation waste waste by accreting garbage waste treatment waste liquid from the storage tank 1 and precipitates in solid liquid separation tank 2 Anaerobic fermentation tank 3 that receives separated sediment and biogases it, aerobic processing tank 4 that receives liquid phase that has been solid-liquid separated in solid-liquid separation tank 2, and aerobically processed, and aerobic processing tank 4 The sludge settling tank 5 etc. which receive the sediment separated by sedimentation are comprised.

また、貯留槽1にて受け入れた生ごみ粉砕処理廃液を固液分離槽2に移流させる処理廃液移流部12、固液分離槽2から好気処理槽4に上澄み液(即ち、液相)を移送する移送部M、固液分離槽2から嫌気発酵槽3に上澄み液(即ち、液相)を移流させる液相移流部21、沈殿物を移流させる沈殿物移流部22、好気処理槽4にて沈殿分離された沈殿物を貯留槽1まで返送する返送手段Rを設けてある。   In addition, the treatment waste liquid transfer unit 12 for transferring the garbage waste treatment waste received in the storage tank 1 to the solid-liquid separation tank 2, and the solid solution (ie, liquid phase) from the solid-liquid separation tank 2 to the aerobic treatment tank 4 Transfer unit M to transfer, liquid phase transfer unit 21 to transfer supernatant (that is, liquid phase) from solid-liquid separation tank 2 to anaerobic fermentation tank 3, sediment transfer unit 22 to transfer precipitates, aerobic treatment tank 4 A return means R is provided for returning the precipitate separated at step 1 to the storage tank 1.

この実施形態では、図1に示すように、返送手段Rを、好気処理槽4から汚泥沈降槽5まで主に汚泥(沈殿物の一例)を返送する第一返送路41と、汚泥沈降槽5から貯留槽1まで主に汚泥(沈殿物の一例)を返送する第二返送路51とを備えて構成してある。
さらに、嫌気発酵槽3にて発生したバイオガスを取り出すバイオガス取出口31、バイオガス取出口31からバイオガス取出路37を通して取り出されるバイオガスを一時貯留するとともに、必要に応じて外部に送出可能なバイオガスタンクT、及び、好気処理槽4にて好気処理された処理済みの排水を外部に排出する排水口42を設けてある。
In this embodiment, as shown in FIG. 1, the return means R is a first return passage 41 for returning sludge (an example of precipitate) mainly from the aerobic treatment tank 4 to the sludge settling tank 5, and a sludge settling tank It comprises and the 2nd return path 51 which returns sludge (an example of a precipitate) mainly from 5 to the storage tank 1 and comprising.
Furthermore, the biogas taken out from the biogas outlet 31 and the biogas outlet 31 from the biogas outlet 31 through the biogas outlet 37 can be temporarily stored, and can be sent to the outside as needed. A biogas tank T and a drainage port 42 for discharging treated wastewater treated aerobically in the aerobic treatment tank 4 to the outside are provided.

そして、受入口11から受け入れた生ごみ粉砕処理廃液を固液分離槽2で沈殿分離し、沈殿物は嫌気発酵槽3での嫌気発酵によりバイオガス化して、バイオガスをバイオガス取出口31からバイオガス取出路37により取り出し、液相は好気処理槽4での好気処理により浄化して、清浄な排水として排水口42から外部に排出する構成となっている。   Then, the garbage waste processing waste received from the receiving port 11 is separated by settling in the solid-liquid separation tank 2, the precipitate is biogasified by anaerobic fermentation in the anaerobic fermentation tank 3, and the biogas is extracted from the biogas outlet 31 The liquid phase is removed by the biogas removal path 37, and the liquid phase is purified by the aerobic treatment in the aerobic treatment tank 4 and discharged as the clean drainage from the drainage port 42 to the outside.

具体的には、図1に示すように、排水処理装置本体Aの内部を4つの仕切壁W12,W23,W35,W45にて排水処理装置本体Aの左右方向(図1の左右方向に一致する)に5つの槽に仕切り、左右方向の一端(図1の左端)から、貯留槽1、固液分離槽2、嫌気発酵槽3、汚泥沈降槽5、好気処理槽4を列状に並べて形成してある。各槽間の連通状態に関して述べると、図1から判明するように、貯留槽1と固液分離槽2及び嫌気発酵槽3とは、液相側、気相側とも連通している。汚泥沈降槽5及び好気処理槽4は、それぞれ独立の槽としてある。また、嫌気発酵槽3上部の気相部に、バイオガス取出口31を形成して、この嫌気発酵槽3で発生したガスが、バイオガス取出路37により取り出される構成となっており、気相がこの槽から汚泥沈降槽5及び好気処理槽4に流出しない構成となっている。   Specifically, as shown in FIG. 1, the inside of the waste water treatment apparatus main body A is aligned with the left and right direction of the waste water treatment apparatus main body A by four partition walls W12, W23, W35, W45 (the right and left direction in FIG. ), The storage tank 1, solid-liquid separation tank 2, anaerobic fermentation tank 3, sludge sedimentation tank 5, and aerobic treatment tank 4 are arranged in a row from one end in the left-right direction (left end in FIG. 1). It is formed. Regarding the communication state between the respective tanks, as is clear from FIG. 1, the storage tank 1, the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 are in communication with both the liquid phase side and the gas phase side. The sludge settling tank 5 and the aerobic treatment tank 4 are independent of each other. Further, the biogas outlet 31 is formed in the gas phase portion of the upper portion of the anaerobic fermentation tank 3, and the gas generated in the anaerobic fermentation tank 3 is taken out by the biogas extraction passage 37, It does not flow out from this tank to the sludge settling tank 5 and the aerobic treatment tank 4.

なお、以下の説明では、貯留槽1と固液分離槽2とを仕切る仕切壁W12を第一仕切壁W12と、固液分離槽2と嫌気発酵槽3とを仕切る仕切壁W23を第二仕切壁W23と、嫌気発酵槽3と汚泥沈降槽5とを仕切る仕切壁W35を第3仕切壁W35と、汚泥沈降槽5と好気処理槽4とを仕切る仕切壁W45を第4仕切壁W45とそれぞれ記載する場合がある。   In the following description, the partition wall W12 partitioning the storage tank 1 and the solid-liquid separation tank 2 is a first partition wall W12, and the partition wall W23 partitioning the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 is a second partition Wall W23, partition wall W35 that divides anaerobic fermentation tank 3 and sludge sedimentation tank 5 into third partition wall W35, partition wall W45 that divides sludge sedimentation tank 5 and aerobic treatment tank 4 into fourth partition wall W45 Each may be described.

図2において、図2(a)が固液分離槽2及び嫌気発酵槽3の縦断正面図を、図2(b)が図2(a)におけるIIb−IIb矢視図を、図2(c)が図2(a)におけるIIc−IIc矢視図をそれぞれ示し、図3が貯留槽1、固液分離槽2及び嫌気発酵槽3の横断平面図を示している。   In FIG. 2, FIG. 2 (a) is a longitudinal front view of the solid-liquid separation tank 2 and the anaerobic fermentation tank 3, FIG. 2 (b) is a view taken along the line IIb-IIb in FIG. 2 shows a view taken along the line IIc-IIc in FIG. 2 (a), and FIG. 3 shows a cross-sectional plan view of the storage tank 1, the solid-liquid separation tank 2 and the anaerobic fermentation tank 3.

〔貯留槽〕
図1〜図3に示すように、排水処理装置本体Aにおける貯留槽1の液面近傍に、受入口11を設け、貯留槽1の内部に生ごみ粉砕処理廃液を貯留可能な貯留空間13を形成している。また、貯留空間13内部には、バイオガスタンクTに貯留されているバイオガスを嫌気ガスとして嫌気ガスポンプP1により供給する貯留槽用散気装置14を設け、貯留槽1の下部より曝気撹拌することにより、受け入れた生ごみ粉砕処理廃液を貯留しつつ、より可溶化し、流動化を図る可溶化槽として機能するように構成してある。また、この貯留槽1では、金属等の比重の大きい異物が除去される。なお、バイオガスをバイオガスタンクTから貯留槽用散気装置14に送る送気流路(図示省略)には、開閉弁V1及び流量調整弁V2を設け、これら開閉弁V1と流量調整弁V2により、貯留槽用散気装置14からの散気の断続及び散気量の調整が可能に構成してある。
[Storage tank]
As shown in FIGS. 1 to 3, the receiving port 11 is provided in the vicinity of the liquid surface of the storage tank 1 in the waste water treatment apparatus main body A, and the storage space 13 capable of storing garbage waste processing waste liquid inside the storage tank 1. It is formed. In addition, a storage tank aeration apparatus 14 is provided inside the storage space 13 to supply the biogas stored in the biogas tank T as an anaerobic gas by the anaerobic gas pump P1, and aeration agitation is performed from the lower part of the storage tank 1 The apparatus is configured to function as a solubilization tank for achieving more solubilization and fluidization while storing the received garbage crush processing waste solution. Further, in the storage tank 1, foreign matter having a large specific gravity such as metal is removed. An on-off valve V1 and a flow rate adjustment valve V2 are provided in the air supply flow path (not shown) for sending biogas from the biogas tank T to the storage tank aeration apparatus 14, and these on-off valve V1 and flow rate adjustment valve V2 It is possible to adjust the aeration of the aeration from the storage tank aeration device 14 and the adjustment of the aeration amount.

第一仕切壁W12の上端は、排水処理装置本体Aの天井近くまで延びて、貯留槽1の液面よりも上方に位置するようにしてあり、この第一仕切壁W12における排水処理装置本体Aの前後方向(図1、図2(a)の左右方向に一致する左右方向に対してその紙面表裏方向)の一端側部(後端側部)には、生ごみ粉砕処理廃液を可溶化した可溶化液がオーバーフローによって貯留槽1から固液分離槽2に移流可能なように開口部を形成し、この開口部にて、処理廃液移流部12を構成してある。   The upper end of the first partition wall W12 extends close to the ceiling of the drainage treatment apparatus main body A, and is positioned above the liquid surface of the storage tank 1, and the drainage treatment apparatus main body A in the first partition wall W12 Garbage treatment waste was solubilised at one end side (rear end side) of the front and back direction (the direction of the front and back of the sheet with respect to the left and right direction corresponding to the left and right direction of FIG. 1 and FIG. An opening is formed so that the solubilization liquid can be transferred from the storage tank 1 to the solid-liquid separation tank 2 by overflow, and the processing waste liquid transfer part 12 is configured at this opening.

