JP6517105B2 - Superfinishing method of roller bearing rolling surface - Google Patents

Superfinishing method of roller bearing rolling surface Download PDF

Info

Publication number
JP6517105B2
JP6517105B2 JP2015144053A JP2015144053A JP6517105B2 JP 6517105 B2 JP6517105 B2 JP 6517105B2 JP 2015144053 A JP2015144053 A JP 2015144053A JP 2015144053 A JP2015144053 A JP 2015144053A JP 6517105 B2 JP6517105 B2 JP 6517105B2
Authority
JP
Japan
Prior art keywords
rolling
roller bearing
processing
rolling surface
arc portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015144053A
Other languages
Japanese (ja)
Other versions
JP2017026000A (en
Inventor
邦守 秋野
邦守 秋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2015144053A priority Critical patent/JP6517105B2/en
Priority to PCT/JP2016/068955 priority patent/WO2017014001A1/en
Publication of JP2017026000A publication Critical patent/JP2017026000A/en
Application granted granted Critical
Publication of JP6517105B2 publication Critical patent/JP6517105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、円すいころ軸受や円筒ころ軸受の転走面を加工する超仕上げ加工方法に関し、特に、転走面の断面形状が、複数の円弧形状で継ぎ合わせた形状となる複合クラウニング面の超仕上げ加工方法に関する。   The present invention relates to a superfinishing method for processing the rolling contact surface of a tapered roller bearing or a cylindrical roller bearing, and in particular, the superfinishing method of a composite crowning surface in which the cross sectional shape of the rolling contact surface is a shape of a plurality of arcs. It relates to a finishing method.

ころ軸受の内輪または外輪の転走面は、断面が軸方向にストレート面、または断面が1種類の円弧形状となる単一クラウニング面、または断面が複数の円弧形状で繋ぎ併せた形状となる複合クラウニング面、または断面が対数曲線となる対数クラウニング面を有している。   The rolling surface of the inner ring or the outer ring of the roller bearing has a straight surface in the axial direction, or a single crowning surface in which the cross section is a single arc shape, or a composite in which the cross sections are connected in a plurality of arc shapes. It has a crowning surface, or a logarithmic crowning surface whose cross section is a logarithmic curve.

これらの面の超仕上げ(鏡面仕上げ)加工する方法として、従来には、円すい面または円筒面に垂直に配置された角形砥石を用いて、円すい面または円筒面に平行に微振動動作を砥石に与え、この砥石を加圧する方法があった(特許文献1)。さらには、円すい面または円筒面に平行にトラバース動作(往復動作)および微振動動作を砥石に与え、かつ砥石を加圧することによって行なう方法があった(特許文献2)。   Conventionally, as a method of superfinishing (mirror finishing) of these surfaces, using a square grinding wheel disposed perpendicularly to a conical surface or a cylindrical surface, the fine vibration operation is performed in parallel to the conical surface or the cylindrical surface. There is a method of giving and pressing the grindstone (Patent Document 1). Furthermore, there has been a method in which a traverse operation (reciprocation operation) and a micro-vibration operation are given to the grinding stone in parallel with a conical surface or a cylindrical surface, and the grinding wheel is pressurized (Patent Document 2).

特開2002−326153号公報Japanese Patent Laid-Open No. 2002-326153 特開2007−260829号公報JP 2007-260829 A

例えば、図10では、ころ軸受の軌道輪(外輪)5の転走面1と、加圧手段の加圧源6にて加圧された砥石2とを接触させた場合を示している。この場合、外輪5は、支持機構7にて支持されている。支持機構7は、外輪5の端面に接して外輪5をその軸心L廻り回転させるバッキングプレート8と、外輪5をバッキングプレート8側へ押し付けるプッシャーロール9等を備える。また、図11(a)(b)に示すように、転走面1としては、一般的に、軸方向中央部の大径円弧部1aと軸方向端部の小径円弧部1bとを有する複合クラウニングである。このため、前記特許文献1に記載のように、微振動動作のみでトラバース動作せずに加工する場合、砥石2は、この大径円弧部1aと小径円弧部1b、1bとの形状にあった研磨面を有する。   For example, FIG. 10 shows the case where the rolling contact surface 1 of the bearing ring (outer ring) 5 of the roller bearing is in contact with the grindstone 2 pressurized by the pressure source 6 of the pressure means. In this case, the outer ring 5 is supported by the support mechanism 7. The support mechanism 7 includes a backing plate 8 which rotates the outer ring 5 about its axis L in contact with the end face of the outer ring 5 and a pusher roll 9 which presses the outer ring 5 against the backing plate 8. Further, as shown in FIGS. 11 (a) and 11 (b), in general, a compound having a large diameter circular arc portion 1a at the center in the axial direction and a small diameter circular arc portion 1b at the axial end. It is crowning. For this reason, as described in Patent Document 1, when processing is performed without traverse operation by only the fine vibration operation, the grindstone 2 is in the shape of the large diameter arc portion 1a and the small diameter arc portions 1b and 1b. It has a polished surface.

