JP6519214B2 - Fiber reinforced plastic manufacturing method - Google Patents

Fiber reinforced plastic manufacturing method Download PDF

Info

Publication number
JP6519214B2
JP6519214B2 JP2015022918A JP2015022918A JP6519214B2 JP 6519214 B2 JP6519214 B2 JP 6519214B2 JP 2015022918 A JP2015022918 A JP 2015022918A JP 2015022918 A JP2015022918 A JP 2015022918A JP 6519214 B2 JP6519214 B2 JP 6519214B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
mold
reinforced plastic
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015022918A
Other languages
Japanese (ja)
Other versions
JP2016144899A (en
Inventor
有輝 彦坂
有輝 彦坂
誠司 辻
誠司 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015022918A priority Critical patent/JP6519214B2/en
Publication of JP2016144899A publication Critical patent/JP2016144899A/en
Application granted granted Critical
Publication of JP6519214B2 publication Critical patent/JP6519214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、RTM成形方法による繊維強化プラスチック製造方法に関し、特に、樹脂流動時の強化繊維基材移動による成形品の表面品位不良の発生を防止することが可能な繊維強化プラスチック製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced plastic by an RTM molding method, and more particularly to a method for producing a fiber-reinforced plastic capable of preventing the generation of surface quality defects of a molded article due to the movement of a reinforcing fiber substrate during resin flow.

生産性に優れた繊維強化プラスチック(Fiber Reinforced Plastics:FRP)の成形方法として、ドライの強化繊維布帛からなる基材を成形型内に配置し、マトリックス樹脂を型内に注入し強化繊維基材内に含浸させ、樹脂を硬化させた後、成形品を脱型させる、RTM(Resin Transfer Molding)成形方法と呼ばれる成形方法が知られている。   As a molding method of fiber reinforced plastics (FRP) having excellent productivity, a base made of dry reinforcing fiber cloth is placed in a mold, and a matrix resin is injected into the mold to form a reinforcing fiber base. There is known a molding method called RTM (Resin Transfer Molding) molding method, in which the molded product is released after the resin is impregnated and the resin is cured.

特に、成形品の生産速度を向上させる場合、あるいは、大型の成形品を生産する場合においては、複数の樹脂注入孔を設け、複数の注入点から樹脂を注入することで繊維強化プラスチックの成形時間を短縮する技術や、樹脂注入時は成形型内キャビティを最終成形品厚みより厚くしておき、型閉じにより高速含浸させることで繊維強化プラスチックの成形時間を短縮する技術が用いられる。   In particular, in the case of improving the production rate of molded articles, or in the case of producing large molded articles, a plurality of resin injection holes are provided, and resin is injected from a plurality of injection points to form a fiber reinforced plastic A technique for shortening the molding time of the fiber reinforced plastic is used, or a technique for shortening the molding time of the fiber reinforced plastic by making the cavity in the mold thicker than the final molded product thickness at the time of resin injection and impregnating at high speed by mold closing.

例えば、特許文献1では、成形型と積層体との間に、厚み方向に貫通する樹脂流路を形成する中間部材を配設し、該中間部材を介して、樹脂を強化繊維積層体に対して複数の箇所からほぼ同時に注入する技術が開示されている。この方法によれば、比較的大きな三次元面状体に対しても、樹脂注入から含浸・硬化までの成形工程を、樹脂が流れない領域を生じさせることなく、高速で実施できるとされる。   For example, in Patent Document 1, an intermediate member for forming a resin flow path penetrating in the thickness direction is disposed between the molding die and the laminate, and the resin is added to the reinforced fiber laminate through the intermediate member. A technique is disclosed that injects from a plurality of locations substantially simultaneously. According to this method, it is supposed that the molding process from resin injection to impregnation / hardening can be carried out at high speed without producing a region in which the resin does not flow, even for a relatively large three-dimensional planar body.

また、特許文献2では、最終成形品厚みより成形キャビティを厚くした状態の成形型間に強化繊維積層体とマトリックス樹脂を投入し、型閉じに応じて注入したマトリックス樹脂を展開・含浸する技術が開示されている。この方法によれば、強化繊維積層体の流動抵抗の影響をほとんど受けず、比較的大きな三次元面状体に対しても高速注入・含浸を行うことができ、成形時間を大幅に短縮できるとされる。   Further, in Patent Document 2, there is a technology in which a reinforcing fiber laminate and a matrix resin are introduced between molding dies in a state where the molding cavity is thicker than the final molded product thickness, and the injected matrix resin is expanded and impregnated according to the mold closing. It is disclosed. According to this method, high-speed injection / impregnation can be performed even on a relatively large three-dimensional planar body with little influence of the flow resistance of the reinforcing fiber laminate, and the forming time can be significantly shortened. Be done.

特許文献3では、複数に分割した構造を有する成形型で強化繊維積層体を固定し、強化繊維積層体と該成形型の一部である可動型の間に隙間を形成した状態で樹脂を注入した後、該可動型を押し込むことで強化繊維積層体に樹脂を含浸する技術が開示されている。この技術によれば強化繊維積層体を固定した状態で樹脂注入・含浸を行うため強化繊維基材の乱れを抑制しやすくなるとされる。   In Patent Document 3, a reinforced fiber laminate is fixed by a mold having a plurality of divided structures, and a resin is injected in a state in which a gap is formed between the reinforced fiber laminate and a movable mold which is a part of the mold. After that, a technique is disclosed in which the reinforcing fiber laminate is impregnated with a resin by pressing the movable mold. According to this technique, since resin injection / impregnation is performed in a state where the reinforcing fiber laminate is fixed, disturbance of the reinforcing fiber base is easily suppressed.

一方、特許文献4では、樹脂注入時は成形キャビティを強化繊維積層体の大気中での見かけ厚さより小さく、かつ最終製品厚みより大きくすることで強化繊維積層体の固定と流動抵抗低下による高速注入を両立できるとされる技術が開示されている。   On the other hand, in Patent Document 4, when the resin is injected, the molding cavity is made smaller than the apparent thickness of the reinforcing fiber laminate in the atmosphere and made larger than the final product thickness, and high speed injection due to fixation of the reinforcing fiber laminate and flow resistance reduction. Technologies that are compatible with each other are disclosed.

特開2005−246902号公報JP, 2005-246902, A 特開2005−271551号公報JP, 2005-271551, A 特開2010−120271号公報Unexamined-Japanese-Patent No. 2010-120271 特開2010−221642号公報JP, 2010-221642, A

しかしながら、特許文献1に開示される方法では、できるだけ早く樹脂を含浸させるために樹脂流量を大きくすると、樹脂注入圧が高くなり、強化繊維積層体を構成する強化繊維基材の乱れが生じるという問題があった。   However, in the method disclosed in Patent Document 1, when the resin flow rate is increased to impregnate the resin as quickly as possible, the resin injection pressure becomes high, and the problem of the disturbance of the reinforcing fiber base material constituting the reinforcing fiber laminate occurs. was there.