〔固液分離槽〕
図1〜図3に示すように、固液分離槽2には、処理廃液移流部12から受け入れた可溶化液から固形成分を沈殿分離可能にする沈殿分離空間23を形成してある。
図1、図2(a)に示すように、固液分離槽2の下部には、固液分離槽2において固形成分が沈殿分離された沈殿物を嫌気発酵槽3に可溶化液とともに移流させ、嫌気発酵槽3で嫌気処理された処理済の排水(余剰の液相)を固液分離槽2に返送可能にする沈殿物移流部22を設けてある。
さらに、この固液分離槽2の上澄液を嫌気発酵槽3に移流させる液相移流部21を設けてあるが、固液分離槽2及び嫌気発酵槽3それぞれに貯留される処理液に関して、両槽間においてその処理液表面側で上澄み液の流通が可能なように、独特の構成が採用されている。
Solid-liquid separation tank
As shown in FIGS. 1 to 3, in the solid-liquid separation tank 2, a precipitation separation space 23 is formed, which enables the solid component to be precipitated and separated from the solubilized liquid received from the processing waste liquid transfer unit 12.
As shown in FIG. 1 and FIG. 2 (a), in the lower part of the solid-liquid separation tank 2, the precipitate from which the solid component is separated in the solid-liquid separation tank 2 is transferred to the anaerobic fermentation tank 3 together with the solubilization liquid A sediment transfer unit 22 is provided which enables the treated wastewater (excess liquid phase) anaerobically treated in the anaerobic fermentation tank 3 to be returned to the solid-liquid separation tank 2.
Furthermore, although a liquid phase transfer unit 21 is provided to transfer the supernatant liquid of the solid-liquid separation tank 2 to the anaerobic fermentation tank 3, regarding the treatment liquid stored in each of the solid-liquid separation tank 2 and the anaerobic fermentation tank 3, A unique configuration is adopted so that the supernatant can flow between the two tanks on the surface side of the treatment liquid.

図1及び図2(a)から判明するように、固液分離槽2では、その下部域に固形成分が沈殿分離された沈殿物の堆積層22cが形成されるとともに、その上部域が可溶化液の上澄層となる。この上澄層は、所謂上澄液と浮遊性のごみ(即ち、浮遊物)Sが混在した状態となる。そして、本発明の実施形態における排水処理装置では、沈殿物の嫌気発酵槽3へ移流を良好に行なう構成と、上澄液の嫌気発酵槽3及び好気処理槽4への移流及び移送を良好に行なう構成が採用されている。   As can be seen from FIG. 1 and FIG. 2 (a), in the solid-liquid separation tank 2, a sedimented layer 22c of the precipitate in which solid components are separated is formed in the lower region, and the upper region is solubilized It becomes a liquid supernatant layer. The supernatant layer is in a state where so-called supernatant fluid and floating dust (that is, suspended matter) S are mixed. And, in the waste water treatment apparatus according to the embodiment of the present invention, the constitution for favorably advecting the precipitate to the anaerobic fermentation tank 3 and the advection and transfer of the supernatant liquid to the anaerobic fermentation tank 3 and the aerobic treatment tank 4 are good. The configuration to be performed is adopted.

即ち、図1〜図3に示すように、液相移流部21に、上端を固液分離槽2の最低水位高さとして、固液分離槽2と嫌気発酵槽3とを仕切る第二仕切壁W23を設けるとともに、液相移流部21の貯留槽1側に、固液分離槽2の液面の下方近くから、散気方向D(図2及び図3において、矢印にて示す)を第二仕切壁W23の上端として、嫌気性ガスを散気する浮遊物寄せ用散気装置25(即ち、散気装置)を設け、浮遊物寄せ用散気装置25の散気領域Z1と移送部Mの液相流入領域Z2との間における浮遊物Sの移流を抑制する抑制機構C(図2(b)、(c)及び図3参照)を設けてある。
以下、順に説明する。
That is, as shown in FIGS. 1 to 3, the second partition wall which divides the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 into the liquid phase transfer part 21 with the upper end as the minimum water level of the solid-liquid separation tank 2. W23 is provided, and the aeration direction D (indicated by an arrow in FIG. 2 and FIG. 3) from the lower side of the liquid surface of the solid-liquid separation tank 2 on the storage tank 1 side of the liquid phase advection portion 21 As an upper end of the partition wall W23, an air floating device 25 (i.e., air diffusion device) for air floating an anaerobic gas is provided, and the air diffusion region Z1 of the air floating device 25 and the transfer portion M are provided. The suppression mechanism C (refer FIG.2 (b), (c) and FIG. 3) which suppresses the advection of the floating substance S between liquid phase inflow area | region Z2 is provided.
The following will be described in order.

〔沈殿物の嫌気発酵槽へ移流〕
図1及び図2(a)に示すように、沈殿物移流部22は、固液分離槽2の沈殿分離空間23の下部に設けた絞部としての下すぼまり状のスリット状出口22aを備えて構成されている。具体的には、流下案内板24を、下方側ほど嫌気発酵槽3側に位置する形態の傾斜状で、第一仕切壁W12における固液分離槽2側の面の下方よりの箇所から延設してある。また、第二仕切壁W23の下部を、下方側ほど固液分離槽2側に近づく傾斜壁部22bに構成し、その傾斜壁部22bの下端縁と流下案内板24の斜め上向きの面との間にスリットを形成して、流下案内板24と第二仕切壁W23の下部の傾斜壁部22bとにより、スリット状出口22aを形成してある。これにより、スリット状出口22aを介して、上記沈殿物と可溶化液、処理済みの排水の移流を抑制され、固液分離槽2における沈殿物が、スリット状出口22aを閉塞して堆積する堆積層22cを形成可能に構成してある(図2(a)参照)。
[Advection of sediment to anaerobic fermenter]
As shown in FIG. 1 and FIG. 2 (a), the precipitate advection part 22 is provided with a bottomed slit-like outlet 22a as a throttling part provided in the lower part of the precipitation separation space 23 of the solid-liquid separation tank 2. Is configured. Specifically, the flow-down guide plate 24 extends from a position below the surface of the first partition wall W12 on the solid-liquid separation tank 2 side in a sloping shape in which the downstream guide plate 24 is positioned on the anaerobic fermentation tank 3 side toward the lower side. Yes. Further, the lower portion of the second partition wall W23 is configured as an inclined wall portion 22b which approaches the solid-liquid separation tank 2 side as it goes downward, and the lower end edge of the inclined wall portion 22b and the obliquely upward surface of the flow guiding plate 24. A slit is formed therebetween, and a slit-like outlet 22a is formed by the downstream guide plate 24 and the inclined wall portion 22b at the lower part of the second partition wall W23. Thereby, the advection of the precipitate, the solubilization liquid, and the treated drainage is suppressed via the slit outlet 22a, and the precipitate in the solid-liquid separation tank 2 is deposited by closing the slit outlet 22a. The layer 22c can be formed (see FIG. 2A).

なお、上記構成において、スリット状出口22aの幅は10−30mm程度、好ましくは15mm程度とする。   In the above configuration, the width of the slit-like outlet 22a is about 10-30 mm, preferably about 15 mm.

〔上澄側の嫌気発酵槽及び好気処理槽への移流及び移送〕
図1、図2から判明するように、固液分離槽2と嫌気発酵槽3とを仕切る第二仕切壁W23は、その下部域に先に説明した傾斜壁部22bを備え、排水処理装置本体Aの前後方向において、排水処理装置本体Aの両側壁に渡る状態で設けられている。
そして、第二仕切壁W23の上端縁27を、排水処理装置本体Aの天井よりも下方に位置させて、その第二仕切壁W23の上端縁27が、固液分離槽2及び嫌気発酵槽3における処理液の液面位置を形成するように構成して、液相移流部21に、上端を固液分離槽2の最低水位高さとして、固液分離槽2と嫌気発酵槽3とを仕切る第二仕切壁W23を設けてある。これにより、両槽間の上澄液及び浮遊物Sは、液相移流部21を構成する第二仕切壁W23の上端縁27を越えて互いに移流可能に構成してある。
[Advection and transfer to the anaerobic fermenter and aerobic treatment tank on the supernatant side]
1 and 2, the second partition wall W23 for partitioning the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 includes the inclined wall portion 22b described above in the lower region thereof, and the waste water treatment apparatus main body It is provided so as to extend to both side walls of the drainage treatment apparatus main body A in the front-rear direction of A.
Then, the upper end edge 27 of the second partition wall W23 is positioned below the ceiling of the drainage treatment apparatus main body A, and the upper end edge 27 of the second partition wall W23 corresponds to the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 The liquid phase transfer unit 21 divides the solid-liquid separation tank 2 and the anaerobic fermentation tank 3 with the upper end as the minimum water level of the solid-liquid separation tank 2. A second partition wall W23 is provided. Thereby, the supernatant fluid and the float S between the two tanks are configured to be able to flow over each other beyond the upper end edge 27 of the second partition wall W23 that constitutes the liquid phase advection portion 21.

さらに、固液分離槽2の貯留槽1側の液面の下方近くには、嫌気ガスポンプP1により嫌気性ガスが供給される浮遊物寄せ用散気装置25(散気装置の一例)が備えられている。この浮遊物寄せ用散気装置25は、長さが排水処理装置本体Aの前後方向の長さよりも短い(例えば、排水処理装置本体Aの前後方向の長さの2/3程度)パイプに、その長さ方向に多数の散気孔を分散形成して、パイプ状に構成してある。   Further, a floating material diffuser aeration apparatus 25 (an example of a diffuser) to which an anaerobic gas is supplied by the anaerobic gas pump P1 is provided near the lower side of the liquid surface on the storage tank 1 side of the solid-liquid separation tank 2 ing. The floating material transfer diffuser 25 has a length shorter than the length of the drainage treatment apparatus main body A in the front-rear direction (for example, about 2/3 of the length of the drainage treatment apparatus main body A in the front-rear direction) A large number of air bubbles are dispersedly formed in the length direction to form a pipe shape.

そして、このパイプ状の浮遊物寄せ用散気装置25を、第二仕切壁W23の上端縁27よりもやや下方の高さにて、第一仕切壁W12における固液分離槽2側の面に近接させるとともに、排水処理装置本体Aの前後方向において処理廃液移流部12側の端部に寄せた状態で、その長さ方向を略水平方向で第一仕切壁W12における固液分離槽2側の面に沿わせた姿勢で、配設してある。さらに、この浮遊物寄せ用散気装置25の散気方向D(各散気孔の向き)を、第二仕切壁W23の上端縁27に向く斜め上向きに設定してある。   Then, the pipe-shaped air diffuser 25 for floating material positioning is provided on the surface of the first partition W12 on the solid-liquid separation tank 2 side at a height slightly lower than the upper end edge 27 of the second partition W23. While being close to each other and approaching the end of the waste water treatment apparatus main body A in the front-rear direction of the treatment waste solution transfer portion 12, the length direction thereof is substantially horizontal in the solid-liquid separation tank 2 side of the first partition wall W12. It is arranged in a posture along the surface. Furthermore, the aeration direction D (the direction of each aeration hole) of the floating material aeration aeration device 25 is set obliquely upward toward the upper end edge 27 of the second partition wall W23.