しかしながら、このように、転走面1の断面形状は大小異なる径の円弧を有し、軸方向両端部の円弧が小径である為、図11(a)では、砥石2の研磨面の軸方向端部対応部にて加工が可能であるが、図11(b)に示すように、砥石2の研磨面の軸方向端部対応部が軸方向端部の小径円弧部1bに対応できず、この小径円弧部1bを加工できない場合がある。すなわち、図11(a)では、複合クラウニングのクラウニング高さが低い場合であり、図11(b)では、複合クラウニングのクラウニング高さが高い場合である。   However, as described above, since the cross-sectional shape of the rolling contact surface 1 has arcs of different diameters and the arcs at both axial end portions have a small diameter, the axial direction of the grinding surface of the grindstone 2 is shown in FIG. Although processing is possible at the end corresponding portion, as shown in FIG. 11 (b), the axial end corresponding portion of the grinding surface of the grindstone 2 can not correspond to the small diameter arc portion 1b at the axial end, There are cases where this small diameter arc portion 1b can not be processed. That is, FIG. 11 (a) shows the case where the crowning height of the composite crowning is low, and FIG. 11 (b) shows the case where the crowning height of the composite crowning is high.

また、特許文献2に記載のものでは、図12に示すように、砥石3が振動動作・法線方向の旋回を抑えたトラバース動作(往復動)を行うことになる。このように、法線加圧加工で複合クラウニングを加工する場合、微振動のみの加工に比べて加工能率が悪い為、加工時間が長くなる。軸方向全体を一度に加工しようとすると、砥石3が両端の小径円弧部1bに馴染んだ後、中央の大径円弧部1aを加工する際、図13に示すように、研磨面3aが凹曲面状であり、砥石3の研磨面3aが大径円弧部(加工面)1aに均一に接触せず、クラウニング形状が崩れ均一な仕上げ面粗さが得られないことがある。   Moreover, in the case of the patent document 2, as shown in FIG. 12, the traverse action (reciprocal movement) is performed in which the grinding stone 3 suppresses the turning movement in the vibration action / normal direction. As described above, when processing the composite crowning by normal pressure processing, the processing efficiency is poor compared to the processing of only the fine vibration, so the processing time becomes long. If the entire axial direction is to be machined at one time, the grinding surface 3a has a concave surface as shown in FIG. 13 when machining the central large diameter circular arc portion 1a after the grindstone 3 conforms to the small diameter circular arc portions 1b at both ends. The grinding surface 3a of the grindstone 3 may not uniformly contact the large diameter arc portion (machined surface) 1a, and the crowning shape may be broken, and a uniform finished surface roughness may not be obtained.

そこで、クラウニング形状が型崩れせずに均一な仕上げ面粗さを得ることができ、しかも、加工能率の向上を図ることが可能なころ軸受転走面の超仕上げ加工方法を提供する。   Therefore, it is possible to provide a method of superfinishing a roller bearing rolling surface which can obtain a uniform finished surface roughness without losing the shape of the crowning shape and can improve the machining efficiency.

本発明のころ軸受転走面の超仕上げ加工方法は、ころ軸受の転走面を加工する超仕上げ加工方法であって、前記転走面は、軸方向中央部の大径円弧部と軸方向端部の小径円弧部とを有する複合クラウニング面であり、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うものである。   The method for superfinishing a roller bearing rolling surface according to the present invention is a superfinishing method for machining a rolling bearing surface of a roller bearing, wherein the rolling bearing surface is a large diameter arc portion in the axial center and an axial direction A compound crowning surface having a small diameter circular arc at the end, and after machining the entire axial direction of the rolling surface, separate machining of only the large diameter circular arc at the axial center of the rolling surface is there.

本発明のころ軸受転走面の超仕上げ加工方法によれば、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うので、軸方向中央部の大径円弧部において、均一な仕上げ面粗さを得ることができる。しかも、転走面の軸方向端部の小径円弧部においても、大径円弧部のみの別加工の前に、転走面の軸方向全体の加工を行うので、小径円弧部においても均一な仕上げ面粗さを得ることができる。ここで別加工とは、別の設備で加工する場合でも同じ設備で加工する場合でもよく、別の加工工程があればよい。   According to the method of superfinishing the roller bearing rolling surface of the present invention, after machining the entire axial direction of the rolling surface, separate machining of only the large diameter arc portion of the axial center portion of the rolling surface is performed. Therefore, uniform finished surface roughness can be obtained in the large diameter arc portion at the axial center portion. Moreover, even in the small diameter arc portion at the axial end of the rolling surface, the entire axial direction of the rolling surface is processed before separate machining of only the large diameter arc portion, so even finishing in the small diameter arc portion Surface roughness can be obtained. Here, separate processing may be performed in the case of processing with another facility or in the case of processing with the same facility, as long as there is another processing step.

転走面の軸方向全体の加工は砥石のトラバース動作であり、小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止するのが好ましい。このように、構成することによって、小径円弧部の端部での加工不十分を解消することができる。   The machining of the entire axial direction of the rolling surface is a traverse operation of the grinding wheel, and it is preferable to stop the traverse movement of the grinding wheel for a predetermined time at an end position of the small diameter arc portion. In this way, by configuring, machining insufficiency at the end of the small diameter arc portion can be resolved.

軸方向全体の加工は、粗加工と仕上加工とを有するものであってもよい。このように、2工程とすることによって、加工の高精度化を図ることができる。   Machining in the entire axial direction may include roughing and finishing. As described above, by setting the number of processes to two, high-precision processing can be achieved.

前記ころ軸受が円すいころ軸受であっても、円筒ころ軸受であってもよい。   The roller bearings may be tapered roller bearings or cylindrical roller bearings.

前記転走面は、内輪の外径面に形成される転走面であっても、外輪の外径面に形成される転走面であってもよい。   The rolling contact surface may be a rolling contact surface formed on the outer diameter surface of the inner ring, or may be a rolling contact surface formed on the outer diameter surface of the outer ring.