この強化繊維基材の乱れとは、図1に示すように、例えば織物布帛状の強化繊維基材41が、注入された樹脂61の圧力により押されて樹脂注入前の位置からずれ、繊維束411が変形する現象であり、成形品の意匠性が低下するだけでなく、意図しない繊維配向となることで力学物性も低下する。   The disturbance of the reinforcing fiber base means that, for example, as shown in FIG. 1, the reinforcing fiber base 41 in the form of a woven fabric is pushed by the pressure of the injected resin 61 and deviates from the position before injecting the resin. 411 is a phenomenon of deformation, and not only the designability of the molded article is lowered, but also the mechanical physical properties are lowered due to the unintended fiber orientation.

また、特許文献2で開示される方法では、樹脂含浸速度を大きくするために型閉じ速度を上げると、樹脂が高速で流動し、樹脂が強化繊維積層体に及ぼす圧力が高くなり強化繊維基材の乱れが生じる。そのため、成形された繊維強化樹脂の表面品位が低下するという問題があった。   In the method disclosed in Patent Document 2, when the mold closing speed is increased in order to increase the resin impregnation speed, the resin flows at high speed, the pressure exerted on the reinforcing fiber laminate becomes high, and the reinforcing fiber base Disturbance of the Therefore, there is a problem that the surface quality of the molded fiber reinforced resin is lowered.

また、特許文献3に開示される方法では、複数に分割された構造を有する成形型を用いるために、成形型間の隙間を埋めるシール部を多数必要とし、成形型構造の複雑化を招くことから、大型成形品へ適用するのは困難である。   Further, in the method disclosed in Patent Document 3, in order to use a mold having a structure divided into a plurality of parts, a large number of seal parts are required to fill in the gaps between the molds, leading to complication of the mold structure. Therefore, it is difficult to apply to large-sized molded articles.

一方、特許文献4で開示される方法では、強化繊維積層体と成形型が接触しており、両者の間に隙間が形成されている場合より強化繊維積層体の流動抵抗が大きくなること、また、樹脂注入時の強化繊維積層体の繊維体積含有率(Vf)が低いため、固定力も低くなると考えられることから、注入・含浸の高速化に限界があるという問題があった。また、成形キャビティの厚さを正確に制御する必要があり、高性能な位置制御機構を有するプレス機が必要になるという問題があった。   On the other hand, in the method disclosed in Patent Document 4, the flow resistance of the reinforced fiber laminate is greater than in the case where the reinforced fiber laminate and the mold are in contact and a gap is formed between them. Since the fiber volume content (Vf) of the reinforcing fiber laminate at the time of resin injection is low, the fixing force is also considered to be low, and there is a problem that the speeding up of injection / impregnation is limited. In addition, it is necessary to control the thickness of the molding cavity accurately, and there is a problem that a press having a high-performance position control mechanism is required.

本発明の課題は、上記のような従来技術の現状に鑑みて、大流量で樹脂を注入した場合でも強化繊維基材の乱れを防止可能で、かつ成形型構造の複雑化を招かない繊維強化プラスチック製造方法を提供することにある。   The object of the present invention is, in view of the current state of the prior art as described above, a fiber reinforcement which can prevent the disturbance of the reinforcing fiber base even when the resin is injected at a large flow rate, and does not cause complication of the mold structure. It is in providing a plastic manufacturing method.

上記課題を解決するために、本発明に係る繊維強化プラスチック製造方法は、以下のとおりである。
(1)成形型のキャビティ内に強化繊維積層体を配置し、前記成形型に設けられた樹脂注入口から樹脂を前記キャビティ内に注入して前記強化繊維積層体に含浸させ、硬化させて維維強化プラスチックを得る繊維強化プラスチック製造方法において、前記キャビティ内への樹脂の注入を、前記キャビティ内に設けられた前記強化繊維積層体の少なくとも一部を把持する把持部により前記強化繊維積層体を把持した状態で行うことを特徴とする繊維強化プラスチック製造方法。
(2)前記把持部が弾性体である、上記(1)に記載の繊維強化プラスチック製造方法。
(3)前記把持部が前記強化繊維積層体の外周に沿った領域に設置されている、上記(1)または(2)に記載の繊維強化プラスチック製造方法。
(4)前記把持部が前記強化繊維積層体の外周に沿った領域に断続的に設置されている、上記(1)または(2)に記載の繊維強化プラスチック製造方法。
(5)前記成形型が、前記弾性体を保持するための保持部を有する、上記(2)に記載の繊維強化プラスチック製造方法。
(6)前記把持部が、把持部以外のキャビティ内表面の表面粗さよりも大きい表面粗さを有する、上記(1)に記載の繊維強化プラスチック製造方法。
In order to solve the above-mentioned subject, a fiber reinforced plastic manufacturing method concerning the present invention is as follows.
(1) A reinforcing fiber laminate is disposed in a cavity of a molding die, and a resin is injected into the cavity from a resin inlet provided in the molding die to impregnate the reinforcing fiber laminate with the resin and cured. In a fiber-reinforced plastic manufacturing method for obtaining a fiber-reinforced plastic, the reinforcing fiber laminate is injected by a holding portion for holding at least a part of the reinforcing fiber laminate provided in the cavity by injecting resin into the cavity. A fiber reinforced plastic manufacturing method characterized by carrying out in the state where it was held.
(2) The fiber reinforced plastic manufacturing method as described in said (1) whose said holding part is an elastic body.
(3) The fiber reinforced plastic manufacturing method as described in said (1) or (2) in which the said holding part is installed in the area | region along the outer periphery of the said reinforced fiber laminated body.
(4) The method for producing a fiber-reinforced plastic according to (1) or (2), wherein the grip portion is intermittently installed in a region along the outer periphery of the reinforcing fiber laminate.
(5) The method for producing a fiber-reinforced plastic according to (2), wherein the mold has a holding portion for holding the elastic body.
(6) The method for producing a fiber-reinforced plastic according to (1), wherein the grip portion has a surface roughness greater than the surface roughness of the inner surface of the cavity other than the grip portion.

本発明の繊維強化プラスチック製造方法によれば、成形型構造を複雑化することなく、かつ、樹脂を注入・含浸させる際に強化繊維基材に乱れを生じることなく、高い樹脂流量、含浸速度を確保できる。そのため、高意匠な成形品を短時間で得ることができる。   According to the fiber-reinforced plastic manufacturing method of the present invention, high resin flow rate and impregnation speed can be achieved without complicating the mold structure and causing disturbance in the reinforcing fiber base when injecting and impregnating the resin. Can be secured. Therefore, high-design molded articles can be obtained in a short time.