つまり、固液分離槽2の液相域における浮遊物寄せ用散気装置25の上方の領域において、排水処理装置本体Aの前後方向における浮遊物寄せ用散気装置25が存在する範囲が、浮遊物寄せ用散気装置25の散気領域Z1となる。   In other words, in the region above the floating material dispersal diffuser 25 in the liquid phase region of the solid-liquid separation tank 2, the range in which the floating material dispersal diffuser 25 exists in the front-rear direction of the waste water treatment apparatus main body A It becomes the aeration area Z1 of the aeration device 25 for stuffing.

そして、この浮遊物寄せ用散気装置25を働かせることにより、先に説明した浮遊物Sを、第二仕切壁W23の上端縁27を越えて、固液分離槽2から嫌気発酵槽3へ送ることができる。結果、浮遊物Sが、固液分離槽2における処理の阻害要因となることを回避できる。   Then, the floating material S described above is sent from the solid-liquid separation tank 2 to the anaerobic fermentation tank 3 over the upper end edge 27 of the second partition wall W23 by operating the floating material air diffuser 25. be able to. As a result, the floating matter S can be avoided from becoming an inhibition factor of the treatment in the solid-liquid separation tank 2.

さて、図1〜図3に示すように、移送部Mを、固液分離槽2と好気処理槽4とにわたって設けた管状移送路6を備えて構成してある。この管状移送路6は、嫌気発酵槽3及び汚泥沈降槽5それぞれの上方の気相域を通過させた状態で、基端を固液分離槽2内における第二仕切壁W23の上端縁27よりもやや下方に位置させ、且つ、先端を好気処理槽4内上方の気相域に位置させて配設してある。
嫌気発酵槽3では多量のバイオガスが発生し、この嫌気発酵槽3の気相域と固液分離槽2の気相域とは連通しているので、固液分離槽2の気相域は、好気処理槽4の気相域よりも高圧となる。
したがって、固液分離槽2の気相域と好気処理槽4の気相域との圧力差により、固液分離槽2の上澄液を、管状移送路6内にその基端から流入させて、管状移送路6を通して好気処理槽4に移送することができる。
ここで、この管状移送路6に、先に問題となった浮遊物Sが侵入することは、好気処理槽4での好気処理の負荷が高くなる。
Now, as shown in FIGS. 1 to 3, the transfer section M is configured to include a tubular transfer path 6 provided over the solid-liquid separation tank 2 and the aerobic treatment tank 4. The tubular transfer passage 6 has a base end from the upper end edge 27 of the second partition wall W23 in the solid-liquid separation tank 2 while passing through the gas phase zone above the anaerobic fermentation tank 3 and the sludge sedimentation tank 5 respectively. It is located slightly lower and the tip is located in the upper gas phase of the aerobic treatment tank 4.
Since a large amount of biogas is generated in the anaerobic fermentation tank 3 and the gas phase area of the anaerobic fermentation tank 3 and the gas phase area of the solid-liquid separation tank 2 communicate with each other, the gas phase area of the solid-liquid separation tank 2 is The pressure is higher than the gas phase area of the aerobic treatment tank 4.
Therefore, due to the pressure difference between the gas phase area of solid-liquid separation tank 2 and the gas phase area of aerobic treatment tank 4, the supernatant liquid of solid-liquid separation tank 2 is made to flow into tubular transfer path 6 from its proximal end. Then, it can be transferred to the aerobic treatment tank 4 through the tubular transfer path 6.
Here, the entry of the suspended matter S, which has become a problem in the tubular transfer path 6, increases the load of aerobic treatment in the aerobic treatment tank 4.

そこで、図2(b)、(c)及び図3から判明するように、管状移送路6の吸引部(流入部)である基端を、排水処理装置本体Aの前後方向において、前端側の部分、即ち、浮遊物寄せ用散気装置25が存在しない部分に配設してある。つまり、固液分離槽2の液相域における液面側の領域において、排水処理装置本体Aの前後方向の前方側の浮遊物寄せ用散気装置25が存在しない範囲(即ち、管状移送路6の基端の周囲近傍)が、管状移送路6の液相流入領域Z2となる。   Therefore, as can be seen from FIGS. 2 (b), (c) and FIG. 3, the proximal end which is the suction portion (inflow portion) of the tubular transfer path 6 A portion, that is, a portion where the floater air diffuser 25 does not exist is disposed. That is, in the region on the liquid surface side in the liquid phase region of the solid-liquid separation tank 2, a range in which the floating material transfer diffuser 25 on the front side in the front-rear direction of the drainage treatment device main body A does not exist ( In the vicinity of the periphery of the proximal end of the fluid flow path Z2 of the tubular transfer path 6).

つまり、処理廃液移流部12を、第二仕切壁W23に対向させた状態で、第二仕切壁W23の横方向(即ち、排水処理装置本体Aの前後方向)における一端側(即ち、排水処理装置本体Aの前後方向の後端側)に対応する側に寄せて設け、浮遊物寄せ用散気装置25を、処理廃液移流部12と第二仕切壁W23との間に、処理廃液移流部12側に寄せて設け、移送部Mの液相流入領域Z2を、浮遊物寄せ用散気装置25の散気領域Z1に対して、第二仕切壁W23の横方向における処理廃液移流部12側とは反対側(即ち、排水処理装置本体Aの前後方向の前端側)に対応する側方に設けてある。   That is, one end side (that is, the waste water treatment apparatus) in the lateral direction of the second partition wall W23 (that is, the front-rear direction of the waste water treatment apparatus main body A) The floating material transfer aeration device 25 is provided between the processing waste solution advection part 12 and the second partition wall W23. The liquid phase inflow area Z2 of the transfer section M is provided on the side of the treatment waste advection section 12 in the lateral direction of the second partition wall W23 with respect to the aeration area Z1 of the floating material aeration diffuser 25 Are provided on the opposite side (i.e., the front end side in the front-rear direction of the waste water treatment apparatus A).

図2及び図3に示すように、浮遊物Sの移流を妨げる多孔状の邪魔板26を、その板面を上下方向と排水処理装置本体Aの左右方向とに沿わせた姿勢で、固液分離槽2内において、排水処理装置本体Aの前後方向における浮遊物寄せ用散気装置25と管状移送路6の基端との間に配設してある。
この邪魔板26は、第一仕切壁W12と第二仕切壁W23とにわたり、且つ、排水処理装置本体Aの天井部位から、管状移送路6の基端よりも下側に伸びるように設けてある。
そして、この多孔状の邪魔板26の孔径を、浮遊物Sの通過を阻止可能な径に設定して、この邪魔板26により、抑制機構Cを構成してある。
As shown in FIG. 2 and FIG. 3, solid-liquid in a posture in which the porous baffle plate 26 for preventing the advection of the floating matter S is placed along the vertical direction and the horizontal direction of the drainage treatment apparatus main body A. In the separation tank 2, it is disposed between the floater air diffuser 25 and the proximal end of the tubular transfer passage 6 in the front-rear direction of the waste water treatment apparatus main body A.
The baffle plate 26 is provided so as to extend from the ceiling portion of the waste water treatment apparatus main body A to a lower side than the proximal end of the tubular transfer path 6, covering the first partition wall W12 and the second partition wall W23. .
The pore size of the porous baffle plate 26 is set to a diameter that can prevent the passage of the floating matter S, and the baffle mechanism 26 is configured by the baffle plate 26.

つまり、この邪魔板26が、固液分離槽2における浮遊物寄せ用散気装置25の散気領域Z1と管状移送路6の液相流入領域Z2との間に、固液分離槽2の液面より下側まで下降して設けられる下降仕切りの一例である。
また、この邪魔板26が、浮遊物寄せ用散気装置25の散気領域Z1と管状移送路6の液相流入領域Z2との間における液相の移流を許容し、浮遊物Sの移流を抑制する液相移流許容型抑制機構の一例である。
That is, the liquid in the solid-liquid separation tank 2 is formed between the aeration area Z1 of the floating material transfer diffuser 25 in the solid-liquid separation tank 2 and the liquid-phase inflow area Z2 of the tubular transfer path 6 It is an example of the descent | fall partition provided so that it may descend | fall to the lower side from a surface.
Further, the baffle plate 26 allows the advection of the liquid phase between the aeration region Z1 of the aeration device for floating material 25 and the liquid phase inflow region Z2 of the tubular transfer path 6, and the advection of the floating matter S. It is an example of the liquid phase advection permissible suppression mechanism to suppress.

したがって、邪魔板26により、浮遊物Sが散気領域Z1から液相流入領域Z2に流入することが防止され、また、第一仕切壁W12の上端は貯留槽1の液面よりも高いので、浮遊物Sが貯留槽1から直接に液相流入領域Z2に流入するのも防止される。
これにより、浮遊物Sが管状移送路6内に吸引されるのを防止することが可能となっている。
Therefore, the floating plate S is prevented from flowing from the aeration zone Z1 to the liquid phase inflow zone Z2 by the baffle plate 26 and the upper end of the first partition wall W12 is higher than the liquid level of the storage tank 1, The floating material S is also prevented from flowing directly from the storage tank 1 into the liquid phase inflow region Z2.
This makes it possible to prevent the float S from being sucked into the tubular transfer path 6.

〔嫌気発酵槽〕
図1に示すように、嫌気発酵槽3は、排水処理装置本体Aの内部において、沈殿物移流部22より受け入れられる沈殿物をメタン細菌による嫌気発酵により生物分解する嫌気発酵空間32を形成して構成してある。この嫌気発酵空間32には、この嫌気発酵空間32内の処理水を、メタン発酵を良好に行なう上で良好な温度に保持するための熱交換器33を設けてある。嫌気発酵空間32の上方空間は、この嫌気発酵空間32で生成したバイオガスを収集するバイオガス収集空間34を構成する。前述したバイオガス取出口31は、このバイオガス収集空間34に臨ませて設けてある。
[Anaerobic fermenter]
As shown in FIG. 1, the anaerobic fermentation tank 3 forms an anaerobic fermentation space 32 which biodegrades the precipitate received from the sediment transfer unit 22 by anaerobic fermentation with methane bacteria in the waste water treatment apparatus main body A. It is configured. The anaerobic fermentation space 32 is provided with a heat exchanger 33 for maintaining the treated water in the anaerobic fermentation space 32 at a good temperature for performing methane fermentation well. The upper space of the anaerobic fermentation space 32 constitutes a biogas collection space 34 for collecting the biogas generated in the anaerobic fermentation space 32. The biogas outlet 31 described above is provided to face the biogas collection space 34.