本発明では、軸方向中央部の大径円弧部において均一な仕上げ面粗さを得ることができ、小径円弧部においても均一な仕上げ面粗さを得ることができ、高精度の転走面を得ることができる。   In the present invention, uniform finished surface roughness can be obtained in the large diameter arc portion at the axial center, uniform finish surface roughness can be obtained even in the small diameter arc portion, and a highly accurate rolling surface can be obtained. You can get it.

小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止することによって、
小径円弧部のトラバース回数の減少化を図ることができ、加工能率の向上を図って、全体としての加工時間の短縮化を達成できる。
By stopping the traversing motion of the grinding wheel at the end position of the small diameter arc portion for a predetermined time,
It is possible to reduce the number of traverses of the small diameter arc portion, improve the processing efficiency, and achieve shortening of the processing time as a whole.

本発明の加工方法おける、ころ軸受の軌道輪としての外輪と砥石との関係を示す概略的平面図である。It is a schematic plan view which shows the relationship between the outer ring | wheel as a bearing ring of a roller bearing, and a grindstone in the processing method of this invention. 本発明のころ軸受転走面の超仕上げ加工方法を示し、(a)は軸方向全体の加工の粗加工中の簡略図であり、(b)は軸方向全体の加工の仕上げ加工中の簡略図であり、(c)は転走面の軸方向中央部の大径円弧部のみの別加工の簡略図である。The superfinishing method of the roller bearing rolling surface of the present invention is shown, wherein (a) is a simplified view during roughing of the entire axial direction, and (b) is a simplified view during the finishing of the entire axial direction. It is a figure and (c) is a simple figure of another processing of only a large diameter circular arc part of an axial direction central part of a rolling contact side. トラバース動作停止中の簡略図である。It is a simplification figure in traverse operation stop. 軸方向中央部の面粗度を示し、(a)は軸方向中央部の別加工を行わなかった場合のグラフ図であり、(b)は軸方向中央部の別加工を行った場合のグラフ図である。The surface roughness of the axial center portion is shown, and (a) is a graph when the axial central portion is not separately processed, and (b) is the graph when the axial central portion is separately processed. FIG. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム無しにて加工を行った結果を示し、(a)は転走面の断面形状の簡略図であり、(b)は転走面の面粗度のグラフ図である。The result of processing with no tally time in the method of superfinishing a roller bearing rolling surface according to the present invention is shown, (a) is a simplified view of the sectional shape of the rolling surface, (b) is a rolling surface It is a graph of the surface roughness of. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム有りにて加工を行った結果を示し、(a)は転走面の断面形状の簡略図であり、(b)は転走面の面粗度のグラフ図である。The results of machining with tally time in the method of superfinishing a roller bearing rolling surface according to the present invention are shown, (a) is a simplified view of the sectional shape of the rolling surface, (b) is a rolling surface FIG. 6 is a graph of the surface roughness of FIG. 円すいころ軸受の断面図である。It is a sectional view of a tapered roller bearing. 円筒ころ軸受の断面図である。It is a sectional view of a cylindrical roller bearing. 他の円筒ころ軸受の断面図である。It is sectional drawing of another cylindrical roller bearing. 従来の微振動動作のみの加工における、ころ軸受の軌道輪としての外輪と砥石との関係を示す概略的平面図である。It is a schematic plan view which shows the relationship between the outer ring | wheel as a bearing ring of a roller bearing, and a grindstone in the process of the conventional fine vibration operation | movement. 従来の微振動動作のみの加工方法を示し、(a)はクラウニングが低いときの砥石と転走面との関係を示す簡略図であり、(b)はクラウニングが高いときの砥石と転走面との関係を示す簡略図である。(A) is a simplified view showing the relationship between the grinding wheel and the rolling contact surface when the crowning is low, and (b) is a grinding wheel and the rolling contact surface when the crowning is high. Is a simplified diagram showing the relationship between 従来のトラバース動作及び微振動動作を行う加工方法を示す簡略図である。It is a simplification figure showing the processing method which performs conventional traverse operation and micro-vibration operation. 前記図11に示す加工方法の問題点を示す簡略図である。FIG. 12 is a simplified view showing problems of the processing method shown in FIG. 11;

以下本発明の実施の形態を図1〜図9に基づいて説明する。図7は円すいころ軸受を示し、この円すいころ軸受は、図7に示すように、外周面に円すい状の転走面10を有する内輪11と、内周面に円すい状の転走面12を有する外輪13と、内輪11の転走面10と外輪13の転走面12との間に転動自在に介在した複数の円すいころ14と、複数の円すいころ14を軸受周方向に所定の間隔を隔てて保持する保持器15とを主要な構成要素としている。また、内輪11は、転走面10の小径側に小鍔16を形成すると共に大径側に大鍔17を形成している。   Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 9. FIG. 7 shows a tapered roller bearing, which, as shown in FIG. 7, comprises an inner ring 11 having a conical rolling surface 10 on the outer peripheral surface and a conical rolling surface 12 on the inner peripheral surface. The plurality of tapered rollers 14 rollably interposed between the outer ring 13 having the rolling contact surface 10 of the inner ring 11 and the rolling contact surface 12 of the outer ring 13 and the plurality of tapered rollers 14 at predetermined intervals in the bearing circumferential direction And a retainer 15 for holding the components apart. Further, the inner ring 11 forms a small ridge 16 on the small diameter side of the raceway surface 10 and a large ridge 17 on the large diameter side.

