WO2017014001A1 - Superfinishing method for roller bearing rolling surface - Google Patents

Superfinishing method for roller bearing rolling surface Download PDF

Info

Publication number
WO2017014001A1
WO2017014001A1 PCT/JP2016/068955 JP2016068955W WO2017014001A1 WO 2017014001 A1 WO2017014001 A1 WO 2017014001A1 JP 2016068955 W JP2016068955 W JP 2016068955W WO 2017014001 A1 WO2017014001 A1 WO 2017014001A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling surface
roller bearing
machining
diameter arc
axial direction
Prior art date
Application number
PCT/JP2016/068955
Other languages
French (fr)
Japanese (ja)
Inventor
邦守 秋野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017014001A1 publication Critical patent/WO2017014001A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • B24B19/06Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements for grinding races, e.g. roller races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Definitions

  • the present invention relates to a superfinishing method for processing a rolling surface of a tapered roller bearing or a cylindrical roller bearing, and more particularly to a super-crowning surface of a composite crowning surface in which the cross-sectional shape of the rolling surface is a shape joined by a plurality of arc shapes. It relates to a finishing method.
  • the rolling surface of the inner ring or outer ring of the roller bearing has a cross section that is a straight surface in the axial direction, a single crowning surface in which the cross section is one kind of arc shape, or a composite in which the cross section is connected by a plurality of arc shapes. It has a crowning surface or a logarithmic crowning surface whose cross section is a logarithmic curve.
  • Patent Document 1 As a method of super-finishing (mirror finishing) of these surfaces, conventionally, a square grindstone arranged perpendicular to the conical surface or cylindrical surface is used, and a fine vibration operation is applied to the grindstone parallel to the conical surface or cylindrical surface. There was a method of applying pressure to this grindstone (Patent Document 1). Furthermore, there has been a method in which a traverse operation (reciprocating operation) and a fine vibration operation are applied to a grindstone in parallel to a conical surface or a cylindrical surface, and the grindstone is pressurized (Patent Document 2).
  • FIG. 10 shows a case where the rolling surface 1 of the bearing ring (outer ring) 5 of the roller bearing is brought into contact with the grindstone 2 pressurized by the pressurizing source 6 of the pressurizing means.
  • the outer ring 5 is supported by the support mechanism 7.
  • the support mechanism 7 includes a backing plate 8 that contacts the end surface of the outer ring 5 and rotates the outer ring 5 about its axis L, a pusher roll 9 that presses the outer ring 5 toward the backing plate 8, and the like. Further, as shown in FIGS.
  • the rolling surface 1 is generally a composite crowning having a large-diameter arc portion 1a at the center in the axial direction and a small-diameter arc portion 1b at the end in the axial direction. .
  • the grindstone 2 when machining is performed with only a fine vibration operation and not a traverse operation, the grindstone 2 has a shape of the large-diameter arc portion 1a and the small-diameter arc portion 1b (both sides). Having a polished surface.
  • the cross-sectional shape of the rolling surface 1 has arcs having different diameters, and the arcs at both ends in the axial direction have small diameters. Therefore, in FIG. 11B, as shown in FIG. 11B, the axial end portion corresponding portion of the polishing surface of the grindstone 2 cannot correspond to the small diameter arc portion 1b of the axial end portion. Processing may not be possible. That is, in FIG. 11A, the crowning height of the composite crowning is low, and in FIG. 11B, the crowning height of the composite crowning is high.
  • the grindstone 3 will perform the traverse operation
  • movement reciprocating motion
  • movement reciprocating motion
  • movement and normal direction turning the processing time is long because the processing efficiency is poor compared to processing with only fine vibration.
  • the polishing surface 3a has a concave curved surface as shown in FIG.
  • the polished surface 3a of the grindstone 3 may not be in uniform contact with the large-diameter arc portion (processed surface) 1a, and the crowning shape may collapse and a uniform finished surface roughness may not be obtained.
  • the present invention provides a method for superfinishing a roller bearing rolling surface, which can obtain a uniform finished surface roughness without causing the crowning shape to lose its shape, and can improve the working efficiency.
  • a super-finishing method for a roller bearing rolling surface is a super-finishing method for machining a rolling surface of a roller bearing, and the rolling surface has a large-diameter arc portion at an axial center portion and an axial direction. It is a composite crowning surface with a small-diameter arc part at the end, and after machining the entire rolling surface in the axial direction, separate machining of only the large-diameter arc part at the axial center of the rolling surface is performed. is there.
  • the super finishing method of the roller bearing rolling surface of the present invention after machining the entire rolling surface in the axial direction, separate machining is performed only on the large-diameter arc portion at the axial center of the rolling surface. Therefore, uniform finished surface roughness can be obtained in the large-diameter arc portion in the central portion in the axial direction. Moreover, even in the small-diameter arc part at the axial end of the rolling surface, the entire axial direction of the rolling surface is processed before separate machining of only the large-diameter arc part. Surface roughness can be obtained.
  • the separate processing may be performed by different equipment or by the same equipment, and may have another processing step.
  • the machining of the entire rolling surface in the axial direction is a traverse operation of the grindstone, and it is preferable to stop the traverse operation of the grindstone for a predetermined time at the end position of the small-diameter arc portion.
  • the machining in the entire axial direction may include rough machining and finishing. In this way, by using two steps, high processing accuracy can be achieved.
  • the roller bearing may be a tapered roller bearing or a cylindrical roller bearing.
  • the rolling surface may be a rolling surface formed on the outer diameter surface of the inner ring or a rolling surface formed on the inner diameter surface of the outer ring.
  • a uniform finished surface roughness can be obtained in the large-diameter arc portion at the central portion in the axial direction, and a uniform finished surface roughness can be obtained even in the small-diameter arc portion.
  • FIG. 2 is a simplified diagram showing a method for superfinishing a roller bearing rolling surface according to the present invention during rough machining of machining in the entire axial direction.
  • FIG. 5 is a simplified diagram showing a super-finishing method for a roller bearing rolling surface according to the present invention during finishing of the entire processing in the axial direction.
  • FIG. 5 is a simplified view of another machining of only the large-diameter arc portion at the axially central portion of the rolling surface, showing the superfinishing method of the roller bearing rolling surface of the present invention.
  • FIG. 6 is a simplified diagram when the traverse operation is stopped. It is the shape measurement data when the surface roughness of the axial central part is shown and the axial central part is not separately processed. It is the shape measurement data when the surface roughness of the axial central part is shown and the axial central part is processed separately. It is the shape measurement data of a rolling surface which shows the result of having processed without the tally time in the super finishing processing method of the roller bearing rolling surface of the present invention. It is the measurement data of the surface roughness of a rolling surface which shows the result of having processed without the tally time in the super finishing method of the roller bearing rolling surface of the present invention.
  • the result of having processed with the tally time in the super-finishing processing method of the roller bearing rolling surface of the present invention is shown, and is cross-sectional shape measurement data of the rolling surface.
  • the result of having processed with the tally time in the super finishing method of the roller bearing rolling surface of the present invention is shown, and is surface roughness measurement data of the rolling surface.
  • FIG. 12 is a simplified diagram showing problems of the processing method shown in FIG. 11.
  • FIG. 7 shows a tapered roller bearing.
  • this tapered roller bearing has an inner ring 11 having a conical rolling surface 10 on the outer peripheral surface and a conical rolling surface 12 on the inner peripheral surface.
  • a plurality of tapered rollers 14 which are arranged to freely roll between the outer ring 13 having the inner ring 11, the rolling surface 10 of the inner ring 11 and the rolling surface 12 of the outer ring 13, and a plurality of tapered rollers 14 in the circumferential direction of the bearing.
  • the retainer 15 which holds it at intervals is a main component.
  • the inner ring 11 has a small flange 16 on the small diameter side of the rolling surface 10 and a large flange 17 on the large diameter side.
  • the cage 15 has a plurality of column portions 15c between a small-diameter ring portion 15a and a large-diameter ring portion 15b, and a pocket 18 for holding the tapered roller 14 is formed between the column portions 15c. .