嫌気発酵空間32には、バイオガスタンクTに貯留されているバイオガスを嫌気ガスとして嫌気ガスポンプP1により供給するイジェクタ用散気装置(即ち、移流用散気装置)35、循環用散気装置36を設けてある。バイオガスをバイオガスタンクTからイジェクタ用散気装置35、循環用散気装置36それぞれに送る送気流路(図示省略)には、開閉弁V1及び流量調整弁V2を設け、これら開閉弁V1と流量調整弁V2により、イジェクタ用散気装置35、循環用散気装置36それぞれからの散気の断続及び散気量の調整が可能に構成してある。そして、イジェクタ用散気装置35、循環用散気装置36それぞれにより、嫌気ガスを間欠的に散気するように構成してある。つまり、嫌気ガスポンプP1、開閉弁V1と流量調整弁V2により、イジェクタ用散気装置35、循環用散気装置36に間欠的に嫌気ガスを供給するガス供給装置Gを構成してある。   In the anaerobic fermentation space 32, an ejector diffuser (ie, advection diffuser) 35 for supplying biogas stored in the biogas tank T as an anaerobic gas by an anaerobic gas pump P1 and a diffuser 36 for circulation are provided. It is provided. An on-off valve V1 and a flow control valve V2 are provided in the air supply flow path (not shown) for sending the biogas from the biogas tank T to the ejector air diffuser 35 and the circulation air diffuser 36 respectively. The adjustment valve V2 is configured to enable / disable the aeration of the aeration from the ejector aeration device 35 and the aeration aeration device 36 and adjust the aeration amount. Then, the anaerobic gas is intermittently diffused by the ejector air diffuser 35 and the circulation air diffuser 36 respectively. That is, the anaerobic gas pump P1, the on-off valve V1 and the flow rate adjustment valve V2 constitute a gas supply device G for intermittently supplying anaerobic gas to the ejector air diffuser 35 and the circulation air diffuser 36.

イジェクタ用散気装置35は、図1及び図2(a)において矢印で示すように、スリット状出口22aの下方から上昇する気液混相流を形成可能に配置して、固液分離槽2からスリット状出口22aを介して嫌気発酵槽3に沈殿物を移流させ、嫌気発酵槽3の余剰の液相をスリット状出口22aを介して固液分離槽2に返送可能にする沈殿物移流機構を形成してある。また、循環用散気装置36は、熱交換器33の下方側で熱交換器33と第3仕切壁W35との間に、嫌気発酵槽3全体に循環流を形成するように配置してある。   As shown by the arrows in FIGS. 1 and 2 (a), the ejector air diffuser 35 is disposed so as to form a gas-liquid multiphase flow rising from below the slit-like outlet 22a. Sediment advection mechanism that allows sediment to be transferred to the anaerobic fermentation tank 3 via the slit outlet 22a and allows the excess liquid phase of the anaerobic fermentation tank 3 to be returned to the solid-liquid separation tank 2 via the slit outlet 22a It is formed. Further, the circulating air diffuser 36 is disposed between the heat exchanger 33 and the third partition wall W 35 on the lower side of the heat exchanger 33 so as to form a circulating flow in the entire anaerobic fermentation tank 3 .

以下、イジェクタ用散気装置35、循環用散気装置36の順に、その働きを説明する。〔イジェクタ用散気装置〕
前記沈殿物移流機構は、スリット状出口22aのやや下方から、イジェクタ用散気装置35により大量の気泡を一時に供給することにより、前記気泡の上昇流によるイジェクタ効果で、固液分離槽2のスリット状出口22aに堆積した沈殿物を嫌気発酵槽3側に吸い込み、前記沈殿物を移流させる効果を発揮する。このとき、スリット状出口22aに堆積した堆積層22cの沈殿物は、全部同時に移流してしまうのではなく、常時スリット状出口22aには沈殿物の堆積層22cが維持されるように流動する。そのため、沈殿物が固液分離槽2から沈殿物移流部22を介して嫌気発酵槽3に移流しても、即座に嫌気発酵槽3内の液相は、固液分離槽2に逆流することはないものの、堆積層22cを通じて徐々に固液分離槽2に返送される。
Hereinafter, the operation of the ejector air diffuser 35 and the circulation air diffuser 36 will be described in this order. [Air diffuser for ejector]
The precipitate advection mechanism supplies a large amount of air bubbles at one time by the ejector aeration device 35 from slightly below the slit outlet 22a, so that the ejector effect by the upward flow of the air bubbles causes the solid-liquid separation tank 2 to The precipitate deposited at the slit-like outlet 22a is sucked to the anaerobic fermentation tank 3 side, and the precipitate is transferred. At this time, the precipitate of the deposited layer 22c deposited in the slit-like outlet 22a does not all flow simultaneously simultaneously, but always flows so that the deposit 22c of precipitate is kept in the slit-like outlet 22a. Therefore, even if the precipitate is transferred from the solid-liquid separation tank 2 to the anaerobic fermentation tank 3 via the sediment transfer part 22, the liquid phase in the anaerobic fermentation tank 3 backflows to the solid-liquid separation tank 2 immediately. Although not, it is gradually returned to the solid-liquid separation tank 2 through the deposited layer 22c.

一方、嫌気発酵槽3内の固形成分は、堆積層22cに阻まれて固液分離槽2に移流することができない。その結果、嫌気発酵槽3では、固液分離槽2の沈殿物が流入するが、嫌気発酵槽3の内部の固形成分が固液分離槽2に返送されることがなく、嫌気発酵槽3内の微生物が嫌気発酵槽3外に流出して減少することが抑制され、良好な嫌気発酵が維持でき、嫌気発酵により減容した固形成分量に見合う沈殿物が順次補給される運転状態を維持することができる。   On the other hand, the solid components in the anaerobic fermentation tank 3 can not be transferred to the solid-liquid separation tank 2 because of being blocked by the sediment layer 22 c. As a result, in the anaerobic fermentation tank 3, the precipitates of the solid-liquid separation tank 2 flow in, but solid components inside the anaerobic fermentation tank 3 are not returned to the solid-liquid separation tank 2, and the inside of the anaerobic fermentation tank 3 Is suppressed from flowing out of the anaerobic fermentation tank 3 and reduced, maintaining good anaerobic fermentation, and maintaining an operating state in which the precipitates corresponding to the volume of solid component reduced by anaerobic fermentation are sequentially replenished be able to.

〔循環用散気装置〕
図1に示すように、嫌気発酵槽3の汚泥沈降槽5側の嫌気発酵空間32には、この空間内の処理水を、メタン発酵に良好な温度に保持するための熱交換器33が備えられている。この熱交換器33は具体的には、上下に熱媒ヘッド33hを、それら一対の熱媒ヘッド33h間に内部を熱媒が流通可能な複数のチューブ33cを備えて構成されている。したがって、一方の熱媒ヘッド33hから、複数のチューブ33cを介して他方の熱媒ヘッド33hに熱媒を流通させることで、嫌気発酵空間32内の処理液を加温することができる。
[Dispersion device for circulation]
As shown in FIG. 1, the anaerobic fermentation space 32 on the sludge sedimentation tank 5 side of the anaerobic fermentation tank 3 is provided with a heat exchanger 33 for maintaining the treated water in this space at a temperature suitable for methane fermentation. It is done. Specifically, the heat exchanger 33 is configured by including a heat medium head 33 h up and down, and a plurality of tubes 33 c through which the heat medium can flow between the pair of heat medium heads 33 h. Therefore, the treatment liquid in the anaerobic fermentation space 32 can be heated by circulating the heat medium from one heat medium head 33 h to the other heat medium head 33 h via the plurality of tubes 33 c.

図1から判明するように、循環用散気装置36は、熱交換器33と第3仕切壁W35との間に設け、嫌気発酵空間32内に存在する沈殿物を撹拌するとともに、処理液の対流を形成させて、熱交換器33との熱交換により嫌気発酵空間32の処理液を嫌気発酵に適切な温度(例えば55℃)に維持することが可能な構成が採用されている。
したがって、嫌気発酵槽3では沈殿物を嫌気発酵により連続的にガス化減容化し、バイオガスを回収できる。
As can be seen from FIG. 1, the circulating air diffuser 36 is provided between the heat exchanger 33 and the third partition wall W 35 to stir the precipitate present in the anaerobic fermentation space 32 and to Convection is formed, and a configuration capable of maintaining the processing solution of the anaerobic fermentation space 32 at a temperature (for example, 55 ° C.) suitable for anaerobic fermentation by heat exchange with the heat exchanger 33 is employed.
Therefore, in the anaerobic fermentation tank 3, the precipitate can be continuously gasified and reduced in volume by anaerobic fermentation, and biogas can be recovered.

なお、上記構成の場合、イジェクタ用散気装置35及び循環用散気装置36による散気は、収集されたバイオガスの一部をバイオガスタンクTから嫌気ガスポンプP1にて供給するので、嫌気発酵槽3の内部を、嫌気状態に維持することができる。また、それぞれ、1日に2回程度、70L/min程度の大量散気を20秒程度行えば、嫌気発酵槽3の処理能力に応じた沈殿物の移流を継続でき、大容量のポンプ等を用いることなく効率よく生ごみ粉砕処理物由来の沈殿物を移送できる。   In the case of the above configuration, the aeration by the ejector aeration device 35 and the circulation aeration device 36 supplies a part of the collected biogas from the biogas tank T with the anaerobic gas pump P1, so the anaerobic fermentation tank The inside of 3 can be maintained in an anaerobic state. In addition, if a large amount of aeration of about 70 L / min is performed for about 20 seconds twice a day, respectively, the advection of the precipitate according to the processing capacity of the anaerobic fermentation tank 3 can be continued, and a large capacity pump etc. It is possible to efficiently transfer the sediment derived from the garbage processing waste without using it.