従来技術における強化繊維基材の乱れを例示した模式図である。It is the schematic diagram which illustrated disorder of the reinforcing fiber base material in a prior art. 本発明に用いるRTM成形装置の一作動状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one working state of the RTM shaping | molding apparatus used for this invention. キャビティが最終製品厚みになっている一作動状態の概略断面図である。FIG. 5 is a schematic cross-sectional view of one operating state in which the cavity is at final product thickness. キャビティが最終製品厚みより厚くなっている一作動状態の概略断面図である。FIG. 7 is a schematic cross-sectional view of one operating state in which the cavity is thicker than the final product thickness. 把持部として弾性体を配置した状態を例示した概略断面図である。It is the schematic sectional drawing which illustrated the state which has arrange | positioned the elastic body as a holding part. 成形型の、外周に沿った領域に把持部を設けた状態を例示した概略上面図である。It is the schematic top view which illustrated the state which provided the holding part in the area | region along the outer periphery of the shaping | molding die. 成形型の、外周に沿った領域に把持部を連続的に設けた状態を例示した概略上面図である。It is the schematic top view which illustrated the state which provided the holding part continuously in the area | region along the outer periphery of the shaping | molding die. 成形型の、外周に沿った領域に把持部を断続的に設けた状態を例示した概略上面図である。It is the schematic top view which illustrated the state which provided the holding part intermittently in the area | region along the outer periphery of a shaping | molding die. 把持部として弾性体を直接配置した状態を例示した概略断面図である。It is the schematic sectional drawing which illustrated the state which arrange | positioned the elastic body directly as a holding part. 把持部として弾性体を埋め込んで配置した状態を例示した概略断面図である。It is the schematic sectional drawing which illustrated the state which embedded and arrange | positioned the elastic body as a holding part. 保持部として溝加工を施し弾性体を埋め込んで配置した状態を例示した概略断面図である。It is the schematic sectional drawing which illustrated the state which provided the groove processing as a holding | maintenance part, embedded and arrange | positioned the elastic body. 保持部として溝加工を施した入子を配置して弾性体を埋め込んで配置した状態を例示した概略断面図である。It is the schematic sectional drawing which illustrated the state which arrange | positioned the grooved core as a holding | maintenance part, embedded the elastic body, and arrange | positioned.

以下に、本発明の望ましい実施形態について、図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の一実施態様に用いるRTM成形装置の一作動状態を示している。本実施態様に使用するRTM成形装置は、キャビティ12を形成する一対の、一方の成形型10aと、対向する他方の成形型10bから形成される成形型10、樹脂注入機9、樹脂注入ライン91、樹脂注入孔3、プレス機構5、把持部2から構成されている。なお、図2では一方の成形型10aとして下型を、他方の成形型10bとして上型を図示しているが、逆の場合でも発明の実施に問題は無い。また、本発明においてキャビティとは、シール材より内側の成形型間の空間を表す。   FIG. 2 shows one operating state of the RTM molding apparatus used in one embodiment of the present invention. The RTM molding apparatus used in the present embodiment includes a mold 10 formed of a pair of molds 10a forming the cavity 12 and the other mold 10b facing each other, a resin injection machine 9, and a resin injection line 91. A resin injection hole 3, a press mechanism 5, and a grip 2. Although FIG. 2 shows the lower mold as one mold 10a and the upper mold as the other mold 10b, there is no problem in the practice of the invention even in the opposite case. Further, in the present invention, the cavity represents the space between the molds inside the seal material.

強化繊維基材積層体4が設置されるキャビティ12は、一方の成形型10aおよび他方の成形型10bの間で、かつ把持部2の外側に設置されたシール材11でシールされる。なお、把持部、シール材にいずれも弾性体を用いる場合、弾性体の材質は互いに同じでも異なっていてもよい。また、本発明における強化繊維基材積層体には、強化繊維基材を複数層積層したものの他に、強化繊維基材が一層のみの場合や、強化繊維を多軸方向に配置し、一体化させたものも含む。   The cavity 12 in which the reinforcing fiber base laminate 4 is installed is sealed by a seal material 11 installed between the one mold 10 a and the other mold 10 b and outside the grip portion 2. In addition, when using an elastic body as a holding part and a sealing material, the material of an elastic body may mutually be same or different. Further, in the reinforcing fiber base laminate in the present invention, in addition to the one obtained by laminating a plurality of layers of the reinforcing fiber base, the reinforcing fiber base is only one layer or the reinforcing fiber is arranged in multiaxial direction to be integrated. Including those that have been

ここで、本発明に係る繊維強化プラスチック製造方法の一例を説明する。一方の成形型10a上に強化繊維積層体4が配置された後、他方の成形型10bを近接させることで、強化繊維積層体4が把持部2で把持される。このとき成形型10は、シール材11によって密閉されていれば、図3のようにキャビティ12の厚みが最終的に得られる繊維強化プラスチックの厚みHになるまで近接しても良いし、図4のように最終的に得られる繊維強化プラスチックの厚みHより大きい状態で停止させても良い。また、把持部2は一方の成形型または他方の成形型のいずれか一方のみに設けても良く、両方の成形型に設けても良い。   Here, an example of the fiber reinforced plastic manufacturing method according to the present invention will be described. After the reinforcing fiber laminate 4 is disposed on one of the molds 10 a, the reinforcing fiber laminate 4 is gripped by the grip portion 2 by bringing the other mold 10 b into proximity. At this time, as long as the mold 10 is sealed by the sealing material 11, it may be close until the thickness of the cavity 12 becomes the thickness H of the fiber reinforced plastic finally obtained as shown in FIG. It may be stopped in a state larger than the thickness H of the fiber reinforced plastic finally obtained. Moreover, the holding part 2 may be provided only in any one of the one shaping | molding die or the other shaping | molding die, and may be provided in both shaping | molding dies.

次いで、少なくとも一方の成形型のキャビティ側表面に設けられた、例えばピン状の弁体31によって開閉される樹脂注入孔3から、樹脂注入機9から送られたマトリックス樹脂が注入され、強化繊維積層体4に含浸される。ここで樹脂注入時のキャビティ12が、図4のように最終的に得られる繊維強化プラスチックの厚みより大きい場合は、樹脂注入中または樹脂注入完了後、キャビティ12が最終成形品の厚みになるまで成形型10が閉じられることで樹脂含浸が行われる。次いで樹脂が硬化されて、キャビティ12と同等形状の繊維強化プラスチックが成形される。本実施形態では、強化繊維積層体4が把持部2で把持されているため、高速で樹脂注入・含浸を行った場合でも強化繊維積層体4の移動を防ぐことができ、強化繊維基材の乱れを生じることなく成形できる。   Next, the matrix resin sent from the resin injection machine 9 is injected from the resin injection hole 3 provided on the cavity side surface of at least one of the molds and opened and closed by, for example, a pin-shaped valve body 31. The body 4 is impregnated. Here, if the cavity 12 at the time of resin injection is larger than the thickness of the fiber reinforced plastic finally obtained as shown in FIG. 4, until the cavity 12 becomes the thickness of the final molded product during or after the resin injection is completed. Resin impregnation is performed by closing the mold 10. The resin is then cured to form a fiber reinforced plastic of the same shape as the cavity 12. In the present embodiment, since the reinforcing fiber laminate 4 is gripped by the grip portion 2, movement of the reinforcing fiber laminate 4 can be prevented even when resin injection / impregnation is performed at high speed. It can be molded without disturbance.