保持器15は、小径リング部15aと大径リング部15bとの間に複数本の柱部15cを有し、柱部15cの相互間に円すいころ14を保持するポケット18を形成したものである。そして、このポケット18に円すいころ14が配置される。   The cage 15 has a plurality of column portions 15c between the small diameter ring portion 15a and the large diameter ring portion 15b, and a pocket 18 for holding the tapered roller 14 is formed between the column portions 15c. . Then, the tapered roller 14 is disposed in the pocket 18.

図8は、円筒ころ軸受を示し、この円筒ころ軸受は、外周に転走面20を有する内輪21と、内周に転走面22を有する外輪23と、内輪21の転走面20と外輪23の転走面22との間に転動自在に配された複数の円筒ころ24と、円筒ころ24を円周所定間隔に保持する保持器25とを備えている。内輪21の両側部には、それぞれ、鍔部26,27が設けられている。   FIG. 8 shows a cylindrical roller bearing, which comprises an inner ring 21 having a rolling surface 20 on the outer periphery, an outer ring 23 having a rolling surface 22 on the inner periphery, a rolling surface 20 of the inner ring 21 and an outer ring A plurality of cylindrical rollers 24 rotatably disposed between the rolling surfaces 23 and 23 and a cage 25 for holding the cylindrical rollers 24 at predetermined circumferential intervals are provided. Collars 26 and 27 are provided on both sides of the inner ring 21, respectively.

内輪21の各鍔部26,27の鍔面と転走面20とが交わる隅部には、それぞれ、ぬすみ溝28が設けられている。これらぬすみ溝28は、主に、転走面20と鍔面を研削加工する際の逃げ溝として設けられるものである。   At the corners where the ridge surfaces 26 and 27 of the inner ring 21 and the rolling surface 20 cross each other, relief grooves 28 are provided. These relief grooves 28 are mainly provided as relief grooves when grinding the rolling contact surface 20 and the heel surface.

図9に示す円筒ころ軸受は、外周に転走面30を有する内輪31と、内周に転走面32を有する外輪33と、内輪31の転走面30と外輪33の転走面32との間に転動自在に配された複数の円筒ころ34と、円筒ころ34を円周所定間隔に保持する保持器35とを備えている。外輪33の両側部には、それぞれ、鍔部36,37が設けられている。外輪33の各鍔部36,37の鍔面と転走面32とが交わる隅部には、それぞれ、ぬすみ溝38が設けられている。   The cylindrical roller bearing shown in FIG. 9 includes an inner ring 31 having a rolling surface 30 on the outer periphery, an outer ring 33 having a rolling surface 32 on the inner circumference, a rolling surface 30 of the inner ring 31 and a rolling surface 32 of the outer ring 33. And a cage 35 for holding the cylindrical rollers 34 at a predetermined circumferential distance. Collars 36 and 37 are provided on both sides of the outer ring 33, respectively. At the corners where the ridge surfaces of the ridges 36 and 37 of the outer ring 33 and the rolling surface 32 intersect, a recess groove 38 is provided.

本発明の超仕上げ加工方法は、図7〜図9等で示す円すいころ軸受の転走面10,12や円筒ころ軸受の転走面20,22、30,32を、図2に示すような加工方法での加工を行うものである。図2に示す転走面R(10,12、20,22、30,32)は、軸方向中央部の大径円弧部40と軸方向端部の小径円弧部41a,41bとを有する複合クラウニング面である。ここで転走面R(10,12、20,22、30,32)の軸方向中央部の大径円弧部40はR500〜2000mm程度であり、軸方向端部の小径円弧部41a,41bはR30〜100mm程度であり、図2や図11の転走面Rは誇張している。   In the superfinishing method of the present invention, the rolling contact surfaces 10 and 12 of tapered roller bearings shown in FIGS. 7 to 9 and the rolling contact surfaces 20, 22 and 30, 32 of cylindrical roller bearings are as shown in FIG. Processing is performed by the processing method. The rolling surface R (10, 12, 20, 22, 30, 32) shown in FIG. 2 is a composite crowning having a large diameter arc portion 40 at the axial center and small diameter arc portions 41a and 41b at the axial end. It is a face. Here, the large diameter circular arc portion 40 at the axial central portion of the rolling contact surface R (10, 12, 20, 22, 30, 32) is about R 500 to 2000 mm, and the small diameter circular arc portions 41a and 41 b at the axial end It is about R 30-100 mm, and the rolling surface R in FIG. 2 and FIG. 11 is exaggerated.

この超仕上げ加工方法は、図1に示すような支持機構51にて、ころ軸受の軌道輪(図例では円すいの軸受の外輪13を支持して行う。支持機構51は、外輪13の端面に接して外輪13をその軸心L廻り回転させるバッキングプレート52と、外輪13をバッキングプレート52側へ押し付けるプッシャーロール53等を備える。この場合、ころ軸受の外輪13の転走面Rと、加圧手段の加圧源54にて加圧された砥石50とを接触させた場合を示している。円筒ころ軸受の外輪23、33においても同様の支持機構で超仕上げ加工方法となるので省略する。また、円すいころ軸受の内輪11、円筒ころ軸受の内輪21、21においても同様の支持機構で超仕上げ加工方法となるので省略する。   This superfinishing method is performed by supporting the outer ring 13 of a bearing of a roller bearing (a conical bearing in the illustrated example) by a support mechanism 51 as shown in FIG. It has a backing plate 52 that rotates the outer ring 13 about its axis L in contact, and a pusher roll 53 that presses the outer ring 13 toward the backing plate 52. In this case, the rolling surface R of the outer ring 13 of the roller bearing and pressure The case where the grinding wheel 50 pressed by the pressure source 54 of the means is brought into contact with the outer ring 23, 33 of the cylindrical roller bearing is omitted because it becomes the superfinishing method by the same supporting mechanism. In addition, since the superfinishing method is the same as in the inner ring 11 of the tapered roller bearing and the inner rings 21 and 21 of the cylindrical roller bearing, the description thereof will be omitted.