  • the tapered roller 14 is disposed in the pocket 18.
  • FIG. 8 shows a cylindrical roller bearing.
  • the cylindrical roller bearing has an inner ring 21 having a rolling surface 20 on the outer periphery, an outer ring 23 having a rolling surface 22 on the inner periphery, and the rolling surface 20 and the outer ring of the inner ring 21. 23, a plurality of cylindrical rollers 24 that are freely rollable between the rolling surfaces 22 and a cage 25 that holds the cylindrical rollers 24 at a predetermined circumferential interval.
  • flange portions 26 and 27 are provided, respectively.
  • a corner groove 28 is provided at each corner where the flange surface of each flange portion 26, 27 of the inner ring 21 and the rolling surface 20 intersect.
  • These relief grooves 28 are mainly provided as escape grooves when grinding the rolling surface 20 and the flange surface.
  • the cylindrical roller bearing shown in FIG. 9 includes an inner ring 31 having a rolling surface 30 on the outer periphery, an outer ring 33 having a rolling surface 32 on the inner periphery, a rolling surface 30 of the inner ring 31, and a rolling surface 32 of the outer ring 33. And a plurality of cylindrical rollers 34 that are arranged so as to be freely rotatable, and a retainer 35 that holds the cylindrical rollers 34 at predetermined circumferential intervals.
  • flanges 36 and 37 are provided, respectively.
  • Numerous grooves 38 are provided in the corners where the flange surfaces of the flange portions 36 and 37 of the outer ring 33 and the rolling surfaces 32 intersect with each other.
  • the superfinishing method of the present invention has the rolling surfaces 10, 12 of the tapered roller bearing and the rolling surfaces 20, 22, 30, 32 of the cylindrical roller bearing shown in FIGS. 7 to 9 as shown in FIG. Processing is performed by the processing method.
  • the rolling surface R (10, 12, 20, 22, 30, 32) shown in FIG. 2 has a composite crowning having a large-diameter arc portion 40 at the center in the axial direction and small-diameter arc portions 41a and 41b at the end in the axial direction. Surface.
  • the large-diameter arc portion 40 at the axial center of the rolling surface R (10, 12, 20, 22, 30, 32) is about R500 to 2000 mm
  • the small-diameter arc portions 41a and 41b at the axial ends are R is about 30 to 100 mm
  • the rolling surface R in FIGS. 2 and 11 is exaggerated.
  • This super-finishing method is performed by supporting a bearing ring of a roller bearing (in the illustrated example, the outer ring 13 of a conical bearing) with a support mechanism 51 as shown in FIG.
  • the support mechanism 51 includes a backing plate 52 that contacts the end surface of the outer ring 13 and rotates the outer ring 13 around its axis L, a pusher roll 53 that presses the outer ring 13 toward the backing plate 52 side, and the like.
  • the case where the rolling surface R of the outer ring 13 of the roller bearing is brought into contact with the grindstone 50 pressurized by the pressurizing source 54 of the pressurizing means is shown.
  • the outer rings 23 and 33 of the cylindrical roller bearing are also omitted because they are superfinished by the same support mechanism.
  • the inner ring 11 of the tapered roller bearing and the inner rings 21 and 31 of the cylindrical roller bearing are omitted because they are superfinishing methods using the same support mechanism.
  • this superfinishing method includes a first stage machining for roughing the entire axial direction of the rolling surface R as shown in FIG. 2A and an entire axial direction of the rolling surface R as shown in FIG. 2B. 2C, and a third stage process for finishing only the large-diameter arc portion 40 at the axial center of the rolling surface R, as shown in FIG. 2C. .
  • the first stage machining is to traverse the grinding wheel 50 (rough grinding wheel 50A) over the entire axial direction (full length) of the rolling surface R.
  • the traverse for example, one round trip of 5 seconds can be performed.
  • the grindstone 50 finishing grindstone 50B
  • the grinding wheel 50 is traversed only on the large diameter arc portion 40 of the rolling surface R.
  • the grindstone 50 for example, 15 round trips of 7 seconds can be performed.
  • the grindstone 50 (50A, 50B, 50C) is given a fine vibration operation in parallel to the rolling surface R.
  • the grain size of the roughing grindstone 50A is, for example, about # 1000 to # 1500
  • the grain size of the finishing grindstones 50B and 50C is, for example, about # 1500 to # 3000.
  • the same grindstone 50 may be used from roughing to finishing.
  • the particle size in this case for example, about # 1500 to # 2500 is used.
  • a uniform finished surface roughness can be obtained in the large-diameter arc portion 40 at the central portion in the axial direction, and a uniform finished surface roughness can be obtained also in the small-diameter arc portions 41a and 41b.
  • Surface R can be obtained.
  • the roller bearing processed by the processing method shown in FIG. 2 may be a tapered roller bearing or a cylindrical roller bearing, and the rolling surfaces R are formed on the outer diameter surfaces of the inner rings 11, 21, 31. Even the rolling surfaces 10, 20, 30 formed may be the rolling surfaces 12, 22, 32 formed on the inner diameter surfaces of the outer rings 13, 23, 33. For this reason, this processing method is excellent in versatility.
  • the traverse of the first stage machining, the second stage machining, and the third stage machining can be performed.
  • the number of reciprocations can be arbitrarily set.
  • the processing time for each processing is also arbitrary. Furthermore, it is possible to arbitrarily set the stop time when stopping the traverse operation of the grindstone at the end positions of the small-diameter arc portions 41a and 41b.
  • grindstones 50A, 50B, and 50C used for the first stage machining, the second stage machining, and the third stage machining can be employed depending on the material and hardness of the rolling surface R.
  • Grains or silicon carbide abrasive grains can be used.
  • Example 1 The surface roughness in the case of performing only the entire machining (machining of the entire rolling surface), the entire machining (machining of the entire rolling surface) and the center machining (machining of the large-diameter arc portion of the rolling surface) The processing time etc. were compared.
  • an outer ring of a tapered roller bearing having an outer diameter of 50 to 80 mm, a rolling surface angle of 27 °, and a rolling surface width of 14 mm was used.
  • FIG. 4A shows the surface roughness of the central part in the axial direction of each rolling surface in the case of only the whole process
  • FIG. 4B shows the case of the whole process and the center part.
  • the processing time was 2 round trips (26 seconds).
  • the surface roughness Ra of the central portion (large-diameter circular arc portion) was Ra 0.13 ⁇ m.
  • the whole process was performed 13 times by 1 reciprocation, and the center part process was performed 21 reciprocations (10 seconds) for a total of 23 seconds.
  • the surface roughness Ra of the central portion was 0.075 ⁇ m.
  • Example 2 The surface roughness and processing time were compared with (without total tally time) and with tally time (total processing + center processing).
  • the tally time is a time during which the traverse operation of the grindstone 50 is stopped at the end positions of the small-diameter arc portions 41a and 41b during the machining of the entire rolling surface R in the axial direction. This is a case where there is no time to stop, and the presence of tally time is a case where there is a time to stop.
  • the first stage machining (rough machining in the entire axial direction) is performed once (5 seconds)
  • the second stage machining (finishing machining in the entire axial direction) is performed one reciprocation (5 seconds)
  • the third Step machining finishing of the large-diameter arc portion was performed 15 reciprocations (7 seconds). That is, the total processing time was 17 seconds.
  • the surface roughness Ra of the central large-diameter arc portion 40 is 0.114 ⁇ m
  • the surface roughness Ra of one small-diameter arc portion 41a is 0.136 ⁇ m
  • the surface roughness Ra of the other small-diameter arc portion 41b is 0.153 ⁇ m. there were.
  • the grindstone 50 is stopped for 1 second at the end of each of the small-diameter arc portions 41a and 41b during the second stage machining (finishing in the entire axial direction) without the tally time. For this reason, the processing time as a whole was 19 seconds.
  • the surface roughness Ra of the central large-diameter arc part 40 is 0.083 ⁇ m
  • the surface roughness Ra of one small-diameter arc part 41a is 0.102 ⁇ m
  • the surface roughness Ra of the other small-diameter arc part 41b is 0.109 ⁇ m.
  • machining time of 22 seconds was required. It is necessary to add one reciprocation (5 seconds) for the second stage machining, and in machining with tally time, the machining time as a whole can be shortened by 3 seconds (22 seconds-19 seconds).
  • the rolling surface is a composite crowning surface having a large-diameter arc portion at the axial center and a small-diameter arc portion at the axial end.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention is a superfinishing method for machining the rolling surface of a roller bearing. The rolling surface is a composite crowning surface having a large diameter arc section for the central section in the axial direction and small diameter arc sections for the axial direction ends. After machining of the rolling surface in the axial direction as a whole, a separate machining is performed on only the large diameter arc section of the central section of the rolling surface in the axial direction.