本発明で使用する樹脂としては、例えばエポキシ樹脂やビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂に限らず、アクリル樹脂やポリアミド樹脂、ポリオレフィン樹脂等の熱可塑性樹脂も使用することができる。特に樹脂粘度が一時10Pa・s以下であるような、粘度が低く強化繊維基材への含浸が良好な樹脂が特に好ましい。   The resin used in the present invention is not limited to thermosetting resins such as epoxy resin, vinyl ester resin, unsaturated polyester resin, and phenol resin, but also thermoplastic resins such as acrylic resin, polyamide resin, and polyolefin resin. be able to. In particular, a resin having a low viscosity and a good impregnation with the reinforcing fiber base, such as a resin viscosity of 10 Pa · s or less at a time, is particularly preferable.

また、本発明における強化繊維基材とは、強化繊維からなる基材の総称である。本発明における強化繊維基材に用いられる強化繊維としては、例えば炭素繊維やガラス繊維、アラミド繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、チラノ(チタンアルミナ)繊維、ナイロン繊維などが挙げられる。もちろん、単一の繊維で構成するだけでなく複数の繊維から構成される基材も用いることができる。   Further, the reinforcing fiber base in the present invention is a generic term for a base made of reinforcing fibers. Examples of the reinforcing fibers used for the reinforcing fiber base in the present invention include carbon fibers, glass fibers, aramid fibers, PBO (polyparaphenylene benzobisoxazole) fibers, tyranno (titanium alumina) fibers, nylon fibers and the like. Of course, not only single fibers but also substrates composed of a plurality of fibers can be used.

また、強化繊維基材の形態は、平織りや綾織り、朱子織り等の織物に限らず、ストランドを一方向に揃えたUD(ni irection)材料、ノンクリンプファブリック材料や多軸基材、ランダムマットやコンティニアスストランドマット等のマット材料やニット材料、ストランドを引き揃えて熱可塑性バインダーやステッチで固定した基材、およびこれらを組み合わせたハイブリッド基材も用いることができる。 Further, the form of the reinforcing fiber base material, a plain weave or twill weave is not limited to fabrics, such as Ri satin weave, UD having uniform strands in one direction (U ni D irection) materials, non-crimp fabric material and Tajikumotozai, A mat material such as a random mat or a continuous strand mat, a knit material, a base material in which strands are aligned and fixed with a thermoplastic binder or stitch, and a hybrid base material combining these may also be used.

把持部2は、例えば図5のように一方の成形型10aと強化繊維積層体4との間に、シール材11とは別の弾性体21を配置することで構成される。強化繊維積層体4を配置していない状態での一方の成形型10aのキャビティ側表面101aと、弾性体21の、強化繊維積層体に接触する第1面211までの距離hは、強化繊維積層体4の目付、嵩密度、所望の樹脂流量などによって、強化繊維積層体の把持に必要な量を決定すれば良い。強化繊維積層体4を配置した後に型閉めすることで、弾性体21の第1面211と一方の成形型10aのキャビティ側表面101aの間の距離がh’まで減少し、その反発力により強化繊維積層体4が他方の成形型10bのキャビティ側表面101bに押し付けられる。これにより強化繊維積層体4と他方の成形型10bのキャビティ側表面101bとの間の摩擦力を把持部以外の箇所より高くすることができるため、樹脂流動による強化繊維積層体4の移動を防ぐことができ、強化繊維基材の乱れがない、高意匠な繊維強化プラスチックを得ることができる。   For example, as shown in FIG. 5, the grip portion 2 is configured by arranging an elastic body 21 different from the sealing material 11 between one mold 10 a and the reinforcing fiber laminate 4. The distance h between the cavity-side surface 101a of one of the molds 10a and the first surface 211 of the elastic body 21 in contact with the reinforcing fiber laminate in a state in which the reinforcing fiber laminate 4 is not disposed is The amount necessary for gripping the reinforcing fiber laminate may be determined according to the weight of the body 4, the bulk density, the desired resin flow rate, and the like. By placing the reinforcing fiber laminate 4 and closing the mold, the distance between the first surface 211 of the elastic body 21 and the cavity-side surface 101 a of one of the molds 10 a is reduced to h ′ and reinforced by its repulsive force The fiber laminate 4 is pressed against the cavity side surface 101b of the other mold 10b. As a result, the frictional force between the reinforcing fiber laminate 4 and the cavity-side surface 101b of the other mold 10b can be made higher than that in the portion other than the grip portion, so that the movement of the reinforcing fiber laminate 4 due to resin flow is prevented. It is possible to obtain a high-quality fiber-reinforced plastic which is free from the disturbance of the reinforcing fiber base.

特に図4のように樹脂注入中はキャビティ12の厚みが最終成形品より厚く、注入完了後に最終成形品の厚みまで成形型10を閉じる場合、強化繊維積層体4の把持に弾性体21を用いることで、樹脂の注入・含浸すべての工程で強化繊維積層体4を把持することができる。また、弾性体21を用いることで、硬化した繊維強化プラスチックを脱型した後は元の形状に戻るため繰り返し使用することができ、成形のたびに交換する必要が無いため量産プロセスに最適である。   In particular, as shown in FIG. 4, when the thickness of the cavity 12 is thicker than that of the final molded product during resin injection, and the mold 10 is closed to the thickness of the final molded product after injection is completed, the elastic body 21 is used for gripping the reinforcing fiber laminate 4 Thus, the reinforcing fiber laminate 4 can be gripped in all the steps of resin injection and impregnation. In addition, by using the elastic body 21, after the cured fiber reinforced plastic is removed from the mold, it can be repeatedly used because it returns to the original shape, and it is optimal for a mass production process because it is not necessary to replace it every molding .

また、図4のように、樹脂注入中のキャビティ12の厚みを最終成形品より厚くすることで、強化繊維積層体4が必要以上に成形型で押圧されることなく、キャビティ12の内部全体にマトリックス樹脂が含浸しやすくなり、強化繊維積層体4全体の樹脂含浸時間を短縮できるとともに、未含浸部の発生を抑制することができる。   Further, as shown in FIG. 4, by making the thickness of the cavity 12 during resin injection thicker than the final molded product, the reinforcing fiber laminate 4 is not pressed by the molding die more than necessary, and the entire inside of the cavity 12 is obtained. The matrix resin is easily impregnated, and the resin impregnation time of the entire reinforcing fiber laminate 4 can be shortened, and the generation of the non-impregnated part can be suppressed.