また、この超仕上げ加工方法は、図2(a)に示すように、転走面Rの軸方向全体の粗加工を行う第1段加工と、図2(b)に示すように、転走面Rの軸方向全体の仕上げ加工を行う第2段加工と、図2(c)に示すように、転走面Rの軸方向中央部の大径円弧部40のみの仕上加工を行う第3段加工とを備えたものである。   Moreover, as shown in FIG. 2 (a), this superfinishing method includes first step machining for roughing the entire axial direction of the rolling contact surface R, and as shown in FIG. 2 (b), rolling. Second step machining for finishing the entire surface in the axial direction of the surface R, and third machining for finishing only the large-diameter circular arc portion 40 at the axially central portion of the rolling surface R, as shown in FIG. It is equipped with step processing.

すなわち、第1段加工は、砥石50(粗加工用の砥石50A)を転走面Rの軸方向全体(全長)にわたってトラバースするものである。この場合、トラバースとしては、例えば5秒の1往復とできる。また、第2段加工は、砥石50(仕上げ用の砥石50B)を転走面Rの軸方向全体(全長)にわたってトラバースするものである。トラバースとしては、例えば5秒の1往復とできる。第3段加工は、砥石50(大径円弧部40の仕上げ用の砥石50C)を転走面Rの大径円弧部40のみをトラバースするものである。トラバースとしては、例えば7秒の15往復とできる。また、各段加工においては、砥石50(50A,50B,50C)に転走面Rに対して平行に微振動動作を与えている。   That is, in the first step machining, the grindstone 50 (rough grindstone 50A) is traversed along the entire axial direction (full length) of the rolling surface R. In this case, the traverse can be, for example, one reciprocation of 5 seconds. In the second step machining, the grindstone 50 (finishing grindstone 50B) is traversed along the entire axial direction (full length) of the rolling surface R. The traverse can be, for example, one reciprocation of 5 seconds. In the third step machining, only the large diameter arc portion 40 of the rolling surface R is traversed by the grindstone 50 (the grinding stone 50C for finishing the large diameter arc portion 40). The traverse can be, for example, 15 round trips of 7 seconds. Further, in each step machining, a minute vibration operation is given to the grinding stone 50 (50A, 50B, 50C) in parallel to the rolling surface R.

ところで、粗加工用の砥石50Aの粒度としては、例えば、♯1000〜♯1500程度であり、仕上げ用の砥石50B、50Cの粒度としては、例えば、♯1500〜♯3000程度である。また、粗加工から仕上げ加工まで、同じ砥石50を使用してもよい。この場合の粒度としては、例えば、♯1500〜♯2500程度を用いる。   The grain size of the roughing grindstone 50A is, for example, about # 1000 to # 1500, and the grain size of the finishing grindstones 50B and 50C is, for example, about # 1500 to # 3000. The same grindstone 50 may be used from roughing to finishing. As the particle size in this case, for example, about # 1500 to # 2500 is used.

このころ軸受転走面の超仕上げ加工方法では、転走面Rの軸方向全体の加工を行った後、転走面Rの軸方向中央部の大径円弧部40のみの別加工を行うことになる。このため、この軸方向中央部の大径円弧部40において、均一な仕上げ面粗さを得ることができる。しかも、転走面Rの軸方向端部の小径円弧部41a、41bにおいても、大径円弧部40のみの別加工の前には、転走面Rの軸方向全体の加工を行うので、小径円弧部41a、41bにおいても均一な仕上げ面粗さを得ることができる。すなわち、軸方向中央部の大径円弧部40において均一な仕上げ面粗さを得ることができ、小径円弧部41a、41bにおいても均一な仕上げ面粗さを得ることができ、高精度の転走面Rを得ることができる。   In this method of superfinishing the rolling surface of the roller bearing, after machining the entire axial direction of the rolling surface R, separately machining only the large-diameter circular arc portion 40 at the central portion in the axial direction of the rolling surface R become. For this reason, in the large-diameter circular arc portion 40 at the axially central portion, uniform finished surface roughness can be obtained. Moreover, even in the small diameter arc portions 41a and 41b at the axial end of the rolling surface R, the entire axial direction of the rolling surface R is processed before separately processing only the large diameter arc portion 40. Even in the arc portions 41a and 41b, uniform finished surface roughness can be obtained. That is, uniform finished surface roughness can be obtained in the large diameter arc portion 40 at the central portion in the axial direction, uniform finish surface roughness can be obtained even in the small diameter arc portions 41a and 41b, and highly accurate rolling The face R can be obtained.