Description

ころ軸受転走面の超仕上げ加工方法Super finishing method for rolling contact surface of roller bearing
 本発明は、円すいころ軸受や円筒ころ軸受の転走面を加工する超仕上げ加工方法に関し、特に、転走面の断面形状が、複数の円弧形状で継ぎ合わせた形状となる複合クラウニング面の超仕上げ加工方法に関する。 The present invention relates to a superfinishing method for processing a rolling surface of a tapered roller bearing or a cylindrical roller bearing, and more particularly to a super-crowning surface of a composite crowning surface in which the cross-sectional shape of the rolling surface is a shape joined by a plurality of arc shapes. It relates to a finishing method.
  ころ軸受の内輪または外輪の転走面は、断面が軸方向にストレート面、または断面が1種類の円弧形状となる単一クラウニング面、または断面が複数の円弧形状で繋ぎ併せた形状となる複合クラウニング面、または断面が対数曲線となる対数クラウニング面を有している。 The rolling surface of the inner ring or outer ring of the roller bearing has a cross section that is a straight surface in the axial direction, a single crowning surface in which the cross section is one kind of arc shape, or a composite in which the cross section is connected by a plurality of arc shapes. It has a crowning surface or a logarithmic crowning surface whose cross section is a logarithmic curve.
 これらの面の超仕上げ(鏡面仕上げ)加工する方法として、従来には、円すい面または円筒面に垂直に配置された角形砥石を用いて、円すい面または円筒面に平行に微振動動作を砥石に与え、この砥石を加圧する方法があった(特許文献1)。さらには、円すい面または円筒面に平行にトラバース動作(往復動作)および微振動動作を砥石に与え、かつ砥石を加圧することによって行なう方法があった(特許文献2)。 As a method of super-finishing (mirror finishing) of these surfaces, conventionally, a square grindstone arranged perpendicular to the conical surface or cylindrical surface is used, and a fine vibration operation is applied to the grindstone parallel to the conical surface or cylindrical surface. There was a method of applying pressure to this grindstone (Patent Document 1). Furthermore, there has been a method in which a traverse operation (reciprocating operation) and a fine vibration operation are applied to a grindstone in parallel to a conical surface or a cylindrical surface, and the grindstone is pressurized (Patent Document 2).
特開2002-326153号公報JP 2002-326153 A 特開2007-260829号公報JP 2007-260829 A
  例えば、図10では、ころ軸受の軌道輪(外輪)5の転走面1と、加圧手段の加圧源6にて加圧された砥石2とを接触させた場合を示している。この場合、外輪5は、支持機構7にて支持されている。支持機構7は、外輪5の端面に接して外輪5をその軸心L廻り回転させるバッキングプレート8と、外輪5をバッキングプレート8側へ押し付けるプッシャーロール9等を備える。また、図11A及び図11Bに示すように、転走面1としては、一般的に、軸方向中央部の大径円弧部1aと軸方向端部の小径円弧部1bとを有する複合クラウニングである。このため、前記特許文献1に記載のように、微振動動作のみでトラバース動作せずに加工する場合、砥石2は、この大径円弧部1aと小径円弧部1b(両側)との形状にあった研磨面を有する。 For example, FIG. 10 shows a case where the rolling surface 1 of the bearing ring (outer ring) 5 of the roller bearing is brought into contact with the grindstone 2 pressurized by the pressurizing source 6 of the pressurizing means. In this case, the outer ring 5 is supported by the support mechanism 7. The support mechanism 7 includes a backing plate 8 that contacts the end surface of the outer ring 5 and rotates the outer ring 5 about its axis L, a pusher roll 9 that presses the outer ring 5 toward the backing plate 8, and the like. Further, as shown in FIGS. 11A and 11B, the rolling surface 1 is generally a composite crowning having a large-diameter arc portion 1a at the center in the axial direction and a small-diameter arc portion 1b at the end in the axial direction. . For this reason, as described in the above-mentioned Patent Document 1, when machining is performed with only a fine vibration operation and not a traverse operation, the grindstone 2 has a shape of the large-diameter arc portion 1a and the small-diameter arc portion 1b (both sides). Having a polished surface.
 しかしながら、このように、転走面1の断面形状は大小異なる径の円弧を有し、軸方向両端部の円弧が小径である為、図11Aでは、砥石2の研磨面の軸方向端部対応部にて加工が可能であるが、図11Bに示すように、砥石2の研磨面の軸方向端部対応部が軸方向端部の小径円弧部1bに対応できず、この小径円弧部1bを加工できない場合がある。すなわち、図11Aでは、複合クラウニングのクラウニング高さが低い場合であり、図11Bでは、複合クラウニングのクラウニング高さが高い場合である。 However, as described above, the cross-sectional shape of the rolling surface 1 has arcs having different diameters, and the arcs at both ends in the axial direction have small diameters. Therefore, in FIG. 11B, as shown in FIG. 11B, the axial end portion corresponding portion of the polishing surface of the grindstone 2 cannot correspond to the small diameter arc portion 1b of the axial end portion. Processing may not be possible. That is, in FIG. 11A, the crowning height of the composite crowning is low, and in FIG. 11B, the crowning height of the composite crowning is high.
 また、特許文献2に記載のものでは、図12に示すように、砥石3が振動動作・法線方向の旋回を抑えたトラバース動作(往復動)を行うことになる。このように、法線加圧加工で複合クラウニングを加工する場合、微振動のみの加工に比べて加工能率が悪い為、加工時間が長くなる。軸方向全体を一度に加工しようとすると、砥石3が両端の小径円弧部1bに馴染んだ後、中央の大径円弧部1aを加工する際、図13に示すように、研磨面3aが凹曲面状であり、砥石3の研磨面3aが大径円弧部(加工面)1aに均一に接触せず、クラウニング形状が崩れ均一な仕上げ面粗さが得られないことがある。 Moreover, in the thing of patent document 2, as shown in FIG. 12, the grindstone 3 will perform the traverse operation | movement (reciprocating motion) which suppressed the vibration operation | movement and normal direction turning. Thus, when processing a composite crowning by normal pressure processing, the processing time is long because the processing efficiency is poor compared to processing with only fine vibration. When the whole axial direction is to be machined at once, after the grindstone 3 has become familiar with the small-diameter arc portion 1b at both ends, when machining the central large-diameter arc portion 1a, the polishing surface 3a has a concave curved surface as shown in FIG. The polished surface 3a of the grindstone 3 may not be in uniform contact with the large-diameter arc portion (processed surface) 1a, and the crowning shape may collapse and a uniform finished surface roughness may not be obtained.
 そこで、クラウニング形状が型崩れせずに均一な仕上げ面粗さを得ることができ、しかも、加工能率の向上を図ることが可能なころ軸受転走面の超仕上げ加工方法を提供する。 Therefore, the present invention provides a method for superfinishing a roller bearing rolling surface, which can obtain a uniform finished surface roughness without causing the crowning shape to lose its shape, and can improve the working efficiency.
  本発明のころ軸受転走面の超仕上げ加工方法は、ころ軸受の転走面を加工する超仕上げ加工方法であって、前記転走面は、軸方向中央部の大径円弧部と軸方向端部の小径円弧部とを有する複合クラウニング面であり、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うものである。 A super-finishing method for a roller bearing rolling surface according to the present invention is a super-finishing method for machining a rolling surface of a roller bearing, and the rolling surface has a large-diameter arc portion at an axial center portion and an axial direction. It is a composite crowning surface with a small-diameter arc part at the end, and after machining the entire rolling surface in the axial direction, separate machining of only the large-diameter arc part at the axial center of the rolling surface is performed. is there.
 本発明のころ軸受転走面の超仕上げ加工方法によれば、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うので、軸方向中央部の大径円弧部において、均一な仕上げ面粗さを得ることができる。しかも、転走面の軸方向端部の小径円弧部においても、大径円弧部のみの別加工の前に、転走面の軸方向全体の加工を行うので、小径円弧部においても均一な仕上げ面粗さを得ることができる。ここで別加工とは、別の設備で加工する場合でも同じ設備で加工する場合でもよく、別の加工工程があればよい。 According to the super finishing method of the roller bearing rolling surface of the present invention, after machining the entire rolling surface in the axial direction, separate machining is performed only on the large-diameter arc portion at the axial center of the rolling surface. Therefore, uniform finished surface roughness can be obtained in the large-diameter arc portion in the central portion in the axial direction. Moreover, even in the small-diameter arc part at the axial end of the rolling surface, the entire axial direction of the rolling surface is processed before separate machining of only the large-diameter arc part. Surface roughness can be obtained. Here, the separate processing may be performed by different equipment or by the same equipment, and may have another processing step.
 転走面の軸方向全体の加工は砥石のトラバース動作であり、小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止するのが好ましい。このように、構成することによって、小径円弧部の端部での加工不十分を解消することができる。 The machining of the entire rolling surface in the axial direction is a traverse operation of the grindstone, and it is preferable to stop the traverse operation of the grindstone for a predetermined time at the end position of the small-diameter arc portion. Thus, by comprising, the process inadequate in the edge part of a small diameter circular arc part can be eliminated.