弾性体21には、シリコーンゴム、フッ素ゴム、アクリルゴム、ニトリルゴム、エチレンプロピレンゴム、スチレンブタジエンゴム等の中から、使用する樹脂の特性、離形性、成形温度等を考慮して適切なものを選択すれば良い。また、用いる弾性体21の弾性率は、所望の成形サイクルに応じて選択すれば良い。また弾性体の断面形状は、円形、多角形、甲丸等、特に限定されない。   The elastic body 21 is suitably selected from silicone rubber, fluororubber, acrylic rubber, nitrile rubber, ethylene propylene rubber, styrene butadiene rubber, etc. in consideration of the characteristics, releasability, molding temperature, etc. of the resin used. You can choose Further, the elastic modulus of the elastic body 21 to be used may be selected according to a desired molding cycle. Further, the cross-sectional shape of the elastic body is not particularly limited, such as a circle, a polygon, an open circle and the like.

図6に、把持部2を設けた一方の成形型10aに、強化繊維積層体4を配置した状態を示す。把持部2は強化繊維積層体4の下に設けられているが、図中では点線、白抜きにて示している。また、図示しない他方の成形型に設けられた樹脂注入孔に対向する位置32を図中に併せて示している。把持部2は、このように強化繊維積層体4の外周に沿った領域43に設けられていることが好ましい。なお、強化繊維積層体4の外周に沿った領域43とは、強化繊維積層体4の中で最終製品範囲42よりも外側の部分に対応した成形型の領域を指す。また、把持部2を強化繊維積層体4の外周に沿った領域43に設ける場合、把持部2の一部でも強化繊維積層体4の外周に沿った領域43に入っていれば良い。強化繊維基材の乱れは、特に強化繊維積層体が圧縮される方向、つまり繊維強化プラスチックの外側から内側への樹脂流動に起因する。その一方で意匠性の問題から、図6のように最終製品範囲42の外側に樹脂注入孔が設置される場合は多々あり、外側から内側への樹脂流動による強化繊維積層体が移動し、強化繊維基材の乱れが生じる。この場合、強化繊維積層体の移動の起点となる強化繊維積層体4の外周に沿った領域43を把持することで強化繊維基材の乱れを抑制することができる。   In FIG. 6, the state which has arrange | positioned the reinforced fiber laminated body 4 in one shaping | molding die 10a which provided the holding part 2 is shown. The grip portion 2 is provided under the reinforcing fiber laminate 4 but is shown by dotted lines and white in the drawing. Further, a position 32 opposed to a resin injection hole provided in the other mold not shown is also shown in the drawing. It is preferable that the grip portion 2 be provided in the region 43 along the outer periphery of the reinforcing fiber laminate 4 as described above. In addition, the area | region 43 along the outer periphery of the reinforced fiber laminated body 4 points out the area | region of the shaping | molding die corresponding to the part outside the end product range 42 in the reinforced fiber laminated body 4. FIG. Moreover, when providing the holding part 2 in the area | region 43 along the outer periphery of the reinforced fiber laminated body 4, even a part of holding part 2 should just enter the area | region 43 along the outer periphery of the reinforcing fiber laminated body 4. FIG. The disturbance of the reinforcing fiber base is particularly due to the flow of resin in the direction in which the reinforcing fiber laminate is compressed, that is, from the outside to the inside of the fiber reinforced plastic. On the other hand, there are many cases where resin injection holes are installed on the outside of the final product range 42 as shown in FIG. 6 due to design problems, and the reinforced fiber laminate moves by resin flow from the outside to the inside and strengthens Disturbance of the fiber substrate occurs. In this case, by holding the region 43 along the outer periphery of the reinforcing fiber laminate 4 which is the starting point of the movement of the reinforcing fiber laminate, it is possible to suppress the disturbance of the reinforcing fiber base material.

また、把持部は図7のように強化繊維積層体4の外周に沿った領域43に連続的に設置されても良いし、図8のように断続的に設置されても良い。   Further, the grip portion may be continuously installed in the area 43 along the outer periphery of the reinforcing fiber laminate 4 as shown in FIG. 7 or may be intermittently installed as shown in FIG.

強化繊維積層体4の外周に沿った領域43に連続的に設置する場合は、図7のように樹脂注入孔に対向する位置32を囲むように設置することで、外側から内側への樹脂流動を抑制することができ、より効果的に強化繊維積層体4の移動を抑制することができる。なお、図7において把持部2は、樹脂注入口に対向する位置32を囲んで強化繊維積層体4の外周に沿った領域43を一周する黒の実線にて示している。また、本発明において連続的とは、把持部が一つのみの状態を指す。したがって、把持部2が必ずしも強化繊維積層対4の外周に沿った領域43を一周している必要はない。   When continuously installing in a region 43 along the outer periphery of the reinforcing fiber laminate 4, the resin flow from the outside to the inside by installing so as to surround the position 32 facing the resin injection hole as shown in FIG. 7 Of the reinforcing fiber laminate 4 can be suppressed more effectively. In addition, in FIG. 7, the holding part 2 is shown by the black solid line which encircles the area | region 43 along the outer periphery of the reinforcement fiber laminated body 4 surrounding the position 32 which opposes a resin injection port. In the present invention, "continuous" refers to a state in which there is only one gripping portion. Therefore, the gripping portion 2 does not necessarily have to go around the area 43 along the outer periphery of the reinforcing fiber laminated pair 4.