〔汚泥沈降槽〕
図1に示すように、嫌気発酵槽3と好気処理槽4との間に、汚泥沈降槽5を設けている。この汚泥沈降槽5には、第一返送路41を介して、好気処理槽4から汚泥及び処理液が返送されるとともに、当該汚泥沈降槽5から、第二返送路51を介して、貯留槽1に汚泥及び処理液が返送される。
[Sludge settling tank]
As shown in FIG. 1, a sludge settling tank 5 is provided between the anaerobic fermentation tank 3 and the aerobic treatment tank 4. In the sludge settling tank 5, the sludge and the treatment liquid are returned from the aerobic treatment tank 4 via the first return path 41, and stored from the sludge settling tank 5 via the second return path 51. The sludge and the treatment liquid are returned to the tank 1.

第一返送路41は、エアポンプP2により空気を揚水用ガスとして縦管部41aの下部に供給して、管内の水位を横管接続高さまで上昇させ、横管接続高さに達した被処理水を上流側に返送する構成としてある。空気を第一返送路41の縦管部41aに送る送気流路(図示省略)には、開閉弁V1及び流量調整弁V2を設け、これら開閉弁V1と流量調整弁V2により、縦管部41aへの給気の断続及び給気量の調整を行って、第一返送路41による汚泥及び処理液の返送の断続及び返送量の調整が可能に構成してある。   The first return path 41 supplies air as a pumping gas to the lower part of the vertical pipe portion 41a by the air pump P2, raises the water level in the pipe to the horizontal pipe connection height, and reaches the horizontal pipe connection height Is sent back to the upstream side. An open / close valve V1 and a flow control valve V2 are provided in an air supply flow path (not shown) for sending air to the vertical pipe portion 41a of the first return path 41, and the vertical pipe portion 41a is formed by the open / close valve V1 and the flow control valve V2. It is possible to adjust the interruption of the return of the sludge and the treatment liquid by the first return path 41 and the adjustment of the return amount by performing the interruption of the air supply to and the adjustment of the air supply amount.

また、第二返送路51は、嫌気ガスポンプP1によりバイオガスタンクTのバイオガスを揚水用ガスとして縦管部51aの下部に供給して、管内の水位を横管接続高さまで上昇させ、横管接続高さに達した被処理水を上流側に返送する構成としてある。バイオガスをバイオガスタンクTから第二返送路51の縦管部51aに送る送気流路(図示省略)には、開閉弁V1及び流量調整弁V2を設け、これら開閉弁V1と流量調整弁V2により、縦管部51aへの給気の断続及び給気量の調整を行って、第二返送路51による汚泥及び処理液の返送の断続及び返送量の調整が可能に構成してある。   In addition, the second return path 51 supplies the biogas of the biogas tank T as a pumping gas to the lower part of the vertical pipe portion 51a by the anaerobic gas pump P1 to raise the water level in the pipe to the horizontal pipe connection height and connect the horizontal pipe The water to be treated which has reached the height is returned to the upstream side. An on-off valve V1 and a flow control valve V2 are provided in the air supply flow path (not shown) for sending biogas from the biogas tank T to the vertical pipe portion 51a of the second return path 51, and these on-off valve V1 and flow control valve V2 The interruption of the supply of air to the vertical pipe portion 51a and the adjustment of the amount of air supply are configured so that the interruption of the return of sludge and the treatment liquid by the second return passage 51 and the adjustment of the amount of return can be performed.

この汚泥沈降槽5は、下部に汚泥を沈降させる構成が採用されている。そして、エアポンプP2よりエアを供給して散気する汚泥沈降槽用散気装置52を設け、汚泥沈降槽用散気装置52からの散気により、槽内に循環流を形成するように構成してある。
これにより、汚泥沈降槽5では、第一返送路41を介して好気処理槽4から返送される汚泥及び処理液をさらに好気処理して浄化するとともに、汚泥沈降槽5で発生した沈殿汚泥を第二返送路51を介して上流側の貯留槽1に返送して、再度嫌気発酵槽3にて処理可能に構成してある。
なお、第二返送路51では、揚水用のガスとして、嫌気ガスを用いるので、上流側の貯留槽1、固液分離槽2、嫌気発酵槽3が好気性に偏るのを防止することができる。
The sludge settling tank 5 has a configuration in which the sludge settles in the lower part. Then, an air diffusion device 52 for the sludge settling tank is provided which supplies air from the air pump P2 to diffuse the air, and a circulation flow is formed in the tank by the aeration from the air diffusion device 52 for the sludge settling tank It is
Thereby, in the sludge sedimentation tank 5, the sludge and the treatment liquid returned from the aerobic treatment tank 4 through the first return path 41 are further treated aerobically and purified, and the sedimented sludge generated in the sludge sedimentation tank 5 Are returned to the storage tank 1 on the upstream side via the second return path 51, and can be processed again in the anaerobic fermentation tank 3.
In the second return path 51, anaerobic gas is used as the pumping gas, so that the upstream storage tank 1, solid-liquid separation tank 2, and anaerobic fermentation tank 3 can be prevented from being biased aerobically. .

なお、第二返送路51では、嫌気ガスを揚水用ガスとして用いて汚泥沈降槽5内の汚泥を貯留槽1に返送する構成とした、ほかに、水中ポンプで揚水して汚泥沈降槽5内の汚泥を貯留槽1に返送する構成とすることもできる。さらに、嫌気ガスに代えて空気を揚水用ガスとして用いた場合であっても、第二返送路51中に空気抜き路を設けるとともに、第二返送路51の貯留槽1側を被処理水内に水没させておくなどの構成を採用することができる。これによっても、空気の気泡が貯留槽1に流入せず、かつ、貯留槽1側の気相が大気解放されない状況を維持して汚泥沈降槽5の液相を貯留槽1に返送可能となる。要するに、貯留槽1側(嫌気性環境の処理槽)の嫌気状態が保たれる構成であれば、汚泥沈降槽5の液相を貯留槽1に返送する第二返送路51として、種々公知の構成を採用することができる。   In the second return path 51, the sludge in the sludge settling tank 5 is returned to the storage tank 1 using anaerobic gas as a pumping gas. Besides, the inside of the sludge settling tank 5 is pumped by a submersible pump. It can also be set as the structure which returns the sludge of this to the storage tank 1. FIG. Furthermore, even when air is used as a pumping gas instead of the anaerobic gas, an air venting path is provided in the second return path 51, and the storage tank 1 side of the second return path 51 is in the water to be treated. A configuration such as submersion can be adopted. Also by this, the liquid phase of the sludge settling tank 5 can be returned to the storage tank 1 while maintaining the situation where air bubbles of the air do not flow into the storage tank 1 and the gas phase on the storage tank 1 side is not released to the atmosphere. . In short, various constitutions are known as the second return path 51 for returning the liquid phase of the sludge settling tank 5 to the storage tank 1 as long as the anaerobic state of the storage tank 1 side (treatment tank of anaerobic environment) is maintained. The configuration can be adopted.

〔好気処理槽〕
本発明の実施形態に係る排水処理装置では、固液分離槽2から上澄液を移送部M(管状移送路6)を介して好気処理槽4に移送して、好気処理することにより、自然界に放流可能な水質レベルにまで浄化して排水可能な家庭用浄化槽等として用いることとしている。
[Aerobic treatment tank]
In the waste water treatment apparatus according to the embodiment of the present invention, the supernatant is transferred from the solid-liquid separation tank 2 to the aerobic treatment tank 4 via the transfer unit M (tubular transfer path 6) and subjected to aerobic treatment. It will be used as a domestic septic tank, etc., which can be purified to the level of water that can be discharged into the natural world and then drained.

具体的には、排水処理装置本体Aの内部に汚泥沈降槽5に隣接して貯留槽1の反対側に好気処理槽4を形成してある。そして、固液分離槽2と好気処理槽4との間に、管状移送路6を設け、好気処理槽4に移送した上澄液をさらに浄化して、排水口42から排出するように構成してある。   Specifically, the aerobic treatment tank 4 is formed on the opposite side of the storage tank 1 adjacent to the sludge settling tank 5 inside the waste water treatment apparatus main body A. Then, a tubular transfer path 6 is provided between the solid-liquid separation tank 2 and the aerobic treatment tank 4 so that the supernatant liquid transferred to the aerobic treatment tank 4 is further purified and discharged from the drainage port 42. It is configured.

この好気処理槽4には、スポンジ状の担体43を多数収容する。また、エアポンプP2により空気を供給して散気する好気処理槽用散気装置44を内装し、好気処理槽用散気装置44からの給気により、その担体43に、好気処理槽4内の液を好気処理する好気性菌を生育させるとともに、担体43が流動床を形成する循環流を槽内に形成可能に構成してある。
また、排水口42近傍に多孔状の固形分遮蔽体45を設け、排出される処理済の排水に固形成分が混入するのを抑制し、固形成分を含まない清浄な上澄液が排出される構成としてある。
A large number of sponge-like carriers 43 are accommodated in the aerobic treatment tank 4. In addition, the aeration device 44 for aerobic treatment tank that supplies air by aeration pump P2 to aerate is internally provided, and air is supplied from the aeration device 44 for aerobic treatment tank to the carrier 43 of the aerobic treatment tank. In addition to growing aerobic bacteria that aerobically treats the solution in 4, the carrier 43 is configured to be able to form a circulating flow in which the fluidized bed is formed in the tank.
In addition, a porous solid content shielding body 45 is provided in the vicinity of the drainage port 42 to suppress the mixing of solid components into the treated waste water to be discharged, and clean supernatant liquid containing no solid component is discharged. It is as composition.

次に、図4に基づいて、上述のような固液分離槽2から好気処理槽4への上澄液の移送構成を採用することにより、好気処理槽4での好気処理の負荷を低減できる点を検証した結果を説明する。
なお、図4は、固液分離槽2から好気処理槽4へ移送される上澄液(以下、流入水と称する場合がある)、好気処理槽4から排出される排水それぞれのT−COD(mg/L)を処理日毎に示し、図4の横軸は排水処理の日付を示し、縦軸はT−CODを示す。
図4において、縦線にて示す7月12日(7/12)から、浮遊物寄せ用散気装置25を働かせる構成を採用している。
Next, based on FIG. 4, the load of aerobic treatment in aerobic treatment tank 4 is adopted by adopting the above-described transfer configuration of the supernatant liquid from solid-liquid separation tank 2 to aerobic treatment tank 4. We will explain the results of verifying that we can reduce
Note that FIG. 4 shows the supernatant liquid transferred from the solid-liquid separation tank 2 to the aerobic treatment tank 4 (hereinafter sometimes referred to as influent water) and the waste water discharged from the aerobic treatment tank 4 respectively. COD (mg / L) is shown for each treatment day, the horizontal axis of FIG. 4 shows the date of waste water treatment, and the vertical axis shows T-COD.
In FIG. 4, a configuration is adopted in which the floating material re-arranging air diffuser 25 works from July 12 (7/12) indicated by a vertical line.