 軸方向全体の加工は、粗加工と仕上加工とを有するものであってもよい。このように、2工程とすることによって、加工の高精度化を図ることができる。 The machining in the entire axial direction may include rough machining and finishing. In this way, by using two steps, high processing accuracy can be achieved.
 前記ころ軸受が円すいころ軸受であっても、円筒ころ軸受であってもよい。 The roller bearing may be a tapered roller bearing or a cylindrical roller bearing.
 前記転走面は、内輪の外径面に形成される転走面であっても、外輪の内径面に形成される転走面であってもよい。 The rolling surface may be a rolling surface formed on the outer diameter surface of the inner ring or a rolling surface formed on the inner diameter surface of the outer ring.
  本発明では、軸方向中央部の大径円弧部において均一な仕上げ面粗さを得ることができ、小径円弧部においても均一な仕上げ面粗さを得ることができ、高精度の転走面を得ることができる。 In the present invention, a uniform finished surface roughness can be obtained in the large-diameter arc portion at the central portion in the axial direction, and a uniform finished surface roughness can be obtained even in the small-diameter arc portion. Obtainable.
  小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止することによって、小径円弧部のトラバース回数の減少化を図ることができ、加工能率の向上を図って、全体としての加工時間の短縮化を達成できる。 By stopping the traverse operation of the grindstone at the end position of the small-diameter arc part for a predetermined time, it is possible to reduce the number of traverses of the small-diameter arc part, improve the machining efficiency, and reduce the overall machining time. Shortening can be achieved.
本発明の加工方法における、ころ軸受の軌道輪としての外輪と砥石との関係を示す概略的平面図である。It is a schematic plan view which shows the relationship between the outer ring | wheel as a bearing ring of a roller bearing, and a grindstone in the processing method of this invention. 本発明のころ軸受転走面の超仕上げ加工方法を示し、軸方向全体の加工の粗加工中の簡略図である。FIG. 2 is a simplified diagram showing a method for superfinishing a roller bearing rolling surface according to the present invention during rough machining of machining in the entire axial direction. 本発明のころ軸受転走面の超仕上げ加工方法を示し、軸方向全体の加工の仕上げ加工中の簡略図である。FIG. 5 is a simplified diagram showing a super-finishing method for a roller bearing rolling surface according to the present invention during finishing of the entire processing in the axial direction. 本発明のころ軸受転走面の超仕上げ加工方法を示し、転走面の軸方向中央部の大径円弧部のみの別加工の簡略図である。FIG. 5 is a simplified view of another machining of only the large-diameter arc portion at the axially central portion of the rolling surface, showing the superfinishing method of the roller bearing rolling surface of the present invention. トラバース動作停止中の簡略図である。FIG. 6 is a simplified diagram when the traverse operation is stopped. 軸方向中央部の面粗度を示し、軸方向中央部の別加工を行わなかった場合の形状測定データである。It is the shape measurement data when the surface roughness of the axial central part is shown and the axial central part is not separately processed. 軸方向中央部の面粗度を示し、軸方向中央部の別加工を行った場合の形状測定データである。It is the shape measurement data when the surface roughness of the axial central part is shown and the axial central part is processed separately. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム無しにて加工を行った結果を示し、転走面の形状測定データである。It is the shape measurement data of a rolling surface which shows the result of having processed without the tally time in the super finishing processing method of the roller bearing rolling surface of the present invention. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム無しにて加工を行った結果を示し、転走面の面粗度の測定データである。It is the measurement data of the surface roughness of a rolling surface which shows the result of having processed without the tally time in the super finishing method of the roller bearing rolling surface of the present invention. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム有りにて加工を行った結果を示し、転走面の断面形状測定データである。The result of having processed with the tally time in the super-finishing processing method of the roller bearing rolling surface of the present invention is shown, and is cross-sectional shape measurement data of the rolling surface. 本発明のころ軸受転走面の超仕上げ加工方法においてタリータイム有りにて加工を行った結果を示し、転走面の面粗度測定データである。The result of having processed with the tally time in the super finishing method of the roller bearing rolling surface of the present invention is shown, and is surface roughness measurement data of the rolling surface. 円すいころ軸受の断面図である。It is sectional drawing of a tapered roller bearing. 円筒ころ軸受の断面図である。It is sectional drawing of a cylindrical roller bearing. 他の円筒ころ軸受の断面図である。It is sectional drawing of another cylindrical roller bearing. 従来の微振動動作のみの加工における、ころ軸受の軌道輪としての外輪と砥石との関係を示す概略的平面図である。It is a schematic top view which shows the relationship between the outer ring | wheel as a bearing ring of a roller bearing, and a grindstone in the process only of the conventional micro vibration operation | movement. 従来の微振動動作のみの加工方法を示し、クラウニングが低いときの砥石と転走面との関係を示す簡略図である。It is a simplified diagram showing a conventional processing method of only fine vibration operation and showing a relationship between a grindstone and a rolling surface when crowning is low. 従来の微振動動作のみの加工方法を示し、クラウニングが高いときの砥石と転走面との関係を示す簡略図である。It is a simplified diagram showing a conventional processing method using only a fine vibration operation and showing a relationship between a grindstone and a rolling surface when crowning is high. 従来のトラバース動作及び微振動動作を行う加工方法を示す簡略図である。It is a simplification figure showing the processing method which performs the conventional traverse operation and fine vibration operation. 前記図11に示す加工方法の問題点を示す簡略図である。FIG. 12 is a simplified diagram showing problems of the processing method shown in FIG. 11.
  以下本発明の実施の形態を図1~図9に基づいて説明する。図7は円すいころ軸受を示し、この円すいころ軸受は、図7に示すように、外周面に円すい状の転走面10を有する内輪11と、内周面に円すい状の転走面12を有する外輪13と、内輪11の転走面10と外輪13の転走面12との間に転動自在に配された複数の円すいころ14と、複数の円すいころ14を軸受周方向に所定の間隔を隔てて保持する保持器15とを主要な構成要素としている。また、内輪11は、転走面10の小径側に小鍔16を形成すると共に大径側に大鍔17を形成している。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 7 shows a tapered roller bearing. As shown in FIG. 7, this tapered roller bearing has an inner ring 11 having a conical rolling surface 10 on the outer peripheral surface and a conical rolling surface 12 on the inner peripheral surface. A plurality of tapered rollers 14 which are arranged to freely roll between the outer ring 13 having the inner ring 11, the rolling surface 10 of the inner ring 11 and the rolling surface 12 of the outer ring 13, and a plurality of tapered rollers 14 in the circumferential direction of the bearing. The retainer 15 which holds it at intervals is a main component. The inner ring 11 has a small flange 16 on the small diameter side of the rolling surface 10 and a large flange 17 on the large diameter side.
 保持器15は、小径リング部15aと大径リング部15bとの間に複数本の柱部15cを有し、柱部15cの相互間に円すいころ14を保持するポケット18を形成したものである。そして、このポケット18に円すいころ14が配置される。 The cage 15 has a plurality of column portions 15c between a small-diameter ring portion 15a and a large-diameter ring portion 15b, and a pocket 18 for holding the tapered roller 14 is formed between the column portions 15c. . The tapered roller 14 is disposed in the pocket 18.
 図8は、円筒ころ軸受を示し、この円筒ころ軸受は、外周に転走面20を有する内輪21と、内周に転走面22を有する外輪23と、内輪21の転走面20と外輪23の転走面22との間に転動自在に配された複数の円筒ころ24と、円筒ころ24を円周所定間隔に保持する保持器25とを備えている。内輪21の両側部には、それぞれ、鍔部26,27が設けられている。 FIG. 8 shows a cylindrical roller bearing. The cylindrical roller bearing has an inner ring 21 having a rolling surface 20 on the outer periphery, an outer ring 23 having a rolling surface 22 on the inner periphery, and the rolling surface 20 and the outer ring of the inner ring 21. 23, a plurality of cylindrical rollers 24 that are freely rollable between the rolling surfaces 22 and a cage 25 that holds the cylindrical rollers 24 at a predetermined circumferential interval. On both side portions of the inner ring 21, flange portions 26 and 27 are provided, respectively.