一方、断続的に設置した場合は、図8に樹脂流動7を示すように、強化繊維積層体4の外周に沿った領域43全体を見かけの樹脂注入孔として利用することができるため、より高い流量で樹脂を注入・含浸することができ、成形サイクルの短縮に効果的である。断続的に設置する場合は、等間隔で配置しても良いし、強化繊維積層体が移動しやすい箇所を事前に特定し、そこに限定して設置しても良いし、設置箇所毎に弾性体の種類や寸法を変更しても良い。なお、本発明において断続的とは、複数の把持部を、隣接する把持部同士が互いに間隔を設けて離間して配置されることを指す。把持部の数や間隔は適宜設定することができるが、図8に示すように、樹脂注入孔32から注入されたマトリックス樹脂が、強化繊維積層体4の外周とキャビティ12との空間を回り込んだ後、強化繊維積層体4の内部に均等に含浸できるように、多くの把持部同士の間隔を設けることが好ましい。また、マトリックス樹脂が強化繊維積層体4に含浸する際、把持部両端から含浸するマトリックス樹脂のフローフロントによる未含浸部が生じないように、把持部の横幅は短くすることが好ましい。   On the other hand, in the case of intermittent installation, as the resin flow 7 is shown in FIG. 8, the entire area 43 along the outer periphery of the reinforcing fiber laminate 4 can be used as an apparent resin injection hole, so The resin can be injected and impregnated at a flow rate, which is effective in shortening the molding cycle. When installing intermittently, you may arrange at equal intervals, specify in advance the location where it is easy for the reinforcing fiber laminate to move, and it may be limited to that location, or be elastic at each location You may change the type and size of the body. In the present invention, "intermittently" means that a plurality of grips are arranged such that adjacent grips are spaced apart from each other. Although the number and intervals of the holding portions can be set appropriately, as shown in FIG. 8, the matrix resin injected from the resin injection hole 32 wraps around the space between the outer periphery of the reinforcing fiber laminate 4 and the cavity 12. After that, it is preferable to provide a space between many grips so that the inside of the reinforcing fiber laminate 4 can be impregnated uniformly. In addition, when the matrix resin is impregnated into the reinforcing fiber laminate 4, it is preferable to shorten the lateral width of the gripping portion so that the non-impregnated portion due to the flow front of the matrix resin impregnated from both ends of the gripping portion is not generated.

弾性体21は、図9のように一方の成形型10aまたは他方の成形型10b上に直接配置しても良いが、一方の成形型10aまたは他方の成形型10b上に弾性体21を固定するための保持部を設けることが好ましい。保持部を設けない場合には、成形作業ごとに弾性体21を適切な位置に配置する必要があるのに対して、保持部を設けた場合には、成形型の開閉動作のみで強化繊維積層体4を把持することができる。保持部は弾性体21を成形型上に固定できれば良く、その例として、成形型表面の凸状の山型構造であり、それに弾性体21をかぶせることにより弾性体21を固定する保持部や、成形型表面の凹状の溝型構造であり、その溝に弾性体21を埋め込むことにより弾性体21を固定する保持部などが挙げられる。中でも、弾性体21の取付が容易になることから、図10のように弾性体が一方の成形型10aまたは他方の成形型10bに埋め込まれる溝型構造の保持部が、より好ましい。弾性体21の一方の成形型10aまたは他方の成形型10bへの埋め込みは、図11のように成形型に直接弾性体用の溝22を加工しても良いし、図12のように弾性体用の溝22を加工した入子23を用いても良い。溝22の断面形状は、用いる弾性体21の断面形状に対して適切な形状を選択すれば良い。また、図11や図12に示す溝22の縁部221は、弾性体21の耐久性を上げるために面取り加工が施されていることが好ましい。   Although the elastic body 21 may be disposed directly on one mold 10a or the other mold 10b as shown in FIG. 9, the elastic body 21 is fixed on one mold 10a or the other mold 10b. It is preferable to provide a holding portion for When the holding portion is not provided, the elastic body 21 needs to be disposed at an appropriate position for each molding operation, whereas when the holding portion is provided, reinforcing fiber lamination is performed only by the opening and closing operation of the molding die. The body 4 can be gripped. The holding portion only needs to be able to fix the elastic body 21 on the molding die, for example, a convex mountain-shaped structure on the surface of the molding die, holding the elastic body 21 by covering the elastic body 21 thereon, It is a concave grooved structure on the surface of the mold, and a holding portion that fixes the elastic body 21 by embedding the elastic body 21 in the groove can be mentioned. Among them, since the elastic body 21 can be easily attached, it is more preferable to use a holding portion having a grooved structure in which the elastic body is embedded in one mold 10a or the other mold 10b as shown in FIG. The embedding of the elastic body 21 in one of the molds 10a or the other mold 10b may be achieved by processing the groove 22 for the elastic body directly in the mold as shown in FIG. 11 or the elastic body as shown in FIG. An insert 23 formed by processing a groove 22 for use may be used. The cross-sectional shape of the groove 22 may be selected appropriately for the cross-sectional shape of the elastic body 21 used. Further, the edge 221 of the groove 22 shown in FIG. 11 and FIG. 12 is preferably chamfered in order to increase the durability of the elastic body 21.

本発明における把持部2は、弾性体21を用いた構成に限らず、例えば一方の成形型10aまたは他方の成形型10bの把持部2が、把持部2以外のキャビティ12内表面の表面粗さよりも大きい表面粗さを有することで、強化繊維積層体4と把持部2との間の摩擦係数を高くできるため、強化繊維積層体4の樹脂圧による移動を抑制することができる。また、上記の把持部2が、把持部2以外のキャビティ12内表面の表面粗さよりも大きい表面粗さを有するようにする方法を、弾性体21を用いる構成に適用しても良い。その場合、弾性体21の強化繊維積層体に接触する第1面211の表面粗さを大きくすることにより、把持部2の摩擦係数をさらに高くすることができ、強化繊維積層体4の樹脂圧による移動をより抑制することができる。   The gripping portion 2 in the present invention is not limited to the configuration using the elastic body 21. For example, the surface roughness of the inner surface of the cavity 12 other than the gripping portion 2 is not the gripping portion 2 of one mold 10a or the other mold 10b. Since the coefficient of friction between the reinforcing fiber laminate 4 and the grip portion 2 can be increased by having a large surface roughness, it is possible to suppress the movement of the reinforcing fiber laminate 4 due to the resin pressure. Further, the method using the elastic body 21 may be applied to a method in which the grip portion 2 has a surface roughness larger than the surface roughness of the inner surface of the cavity 12 other than the grip portion 2. In that case, the coefficient of friction of the grip portion 2 can be further increased by increasing the surface roughness of the first surface 211 in contact with the reinforcing fiber laminate of the elastic body 21, and the resin pressure of the reinforcing fiber laminate 4 Movement can be further suppressed.

このように、本発明に係る繊維強化プラスチック製造方法では、従来の成形型にも適用可能な簡便な方法で強化繊維積層体の把持部を形成し、樹脂注入から含浸、硬化すべての工程で強化繊維積層体を把持することで、強化繊維基材に乱れを生じることなく、高い流量で樹脂を注入することができ、高意匠な繊維強化樹脂を短時間で得ることができる。   As described above, in the fiber reinforced plastic manufacturing method according to the present invention, the grip portion of the reinforcing fiber laminate is formed by a simple method applicable to a conventional mold, and reinforced in all steps from resin injection to impregnation and curing. By holding the fiber laminate, the resin can be injected at a high flow rate without disturbance in the reinforcing fiber base, and a high-design fiber reinforced resin can be obtained in a short time.

以下に本発明を実施例と比較例を用いて、さらに詳細に説明する。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples.

実施例では、以下に述べる材料を使用した。   In the examples, the materials described below were used.