また、このころ軸受転走面の超仕上げ加工方法では、転走面Rの軸方向全体の加工において(第2段加工において)、図3に示すように、小径円弧部41a、41bの端部位置で砥石50Bのトラバース動作を小径円弧部の端部位置毎において所定時間(例えば、1秒)だけ停止するのが好ましい。この停止中においても、砥石50(50B)に転走面Rに対して平行に微振動動作を与えている。   Further, in this method of superfinishing the rolling surface of the roller bearing, as shown in FIG. 3, in machining the entire axial direction of the rolling surface R (in the second step machining), the end portions of the small diameter arc portions 41a and 41b It is preferable to stop the traverse operation of the grindstone 50B for a predetermined time (for example, one second) at each end position of the small diameter arc portion at the position. Even during this stop, a minute vibration operation is given to the grinding stone 50 (50B) in parallel to the rolling surface R.

小径円弧部41a、41bの端部位置で砥石のトラバース動作を所定時間だけ停止することによって、小径円弧部41a、41bのトラバース回数の減少化を図ることができ、加工能率の向上を図って、全体としての加工時間の短縮化を達成できる。   By stopping the traverse movement of the grinding stone at the end position of the small diameter arc portions 41a and 41b for a predetermined time, the number of traverses of the small diameter arc portions 41a and 41b can be reduced, thereby improving processing efficiency, The reduction of the processing time as a whole can be achieved.

図2に示す加工方法にて加工するころ軸受として、円すいころ軸受であっても、円筒ころ軸受であってもよく、また、転走面Rとして、内輪11、21,31の外径面に形成される転走面10,20,30であっても、外輪13,23,33の内径面に形成される転走面12,22,32であってもよい。このため、この加工方法は汎用性に優れる。   As a roller bearing processed by the processing method shown in FIG. 2, it may be a tapered roller bearing or a cylindrical roller bearing, and as the raceway surface R, on the outer diameter surface of the inner rings 11, 21, 31 The rolling contact surfaces 10, 20, 30 may be formed, or the rolling contact surfaces 12, 22, 32 formed on the inner diameter surfaces of the outer rings 13, 23, 33. For this reason, this processing method is excellent in versatility.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、第1段加工、第2段加工、第3段加工のトラバースの往復回数として、それぞれ、任意に設定することができる。また、各加工の加工時間としても任意である。さらには、小径円弧部41a、41bの端部位置で砥石のトラバース動作を停止する場合の停止時間としても任意に設定できる。   The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment and can be variously modified. The first step machining, the second step machining, the third step machining traverse The number of round trips can be set arbitrarily. Moreover, it is also arbitrary as processing time of each process. Furthermore, the stop time can be arbitrarily set as the stop time when the traverse operation of the grinding stone is stopped at the end position of the small diameter arc portions 41a and 41b.

第1段加工、第2段加工、及び第3段加工に用いる砥石50A、50B、50Cとしては、転走面Rの材質や硬度等によって、種々採用することができるが、例えば、アルミナ質砥粒や炭化ケイ素の砥粒等を使用できる。   The grindstones 50A, 50B, and 50C used in the first step processing, the second step processing, and the third step processing can be variously adopted depending on the material, hardness, and the like of the rolling contact surface R. Grains and abrasive grains of silicon carbide can be used.

実施例1
全体加工(転走面全体の加工)のみと、全体加工(転走面全体の加工)と中央部加工(転走面の大径円弧部の加工)とを行った場合における、面粗度と加工時間等を比較した。この場合、外径寸法が50〜80mmのサイズで、転走面角度27°、転走面幅14mmの円すいころ軸受の外輪を用いた。図4(a)は全体加工のみの場合、図4(b)は全体加工と中央部加工の場合のそれぞれの転走面の軸方向中央部の面粗度を示している。
Example 1
Surface roughness in the case where only overall processing (processing of the entire rolling surface), overall processing (processing of the entire rolling surface) and central processing (processing of the large diameter arc portion of the rolling surface) are performed The processing time etc. were compared. In this case, an outer ring of a tapered roller bearing having an outer diameter of 50 to 80 mm, a rolling surface angle of 27 ° and a rolling surface width of 14 mm was used. FIG. 4 (a) shows the surface roughness of the axially central portion of each rolling surface in the case of overall processing and FIG. 4 (b) in the case of overall processing and central portion processing.

図4(a)では、加工時間として2往復(26秒)行った。この場合、中央部(大径円弧部)の面粗度Ra0.13μmであった。また、図4(b)では、全体加工を1往復で13秒行い、中央部加工を21往復(10秒)で、合計23秒行った。この場合の中央部の面粗度Ra0.075μmであった。   In FIG. 4A, two reciprocations (26 seconds) were performed as a processing time. In this case, the surface roughness Ra of the central portion (large diameter arc portion) was 0.13 μm. Further, in FIG. 4B, the entire processing was performed for 13 seconds in one reciprocation, and the central processing was performed for a total of 23 seconds in 21 reciprocations (10 seconds). In this case, the surface roughness Ra of the central portion was 0.075 μm.

全体加工のみで図4(b)の中央部と同程度の面粗度を得るためには、少なくとも2往復(26秒)追加する必要があり、全体加工時間が52秒となった。このため、(全体加工+中央部加工)を行えば、加工時間として29秒(52秒−23秒)の短縮となる。   At least two reciprocations (26 seconds) have to be added in order to obtain surface roughness comparable to that of the central part of FIG. 4 (b) by only the overall processing, and the overall processing time was 52 seconds. For this reason, if (whole processing + center part processing) is performed, it will be 29 seconds (52 seconds-23 seconds) shortening as processing time.