 内輪21の各鍔部26,27の鍔面と転走面20とが交わる隅部には、それぞれ、ぬすみ溝28が設けられている。これらぬすみ溝28は、主に、転走面20と鍔面を研削加工する際の逃げ溝として設けられるものである。 A corner groove 28 is provided at each corner where the flange surface of each flange portion 26, 27 of the inner ring 21 and the rolling surface 20 intersect. These relief grooves 28 are mainly provided as escape grooves when grinding the rolling surface 20 and the flange surface.
 図9に示す円筒ころ軸受は、外周に転走面30を有する内輪31と、内周に転走面32を有する外輪33と、内輪31の転走面30と外輪33の転走面32との間に転動自在に配された複数の円筒ころ34と、円筒ころ34を円周所定間隔に保持する保持器35とを備えている。外輪33の両側部には、それぞれ、鍔部36,37が設けられている。外輪33の各鍔部36,37の鍔面と転走面32とが交わる隅部には、それぞれ、ぬすみ溝38が設けられている。 The cylindrical roller bearing shown in FIG. 9 includes an inner ring 31 having a rolling surface 30 on the outer periphery, an outer ring 33 having a rolling surface 32 on the inner periphery, a rolling surface 30 of the inner ring 31, and a rolling surface 32 of the outer ring 33. And a plurality of cylindrical rollers 34 that are arranged so as to be freely rotatable, and a retainer 35 that holds the cylindrical rollers 34 at predetermined circumferential intervals. On both sides of the outer ring 33, flanges 36 and 37 are provided, respectively. Numerous grooves 38 are provided in the corners where the flange surfaces of the flange portions 36 and 37 of the outer ring 33 and the rolling surfaces 32 intersect with each other.
 本発明の超仕上げ加工方法は、図7~図9等で示す円すいころ軸受の転走面10,12や円筒ころ軸受の転走面20,22、30,32を、図2に示すような加工方法での加工を行うものである。図2に示す転走面R(10,12、20,22、30,32)は、軸方向中央部の大径円弧部40と軸方向端部の小径円弧部41a,41bとを有する複合クラウニング面である。ここで転走面R(10,12、20,22、30,32)の軸方向中央部の大径円弧部40はR500~2000mm程度であり、軸方向端部の小径円弧部41a,41bはR30~100mm程度であり、図2や図11の転走面Rは誇張している。 The superfinishing method of the present invention has the rolling surfaces 10, 12 of the tapered roller bearing and the rolling surfaces 20, 22, 30, 32 of the cylindrical roller bearing shown in FIGS. 7 to 9 as shown in FIG. Processing is performed by the processing method. The rolling surface R (10, 12, 20, 22, 30, 32) shown in FIG. 2 has a composite crowning having a large-diameter arc portion 40 at the center in the axial direction and small- diameter arc portions 41a and 41b at the end in the axial direction. Surface. Here, the large-diameter arc portion 40 at the axial center of the rolling surface R (10, 12, 20, 22, 30, 32) is about R500 to 2000 mm, and the small- diameter arc portions 41a and 41b at the axial ends are R is about 30 to 100 mm, and the rolling surface R in FIGS. 2 and 11 is exaggerated.
 この超仕上げ加工方法は、図1に示すような支持機構51にて、ころ軸受の軌道輪(図例では円すいの軸受の外輪13)を支持して行う。支持機構51は、外輪13の端面に接して外輪13をその軸心L廻り回転させるバッキングプレート52と、外輪13をバッキングプレート52側へ押し付けるプッシャーロール53等を備える。この場合、ころ軸受の外輪13の転走面Rと、加圧手段の加圧源54にて加圧された砥石50とを接触させた場合を示している。円筒ころ軸受の外輪23、33においても同様の支持機構で超仕上げ加工方法となるので省略する。また、円すいころ軸受の内輪11、円筒ころ軸受の内輪21、31においても同様の支持機構で超仕上げ加工方法となるので省略する。 This super-finishing method is performed by supporting a bearing ring of a roller bearing (in the illustrated example, the outer ring 13 of a conical bearing) with a support mechanism 51 as shown in FIG. The support mechanism 51 includes a backing plate 52 that contacts the end surface of the outer ring 13 and rotates the outer ring 13 around its axis L, a pusher roll 53 that presses the outer ring 13 toward the backing plate 52 side, and the like. In this case, the case where the rolling surface R of the outer ring 13 of the roller bearing is brought into contact with the grindstone 50 pressurized by the pressurizing source 54 of the pressurizing means is shown. The outer rings 23 and 33 of the cylindrical roller bearing are also omitted because they are superfinished by the same support mechanism. Further, the inner ring 11 of the tapered roller bearing and the inner rings 21 and 31 of the cylindrical roller bearing are omitted because they are superfinishing methods using the same support mechanism.
 また、この超仕上げ加工方法は、図2Aに示すように、転走面Rの軸方向全体の粗加工を行う第1段加工と、図2Bに示すように、転走面Rの軸方向全体の仕上げ加工を行う第2段加工と、図2Cに示すように、転走面Rの軸方向中央部の大径円弧部40のみの仕上加工を行う第3段加工とを備えたものである。 In addition, this superfinishing method includes a first stage machining for roughing the entire axial direction of the rolling surface R as shown in FIG. 2A and an entire axial direction of the rolling surface R as shown in FIG. 2B. 2C, and a third stage process for finishing only the large-diameter arc portion 40 at the axial center of the rolling surface R, as shown in FIG. 2C. .
 すなわち、第1段加工は、砥石50(粗加工用の砥石50A)を転走面Rの軸方向全体(全長)にわたってトラバースするものである。この場合、トラバースとしては、例えば5秒の1往復とできる。また、第2段加工は、砥石50(仕上げ用の砥石50B)を転走面Rの軸方向全体(全長)にわたってトラバースするものである。トラバースとしては、例えば5秒の1往復とできる。第3段加工は、砥石50(大径円弧部40の仕上げ用の砥石50C)を転走面Rの大径円弧部40のみをトラバースするものである。トラバースとしては、例えば7秒の15往復とできる。また、各段加工においては、砥石50(50A,50B,50C)に転走面Rに対して平行に微振動動作を与えている。 In other words, the first stage machining is to traverse the grinding wheel 50 (rough grinding wheel 50A) over the entire axial direction (full length) of the rolling surface R. In this case, as the traverse, for example, one round trip of 5 seconds can be performed. In the second stage processing, the grindstone 50 (finishing grindstone 50B) is traversed over the entire axial direction (full length) of the rolling surface R. As a traverse, for example, one round trip of 5 seconds can be performed. In the third step, the grinding wheel 50 (the grinding wheel 50C for finishing the large diameter arc portion 40) is traversed only on the large diameter arc portion 40 of the rolling surface R. As the traverse, for example, 15 round trips of 7 seconds can be performed. Further, in each step machining, the grindstone 50 (50A, 50B, 50C) is given a fine vibration operation in parallel to the rolling surface R.
 ところで、粗加工用の砥石50Aの粒度としては、例えば、♯1000~♯1500程度であり、仕上げ用の砥石50B、50Cの粒度としては、例えば、♯1500~♯3000程度である。また、粗加工から仕上げ加工まで、同じ砥石50を使用してもよい。この場合の粒度としては、例えば、♯1500~♯2500程度を用いる。 Incidentally, the grain size of the roughing grindstone 50A is, for example, about # 1000 to # 1500, and the grain size of the finishing grindstones 50B and 50C is, for example, about # 1500 to # 3000. Further, the same grindstone 50 may be used from roughing to finishing. As the particle size in this case, for example, about # 1500 to # 2500 is used.
 このころ軸受転走面の超仕上げ加工方法では、転走面Rの軸方向全体の加工を行った後、転走面Rの軸方向中央部の大径円弧部40のみの別加工を行うことになる。このため、この軸方向中央部の大径円弧部40において、均一な仕上げ面粗さを得ることができる。しかも、転走面Rの軸方向端部の小径円弧部41a、41bにおいても、大径円弧部40のみの別加工の前には、転走面Rの軸方向全体の加工を行うので、小径円弧部41a、41bにおいても均一な仕上げ面粗さを得ることができる。すなわち、軸方向中央部の大径円弧部40において均一な仕上げ面粗さを得ることができ、小径円弧部41a、41bにおいても均一な仕上げ面粗さを得ることができ、高精度の転走面Rを得ることができる。 In this super-finishing method of the roller bearing rolling surface, after machining the entire rolling surface R in the axial direction, separate machining of only the large-diameter arc portion 40 at the axial center of the rolling surface R is performed. become. For this reason, uniform finished surface roughness can be obtained in the large-diameter arc portion 40 at the axial central portion. Moreover, in the small- diameter arc portions 41a and 41b at the axial ends of the rolling surface R, the machining of the entire rolling surface R in the axial direction is performed before the separate machining of only the large-diameter arc portion 40. Even in the arc portions 41a and 41b, uniform finished surface roughness can be obtained. That is, a uniform finished surface roughness can be obtained in the large-diameter arc portion 40 at the central portion in the axial direction, and a uniform finished surface roughness can be obtained also in the small- diameter arc portions 41a and 41b. Surface R can be obtained.
 また、このころ軸受転走面の超仕上げ加工方法では、転走面Rの軸方向全体の加工において(第2段加工において)、図3に示すように、小径円弧部41a、41bの端部位置で砥石50Bのトラバース動作を小径円弧部の端部位置毎において所定時間(例えば、1秒)だけ停止するのが好ましい。この停止中においても、砥石50(50B)に転走面Rに対して平行に微振動動作を与えている。 Further, in this super-finishing method of the roller bearing rolling surface, in the machining of the entire axial direction of the rolling surface R (in the second stage machining), as shown in FIG. 3, the end portions of the small- diameter arc portions 41a and 41b It is preferable to stop the traverse operation of the grindstone 50B at a position for a predetermined time (for example, 1 second) at each end position of the small-diameter arc portion. Even during this stop, the grindstone 50 (50B) is given a fine vibration operation parallel to the rolling surface R.