・強化繊維基材:東レ(株)製炭素繊維織物“CK6255”(織り組織:平織り、織物目付:330g/m)、熱可塑性樹脂のバインダ(粒状)が5g/m付着されているもの
・樹脂:東レ(株)製エポキシ樹脂
実施例では、550x550mmの平板型キャビティを有する成形型を用いた。成形型は上下型からなり、上型に樹脂注入孔が設けられている。該成形型は熱媒流路を有しており、実施例では加圧水を流すことで該成形型を120℃に加熱して試験を実施した。
· Reinforcing fiber base material: Carbon fiber fabric "CK 6255" (woven structure: plain weave, fabric weight: 330 g / m 2 ) manufactured by Toray Industries, Inc. 5 g / m 2 of binder (granular) of thermoplastic resin is attached Resin: Epoxy resin manufactured by Toray Industries, Inc. In the examples, a mold having a 550 × 550 mm flat cavity was used. The molding die is an upper and lower die, and a resin injection hole is provided in the upper die. The mold had a heat medium flow path, and in the example, the mold was heated to 120 ° C. by flowing pressurized water to conduct a test.

本実施例および比較例に用いた強化繊維積層体の寸法は500x500mmであり、積層構成は以下の通りである。   The dimensions of the reinforced fiber laminate used in the present example and the comparative example are 500 × 500 mm, and the laminate configuration is as follows.

・強化繊維積層体:強化繊維基材(0/90°繊維配向)× 5ply
また、本実施例および比較例では、樹脂注入時はキャビティの厚みを、図示しない成形型昇降機構を用いて最終成形品の厚みより大きく設定し、樹脂注入完了後に最終成形品の厚みまで型を閉じた。
· Reinforcing fiber laminate: Reinforcing fiber base (0/90 ° fiber orientation) × 5 ply
Further, in the present example and the comparative example, the thickness of the cavity is set larger than the thickness of the final molded product using a mold lifting mechanism (not shown) at the time of resin injection, and the mold is made to the thickness of the final molded product after resin injection is completed. Closed.

(実施例1)
下型上に強化繊維積層体を
配置し、その上に50mm間隔でシリコーンゴムシートを配置し、上型を閉じた。このときのキャビティの厚みは最終成形品の厚みよりも大きく設定した。この状態で樹脂注入機を用いて、樹脂注入孔から樹脂を注入後、キャビティ厚みを最終成形品の厚みまで小さくし、樹脂を硬化させた。
Example 1
A reinforcing fiber laminate was placed on the lower mold, and a silicone rubber sheet was placed thereon at 50 mm intervals, and the upper mold was closed. The thickness of the cavity at this time was set larger than the thickness of the final molded product. In this state, the resin was injected from the resin injection hole using a resin injection machine, the cavity thickness was reduced to the thickness of the final molded product, and the resin was cured.

得られた繊維強化プラスチックは、強化繊維積層体が移動することなく、強化繊維基材の乱れがない高意匠なものであった。   The obtained fiber reinforced plastic had a high design without disturbance of the reinforcing fiber base without moving the reinforcing fiber laminate.

(実施例2)
下型上に強化繊維積層体を配置し、その上にシリコーンゴム紐を、樹脂注入孔と対向する位置を囲むように配置した後、他方の成形型を閉じた。このときのキャビティの厚みは実施例1と同様、最終成形品の厚みよりも大きく設定した。この状態で、実施例1と同条件で樹脂注入孔から樹脂を注入した後、キャビティ厚みを最終成形品の厚みまで小さくし、樹脂を硬化させた。
(Example 2)
A reinforced fiber laminate was placed on the lower mold, and a silicone rubber cord was placed on the lower one so as to surround the position facing the resin injection hole, and then the other mold was closed. As in Example 1, the thickness of the cavity at this time was set larger than the thickness of the final molded product. In this state, after resin was injected from the resin injection hole under the same conditions as in Example 1, the cavity thickness was reduced to the thickness of the final molded product, and the resin was cured.

得られた繊維強化プラスチックは、強化繊維積層体が移動することなく、強化繊維基材の乱れがない高意匠なものであった。   The obtained fiber reinforced plastic had a high design without disturbance of the reinforcing fiber base without moving the reinforcing fiber laminate.

(比較例1)
下型上に強化繊維積層体を配置し、シリコーンゴム等は配置せず、そのままの状態で他方の型を閉じた。このときのキャビティ厚みは実施例1、2と同様、最終成形品の厚みよりも大きく設定した。この状態で、実施例1、2と同条件で樹脂注入孔から樹脂を注入した後、キャビティ厚みを最終成形品の厚みまで小さくし、樹脂を硬化させた。
(Comparative example 1)
The reinforcing fiber laminate was placed on the lower mold, and no silicone rubber was placed, and the other mold was closed as it was. The cavity thickness at this time was set larger than the thickness of the final molded product as in the first and second embodiments. In this state, after resin was injected from the resin injection hole under the same conditions as in Examples 1 and 2, the cavity thickness was reduced to the thickness of the final molded product, and the resin was cured.

得られた繊維強化プラスチックは、強化繊維積層体が初期の位置から内側へ大きく移動し、強化繊維基材が乱れ、それに伴う樹脂流路の閉塞により、強化繊維積層体の中央付近には未含浸領域も観られた。   In the obtained fiber-reinforced plastic, the reinforcing fiber laminate largely moves inward from the initial position, and the reinforcing fiber base is disturbed, and the resin flow path is blocked accordingly, so that the center of the reinforcing fiber laminate is not impregnated. The territory was also seen.

本発明に係る繊維強化プラスチック製造方法は、成形品の表面品位の向上が望まれるあらゆる繊維強化プラスチックのRTM成形に適用可能である。中でも、高い表面品位を有しつつ成形時間の短縮が望まれる、自動車部材として好ましく用いられる。   The fiber reinforced plastic manufacturing method according to the present invention is applicable to RTM molding of any fiber reinforced plastic for which it is desired to improve the surface quality of molded articles. Among them, it is preferably used as an automobile member for which shortening of molding time is desired while having high surface quality.