実施例2
(全体加工+中央部加工)の加工で、タリータイムなしとタリータイム有とで面粗度と加工時間等を比較した。外径寸法が50〜80mmのサイズで、テーパ角度44°、転走面幅13mmの円すいころ軸受の外輪を用いた。ここで、タリータイムとは、転走面Rの軸方向全体の加工中に、小径円弧部41a、41bの端部位置で砥石50のトラバース動作を停止する時間のことで、タリータイムなしとは、この停止する時間を有さない場合であり、タリータイム有とは停止する時間を有する場合である。
Example 2
In the processing of (whole processing + central part processing), the surface roughness and the processing time etc. were compared with no tally time and with tally time. The outer ring of a tapered roller bearing having an outer diameter size of 50 to 80 mm, a taper angle of 44 °, and a rolling surface width of 13 mm was used. Here, the tally time is a time during which the traverse operation of the grinding stone 50 is stopped at the end position of the small-diameter circular arc portions 41a and 41b during machining of the entire axial direction of the rolling surface R; In this case, there is no time to stop, and with tally time, there is a time to stop.

タリータイムなしの場合、第1段加工(軸方向全体の粗加工)を1往復(5秒)行い、第2段加工(軸方向全体の仕上加工)を1往復(5秒)行い、第3段加工(大径円弧部の仕上加工)を15往復(7秒)行った。すなわち、全体の加工時間が17秒であった。この場合、中央の大径円弧部40の面粗度Ra0.114μmであり、一方の小径円弧部41aの面粗度Ra0.136μmであり、他方の小径円弧部41bの面粗度Ra0.153μmであった。   When there is no tally time, the first step machining (rough machining in the entire axial direction) is performed one reciprocation (5 seconds), and the second step machining (finishing in the entire axial direction) is performed one reciprocation (5 seconds). Step work (finishing of the large diameter arc portion) was carried out 15 cycles (7 seconds). That is, the entire processing time was 17 seconds. In this case, the surface roughness Ra of the central large diameter arc portion 40 is 0.114 μm, the surface roughness Ra of 0.136 μm of the one small diameter arc portion 41a, and the surface roughness Ra of 0.153 μm of the other small diameter arc portion 41b. there were.

タリータイム有の場合、前記タリータイムなしの場合の第2段加工(軸方向全体の仕上加工)中において、砥石50を各小径円弧部41a、41bの端部においてそれぞれ1秒だけ停止させた。このため、全体として加工時間が19秒であった。この場合、中央の大径円弧部40の面粗度Ra0.083μmであり、一方の小径円弧部41aの面粗度Ra0.102μmであり、他方の小径円弧部41bの面粗度Ra0.109μmであった。   When the tally time is present, the grindstone 50 is stopped for one second at the end of each of the small diameter arc portions 41a and 41b during the second step processing (finishing in the entire axial direction) without the tally time. For this reason, the processing time was 19 seconds as a whole. In this case, the surface roughness Ra of the central large diameter arc portion 40 is 0.083 μm, the surface roughness Ra of 0.102 μm of the one small diameter arc portion 41a, and the surface roughness Ra of 0.109 μm of the other small diameter arc portion 41b. there were.

タリータイムなしの加工で、タリータイム有の加工と同等レベルの面粗度を得るには、加工時間を22秒必要とした。第2段加工の1往復(5秒)の追加が必要であり、タリータイム有の加工では、全体としての加工時間が3秒(22秒−19秒)短縮することができる。   In order to obtain the same level of surface roughness as processing with tally time, it required 22 seconds of processing with no tally time processing. It is necessary to add one reciprocation (5 seconds) of the second step processing, and in the processing with tally time, the processing time as a whole can be shortened by 3 seconds (22 seconds-19 seconds).

R(10,12、20,22、30、32) 転走面
11、21,31 内輪
13,23,33 外輪
40 大径円弧部
41a,41b 小径円弧部
50(50A、50B、50C) 砥石
R (10, 12, 20, 22, 30, 32) Rolling surface 11, 21, 31 Inner ring 13, 23, 33 Outer ring 40 Large diameter arc portion 41a, 41b Small diameter arc portion 50 (50A, 50B, 50C)

Claims (7)