本発明の実施形態の構成を採用する前の流入水、排水それぞれのT−CODの平均は、48000mg/L、14000mg/Lであった。
一方、本発明の実施形態の構成を採用した後の流入水、排水それぞれのT−CODの平均は、23000mg/L、7200mg/Lであった。
したがって、本発明の実施形態の構成を採用することにより、好気処理槽4での好気処理の負荷を低減できるとともに、排水の清浄度を向上することができる。
Before adopting the configuration of the embodiment of the present invention, the average of T-COD of influent water and drainage was 48000 mg / L and 14000 mg / L, respectively.
On the other hand, after adopting the configuration of the embodiment of the present invention, the average of T-COD of influent water and waste water was 23000 mg / L and 7200 mg / L, respectively.
Therefore, by adopting the configuration of the embodiment of the present invention, the load of aerobic treatment in the aerobic treatment tank 4 can be reduced, and the cleanliness of the drainage can be improved.

〔別実施形態〕
次に別実施形態を説明する。
(1) 移送部Mの具体構成は、上記の実施形態において例示した管状移送路6に限定されるものではない。
例えば、固液分離槽2と好気処理槽4とを仕切壁にて仕切った状態で隣接して設けるとともに、固液分離槽2から液相の上澄液が仕切壁の上端をオーバーフローして好気処理槽4に移流するように構成して、移送部Mを、仕切壁の上端部のオーバーフロー状の移送部にて構成しても良い。
[Another embodiment]
Next, another embodiment will be described.
(1) The specific configuration of the transfer section M is not limited to the tubular transfer path 6 exemplified in the above embodiment.
For example, while the solid-liquid separation tank 2 and the aerobic treatment tank 4 are provided adjacent to each other in a partitioned state by the partition wall, the supernatant of the liquid phase from the solid-liquid separation tank 2 overflows the upper end of the partition wall The transfer unit M may be configured as an overflow-like transfer unit at the upper end of the partition wall so as to be transferred to the aerobic treatment tank 4.

(2) 抑制機構Cの具体構成は、上記の実施形態において例示した多孔状の邪魔板26に限定されるものではなく、孔の無い板状体でも良い。 (2) The specific configuration of the suppression mechanism C is not limited to the porous baffle plate 26 exemplified in the above embodiment, and may be a plate having no hole.

(3) なお、上述の構成においては、排水処理装置本体Aにおける一端側に受入口11を設けるとともに、他端側に排水口42を設け、受入口11から排水口42に向かう方向(以下長手方向とする)に、貯留槽1、固液分離槽2、嫌気発酵槽3、汚泥沈降槽5、好気処理槽4をこの順に並設し、排水を処理する構成としたが、処理対象の生ごみ粉砕処理廃液を含有する排水が大量になる場合、排水処理装置本体A自体の容量が大きく設定されるのに伴って、各水処理槽間に排水を移流させる管状移送路6、返送手段R等を構成する管路が長大化する傾向が生じる。具体的には、たとえば、管状移送路6は固液分離槽2の液相から、嫌気発酵槽3を跨いで好気処理槽4に至る長さに形成する必要があるが、嫌気発酵槽3自体が最も排水量に依存して大型化しやすく、それにつれて管状移送路6が長大化するのである。このような場合、管状移送路6は、固液分離槽2の上澄液を移送するとはいえ、不可避的に上澄液とともにわずかな浮遊物Sを巻き込んで移送することがある。そのため、長期使用の間に管状移送路6に浮遊物Sが付着して、上澄液の移送を阻害することが懸念される。したがって、このような場合、管状移送路6をできるだけコンパクトに構成することが望まれる。 (3) In the above configuration, the inlet 11 is provided on one end side of the drainage treatment apparatus main body A, and the outlet 42 is provided on the other end, and the direction from the inlet 11 to the outlet 42 Storage tank 1, solid-liquid separation tank 2, anaerobic fermentation tank 3, sludge sedimentation tank 5, and aerobic treatment tank 4 are arranged in this order in order to treat waste water. When the waste water containing the garbage waste treatment waste is large, the tubular transfer path 6, which transfers the waste water between each water treatment tank as the volume of the waste water treatment apparatus A itself is set large, the return means There is a tendency for the ducts forming R and the like to become longer. Specifically, for example, the tubular transfer path 6 needs to be formed in a length extending from the liquid phase of the solid-liquid separation tank 2 to the aerobic treatment tank 4 across the anaerobic fermentation tank 3, but the anaerobic fermentation tank 3 The tube itself is most likely to be enlarged depending on the displacement, and the tubular transfer path 6 is lengthened accordingly. In such a case, although the tubular transfer path 6 transfers the supernatant liquid of the solid-liquid separation tank 2, it may unavoidably transfer and transport the slight float S together with the supernatant liquid. Therefore, there is a concern that the suspended matter S may be attached to the tubular transfer path 6 during long-term use to inhibit the transfer of the supernatant. Therefore, in such a case, it is desirable to make the tubular transfer path 6 as compact as possible.

そこで、図5に示すように、排水処理装置本体Aにおける長手方向に向かって、貯留槽1、固液分離槽2、嫌気発酵槽3、汚泥沈降槽5、好気処理槽4をこの順に並設するのではなく、受入口11を排水処理装置本体Aにおける長手方向の中央部付近に設けるとともに、排水処理装置本体Aにおける長手方向の中央部分に貯留槽1を設け、その貯留槽1よりも前記一端側(上手側)に向かって順に固液分離槽2、嫌気発酵槽3を順に設け、貯留槽1よりも他端側(下手側)に向かって順に汚泥沈降槽5、好気処理槽4をこの順に並設することができる。   Therefore, as shown in FIG. 5, the storage tank 1, the solid-liquid separation tank 2, the anaerobic fermentation tank 3, the sludge sedimentation tank 5, and the aerobic treatment tank 4 are arranged in this order in the longitudinal direction in the waste water treatment apparatus main body A. The receiving port 11 is provided near the central portion in the longitudinal direction of the drainage treatment apparatus main body A, and the storage tank 1 is provided in the central portion in the longitudinal direction of the drainage treatment apparatus main body A. A solid-liquid separation tank 2 and an anaerobic fermentation tank 3 are provided in this order toward the one end side (upper side), and a sludge settling tank 5 and an aerobic treatment tank are sequentially arranged toward the other side (lower side) than the storage tank 1 4 can be juxtaposed in this order.

このように構成すると生ごみ粉砕処理廃液を含有する排水が受入口11から排水処理装置本体Aの内部に流入すると、排水処理装置本体Aにおける長手方向中央部分の貯留槽1に流入し、夾雑物を沈殿分離して嫌気的な消化が進行するとともに流動化する。その後、上手側に移流して、固液分離槽2に流入し、固液分離されたのち沈殿物が嫌気発酵槽3に流入し、メタン発酵されてバイオガス化する。一方固液分離された上澄液は、管状移送路6により下手側に移流して、好気処理槽4にて好気処理を受け、清浄化された排水が排水口42から排出されるとともに、好気生物処理により発生した沈殿汚泥を汚泥沈降槽5で濃縮した後、貯留槽1に返送可能な構成となる。   When configured in this manner, when the waste water containing the waste crush processing waste fluid flows into the inside of the waste water treatment apparatus main body A from the receiving port 11, the waste water flows into the storage tank 1 in the longitudinal central portion of the waste water treatment apparatus main body A The precipitate is separated and fluidized with the progress of anaerobic digestion. Then, it is transferred to the upper side, flows into the solid-liquid separation tank 2, and after solid-liquid separation, the precipitate flows into the anaerobic fermentation tank 3, is methane fermented, and is biogasified. On the other hand, the supernatant liquid separated in solid and liquid is transferred to the lower side by the tubular transfer path 6 and subjected to aerobic treatment in the aerobic treatment tank 4, and the cleaned drainage is discharged from the drainage port 42. After the precipitated sludge generated by the aerobic biological treatment is concentrated in the sludge settling tank 5, it can be returned to the storage tank 1.

すると、前記管状移送路6は、嫌気発酵槽3を跨ぐことなく固液分離槽2の液相を好気処理槽4に移送できるようになり、コンパクト化することができ、長期使用の間に浮遊物Sの付着による流路の狭窄、閉塞を招くおそれを大きく低減できるようになる。しかも、嫌気発酵槽3を排水処理装置本体Aの最も上手側に配置して、好気処理槽4を排水処理装置本体Aの最も下手側に配置することになるから、嫌気発酵槽3において高温メタン発酵を行う場合に供給される熱が、汚泥沈降槽5、好気処理槽4に伝達されるのを固液分離槽2や貯留槽1で遮蔽して緩和することになって、固液分離槽2を高温メタン発酵に適した50℃〜80℃の温度域(たとえば55℃)にまで加熱維持するのに要するエネルギー供給量を削減できるとともに、好気処理槽4における排水温度が高くなりすぎて(たとえば35℃以上)、好気性微生物の活性が低下するというような問題を生起しにくい温度域(たとえば30℃程度)に維持することができる。   Then, the tubular transfer path 6 can transfer the liquid phase of the solid-liquid separation tank 2 to the aerobic treatment tank 4 without straddling the anaerobic fermentation tank 3, and can be made compact, and can be used for a long time It is possible to greatly reduce the possibility of the narrowing or blockage of the flow path due to the attachment of the float S. Moreover, since the anaerobic fermentation tank 3 is disposed on the most advanced side of the wastewater treatment apparatus main body A and the aerobic treatment tank 4 is disposed on the most downstream side of the wastewater treatment apparatus main body A, the high temperature in the anaerobic fermentation tank 3 The solid-liquid separation tank 2 and the storage tank 1 shield and relieve that the heat supplied when performing methane fermentation is transmitted to the sludge settling tank 5 and the aerobic treatment tank 4. While the amount of energy supply required to heat and maintain the separation tank 2 to a temperature range of 50 ° C. to 80 ° C. (for example, 55 ° C.) suitable for high temperature methane fermentation can be reduced, the drainage temperature in the aerobic treatment tank 4 becomes high. It is possible to maintain a temperature range (for example, about 30 ° C.) which is less likely to cause problems such as too low (for example, 35 ° C. or more) and a decrease in the activity of aerobic microorganisms.