 小径円弧部41a、41bの端部位置で砥石のトラバース動作を所定時間だけ停止することによって、小径円弧部41a、41bのトラバース回数の減少化を図ることができ、加工能率の向上を図って、全体としての加工時間の短縮化を達成できる。 By stopping the traverse operation of the grindstone at the end positions of the small- diameter arc portions 41a and 41b for a predetermined time, the number of traverses of the small- diameter arc portions 41a and 41b can be reduced, and the processing efficiency is improved. Overall processing time can be shortened.
 図2に示す加工方法にて加工するころ軸受として、円すいころ軸受であっても、円筒ころ軸受であってもよく、また、転走面Rとして、内輪11、21,31の外径面に形成される転走面10,20,30であっても、外輪13,23,33の内径面に形成される転走面12,22,32であってもよい。このため、この加工方法は汎用性に優れる。 The roller bearing processed by the processing method shown in FIG. 2 may be a tapered roller bearing or a cylindrical roller bearing, and the rolling surfaces R are formed on the outer diameter surfaces of the inner rings 11, 21, 31. Even the rolling surfaces 10, 20, 30 formed may be the rolling surfaces 12, 22, 32 formed on the inner diameter surfaces of the outer rings 13, 23, 33. For this reason, this processing method is excellent in versatility.
 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、第1段加工、第2段加工、第3段加工のトラバースの往復回数として、それぞれ、任意に設定することができる。また、各加工の加工時間としても任意である。さらには、小径円弧部41a、41bの端部位置で砥石のトラバース動作を停止する場合の停止時間としても任意に設定できる。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications can be made. The traverse of the first stage machining, the second stage machining, and the third stage machining can be performed. The number of reciprocations can be arbitrarily set. The processing time for each processing is also arbitrary. Furthermore, it is possible to arbitrarily set the stop time when stopping the traverse operation of the grindstone at the end positions of the small- diameter arc portions 41a and 41b.
 第1段加工、第2段加工、及び第3段加工に用いる砥石50A、50B、50Cとしては、転走面Rの材質や硬度等によって、種々採用することができるが、例えば、アルミナ質砥粒や炭化ケイ素の砥粒等を使用できる。 Various grindstones 50A, 50B, and 50C used for the first stage machining, the second stage machining, and the third stage machining can be employed depending on the material and hardness of the rolling surface R. Grains or silicon carbide abrasive grains can be used.
 実施例1
 全体加工(転走面全体の加工)のみと、全体加工(転走面全体の加工)と中央部加工(転走面の大径円弧部の加工)とを行った場合における、面粗度と加工時間等を比較した。この場合、外径寸法が50~80mmのサイズで、転走面角度27°、転走面幅14mmの円すいころ軸受の外輪を用いた。図4Aは全体加工のみの場合、図4Bは全体加工と中央部加工の場合のそれぞれの転走面の軸方向中央部の面粗度を示している。
Example 1
The surface roughness in the case of performing only the entire machining (machining of the entire rolling surface), the entire machining (machining of the entire rolling surface) and the center machining (machining of the large-diameter arc portion of the rolling surface) The processing time etc. were compared. In this case, an outer ring of a tapered roller bearing having an outer diameter of 50 to 80 mm, a rolling surface angle of 27 °, and a rolling surface width of 14 mm was used. FIG. 4A shows the surface roughness of the central part in the axial direction of each rolling surface in the case of only the whole process and FIG. 4B shows the case of the whole process and the center part.
 図4Aでは、加工時間として2往復(26秒)行った。この場合、中央部(大径円弧部)の面粗度Ra0.13μmであった。また、図4Bでは、全体加工を1往復で13秒行い、中央部加工を21往復(10秒)で、合計23秒行った。この場合の中央部の面粗度Ra0.075μmであった。 In FIG. 4A, the processing time was 2 round trips (26 seconds). In this case, the surface roughness Ra of the central portion (large-diameter circular arc portion) was Ra 0.13 μm. Moreover, in FIG. 4B, the whole process was performed 13 times by 1 reciprocation, and the center part process was performed 21 reciprocations (10 seconds) for a total of 23 seconds. In this case, the surface roughness Ra of the central portion was 0.075 μm.
 全体加工のみで図4Bの中央部と同程度の面粗度を得るためには、少なくとも2往復(26秒)追加する必要があり、全体加工時間が52秒となった。このため、(全体加工+中央部加工)を行えば、加工時間として29秒(52秒-23秒)の短縮となる。 In order to obtain a surface roughness equivalent to that in the central portion of FIG. 4B by only the entire processing, it was necessary to add at least two reciprocations (26 seconds), and the total processing time was 52 seconds. For this reason, if (overall processing + center portion processing) is performed, the processing time is shortened by 29 seconds (52 seconds-23 seconds).
 実施例2
 (全体加工+中央部加工)の加工で、タリータイム無しとタリータイム有りで面粗度と加工時間等を比較した。外径寸法が50~80mmのサイズで、テーパ角度44°、転走面幅13mmの円すいころ軸受の外輪を用いた。ここで、タリータイムとは、転走面Rの軸方向全体の加工中に、小径円弧部41a、41bの端部位置で砥石50のトラバース動作を停止する時間のことで、タリータイム無しとは、この停止する時間を有さない場合であり、タリータイム有りとは停止する時間を有する場合である。
Example 2
The surface roughness and processing time were compared with (without total tally time) and with tally time (total processing + center processing). An outer ring of a tapered roller bearing having an outer diameter of 50 to 80 mm, a taper angle of 44 °, and a rolling surface width of 13 mm was used. Here, the tally time is a time during which the traverse operation of the grindstone 50 is stopped at the end positions of the small- diameter arc portions 41a and 41b during the machining of the entire rolling surface R in the axial direction. This is a case where there is no time to stop, and the presence of tally time is a case where there is a time to stop.
 タリータイム無しの場合、第1段加工(軸方向全体の粗加工)を1往復(5秒)行い、第2段加工(軸方向全体の仕上げ加工)を1往復(5秒)行い、第3段加工(大径円弧部の仕上げ加工)を15往復(7秒)行った。すなわち、全体の加工時間が17秒であった。この場合、中央の大径円弧部40の面粗度Ra0.114μmであり、一方の小径円弧部41aの面粗度Ra0.136μmであり、他方の小径円弧部41bの面粗度Ra0.153μmであった。 When there is no tally time, the first stage machining (rough machining in the entire axial direction) is performed once (5 seconds), the second stage machining (finishing machining in the entire axial direction) is performed one reciprocation (5 seconds), and the third Step machining (finishing of the large-diameter arc portion) was performed 15 reciprocations (7 seconds). That is, the total processing time was 17 seconds. In this case, the surface roughness Ra of the central large-diameter arc portion 40 is 0.114 μm, the surface roughness Ra of one small-diameter arc portion 41a is 0.136 μm, and the surface roughness Ra of the other small-diameter arc portion 41b is 0.153 μm. there were.
 タリータイム有りの場合、前記タリータイム無しの場合の第2段加工(軸方向全体の仕上げ加工)中において、砥石50を各小径円弧部41a、41bの端部においてそれぞれ1秒だけ停止させた。このため、全体として加工時間が19秒であった。この場合、中央の大径円弧部40の面粗度Ra0.083μmであり、一方の小径円弧部41aの面粗度Ra0.102μmであり、他方の小径円弧部41bの面粗度Ra0.109μmであった。  When the tally time is present, the grindstone 50 is stopped for 1 second at the end of each of the small- diameter arc portions 41a and 41b during the second stage machining (finishing in the entire axial direction) without the tally time. For this reason, the processing time as a whole was 19 seconds. In this case, the surface roughness Ra of the central large-diameter arc part 40 is 0.083 μm, the surface roughness Ra of one small-diameter arc part 41a is 0.102 μm, and the surface roughness Ra of the other small-diameter arc part 41b is 0.109 μm. there were. *
 タリータイム無しの加工で、タリータイム有りの加工と同等レベルの面粗度を得るには、加工時間を22秒必要とした。第2段加工の1往復(5秒)の追加が必要であり、タリータイム有りの加工では、全体としての加工時間が3秒(22秒-19秒)短縮することができる。 加工 In order to obtain the same level of surface roughness as machining without tally time, machining time of 22 seconds was required. It is necessary to add one reciprocation (5 seconds) for the second stage machining, and in machining with tally time, the machining time as a whole can be shortened by 3 seconds (22 seconds-19 seconds).
 円すいころ軸受や円筒ころ軸受の転走面を超仕上げ加工する加工方法である。転走面は、軸方向中央部の大径円弧部と軸方向端部の小径円弧部とを有する複合クラウニング面である。 This is a processing method that superfinishes the rolling surfaces of tapered roller bearings and cylindrical roller bearings. The rolling surface is a composite crowning surface having a large-diameter arc portion at the axial center and a small-diameter arc portion at the axial end.
R(10,12、20,22、30、32)  転走面
11、21,31     内輪
13,23,33     外輪
40   大径円弧部
41a,41b              小径円弧部
50(50A、50B、50C)     砥石
R (10, 12, 20, 22, 30, 32) Rolling surfaces 11, 21, 31 Inner ring 13, 23, 33 Outer ring 40 Large- diameter arc part 41a, 41b Small-diameter arc part 50 (50A, 50B, 50C) Grinding wheel