ころ軸受の転走面を加工する超仕上げ加工方法であって、
前記転走面は、軸方向中央部の大径円弧部と軸方向端部の小径円弧部とを有する複合クラウニング面であり、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うことを特徴とする超仕上げ加工方法。
A superfinishing method for processing the rolling surface of a roller bearing,
The rolling surface is a composite crowning surface having a large diameter arc portion at the axial center and a small diameter circular portion at the axial end, and after processing the entire rolling surface in the axial direction, the rolling surface A superfinishing method characterized by performing separate machining of only the large diameter arc portion at the central portion in the axial direction of the above.
転走面の軸方向全体の加工は砥石のトラバース動作であり、小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止することを特徴とする請求項1に記載の超仕上げ加工方法。   2. The superfinishing method according to claim 1, wherein the machining of the entire axial direction of the rolling surface is a traverse operation of the grinding wheel, and the traverse movement of the grinding wheel is stopped for a predetermined time at an end position of the small diameter arc portion. . 軸方向全体の加工は、粗加工と仕上加工とを有することを特徴とする請求項1又は請求項2に記載の超仕上げ加工方法。   The superfinishing method according to claim 1 or 2, wherein machining in the entire axial direction includes roughing and finishing. 前記ころ軸受が円すいころ軸受であることを特徴とする請求項1〜請求項3のいずれか1項に記載の超仕上げ加工方法。   The superfinishing method according to any one of claims 1 to 3, wherein the roller bearing is a tapered roller bearing. 前記ころ軸受が円筒ころ軸受であることを特徴とする請求項1〜請求項3のいずれか1項に記載の超仕上げ加工方法。   The superfinishing method according to any one of claims 1 to 3, wherein the roller bearing is a cylindrical roller bearing. 前記転走面は、内輪の外径面に形成される転走面であることを特徴とする請求項1〜請求項5のいずれか1項に記載の超仕上げ加工方法。   The superfinishing method according to any one of claims 1 to 5, wherein the rolling contact surface is a rolling contact surface formed on the outer diameter surface of the inner ring. 前記転走面は、外輪の内径面に形成される転走面であることを特徴とする請求項1〜請求項5のいずれか1項に記載の超仕上げ加工方法。   The superfinishing method according to any one of claims 1 to 5, wherein the rolling contact surface is a rolling contact surface formed on an inner diameter surface of an outer ring.
JP2015144053A 2015-07-21 2015-07-21 Superfinishing method of roller bearing rolling surface Active JP6517105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015144053A JP6517105B2 (en) 2015-07-21 2015-07-21 Superfinishing method of roller bearing rolling surface
PCT/JP2016/068955 WO2017014001A1 (en) 2015-07-21 2016-06-27 Superfinishing method for roller bearing rolling surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015144053A JP6517105B2 (en) 2015-07-21 2015-07-21 Superfinishing method of roller bearing rolling surface

Publications (2)

Publication Number Publication Date
JP2017026000A JP2017026000A (en) 2017-02-02
JP6517105B2 true JP6517105B2 (en) 2019-05-22

Family

ID=57833947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015144053A Active JP6517105B2 (en) 2015-07-21 2015-07-21 Superfinishing method of roller bearing rolling surface

Country Status (2)

Country Link
JP (1) JP6517105B2 (en)
WO (1) WO2017014001A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739968B2 (en) * 2016-04-01 2020-08-12 Ntn株式会社 Tapered roller bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114754B1 (en) * 1970-10-26 1976-05-12
JPS5124759B1 (en) * 1970-10-26 1976-07-26
JPS5380896A (en) * 1976-12-27 1978-07-17 Koyo Seiko Co Ltd Superfinishing method for applying required crowning configuration on outerface or inner diameter face of annular work and device therefor
JPH07171744A (en) * 1992-07-10 1995-07-11 Ntn Corp Method for crowning of roller-shaped rolling member
DE19804885C5 (en) * 1998-02-09 2004-07-15 Supfina Grieshaber Gmbh & Co. Kg Superfinishing device
JP4075364B2 (en) * 2001-12-07 2008-04-16 株式会社ジェイテクト Cylindrical roller bearing
JP4812488B2 (en) * 2006-03-28 2011-11-09 Ntn株式会社 Super finishing method of roller bearing raceway
JP5640809B2 (en) * 2011-02-24 2014-12-17 日本精工株式会社 Super finishing board for both inner and outer rings and super finishing method for inner and outer rings
JP5842550B2 (en) * 2011-11-08 2016-01-13 日本精工株式会社 Super-finishing device, super-finishing method, and outer ring manufacturing method

Also Published As

Publication number Publication date
JP2017026000A (en) 2017-02-02
WO2017014001A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5842550B2 (en) Super-finishing device, super-finishing method, and outer ring manufacturing method
JP5602552B2 (en) Processing equipment
CN103939477B (en) Machining method of assembly line of angular contact ball bearing sleeve ring
TWI511837B (en) Method of fabricating opposite ends of rod material
EP1035339A1 (en) Roller bearing and a method of producing the same
JP2010240807A (en) Workpiece supply device for machining roller end face, roller end face working machine, and roller for rolling bearing
JP2013056366A (en) Method of manufacturing inner and outer ring for bearing, inner and outer ring for bearing, and rolling bearing
JP6517105B2 (en) Superfinishing method of roller bearing rolling surface
JP2007260829A (en) Method of super-finishing bearing ring of roller bearing
JP2016097493A (en) Roller and polishing device
JP4131156B2 (en) Super-finish polishing method of annular groove of raceway with grinding wheel
CN210938276U (en) Centering shaft for supporting bearing inner ring during super-finishing
CN107932299A (en) A kind of certainly walking burnishing device of stainless steel tube
JP5239589B2 (en) Grinding apparatus and grinding method
JP2022505248A (en) A device and method for forming at least one rotating element, and a method for processing at least one control wheel of the device.
JP2016041952A (en) Ceramic roller manufacturing method and green compact forming apparatus
WO2015050144A1 (en) Manufacturing method for tapered roller, and tapered roller bearing
JP2018001398A (en) Tapered roller grinding tool and tapered roller grinding method, and manufacturing method for tapered roller bearing
JP2015031343A (en) Roller bearing, and roller bearing manufacturing method
JP2019190586A (en) Manufacturing method of raceway member
JPS6028628B2 (en) Machining method for integral double-row tapered roller bearing outer ring
JP2006192556A (en) Surface machining method and thrust bearing raceway ring
JP7210307B2 (en) Method for manufacturing metal parts
JP2009083021A (en) Dressing method
JP6560947B2 (en) Manufacturing method of ball screw shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6517105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250