具体的には、前記排水処理装置本体Aにおける貯留槽1、固液分離槽2、嫌気発酵槽3に対応する外周壁部分を断熱構造として保温し、汚泥沈降槽5、好気処理槽4に対応する外周壁部分を非断熱構造としてある場合に、前記図1の実施形態では、嫌気発酵槽3を55℃に維持した場合、固液分離槽に隣接する貯留槽1の温度が48℃であったことから、上記図5の構成の場合、嫌気発酵槽3を55℃に維持した場合、貯留槽1の温度が40℃、好気処理槽4の温度が32℃のバランスで定常化するものと推定でき、好適な水処理環境が維持されることが期待される。   Specifically, the outer peripheral wall portion corresponding to the storage tank 1, the solid-liquid separation tank 2, and the anaerobic fermentation tank 3 in the waste water treatment apparatus main body A is thermally insulated as a heat insulation structure, and the sludge sedimentation tank 5 and the aerobic treatment tank 4 are provided. In the embodiment of FIG. 1 when the corresponding outer peripheral wall portion has a non-insulating structure, when the anaerobic fermentation tank 3 is maintained at 55 ° C., the temperature of the storage tank 1 adjacent to the solid-liquid separation tank is 48 ° C. In the case of the configuration shown in FIG. 5, when the anaerobic fermentation tank 3 is maintained at 55 ° C., the temperature of the storage tank 1 is 40 ° C. and the temperature of the aerobic treatment tank 4 is 32 ° C. It is expected that a suitable water treatment environment can be maintained.

(4) また、上記構成においては、固液分離槽2で固液分離された液相を直接好気処理槽4に移送する移送部Mを、固液分離槽2と好気処理槽4とにわたって設けた管状移送路6にて構成したが、図6、図7に示すように構成することもできる。 (4) Further, in the above configuration, the solid-liquid separation tank 2 and the aerobic treatment tank 4 and the transfer unit M directly transfer the liquid phase separated in the solid-liquid separation tank 2 to the aerobic treatment tank 4. Although the tubular transfer path 6 provided across it was comprised, as shown to FIG. 6, FIG. 7, it can also comprise.

すなわち、管状移送路6を固液分離槽2と汚泥沈降槽5とにわたって設ける構成とする。また、仕切壁W45の上端部を、固液分離槽2と汚泥沈降槽5との液面高さ近傍に設定して、その仕切壁W45の上端部を介して、汚泥沈降槽5から好気処理槽4に上澄液をオーバーフローさせるオーバーフロー部6aを形成しておく。そして、固液分離槽2と汚泥沈降槽5とにわたって設けた管状移送路6と、汚泥沈降槽5から好気処理槽4に上澄液をオーバーフローさせるオーバーフロー部6aとから移送部Mを構成する。   That is, the tubular transfer passage 6 is provided so as to extend between the solid-liquid separation tank 2 and the sludge sedimentation tank 5. Further, the upper end portion of the partition wall W45 is set in the vicinity of the liquid surface height between the solid-liquid separation tank 2 and the sludge sedimentation tank 5, and from the sludge sedimentation tank 5 aerobically via the upper end portion of the partition wall W45. An overflow portion 6a is formed in the processing tank 4 to cause the supernatant to overflow. Then, a transfer unit M is configured from a tubular transfer path 6 provided over the solid-liquid separation tank 2 and the sludge sedimentation tank 5 and an overflow part 6 a that causes the supernatant to overflow from the sludge sedimentation tank 5 to the aerobic treatment tank 4. .

これにより、固液分離槽2で固液分離された液相は良好に好気処理を受けるとともに、汚泥沈降槽5で汚泥を沈殿分離した後の上澄液についても簡易に再度好気処理可能にすることができる。また、このように構成することにより、管状移送路6をさらにコンパクト化することができ、長期使用の間に浮遊物の付着による液相の移流路の狭窄、閉塞を招くおそれを大きく低減できるようになる。   Thereby, the liquid phase solid-liquid separated in solid-liquid separation tank 2 is subjected to aerobic treatment well, and supernatant liquid after precipitation separation of sludge in sludge sedimentation tank 5 can also be simply aerobically treated again Can be Further, by configuring in this manner, the tubular transfer passage 6 can be made more compact, and the possibility of causing narrowing or blockage of the transfer passage of the liquid phase due to adhesion of suspended matters during long-term use can be greatly reduced. become.

(5) また、上記構成においては、汚泥沈降槽5と好気処理槽4とを区画して設けたが、図8に示すように、汚泥沈降槽5で生じた上澄液の好気処理槽4への移流を図るために、汚泥沈降槽5と好気処理槽4との間にオーバーフロー部6aを設けて連通して構成してあってもよい。この場合、汚泥沈降槽5には、第一返送路41を介して、好気処理槽4から汚泥および処理液が返送され、汚泥は汚泥沈降槽5内沈降され、処理液はオーバーフローで好気処理槽4へ流入するとともに、当該汚泥沈降槽5から、第二返送路51を介して、貯留槽1に汚泥が返送される。したがって、好気処理槽4から汚泥及び処理液の返送処理、および、汚泥沈降槽5から貯留槽1への汚泥返送処理を、定常的かつ安定的に行える利点がある。 (5) Further, in the above configuration, the sludge settling tank 5 and the aerobic treatment tank 4 are provided separately, but as shown in FIG. 8, the aerobic treatment of the supernatant liquid generated in the sludge settling tank 5 In order to promote advection to the tank 4, an overflow portion 6 a may be provided between the sludge settling tank 5 and the aerobic treatment tank 4 and communicated. In this case, the sludge and the treatment liquid are returned from the aerobic treatment tank 4 to the sludge sedimentation tank 5 through the first return path 41, the sludge is sedimented in the sludge sedimentation tank 5, and the treatment liquid is overflowed by the overflow. While flowing into the treatment tank 4, the sludge is returned from the sludge settling tank 5 to the storage tank 1 via the second return path 51. Therefore, there is an advantage that the return processing of the sludge and the processing liquid from the aerobic treatment tank 4 and the sludge return processing from the sludge settling tank 5 to the storage tank 1 can be performed steadily and stably.

以上説明したように、浄化処理して排出する排水の清浄度を向上し得る排水処理装置を提供することができる。   As described above, it is possible to provide a waste water treatment apparatus capable of improving the cleanliness of the waste water to be purified and discharged.

1 貯留槽(受入部)
2 固液分離槽
3 嫌気発酵槽
4 好気処理槽
5 汚泥沈降槽
6 管状移送路
12 処理廃液移流部
21 液相移流部
22 沈殿物移流部
22a スリット状出口(絞部)
22c 堆積層
25 浮遊物寄せ用散気装置(散気装置)
26 邪魔板(下降仕切り、液相移流許容型抑制機構)
35 イジェクタ用散気装置(移流用散気装置)
41 第一返送路
51 第二返送路
C 抑制機構
D 散気方向
G ガス供給装置
M 移送部
R 返送手段
S 浮遊物
W23 第二仕切壁(仕切壁)
Z1 散気領域
Z2 液相流入領域
1 Storage tank (receiving part)
2 Solid-liquid separation tank 3 Anaerobic fermentation tank 4 Aerobic treatment tank 5 Sludge settling tank 6 Tubular transfer path 12 Treated waste solution advection part 21 Liquid phase advection part 22 Sediment advection part 22a Slit shaped outlet (shrinkage part)
22c Sedimentary layer 25 Aeration device for floating material collection (aeration device)
26 Baffle plate (downward partition, liquid phase advection permissible suppression mechanism)
35 Ejector aeration device (advertising aeration device)
41 first return passage 51 second return passage C suppression mechanism D aeration direction G gas supply device M transfer unit R return means S floating matter W23 second partition wall (partition wall)
Z1 aeration zone Z2 liquid phase inflow zone

Claims (11)