1 RTM成形装置
10 成形型
10a 一方の成形型
10b 他方の成形型
101a キャビティ側表面
101b キャビティ側表面
11 シール材
12 キャビティ
2 把持部
21 弾性体
22 弾性体用の溝(保持部)
221 縁部
23 入子
3 樹脂注入孔
31 弁体
32 樹脂注入孔に対向する位置
4 強化繊維積層体
41 強化繊維基材
411 繊維束
42 最終製品範囲
43 強化繊維積層体の外周に沿った領域
5 プレス機構
6 マトリックス樹脂
7 樹脂流動方向
9 樹脂注入機
91 樹脂注入ライン
DESCRIPTION OF SYMBOLS 1 RTM shaping | molding apparatus 10 shaping | molding die 10a One shaping | molding die 10b The other shaping | molding die 101a Cavity side surface 101b Cavity side surface 11 Seal material 12 Cavity 2 Gripping part 21 Elastic body 22 Groove | channel for elastic bodies (holding part)
221 edge 23 core 3 resin injection hole 31 valve body 32 position facing resin injection hole 4 reinforcing fiber laminate 41 reinforcing fiber base 411 fiber bundle 42 final product range 43 region along outer periphery of reinforcing fiber laminate 5 Press mechanism 6 Matrix resin 7 Resin flow direction 9 Resin injection machine 91 Resin injection line

Claims (5)

成形型のキャビティ内に強化繊維積層体を配置し、前記成形型に設けられた樹脂注入口から樹脂を前記キャビティ内に注入して前記強化繊維積層体に含浸させ、硬化させて維維強化プラスチックを得る繊維強化プラスチック製造方法において、前記キャビティ内への樹脂の注入を、前記キャビティ内に設けられた前記強化繊維積層体の少なくとも一部を把持する把持部により前記強化繊維積層体を把持した状態で行い、前記把持部が、把持部以外のキャビティ内表面の表面粗さよりも大きい表面粗さを有することを特徴とする繊維強化プラスチック製造方法。 A reinforced fiber laminate is disposed in a cavity of a mold, and a resin is injected into the cavity from a resin injection port provided in the mold to impregnate the reinforced fiber laminate with the resin and cured to obtain a fiber reinforced plastic In the method for producing a fiber-reinforced plastic, the resin is injected into the cavity by holding the reinforcing fiber laminate by a gripping portion which grips at least a part of the reinforcing fiber laminate provided in the cavity. in row have, the gripping portion, a fiber reinforced plastic production method which is characterized by having a greater surface roughness than the surface roughness of the cavity surface of the non-gripping portion. 前記把持部が弾性体である、請求項1に記載の繊維強化プラスチック製造方法。   The fiber reinforced plastic manufacturing method according to claim 1, wherein the grip portion is an elastic body. 前記把持部が前記強化繊維積層体の外周に沿った領域に設置されている、請求項1または2に記載の繊維強化プラスチック製造方法。   The fiber reinforced plastic manufacturing method according to claim 1 or 2, wherein the grip portion is installed in a region along the outer periphery of the reinforcing fiber laminate. 前記把持部が前記強化繊維積層体の外周に沿った領域に断続的に設置されている、請求項1または2に記載の繊維強化プラスチック製造方法。   The fiber reinforced plastic manufacturing method according to claim 1 or 2, wherein the grip portion is intermittently installed in a region along the outer periphery of the reinforcing fiber laminate. 前記成形型が、前記弾性体を保持するための保持部を有する、請求項2に記載の繊維強化プラスチック製造方法 The fiber reinforced plastic manufacturing method according to claim 2, wherein the mold has a holding portion for holding the elastic body .
JP2015022918A 2015-02-09 2015-02-09 Fiber reinforced plastic manufacturing method Active JP6519214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015022918A JP6519214B2 (en) 2015-02-09 2015-02-09 Fiber reinforced plastic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015022918A JP6519214B2 (en) 2015-02-09 2015-02-09 Fiber reinforced plastic manufacturing method

Publications (2)

Publication Number Publication Date
JP2016144899A JP2016144899A (en) 2016-08-12
JP6519214B2 true JP6519214B2 (en) 2019-05-29

Family

ID=56685810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015022918A Active JP6519214B2 (en) 2015-02-09 2015-02-09 Fiber reinforced plastic manufacturing method

Country Status (1)

Country Link
JP (1) JP6519214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087278B2 (en) * 2017-05-19 2022-06-21 日産自動車株式会社 Preform molding equipment and preform molding method
CN111421857A (en) * 2020-03-30 2020-07-17 成都飞机工业(集团)有限责任公司 CFRP hole making quality control method
JP7468116B2 (en) 2020-04-21 2024-04-16 日産自動車株式会社 Composite material molding equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424157Y2 (en) * 1974-04-26 1979-08-16
JPS5653052A (en) * 1979-10-09 1981-05-12 Toto Ltd Mold
JPH04224915A (en) * 1990-12-26 1992-08-14 Isuzu Motors Ltd Molding method for fiber reinforced resin
JPH0729305B2 (en) * 1992-07-14 1995-04-05 富山県 FRP by resin injection method and manufacturing method thereof
JP3276507B2 (en) * 1994-03-18 2002-04-22 本田技研工業株式会社 Reaction injection mold
JP2000052359A (en) * 1998-08-06 2000-02-22 Sekisui Chem Co Ltd Method for molding fiber-reinforced plastic molded article
JP2008068553A (en) * 2006-09-15 2008-03-27 Toray Ind Inc Preform for rtm (resin transfer molding) process and rtm processes
DE102012110307B4 (en) * 2012-10-29 2020-01-23 Kraussmaffei Technologies Gmbh Process for the production of composite material components made of plastic by high-pressure resin transfer presses and associated high-pressure resin transfer press tool

Also Published As

Publication number Publication date
JP2016144899A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP6728856B2 (en) RTM manufacturing device and RTM manufacturing method of fiber reinforced plastic
TWI689407B (en) Injection modlding method and injection molded part using fiber reinforced composite material
JP6372195B2 (en) Preform manufacturing method and fiber reinforced plastic manufacturing method
JP6519214B2 (en) Fiber reinforced plastic manufacturing method
CA2918546C (en) Mould arrangement and method for compression moulding fiber reinforced preforms
WO2013125641A1 (en) Rtm method
CN109866435B (en) Fiber-reinforced resin body and method for producing same
JP2017213819A (en) Manufacturing method of fiber reinforced composite material
JP2017218688A (en) Reinforcing base material for composite material part, composite material part, and method for producing the same
JP5223505B2 (en) Manufacturing method of FRP
JP6040547B2 (en) Manufacturing method of fiber reinforced plastic
CN104647778B (en) Compacting tool set and method for compressed fibre semi-finished product
JP4442256B2 (en) RTM molding method
JP6750735B2 (en) Composite material molding method and composite material molding apparatus
KR20170133769A (en) Resin trasferring mold forming method and device
JP5910944B2 (en) Preform manufacturing method
JP6066331B2 (en) Manufacturing method of fiber reinforced resin
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
KR20150127470A (en) Mould for forming fiber-reinforced composite material easying gas emissions
JP6791380B2 (en) Composite material molding method
JP2018178299A (en) Fiber structure and method for manufacturing fiber-reinforced composite material
JP6786989B2 (en) Composite material molding method
KR20190140149A (en) Flow Medium for Fabricating Fiber Reinforced Plastic and Vacuum Assisted Molding Process Using for the Same
KR102586026B1 (en) Preform molding apparatus
KR102111398B1 (en) Complex materials forming system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6519214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151