Claims (7)

  1.   ころ軸受の転走面を加工する超仕上げ加工方法であって、
     前記転走面は、軸方向中央部の大径円弧部と軸方向端部の小径円弧部とを有する複合クラウニング面であり、転走面の軸方向全体の加工を行った後、転走面の軸方向中央部の大径円弧部のみの別加工を行うことを特徴とする超仕上げ加工方法。
    A superfinishing method for machining the rolling surface of a roller bearing,
    The rolling surface is a composite crowning surface having a large-diameter arc portion at the axial center and a small-diameter arc portion at the axial end, and after rolling the entire rolling surface in the axial direction, the rolling surface A super-finishing method characterized by performing another machining only on the large-diameter arc portion at the center in the axial direction.
  2.   転走面の軸方向全体の加工は砥石のトラバース動作であり、小径円弧部の端部位置で砥石のトラバース動作を所定時間だけ停止することを特徴とする請求項1に記載の超仕上げ加工方法。 2. The superfinishing method according to claim 1, wherein the machining of the entire rolling surface in the axial direction is a traverse operation of the grindstone, and the traverse operation of the grindstone is stopped for a predetermined time at the end position of the small-diameter arc portion. .
  3.   軸方向全体の加工は、粗加工と仕上げ加工とを有することを特徴とする請求項1又は請求項2に記載の超仕上げ加工方法。 The superfinishing method according to claim 1 or 2, wherein the processing in the entire axial direction includes roughing and finishing.
  4.   前記ころ軸受が円すいころ軸受であることを特徴とする請求項1~請求項3のいずれか1項に記載の超仕上げ加工方法。 The superfinishing method according to any one of claims 1 to 3, wherein the roller bearing is a tapered roller bearing.
  5.  前記ころ軸受が円筒ころ軸受であることを特徴とする請求項1~請求項3のいずれか1項に記載の超仕上げ加工方法。 The superfinishing method according to any one of claims 1 to 3, wherein the roller bearing is a cylindrical roller bearing.
  6.   前記転走面は、内輪の外径面に形成される転走面であることを特徴とする請求項1~請求項5のいずれか1項に記載の超仕上げ加工方法。 The super finishing method according to any one of claims 1 to 5, wherein the rolling surface is a rolling surface formed on an outer diameter surface of an inner ring.
  7.   前記転走面は、外輪の内径面に形成される転走面であることを特徴とする請求項1~請求項5のいずれか1項に記載の超仕上げ加工方法。 The super finishing method according to any one of claims 1 to 5, wherein the rolling surface is a rolling surface formed on an inner diameter surface of an outer ring.
PCT/JP2016/068955 2015-07-21 2016-06-27 Superfinishing method for roller bearing rolling surface WO2017014001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015144053A JP6517105B2 (en) 2015-07-21 2015-07-21 Superfinishing method of roller bearing rolling surface
JP2015-144053 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017014001A1 true WO2017014001A1 (en) 2017-01-26

Family

ID=57833947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068955 WO2017014001A1 (en) 2015-07-21 2016-06-27 Superfinishing method for roller bearing rolling surface

Country Status (2)

Country Link
JP (1) JP6517105B2 (en)
WO (1) WO2017014001A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078955B2 (en) * 2016-04-01 2021-08-03 Ntn Corporation Tapered roller bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380896A (en) * 1976-12-27 1978-07-17 Koyo Seiko Co Ltd Superfinishing method for applying required crowning configuration on outerface or inner diameter face of annular work and device therefor
US6203401B1 (en) * 1998-02-09 2001-03-20 Supfina Grieshaber Gmbh & Co. Device for superfinishing treated surfaces
JP2007260829A (en) * 2006-03-28 2007-10-11 Ntn Corp Method of super-finishing bearing ring of roller bearing
JP2013099818A (en) * 2011-11-08 2013-05-23 Nsk Ltd Superfinishing device, superfinishing method, and outer race of bearing with superfinished raceway surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114754B1 (en) * 1970-10-26 1976-05-12
JPS5124759B1 (en) * 1970-10-26 1976-07-26
JPH07171744A (en) * 1992-07-10 1995-07-11 Ntn Corp Method for crowning of roller-shaped rolling member
JP4075364B2 (en) * 2001-12-07 2008-04-16 株式会社ジェイテクト Cylindrical roller bearing
JP5640809B2 (en) * 2011-02-24 2014-12-17 日本精工株式会社 Super finishing board for both inner and outer rings and super finishing method for inner and outer rings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380896A (en) * 1976-12-27 1978-07-17 Koyo Seiko Co Ltd Superfinishing method for applying required crowning configuration on outerface or inner diameter face of annular work and device therefor
US6203401B1 (en) * 1998-02-09 2001-03-20 Supfina Grieshaber Gmbh & Co. Device for superfinishing treated surfaces
JP2007260829A (en) * 2006-03-28 2007-10-11 Ntn Corp Method of super-finishing bearing ring of roller bearing
JP2013099818A (en) * 2011-11-08 2013-05-23 Nsk Ltd Superfinishing device, superfinishing method, and outer race of bearing with superfinished raceway surface
KR20130080839A (en) * 2011-11-08 2013-07-15 닛본 세이고 가부시끼가이샤 Superfinishing machine, superfinishing method and outer ring of bearing with superfinished raceway surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078955B2 (en) * 2016-04-01 2021-08-03 Ntn Corporation Tapered roller bearing

Also Published As

Publication number Publication date
JP2017026000A (en) 2017-02-02
JP6517105B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP5842550B2 (en) Super-finishing device, super-finishing method, and outer ring manufacturing method
JP6798780B2 (en) Tapered roller bearing
JP2004322307A (en) Superfinishing device and method, rolling element, and rolling bearing
JP6323136B2 (en) Roller bearing ring, roller bearing and power transmission device
JP4894753B2 (en) Super finishing whetstone and super finishing method using the same
JP2007260829A (en) Method of super-finishing bearing ring of roller bearing
WO2017014001A1 (en) Superfinishing method for roller bearing rolling surface
JP2016097493A (en) Roller and polishing device
JP5239589B2 (en) Grinding apparatus and grinding method
JP4131156B2 (en) Super-finish polishing method of annular groove of raceway with grinding wheel
JP6881003B2 (en) Polishing tools for tapered rollers, methods for polishing tapered rollers, and methods for manufacturing tapered roller bearings.
WO2015050144A1 (en) Manufacturing method for tapered roller, and tapered roller bearing
JP5523438B2 (en) Bearing body and grinding device
WO2005028890A1 (en) Self-aligning roller bearing and method of processing the same
JP6933007B2 (en) Manufacturing method of touchdown bearing and touchdown bearing
JP6560947B2 (en) Manufacturing method of ball screw shaft
JP2005271197A (en) Metallic semi-finished work finishing method
JP7210307B2 (en) Method for manufacturing metal parts
JP2006192556A (en) Surface machining method and thrust bearing raceway ring
JP7240815B2 (en) Rolling component manufacturing method and bearing manufacturing method
RU2583510C2 (en) Method for stabilisation of parameters of rings of ball bearings
JP6421567B2 (en) Grinding wheel head and super finishing method of raceway surface
JP6409474B2 (en) Grinding wheel, grinding wheel surface shape determination method, and grinding wheel manufacturing method
JP2014124831A (en) Method for processing green body, method for manufacturing ceramic roller and apparatus for processing green body
WO2016121419A1 (en) Tapered roller bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827565

Country of ref document: EP

Kind code of ref document: A1