生ごみ粉砕処理廃液を受け入れる受け入れ部を備え、
前記受け入れ部から前記生ごみ粉砕処理廃液を移流させて、前記生ごみ粉砕処理廃液を沈殿分離する固液分離槽を備え、
前記固液分離槽で固液分離された液相を受け入れて好気処理する好気処理槽を備え、
前記固液分離槽にて沈殿分離された沈殿物を受け入れてバイオガス化する嫌気発酵槽を備え、
前記固液分離槽から前記好気処理槽に液相を移送する移送部を設け、
前記好気処理槽にて沈殿分離された沈殿物を前記受け入れ部まで返送する返送手段を設けてなる排水処理装置であって、
前記固液分離槽から前記嫌気発酵槽に液相を移流させる液相移流部と、前記固液分離槽の下部に、前記沈殿物を移流させる沈殿物移流部を設けてなり、
端を前記固液分離槽の最低水位高さとして、前記固液分離槽と前記嫌気発酵槽とを仕切るように、上端縁が前記液相移流部となる仕切壁を設けるとともに、前記液相移流部の前記受け入れ部側に、前記固液分離槽の液面又はその液面の近くから、散気方向を前記仕切壁の上端として、嫌気性ガスを散気する散気装置を設け、
前記散気装置の散気領域と前記移送部の液相流入領域との間における浮遊物の移流を抑制する抑制機構を設けた排水処理装置。
It has a receiving unit for receiving garbage waste treatment wastes,
A solid-liquid separation tank for transferring the garbage waste treatment waste solution from the receiving part to transfer the waste material waste treatment waste liquid;
It has an aerobic treatment tank for receiving and aerobically treating the liquid phase separated in the solid-liquid separation tank,
And an anaerobic fermenter for receiving and biogasifying the precipitate separated in the solid-liquid separation tank,
Providing a transfer unit for transferring a liquid phase from the solid-liquid separation tank to the aerobic treatment tank;
A waste water treatment apparatus comprising a return means for returning the precipitate separated in the aerobic treatment tank to the receiving part,
A liquid phase advection section for advecting a liquid phase from the solid-liquid separation tank to the anaerobic fermentation tank, and a sediment advection section for advecting the precipitate in a lower part of the solid-liquid separation tank ,
The upper end as the lowest water level height of the solid-liquid separation tank, so as to partition the the solid-liquid separation tank and the anaerobic fermentation tank, provided with a partition wall upper end edge is the liquid phase advection part, said liquid phase A diffuser is provided on the receiving part side of the advection part, from the liquid surface of the solid-liquid separation tank or near the liquid surface, with an aeration direction as the upper end of the partition wall, for diffusing the anaerobic gas.
The waste water treatment apparatus which provided the control mechanism which controls the advection of the floating matter between the aeration area of the above-mentioned aeration device, and the liquid phase inflow area of the above-mentioned transfer part.
前記好気処理槽で沈殿分離された沈殿物を受け入れる汚泥沈降槽を備え、
前記返送手段を、前記好気処理槽から前記汚泥沈降槽まで沈殿物を返送する第一返送路と、前記汚泥沈降槽から前記受け入れ部まで沈殿物を返送する第二返送路とを備えて構成し、
少なくとも前記第二返送路における搬送ガスが嫌気性ガスである請求項1に記載の排水処理装置。
A sludge settling tank for receiving the sediment separated in the aerobic treatment tank,
The return means comprises a first return path for returning precipitates from the aerobic treatment tank to the sludge settling tank, and a second return path for returning precipitates from the sludge settling tank to the receiving portion. And
The waste water treatment apparatus according to claim 1, wherein the carrier gas in at least the second return path is an anaerobic gas.
前記移送部が、前記固液分離槽で固液分離された液相を、前記汚泥沈降槽を経由して好気処理槽に移送させるものである請求項2に記載の排水処理装置。   The waste water treatment apparatus according to claim 2, wherein the transfer unit transfers the liquid phase separated in solid-liquid separation in the solid-liquid separation tank to the aerobic treatment tank via the sludge sedimentation tank. 前記受け入れ部から前記固液分離槽へ前記生ごみ粉砕処理廃液を移流させる処理廃液移流部を、前記仕切壁に対向させた状態で、前記仕切壁の横方向における一端側に対応する側に寄せて設け、
前記散気装置を、前記処理廃液移流部と前記仕切壁との間に、前記処理廃液移流部側に寄せて設け、
前記移送部の液相流入領域を、前記散気装置の散気領域に対して、前記仕切壁の横方向における前記処理廃液移流部側とは反対側に対応する側方に設けてある請求項1〜3のいずれか1項に記載の排水処理装置。
The processing waste liquid advection part for transferring the garbage waste processing waste liquid from the receiving part to the solid / liquid separation tank is moved to the side corresponding to one end side in the lateral direction of the dividing wall in a state of facing the dividing wall. Provided
The aeration device is provided between the processing waste solution advection unit and the partition wall, and is provided near the processing waste solution advection unit side.
The liquid phase inflow area of the transfer section is provided on the side corresponding to the side opposite to the processing waste solution advection section side in the lateral direction of the partition wall with respect to the aeration area of the aeration device. The waste water treatment apparatus of any one of 1-3.
前記抑制機構が、前記固液分離槽における前記散気領域と前記液相流入領域との間に、前記固液分離槽の液面より下側まで下降して設けられる下降仕切りである請求項1〜4のいずれか1項に記載の排水処理装置。   The reduction mechanism is a descent partition provided so as to descend below the liquid surface of the solid-liquid separation tank, between the aeration area and the liquid phase inflow area in the solid-liquid separation tank. The waste water treatment apparatus of any one of -4. 前記抑制機構が、前記散気領域と前記液相流入領域との間における液相の移流を許容し、浮遊物の移流を抑制する液相移流許容型抑制機構である請求項5に記載の排水処理装置。   The drainage according to claim 5, wherein the suppression mechanism is a liquid phase advection permissible suppression mechanism that allows the advection of the liquid phase between the aeration area and the liquid phase inflow area and suppresses the advection of the floating matter. Processing unit. 前記移送部を、前記固液分離槽と前記好気処理槽とにわたって設けた管状移送路を備えて構成し、
前記管状移送路の基端を、前記固液分離槽の液相における液面側部分に配設して、前記基端の周囲近傍を、前記液相流入領域としてある請求項1〜6のいずれか1項に記載の排水処理装置。
The transfer unit includes a tubular transfer path provided between the solid-liquid separation tank and the aerobic treatment tank,
The proximal end of the said tubular transfer path is arrange | positioned by the liquid surface side part in the liquid phase of the said solid-liquid separation tank, and the periphery vicinity of the said proximal end is made into the said liquid phase inflow area | region. The waste water treatment apparatus according to any one of the preceding claims.
前記沈殿物移流部に、前記固液分離槽と前記嫌気発酵槽との間を前記沈殿物により閉塞して、固形成分の前記嫌気発酵槽から前記固液分離槽への逆流を防止可能にする絞部を設けるとともに、
前記沈殿物を前記絞部を介して前記嫌気発酵槽に移流させ、前記嫌気発酵槽の余剰の液相を前記絞部を介して前記固液分離槽に返送可能にする沈殿物移流機構を設けた請求項1〜7のいずれか1項に記載の排水処理装置。
In the precipitate transfer part, the space between the solid-liquid separation tank and the anaerobic fermentation tank is closed by the precipitate so that the backflow from the anaerobic fermentation tank to the solid-liquid separation tank can be prevented. While providing a diaphragm,
A sediment advection mechanism is provided to transfer the precipitate to the anaerobic fermentation tank through the narrowing section, and to allow the excess liquid phase of the anaerobic fermentation tank to be returned to the solid-liquid separation tank through the narrowing section. The waste water treatment apparatus of any one of Claims 1-7.
前記絞部は、前記固液分離槽下部に設けたスリット状出口を備え、前記固液分離槽における沈殿物が、前記スリット状出口を閉塞して堆積する堆積層を形成可能に構成してある請求項8に記載の排水処理装置。   The narrowing portion includes a slit-like outlet provided in the lower part of the solid-liquid separation tank, and the deposit in the solid-liquid separation tank is capable of forming a deposited layer which blocks the slit-like outlet and deposits. The wastewater treatment device according to claim 8. 前記嫌気発酵槽に嫌気ガスを散気する移流用散気装置を設け、前記移流用散気装置に間欠的に嫌気ガスを供給するガス供給装置を設け、前記スリット状出口の下方から上昇する気液混相流を形成可能に配置して、前記沈殿物移流機構を形成してある請求項9に記載の排水処理装置。   The anaerobic fermentation tank is provided with an advection aeration device for aeration of an anaerobic gas, the advection aeration device is provided with a gas supply device for intermittently supplying the anaerobic gas, and the air rising from below the slit-like outlet 10. The waste water treatment apparatus according to claim 9, wherein the sediment advection mechanism is formed so as to be capable of forming a liquid multiphase flow. 内部を一端側から他端側にわたって複数の水処理槽に仕切って、前記複数の水処理槽を一端側から前記嫌気発酵槽、前記固液分離槽、前記受け入れ部としての貯留槽、前記好気処理槽で沈殿分離された沈殿物を受け入れる汚泥沈降槽、前記好気処理槽の順に設けてある請求項1〜10のいずれか一項に記載の排水処理装置。 Internal partitions into a plurality of water treatment tanks for the other end from one end of the anaerobic fermenter of the plurality of water treatment tanks from one end, the solid-liquid separation tank, storage tank as the receiving section, the aerobic The wastewater treatment apparatus according to any one of claims 1 to 10, wherein a sludge settling tank for receiving the sediment separated in the treatment tank and the aerobic treatment tank are provided in this order.
JP2015009819A 2014-03-05 2015-01-21 Waste water treatment equipment Expired - Fee Related JP6522959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009819A JP6522959B2 (en) 2014-03-05 2015-01-21 Waste water treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014042946 2014-03-05
JP2014042946 2014-03-05
JP2015009819A JP6522959B2 (en) 2014-03-05 2015-01-21 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2015180492A JP2015180492A (en) 2015-10-15
JP6522959B2 true JP6522959B2 (en) 2019-05-29

Family

ID=54329025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009819A Expired - Fee Related JP6522959B2 (en) 2014-03-05 2015-01-21 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP6522959B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851997Y2 (en) * 1976-07-12 1983-11-26 松下電工株式会社 Scum discharge device for sedimentation chamber of sewage septic tank
JPH05345196A (en) * 1992-06-12 1993-12-27 Matsushita Electric Ind Co Ltd Method for treating high concentration organic waste water and waste water treatment apparatus
JP2000197829A (en) * 1998-10-30 2000-07-18 Hiroshi Suzuki Garbage disposal device
JP2001104977A (en) * 1999-10-04 2001-04-17 Sanyo Electric Co Ltd Wastewater treatment system
JP4017331B2 (en) * 2000-09-25 2007-12-05 株式会社クボタ Septic tank
JP2003236505A (en) * 2002-02-20 2003-08-26 Sanyo Electric Co Ltd Waste water treatment system
JP2005131555A (en) * 2003-10-30 2005-05-26 Energy Support Corp Garbage treatment system
JP4702749B2 (en) * 2006-07-07 2011-06-15 株式会社ハウステック Water treatment equipment
JP5323570B2 (en) * 2009-04-17 2013-10-23 株式会社フジタ Methane fermentation equipment
JP5868059B2 (en) * 2011-07-29 2016-02-24 大阪瓦斯株式会社 Waste water treatment apparatus and operation method thereof

Also Published As

Publication number Publication date
JP2015180492A (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP5868059B2 (en) Waste water treatment apparatus and operation method thereof
KR100957554B1 (en) Anaerobic disgestion bath
KR101682589B1 (en) Flow-direction exchangable type bio-filter with solid removal function
JP2010042352A (en) Anaerobic treatment method and apparatus
US6409914B1 (en) Waste treatment unit
CN109912029A (en) A kind of gravity flow Internal-circulationaerobic aerobic granule sludge continuous flow reactor
JP2008012465A (en) Water treatment apparatus
JP4702749B2 (en) Water treatment equipment
JP2007117908A (en) Septic tank
JP6522959B2 (en) Waste water treatment equipment
JP6522935B2 (en) Waste water treatment apparatus and method of manufacturing the same
US6773596B2 (en) Activated sludge method and device for the treatment of effluent with nitrogen and phosphorus removal
JP6941439B2 (en) Membrane separation activated sludge treatment equipment, membrane separation activated sludge treatment method and raw water supply equipment
ES2813446B2 (en) Procedure and system for the anaerobic treatment of organic waste fluids
JP6004871B2 (en) Water treatment equipment, moving bed type filtration tank, and septic tank
JP5814583B2 (en) Septic tank
JP2017056451A (en) Methane fermentation apparatus
JP5818360B2 (en) Moving bed type filtration tank and septic tank equipped with moving bed type filtration tank
JP6320085B2 (en) Waste water treatment device and operation method of waste water treatment device
JP4765041B2 (en) Water treatment equipment
JP6071587B2 (en) Waste water treatment apparatus and operation method thereof
KR101700841B1 (en) Liquefied Fertilizer Manufacturing Apparatus Having Mixed Flow Unit
JP2008253929A (en) Water treatment apparatus
JP2017056450A (en) Water treatment apparatus
JP2000005793A (en) Upward current anaerobic treating apparatus and treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees